1
|
Kumar SP, Nadendla EK, Malireddi RKS, Haque SA, Mall R, Neuwald AF, Kanneganti TD. Evolutionary and Functional Analysis of Caspase-8 and ASC Interactions to Drive Lytic Cell Death, PANoptosis. Mol Biol Evol 2025; 42:msaf096. [PMID: 40277230 PMCID: PMC12066828 DOI: 10.1093/molbev/msaf096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 04/09/2025] [Accepted: 04/15/2025] [Indexed: 04/26/2025] Open
Abstract
Caspases are evolutionarily conserved proteins essential for driving cell death in development and host defense. Caspase-8, a key member of the caspase family, is implicated in nonlytic apoptosis, as well as lytic forms of cell death. Recently, caspase-8 has been identified as an integral component of PANoptosomes, multiprotein complexes formed in response to innate immune sensor activation. Several innate immune sensors can nucleate caspase-8-containing PANoptosome complexes to drive inflammatory lytic cell death, PANoptosis. However, how the evolutionarily conserved and diverse functions of caspase-8 drive PANoptosis remains unclear. To address this, we performed evolutionary, sequence, structural, and functional analyses to decode caspase-8's complex-forming abilities and its interaction with the PANoptosome adaptor ASC. Our study distinguished distinct subgroups within the death domain superfamily based on their evolutionary and functional relationships, identified homotypic traits among subfamily members, and captured key events in caspase evolution. We also identified critical residues defining the heterotypic interaction between caspase-8's death effector domain and ASC's pyrin domain, validated through cross-species analyses, dynamic simulations, and in vitro experiments. Overall, our study elucidated recent evolutionary adaptations of caspase-8 that allowed it to interact with ASC, improving our understanding of critical molecular associations in PANoptosome complex formation and the underlying PANoptotic responses in host defense and inflammation. These findings have implications for understanding mammalian immune responses and developing new therapeutic strategies for inflammatory diseases.
Collapse
Affiliation(s)
- Sivakumar Prasanth Kumar
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Eswar Kumar Nadendla
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - R K Subbarao Malireddi
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Syed Asfarul Haque
- Cryo-Electron Microscopy Center, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Raghvendra Mall
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Andrew F Neuwald
- Institute for Genome Sciences and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 670 W. Baltimore Street, Baltimore, MD 21201, USA
| | - Thirumala-Devi Kanneganti
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| |
Collapse
|
2
|
He Y, Li X, Yang Y, Freitas R, Zhu J, Ji G, Zhang Y. Gabapentin impairs visual development in zebrafish via retinal apoptosis and thyroid disruption. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137299. [PMID: 39842123 DOI: 10.1016/j.jhazmat.2025.137299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/30/2024] [Accepted: 01/18/2025] [Indexed: 01/24/2025]
Abstract
Gabapentin (GBP), a pharmaceutical widely used for seizures and neuropathic pain, has emerged as a contaminant in global aquatic environments, raising concerns about its ecological impact. This study investigated the effects of environmentally relevant concentrations of GBP (0, 1, 10, 1000 μg/L) on visual development in zebrafish (Danio rerio). Behavioral assays showed that GBP exposure enhanced light sensitivity, as indicated by a significant increase in total travel distance (TTD) in all exposure groups compared to controls. The 1 μg/L and 1000 μg/L exposure groups demonstrated a 41 % and 37 % increase in TTD, respectively (p < 0.05). Apoptosis assays revealed dose-dependent retinal cell death, with fluorescence intensity rising by 15 % at 1000 μg/L (p < 0.05). Visual acuity, measured through optokinetic response (OKR) tests, decreased significantly across all color stimuli. Angular velocity under white light decreased from 4.0 °/s in controls to 1.6 °/s at 1000 μg/L (p < 0.01) in a dose-dependent manner. Retinal histopathology showed a 17 % increase in ganglion cell layer thickness at 1000 μg/L (p < 0.05) in a dose-dependent manner. Thyroid hormone assays indicated significant reductions in T3 and T4 levels (p < 0.001), with a 22 % increase in the T3/T4 ratio at 1000 μg/L. Gene expression analysis revealed dysregulation in apoptosis (casp3a, ifi27), thyroid (tshr, dio1), and retinal development (atoh7, pax6a) pathways. These findings demonstrate that GBP disrupts visual development in zebrafish through retinal apoptosis and thyroid hormone dysregulation, highlighting the ecological risks posed by pharmaceutical pollutants. GBP exposure increased light-driven locomotor activity, indicating heightened light sensitivity due to apoptosis in the retina. Visual acuity was assessed through the optokinetic response (OKR) test, retinal morphology, and thyroid hormone (TH) levels. Even at concentrations as low as 1 µg/L, GBP exposure led to significant reductions in OKR across various colors, likely due to changes in retinal thickness linked to thyroid hormone disruption. These effects were consistent with alterations in gene expression related to apoptosis, the thyroid system, and retinal development. Our findings enhance understanding of how GBP exposure impairs vision in fish and highlight the need to evaluate the ecological risks of pharmaceutical contaminants in aquatic environments.
Collapse
Affiliation(s)
- Yide He
- School of Environmental Science and Engineering, Nanjing Tech University, Jiangsu 211816, China; Sino-Portuguese Joint International Laboratory of Aquatic Toxicology, Nanjing Tech University, 30 South Puzhu Road, Nanjing, Jiangsu Province 211816, China.
| | - Xiang Li
- School of Environmental Science and Engineering, Nanjing Tech University, Jiangsu 211816, China; Sino-Portuguese Joint International Laboratory of Aquatic Toxicology, Nanjing Tech University, 30 South Puzhu Road, Nanjing, Jiangsu Province 211816, China
| | - Yan Yang
- School of Environmental Science and Engineering, Nanjing Tech University, Jiangsu 211816, China; Sino-Portuguese Joint International Laboratory of Aquatic Toxicology, Nanjing Tech University, 30 South Puzhu Road, Nanjing, Jiangsu Province 211816, China
| | - Rosa Freitas
- Sino-Portuguese Joint International Laboratory of Aquatic Toxicology, University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal; Department of Biology & CESAM, University of Aveiro, Aveiro 3810193, Portugal
| | - Jiansheng Zhu
- Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing 210023, China
| | - Guixiang Ji
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, Jiangsu 210042, China
| | - Yongjun Zhang
- School of Environmental Science and Engineering, Nanjing Tech University, Jiangsu 211816, China; Sino-Portuguese Joint International Laboratory of Aquatic Toxicology, Nanjing Tech University, 30 South Puzhu Road, Nanjing, Jiangsu Province 211816, China.
| |
Collapse
|
3
|
Abdelghany L, Sillapachaiyaporn C, Zhivotovsky B. The concealed side of caspases: beyond a killer of cells. Cell Mol Life Sci 2024; 81:474. [PMID: 39625520 PMCID: PMC11615176 DOI: 10.1007/s00018-024-05495-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/12/2024] [Accepted: 10/24/2024] [Indexed: 12/06/2024]
Abstract
Since the late 20th century, researchers have known that caspases are a pillar of cell death, particularly apoptosis. However, recent advances in cell biology have unraveled the multiple roles of caspases. These enzymes have an unconventional role in cell proliferation, differentiation, and invasion. As a result, caspase deregulation can fuel the fire of cancer, incite flames of inflammation, flare neurodegenerative disorders, and exacerbate skin pathologies. Several therapeutic approaches toward caspase inhibition have been investigated, but can caspase inhibitors harness the maladaptive effect of these proteases without causing significant side effects? A few studies have exploited caspase induction for cancer or adoptive cell therapies. Here, we provide a compelling picture of caspases, starting with their evolution, their polytomous roles beyond cell death, the flaws of their deregulation, and the merits of targeting them for therapeutic implications. Furthermore, we provide a deeper understanding of the evolution of caspase-related research up to the current era, pinpointing the role of caspases in cell survival and aiding in the development of effective caspase-targeted therapies.
Collapse
Affiliation(s)
- Lina Abdelghany
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, SE-171 77, Sweden
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt
| | | | - Boris Zhivotovsky
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, SE-171 77, Sweden.
- Engelhardt Institute of Molecular Biology, RAS, Moscow, 119991, Russia.
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, 119192, Russia.
| |
Collapse
|
4
|
Rosa F, Dray N, Bedu S, Bally-Cuif L. Non-apoptotic caspase events and Atf3 expression underlie direct neuronal differentiation of adult neural stem cells. Development 2024; 151:dev204381. [PMID: 39565097 DOI: 10.1242/dev.204381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/08/2024] [Indexed: 11/21/2024]
Abstract
Neural stem cells (NSCs) generate neurons over a lifetime in adult vertebrate brains. In the adult zebrafish pallium, NSCs persist long term through balanced fate decisions. These decisions include direct neuronal conversions, i.e. delamination and neurogenesis without a division. To characterize this process, we reanalyze intravital imaging data of adult pallial NSCs, and observe shared delamination dynamics between NSCs and committed neuronal progenitors. Searching for mechanisms predicting direct NSC conversions, we build an NSC-specific genetic tracer of Caspase3/7 activation (Cas3*/Cas7*) in vivo. We show that non-apoptotic Cas3*/7* events occur in adult NSCs and are biased towards lineage termination under physiological conditions, with a predominant generation of single neurons. We further identify the transcription factor Atf3 as necessary for this bias. Finally, we show that the Cas3*/7* pathway is engaged by NSCs upon parenchymal lesion and correlates with NSCs more prone to lineage termination and neuron formation. These results provide evidence for non-apoptotic caspase events occurring in vertebrate adult NSCs and link these events with the NSC fate decision of direct conversion, which is important for long-term NSC population homeostasis.
Collapse
Affiliation(s)
- Frédéric Rosa
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Zebrafish Neurogenetics Unit, F-75015 Paris, France
| | - Nicolas Dray
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Zebrafish Neurogenetics Unit, F-75015 Paris, France
| | - Sébastien Bedu
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Zebrafish Neurogenetics Unit, F-75015 Paris, France
| | - Laure Bally-Cuif
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Zebrafish Neurogenetics Unit, F-75015 Paris, France
| |
Collapse
|
5
|
Valcarce DG, Riesco MF, Martínez-Vázquez JM, Villanueva JLR, Robles V. Impact of different levels of handling on Solea senegalensis culture: effects on growth and molecular markers of stress. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:1987-2000. [PMID: 37733196 DOI: 10.1007/s10695-023-01239-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 09/06/2023] [Indexed: 09/22/2023]
Abstract
Aquaculture routine practices may cause stress induction on the fish and compromise their welfare affecting the production. This experiment aimed to evaluate the potential links between handling during culture with stress responses and growth on Senegalese sole (Solea senegalensis). We worked with two fish cohorts in terms of initial body weight and culture stage: Trial 1 included specimens in the fattening stage (226 ± 4.96 g) and Trial 2 animals in the pre-fattening stage (27.20 ± 0.44 g). The tested culture protocol, which lasted 6 and 4 months for Trial 1 and 2, respectively, mainly reduced handling-derived stressors in the experimental tanks via lowering routine samplings to a minimum. This decrease of the handling-derived stress was reflected in both trials with lower concentration of circulating cortisol in blood plasma from the experimental fish when compared to controls. Moreover, the proposed protocol promoted higher growth in the fish cultured in the less disturbing protocol in Trial 2. Higher specific growth rates and mean body weight and length were reported. In order to further explore the potential beneficial effects of our protocol, we studied the musculoskeletal from Trial 2 gene expression of key genes regulating glucocorticoid signaling pathway and apoptosis: glucocorticoid receptors 1 and 2 (gr1, gr2), heat shock protein 90 AA (hsp90aa), and caspase 6 (casp6). In line with the cortisol reduced level in this trial, gr1, hsp90aa, and casp6 genes showed lower expression in the samples coming from the experimental group. The findings of this study provide valuable information to the aquaculture industry for the management of Solea senegalensis stress and welfare.
Collapse
Affiliation(s)
- David G Valcarce
- Cell Biology Area, Molecular Biology Department, Universidad de León, Campus de Vegazana s/n, 24071, León, Spain
- Instituto Español de Oceanografía, Centro Oceanográfico de Santander (COST-IEO), CSIC, Calle Severiano Ballesteros 16, 39004, Santander, Spain
| | - Marta F Riesco
- Cell Biology Area, Molecular Biology Department, Universidad de León, Campus de Vegazana s/n, 24071, León, Spain
| | - Juan Manuel Martínez-Vázquez
- Instituto Español de Oceanografía, Centro Oceanográfico de Santander (COST-IEO), CSIC, Calle Severiano Ballesteros 16, 39004, Santander, Spain
| | | | - Vanesa Robles
- Cell Biology Area, Molecular Biology Department, Universidad de León, Campus de Vegazana s/n, 24071, León, Spain.
| |
Collapse
|
6
|
Liu Y, Lin S, Wang C, Li T, Zheng G, Sun W, An L, Bai Y, Wu F. Sex-Specific Effects of Environmental Exposure to the Antimicrobial Agents Benzalkonium Chloride and Triclosan on the Gut Microbiota and Health of Zebrafish ( Danio rerio). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:15450-15462. [PMID: 39141879 DOI: 10.1021/acs.est.4c03205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
The use of disinfectants containing benzalkonium chloride (BAC) has become increasingly widespread in response to triclosan (TCS) restrictions and the COVID-19 pandemic, leading to the increasing presence of BAC in aquatic ecosystems. However, the potential environmental health impacts of BAC on fish remain poorly explored. In this study, we show that BAC and TCS can induce the gut dysbiosis in zebrafish (Danio rerio), with substantial effects on health. Breeding pairs of adult zebrafish were exposed to environmentally relevant concentrations of BAC and TCS (0.4-40 μg/L) for 42 days. Both BAC and TCS exposure perturbed the gut microbiota, triggering the classical NF-κB signaling pathway and resulting in downstream pathological toxicity associated with inflammatory responses, histological damage, inhibited ingestion, and decreased survival. These effects were dose-dependent and sex-specific, as female zebrafish were more susceptible than male zebrafish. Furthermore, we found that BAC induced toxicity to a greater extent than the restricted TCS at environmentally relevant concentrations, which is particularly concerning. Our results suggest that environmental exposure to antimicrobial chemicals can have ecological consequences by perturbing the gut microbiota, a previously underappreciated target of such chemicals. Rigorous ecological analysis should be conducted before widely introducing replacement antimicrobial compounds into disinfecting products.
Collapse
Affiliation(s)
- Yueyue Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
- College of Water Science, Beijing Normal University, Beijing 100875, China
| | - Siyi Lin
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chen Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Tong Li
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guomao Zheng
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wen Sun
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Lihui An
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yingchen Bai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
7
|
Gawel K, Hulas-Stasiak M, Marszalek-Grabska M, Grenda A, Siekierska A, Kosheva N, van der Ent W, Esguerra CV, Krawczyk P, Turski WA. Induction of seizures and initiation of epileptogenesis by pilocarpine in zebrafish larvae. Front Mol Neurosci 2024; 17:1418606. [PMID: 39165716 PMCID: PMC11333333 DOI: 10.3389/fnmol.2024.1418606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/19/2024] [Indexed: 08/22/2024] Open
Abstract
Objective Preclinical models of seizures and epilepsy in rodents contributed substantially to the discovery of currently available antiseizure medications. These were also broadly used for investigation of processes of epileptogenesis. Nevertheless, rodent models pose some limitations, thus, new models using alternative species are in high demand. The aim of this study was to describe a new model of seizures/epilepsy induced by the cholinomimetic agent, pilocarpine (PILO), in larval zebrafish. Methods Local field potential (LFP) recordings were conducted to analyze electroencephalographic discharges and correlate it with larval behavior. Hematoxylin and eosin (H&E) staining, as well as TUNEL staining were performed to analyze morphology and apoptosis, respectively. Real-time quantitative polymerase chain reaction (qRT-PCR) was undertaken for gene expression analysis. Results Acute exposure to PILO, in a concentration-dependent manner, induces electroencephalographic discharges in larval zebrafish, which behaviorally manifest as decreased locomotion and moving time, but enhanced movement velocity. The PILO-induced seizure-like activity is behaviorally distinct from this induced by the application of chemoconvulsant pentylenetetrazole (PTZ). Zebrafish larvae previously exposed to PILO (2 h), after a washing out period, exhibit spontaneous, unprovoked discharges and apoptotic changes in their brains. Significance Here, we comprehensively investigated a new model of PILO-induced seizures/epilepsy in larval zebrafish. We propose that this model may be used to study epileptogenesis and for antiseizure drug screening purposes.
Collapse
Affiliation(s)
- Kinga Gawel
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Lublin, Poland
| | - Monika Hulas-Stasiak
- Department of Functional Anatomy and Cytobiology, Maria Curie-Sklodowska University, Lublin, Poland
| | - Marta Marszalek-Grabska
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Lublin, Poland
| | - Anna Grenda
- Department of Pneumology, Oncology and Allergology, Medical University of Lublin, Lublin, Poland
| | - Aleksandra Siekierska
- VirusBank Platform, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Nataliia Kosheva
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Lublin, Poland
| | - Wietske van der Ent
- Chemical Neuroscience Group, Centre for Molecular Medicine Norway, University of Oslo, Forskningsparken, Oslo, Norway
| | - Camila V. Esguerra
- Chemical Neuroscience Group, Centre for Molecular Medicine Norway, University of Oslo, Forskningsparken, Oslo, Norway
| | - Pawel Krawczyk
- Department of Pneumology, Oncology and Allergology, Medical University of Lublin, Lublin, Poland
| | - Waldemar A. Turski
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
8
|
Svandova E, Vesela B, Janeckova E, Chai Y, Matalova E. Exploring caspase functions in mouse models. Apoptosis 2024; 29:938-966. [PMID: 38824481 PMCID: PMC11263464 DOI: 10.1007/s10495-024-01976-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2024] [Indexed: 06/03/2024]
Abstract
Caspases are enzymes with protease activity. Despite being known for more than three decades, caspase investigation still yields surprising and fascinating information. Initially associated with cell death and inflammation, their functions have gradually been revealed to extend beyond, targeting pathways such as cell proliferation, migration, and differentiation. These processes are also associated with disease mechanisms, positioning caspases as potential targets for numerous pathologies including inflammatory, neurological, metabolic, or oncological conditions. While in vitro studies play a crucial role in elucidating molecular pathways, they lack the context of the body's complexity. Therefore, laboratory animals are an indispensable part of successfully understanding and applying caspase networks. This paper aims to summarize and discuss recent knowledge, understanding, and challenges in caspase knock-out mice.
Collapse
Affiliation(s)
- Eva Svandova
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetic, Brno, Czech Republic.
| | - Barbora Vesela
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetic, Brno, Czech Republic
| | - Eva Janeckova
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, USA
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, USA
| | - Eva Matalova
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetic, Brno, Czech Republic
- Department of Physiology, University of Veterinary Sciences, Brno, Czech Republic
| |
Collapse
|
9
|
Rojas I, Caballero-Solares A, Vadboncoeur É, Sandrelli RM, Hall JR, Clow KA, Parrish CC, Rise ML, Swanson AK, Gamperl AK. Prolonged Cold Exposure Negatively Impacts Atlantic Salmon ( Salmo salar) Liver Metabolism and Function. BIOLOGY 2024; 13:494. [PMID: 39056688 PMCID: PMC11273521 DOI: 10.3390/biology13070494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/12/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024]
Abstract
Large-scale mortality events have occurred during the winter in Atlantic salmon sea cages in Eastern Canada and Iceland. Thus, in salmon held at 3 °C that were apparently healthy (i.e., asymptomatic) and that had 'early' and 'advanced' symptoms of 'winter syndrome'/'winter disease' (WS/WD), we measured hepatic lipid classes and fatty acid levels, and the transcript expression of 34 molecular markers of fatty liver disease (FLD; a clinical sign of WS/WD). In addition, we correlated our results with previously reported characteristics associated with this disease's progression in these same individuals. Total lipid and triacylglycerol (TAG) levels increased by ~50%, and the expression of 32 of the 34 genes was dysregulated, in fish with symptoms of FLD. TAG was positively correlated with markers of inflammation (5loxa, saa5), hepatosomatic index (HSI), and plasma aspartate aminotransferase levels, but negatively correlated with genes related to lipid metabolism (elovl5b, fabp3a, cd36c), oxidative stress (catc), and growth (igf1). Multivariate analyses clearly showed that the three groups of fish were different, and that saa5 was the largest contributor to differences. Our results provide a number of biomarkers for FLD in salmon, and very strong evidence that prolonged cold exposure can trigger FLD in this ecologically and economically important species.
Collapse
Affiliation(s)
- Isis Rojas
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John’s, NL A1C 5S7, Canada (A.K.G.)
| | - Albert Caballero-Solares
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John’s, NL A1C 5S7, Canada (A.K.G.)
| | - Émile Vadboncoeur
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John’s, NL A1C 5S7, Canada (A.K.G.)
| | - Rebeccah M. Sandrelli
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John’s, NL A1C 5S7, Canada (A.K.G.)
| | - Jennifer R. Hall
- Aquatic Research Cluster, CREAIT Network, Ocean Sciences Centre, Memorial University of Newfoundland and Labrador, St. John’s, NL A1C 5S7, Canada
| | - Kathy A. Clow
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John’s, NL A1C 5S7, Canada (A.K.G.)
| | - Christopher C. Parrish
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John’s, NL A1C 5S7, Canada (A.K.G.)
| | - Matthew L. Rise
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John’s, NL A1C 5S7, Canada (A.K.G.)
| | | | - Anthony K. Gamperl
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John’s, NL A1C 5S7, Canada (A.K.G.)
| |
Collapse
|
10
|
Rajagopalan K, Selvan Christyraj JD, Chelladurai KS, Kalimuthu K, Das P, Chandrasekar M, Balamurugan N, Murugan K. Understanding the molecular mechanism of regeneration through apoptosis-induced compensatory proliferation studies - updates and future aspects. Apoptosis 2024:10.1007/s10495-024-01958-1. [PMID: 38581530 DOI: 10.1007/s10495-024-01958-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2024] [Indexed: 04/08/2024]
Abstract
AICP is a crucial process that maintaining tissue homeostasis and regeneration. In the past, cell death was perceived merely as a means to discard cells without functional consequences. However, during regeneration, effector caspases orchestrate apoptosis, releasing signals that activate stem cells, thereby compensating for tissue loss across various animal models. Despite significant progress, the activation of Wnt3a by caspase-3 remains a focal point of research gaps in AICP mechanisms, spanning from lower to higher regenerative animals. This inquiry into the molecular intricacies of caspase-3-induced Wnt3a activation contributes to a deeper understanding of the links between regeneration and cancer mechanisms. Our report provides current updates on AICP pathways, delineating research gaps and highlighting the potential for future investigations aimed at enhancing our comprehension of this intricate process.
Collapse
Affiliation(s)
- Kamarajan Rajagopalan
- Molecular Biology and Stem Cell Research Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology (Deemed to be University), Chennai, Tamil Nadu, India
| | - Jackson Durairaj Selvan Christyraj
- Molecular Biology and Stem Cell Research Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology (Deemed to be University), Chennai, Tamil Nadu, India.
| | - Karthikeyan Subbiahanadar Chelladurai
- Molecular Biology and Stem Cell Research Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology (Deemed to be University), Chennai, Tamil Nadu, India
| | | | - Puja Das
- Molecular Biology and Stem Cell Research Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology (Deemed to be University), Chennai, Tamil Nadu, India
| | - Meikandan Chandrasekar
- Molecular Biology and Stem Cell Research Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology (Deemed to be University), Chennai, Tamil Nadu, India
| | - Nivedha Balamurugan
- Molecular Biology and Stem Cell Research Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology (Deemed to be University), Chennai, Tamil Nadu, India
| | - Karthikeyan Murugan
- Department of Biotechnology, Sri Venkateswara College of Engineering, Sriperumbudur, Tamil Nadu, India
| |
Collapse
|
11
|
Cao Y, Xu L, Xiong X, Liu X. Expansion and diversity of caspases in Mytilus coruscus contribute to larval metamorphosis and environmental adaptation. BMC Genomics 2024; 25:314. [PMID: 38532358 DOI: 10.1186/s12864-024-10238-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 03/18/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND Apoptosis is involved (directly and indirectly) in several physiological processes including tissue remodeling during the development, the turnover of immune cells, and a defense against harmful stimuli. The disordered apoptotic process participates in the pathogenesis of various diseases, such as neoplasms, and chronic inflammatory or systemic autoimmune diseases, which are associated with its inadequate regulation. Caspases are vital components of the apoptotic pathway that are involved in developmental and immune processes. However, genome-wide identification and functional analysis of caspase have not been conducted in Mytilus coruscus, which is an economically important bivalve. RESULTS Here, 47 caspase genes were identified from the genomes of M. coruscus, and the expansion of caspase-2/9 and caspase-3/6/7 genes were observed. Tandem duplication acts as an essential driver of gene expansion. The expanded caspase genes were highly diverse in terms of sequence, domain structure, and spatiotemporal expression profiles, suggesting their functional differentiation. The high expression of the expanded caspase genes at the pediveliger larvae stage and the result of apoptosis location in the velum suggest that the apoptosis mediated by them plays a critical role in the metamorphosis of M. coruscus larvae. In gill, caspase genes respond differently to the challenge of different strains, and most caspase-2/9 and caspase-3/6/7 genes were induced by copper stress, whereas caspase-8/10 genes were suppressed. Additionally, most caspase genes were upregulated in the mantle under ocean acidification which could weaken the biomineralization capacity of the mantle tissue. CONCLUSIONS These results provide a comprehensive overview of the evolution and function of the caspase family and enhanced the understanding of the biological function of caspases in M. coruscus larval development and response to biotic and abiotic challenges.
Collapse
Affiliation(s)
- Yanfei Cao
- National Engineering Research Center For Marine Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China
| | - Linxiang Xu
- National Engineering Research Center For Marine Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China
| | - Xinwei Xiong
- National Engineering Research Center For Marine Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China
| | - Xiao Liu
- National Engineering Research Center For Marine Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China.
| |
Collapse
|
12
|
Yu H, Yan X, Wang N, Liu X, Xue T, Li C, Zhang X. Characterization of caspase gene family in Sebastes schlegelii and their expression profiles under Aeromonas salmonicida and Vibrio anguillarum infection. Comp Biochem Physiol B Biochem Mol Biol 2024; 270:110913. [PMID: 37913865 DOI: 10.1016/j.cbpb.2023.110913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023]
Abstract
The caspase, functioning as a proteinase, plays a crucial role in eukaryotic cell apoptosis, regulation of apoptosis, cellular growth, differentiation, and immunity. The identification of caspase gene family in Sebastes schlegelii is of great help to understand its antimicrobial research. In S. schlegelii, we totally identified nine caspase genes, including four apoptosis initiator caspases (caspase 2, caspase 8, caspase 9 and caspase 10), four apoptosis executioners (caspase 3a, caspase 3b, caspase 6, and caspase 7) and one inflammatory executioner (caspase 1). The duplication of caspase 3 genes on chr3 and chr8 may have been facilitated by whole genome duplication (WGD) events or other complex evolutionary processes. In general, the number of caspase genes relatively conserved in high vertebrates, while exhibiting variation in teleosts. Furthermore, syntenic analysis and phylogenetic relationships analysis supported the correct classification of these caspase gene family in S. schlegelii, especially for genes with duplicated copies. Additionally, the expression patterns of these caspase genes in different tissues of S. schlegelii under healthy conditions were assessed. The results revealed that the expression levels of most caspase genes were significantly elevated in the intestine, spleen, and liver. To further investigate the potential immune functions of these caspase genes in S. schlegelii, we challenged individuals with A. salmonicida and V. anguillarum, respectively. After infection with A. salmonicida, the expression levels of caspase 1 in the liver and spleen of S. schlegelii remained consistently elevated throughout the infection time points. The expression levels of most caspase family members in the intestine exhibited significant divergence following V. anguillarum infection. This study provides a comprehensive understanding of the caspase gene families in S. schlegelii, thereby establishing a solid foundation for further investigations into the functional roles of these caspase genes.
Collapse
Affiliation(s)
- Haohui Yu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Xu Yan
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China, Qingdao 266011, China; College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Ningning Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiantong Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Ting Xue
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China.
| | - Xiaoyan Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
13
|
Martin-Folgar R, González-Caballero MC, Torres-Ruiz M, Cañas-Portilla AI, de Alba González M, Liste I, Morales M. Molecular effects of polystyrene nanoplastics on human neural stem cells. PLoS One 2024; 19:e0295816. [PMID: 38170698 PMCID: PMC10763972 DOI: 10.1371/journal.pone.0295816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024] Open
Abstract
Nanoplastics (NPs) have been found in many ecological environments (aquatic, terrestrial, air). Currently, there is great concern about the exposition and impact on animal health, including humans, because of the effects of ingestion and accumulation of these nanomaterials (NMs) in aquatic organisms and their incorporation into the food chain. NPs´ mechanisms of action on humans are currently unknown. In this study, we evaluated the altered molecular mechanisms on human neural stem cell line (hNS1) after 4 days of exposure to 30 nm polystyrene (PS) NPs (0.5, 2.5 and 10 μg/mL). Our results showed that NPs can induce oxidative stress, cellular stress, DNA damage, alterations in inflammatory response, and apoptosis, which could lead to tissue damage and neurodevelopmental diseases.
Collapse
Affiliation(s)
- Raquel Martin-Folgar
- Grupo de Biología y Toxicología Ambiental, Departamento de Física Matemática y de Fluidos, Facultad de Ciencias, UNED. Urbanización Monte Rozas, Las Rozas (Madrid), Spain
| | - Mª Carmen González-Caballero
- Environmental Toxicology Unit, Centro Nacional de Sanidad Ambiental (CNSA), Instituto de Salud Carlos III (ISCIII), Majadahonda (Madrid), Spain
| | - Mónica Torres-Ruiz
- Environmental Toxicology Unit, Centro Nacional de Sanidad Ambiental (CNSA), Instituto de Salud Carlos III (ISCIII), Majadahonda (Madrid), Spain
| | - Ana I. Cañas-Portilla
- Environmental Toxicology Unit, Centro Nacional de Sanidad Ambiental (CNSA), Instituto de Salud Carlos III (ISCIII), Majadahonda (Madrid), Spain
| | - Mercedes de Alba González
- Environmental Toxicology Unit, Centro Nacional de Sanidad Ambiental (CNSA), Instituto de Salud Carlos III (ISCIII), Majadahonda (Madrid), Spain
| | - Isabel Liste
- Environmental Toxicology Unit, Centro Nacional de Sanidad Ambiental (CNSA), Instituto de Salud Carlos III (ISCIII), Majadahonda (Madrid), Spain
| | - Mónica Morales
- Grupo de Biología y Toxicología Ambiental, Departamento de Física Matemática y de Fluidos, Facultad de Ciencias, UNED. Urbanización Monte Rozas, Las Rozas (Madrid), Spain
| |
Collapse
|
14
|
Małachowicz M, Krasnov A, Wenne R. Diverse Transcriptome Responses to Salinity Change in Atlantic Cod Subpopulations. Cells 2023; 12:2760. [PMID: 38067188 PMCID: PMC10706248 DOI: 10.3390/cells12232760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/25/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Adaptation to environmental variation caused by global climate change is a significant aspect of fisheries management and ecology. A reduction in ocean salinity is visible in near-shore areas, especially in the Baltic Sea, where it is affecting the Atlantic cod population. Cod is one of the most significant teleost species, with high ecological and economical value worldwide. The population of cod in the Baltic Sea has been traditionally divided into two subpopulations (western and eastern) existing in higher- and lower-salinity waters, respectively. In recent decades, both Baltic cod subpopulations have declined massively. One of the reasons for the poor condition of cod in the Baltic Sea is environmental factors, including salinity. Thus, in this study, an oligonucleotide microarray was applied to explore differences between Baltic cod subpopulations in response to salinity fluctuations. For this purpose, an exposure experiment was conducted consisting of salinity elevation and reduction, and gene expression was measured in gill tissue. We found 400 differentially expressed genes (DEGs) involved in the immune response, metabolism, programmed cell death, cytoskeleton, and extracellular matrix that showed a subpopulation-dependent pattern. These findings indicate that osmoregulation in Baltic cod is a complex process, and that western and eastern Baltic cod subpopulations respond differently to salinity changes.
Collapse
Affiliation(s)
- Magdalena Małachowicz
- Institute of Oceanology Polish Academy of Sciences, Powstanców Warszawy 55, 81-712 Sopot, Poland;
| | - Aleksei Krasnov
- Department of Fish Health, Nofima—Norwegian Institute of Food, Fisheries and Aquaculture Research, Osloveien 1, NO-1431 Ås, Norway;
| | - Roman Wenne
- Institute of Oceanology Polish Academy of Sciences, Powstanców Warszawy 55, 81-712 Sopot, Poland;
| |
Collapse
|
15
|
Wang MX, Shandilya UK, Wu X, Huyben D, Karrow NA. Assessing Larval Zebrafish Survival and Gene Expression Following Sodium Butyrate Exposure and Subsequent Lethal Bacterial Lipopolysaccharide (LPS) Endotoxin Challenge. Toxins (Basel) 2023; 15:588. [PMID: 37888619 PMCID: PMC10610854 DOI: 10.3390/toxins15100588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/15/2023] [Accepted: 09/20/2023] [Indexed: 10/28/2023] Open
Abstract
As aquaculture production continues to grow, producers are looking for more sustainable methods to promote growth and increase fish health and survival. Butyrate is a short-chain fatty acid (SCFA) with considerable benefits to gut health, and in recent years, butyrate has been commonly used as an alternative to antimicrobials in livestock production. In this study, we aimed to assess the protective effects of sodium butyrate (NaB) on larval zebrafish subjected to a lethal Pseudomonas aeruginosa lipopolysaccharide (LPS) endotoxin challenge and to elucidate potential protective mechanisms of action. Larval zebrafish were pre-treated with 0, 3000, or 6000 μM NaB for 24 h at 72 h post-fertilization (hpf), then immune challenged for 24 h with 60 μg/mL of LPS at 96 hpf. Our results demonstrate that larval zebrafish pre-treated with 6000 μM of NaB prior to lethal LPS challenge experienced significantly increased survival by 40%, and this same level of NaB significantly down-regulated the expression of pro-inflammatory Tumor Necrosis Factor α (TNF-alpha). Findings from this study are consistent with the beneficial effects of NaB on other vertebrate species and support the potential use of NaB in aquaculture.
Collapse
Affiliation(s)
- Mary X Wang
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Umesh K Shandilya
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Xiang Wu
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - David Huyben
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Niel A Karrow
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
16
|
Zheng Q, Daskalov A. Microbial gasdermins: More than a billion years of pyroptotic-like cell death. Semin Immunol 2023; 69:101813. [PMID: 37480832 DOI: 10.1016/j.smim.2023.101813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 07/24/2023]
Abstract
In the recent past, the concept of immunity has been extended to eukaryotic and prokaryotic microorganisms, like fungi and bacteria. The latest findings have drawn remarkable evolutionary parallels between metazoan and microbial defense-related genes, unveiling a growing number of shared transkingdom components of immune systems. One such component is the gasdermin family of pore-forming proteins - executioners of a highly inflammatory immune cell death program in mammals, termed pyroptosis. Pyroptotic cell death limits the spread of intracellular pathogens by eliminating infected cells and coordinates the broader inflammatory response to infection. The microbial gasdermins have similarly been implicated in defense-related cell death reactions in fungi, bacteria and archaea. Moreover, the discovery of the molecular regulators of gasdermin cytotoxicity in fungi and bacteria, has established additional evolutionary links to mammalian pyroptotic pathways. Here, we focus on the gasdermin proteins in microorganisms and their role in organismal defense and provide perspective on this remarkable case study in comparative immunology.
Collapse
Affiliation(s)
- Qi Zheng
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Asen Daskalov
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China; ImmunoConcEpT, CNRS UMR 5164, University of Bordeaux, Bordeaux, France.
| |
Collapse
|
17
|
Omar NA, Kumar J, Teoh SL. Parkinson's disease model in zebrafish using intraperitoneal MPTP injection. Front Neurosci 2023; 17:1236049. [PMID: 37694115 PMCID: PMC10485380 DOI: 10.3389/fnins.2023.1236049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023] Open
Abstract
Introduction Parkinson's disease (PD) is the second most common neurodegenerative disease that severely affects the quality of life of patients and their family members. Exposure to 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) has been shown to reflect behavioral, molecular, and proteomic features of PD. This study aimed to assess the protocol for inducing PD following MPTP injection in adult zebrafish. Methods Fish were injected with 100 μg/g of MPTP intraperitoneally once or twice and then assessed on days 1 to 30 post-injection. Results Between one-time and two-time injections, there was no significant difference in most locomotor parameters, expressions of tyrosine hydroxylase-2 (th2) and dopamine transporter (dat) genes, and dopaminergic neurons (tyrosine hydroxylase positive, TH+ cells) counts. However, caspase-3 levels significantly differed between one- and two-time injections on the day 1 assessment. Discussion Over a 30-day period, the parameters showed significant differences in swimming speed, total distance traveled, tyrosine hydroxylase-1 (th1) and dat gene expressions, caspase-3 and glutathione protein levels, and TH+ cell counts. Days 3 and 5 showed the most changes compared to the control. In conclusion, a one-time injection of MPTP with delayed assessment on days 3 to 5 is a good PD model for animal studies.
Collapse
Affiliation(s)
- Noor Azzizah Omar
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
- Department of Medical Sciences, Faculty of Medicine and Health Sciences, Universiti Sains Islam Malaysia, Bandar Baru Nilai, Malaysia
| | - Jaya Kumar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Seong Lin Teoh
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
18
|
Cao Q, Zong J, Zhang Z, Liu W, Li T, Zhao Y, Liu H, Jiang J. Pyroptosis in fish research: A promising target for disease management. FISH & SHELLFISH IMMUNOLOGY 2023:108866. [PMID: 37277049 DOI: 10.1016/j.fsi.2023.108866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/22/2023] [Accepted: 05/29/2023] [Indexed: 06/07/2023]
Abstract
Pyroptosis is a newly discovered programmed cell death pathway that plays an essential role in the host's defense against pathogenic infections. This process is orchestrated by inflammasomes, which are intricate multiprotein complexes that orchestrate the activation of caspase and instigate the liberation of proinflammatory cytokines. Additionally, gasdermin family proteins execute their role by forming pores in the cell membrane, ultimately leading to cell lysis. In recent years, pyroptosis has emerged as a promising target for disease management in fish, particularly in the context of infectious diseases. In this review, we provide an overview of the current understanding regarding the role of pyroptosis in fish, focusing on its involvement in host-pathogen interactions and its potential as a therapeutic target. We also highlighted the latest advancements in the field development of pyroptosis inhibitors and their potential applications in fish disease management. Subsequently, we deliberate on the obstacles and future prospects for pyroptosis research in fish, emphasizing the necessity of conducting more comprehensive investigations to unravel the intricate regulatory mechanisms governing this process across diverse fish species and environmental contexts. Finally, this review will also highlight the current limitations and future perspectives of pyroptosis research in aquaculture.
Collapse
Affiliation(s)
- Quanquan Cao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jiali Zong
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zslahihao Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wenyu Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Tong Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ye Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Haifeng Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Jun Jiang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
19
|
Gao L, Li Q, Zhang Z, Ge P, Sun J, Qiao X, Wang L, Song L. Species-specific CgCaspase-Cg-5 in the pacific oyster induces haemocyte apoptosis by regulating the mRNA expression of apoptosis-related genes in the early stage of immune response. FISH & SHELLFISH IMMUNOLOGY 2023:108856. [PMID: 37257569 DOI: 10.1016/j.fsi.2023.108856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/28/2023] [Accepted: 05/28/2023] [Indexed: 06/02/2023]
Abstract
Caspases are cysteinyl aspartate-specific proteinases, playing critical roles in apoptotic pathway to induce apoptosis and inflammatory response. In this study, the expanded repertoire of Caspases was revealed in the Pacific oyster Crassostrea gigas, and a total of 30 Caspases were identified from the genomic and stress-induced transcriptomic databases of the Pacific oyster. They were clustered into CgCaspase-2/9, CgCaspase-8/10, CgCaspase-3/6/7, CgCaspase-Cg, and CgCaspase-L. CgCaspase-Cg subgroup was found to be specifically expanded after a positive selection in oyster with average Ka/Ks of 0.50. The mRNA expression of CgCaspase-Cg-5 was found to be obviously induced against various bacterial and viral stimulations or environmental stresses. The relative expression level of CgCaspase-Cg-5 in haemocytes increased and reached the peak at 6 h after Vibrio splendidus stimulation, which was 5.57-fold of that in the control group (p < 0.01). In the oysters whose CgCaspase-Cg-5 expression was knocked down, the mRNA expression of apoptosis-related genes including CgBcl2, CgBax, CgCaspase3 and CgCaspase9 changed significantly at 12 h after V. splendidus stimulation. The expression of CgBax, CgCaspase3 and CgCaspase9 decreased, which was 0.64-fold (p < 0.05), 0.53-fold (p < 0.05) and 0.62-fold (p < 0.01), while the expression of CgBcl2 increased, which was 2.81-fold (p < 0.01) of that in the EGFP-dsRNA group, respectively. Meanwhile, the apoptotic rate of haemocytes (1.90 ± 0.71%) significantly decreased compared to that in the EGFP-dsRNA group (5.40 ± 0.72%) (p < 0.05), and the histological damages of widened cell spacing, gill filament swelling and loose cytoplasm were observed in the CgCaspase-Cg-5-knockdown oysters after V. splendidus stimulation. Collectively, CgCaspase-Cg subgroup was specifically expanded in oyster and some bivalve species, and species-specific CgCaspase-Cg-5 regulated the mRNA expression of the apoptosis-related genes to induce haemocyte apoptosis in the early stage of immune response. This provided insight into the evolutionary and functional characteristics of Caspase repertoire in the Pacific oyster and highlighted the important role of CgCaspase-Cg-5 in the response to pathogen infection and environmental stresses.
Collapse
Affiliation(s)
- Lei Gao
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Qingsong Li
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Ziyang Zhang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Pingan Ge
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Jiejie Sun
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Xue Qiao
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China.
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China.
| |
Collapse
|
20
|
Cui T, Liu P, Chen X, Liu Z, Wang B, Gao C, Wang Z, Li C, Yang N. Identification and functional characterization of caspases in turbot (Scophthalmus maximus) in response to bacterial infection. FISH & SHELLFISH IMMUNOLOGY 2023; 137:108757. [PMID: 37084854 DOI: 10.1016/j.fsi.2023.108757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/16/2023] [Accepted: 04/19/2023] [Indexed: 05/03/2023]
Abstract
Apoptosis is the autonomous and orderly death of cells under genetic control to maintain the stability of the internal environment, and is a programmed cell death process with unique morphological and biochemical properties that is regulated by a variety of factors. Caspase gene family has a significant function in the process of apoptosis. However, the knowledge of caspases in turbot remains largely unknown. In present study, a total of nine turbot caspase genes were identified. The mRNA length of these caspase genes was ranged from 1149 bp (caspase-1) to 3216 bp (caspase-2), and the protein length was ranged from 281 aa (caspase-3a) to 507 aa (caspase-10). Phylogenetic analysis showed these caspase genes were divided into three subfamilies. The qRT-PCR results showed that turbot caspase genes were expressed in all the examined organs, especially the intestine, kidney, blood and gills. Meanwhile, we explored the expression patterns of caspase genes in the intestine, skin and gills after Vibrio anguillarum and Aeromonas salmonids infections. The results showed that caspase genes showed different expression patterns in mucosal tissues after bacterial infection, demonstrating the critical role of caspase genes in mucosal immune responses. In addition, protein-protein interaction analysis showed that caspase proteins interacted with immune molecules such as NLR, IL-1β, and birc. The results of interference and overexpression experiments showed that caspase-1 might play key roles in the regulation of the IL-1β production, but the detailed mechanism needs to be further studied. The results of this study provide valuable information for further study the roles of caspase genes in turbot, which could help us to further understand the inflammatory pathways in teleost.
Collapse
Affiliation(s)
- Tong Cui
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Peng Liu
- Yantai Marine Economic Research Institute, Yantai, China
| | - Xuan Chen
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Zhe Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Beibei Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chengbin Gao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Zhongyi Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Ning Yang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
21
|
Leiba J, Özbilgiç R, Hernández L, Demou M, Lutfalla G, Yatime L, Nguyen-Chi M. Molecular Actors of Inflammation and Their Signaling Pathways: Mechanistic Insights from Zebrafish. BIOLOGY 2023; 12:153. [PMID: 36829432 PMCID: PMC9952950 DOI: 10.3390/biology12020153] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023]
Abstract
Inflammation is a hallmark of the physiological response to aggressions. It is orchestrated by a plethora of molecules that detect the danger, signal intracellularly, and activate immune mechanisms to fight the threat. Understanding these processes at a level that allows to modulate their fate in a pathological context strongly relies on in vivo studies, as these can capture the complexity of the whole process and integrate the intricate interplay between the cellular and molecular actors of inflammation. Over the years, zebrafish has proven to be a well-recognized model to study immune responses linked to human physiopathology. We here provide a systematic review of the molecular effectors of inflammation known in this vertebrate and recapitulate their modes of action, as inferred from sterile or infection-based inflammatory models. We present a comprehensive analysis of their sequence, expression, and tissue distribution and summarize the tools that have been developed to study their function. We further highlight how these tools helped gain insights into the mechanisms of immune cell activation, induction, or resolution of inflammation, by uncovering downstream receptors and signaling pathways. These progresses pave the way for more refined models of inflammation, mimicking human diseases and enabling drug development using zebrafish models.
Collapse
|
22
|
Svandova E, Lesot H, Sharpe P, Matalova E. Making the head: Caspases in life and death. Front Cell Dev Biol 2023; 10:1075751. [PMID: 36712975 PMCID: PMC9880857 DOI: 10.3389/fcell.2022.1075751] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/29/2022] [Indexed: 01/14/2023] Open
Abstract
The term apoptosis, as a way of programmed cell death, was coined a half century ago and since its discovery the process has been extensively investigated. The anatomy and physiology of the head are complex and thus apoptosis has mostly been followed in separate structures, tissues or cell types. This review aims to provide a comprehensive overview of recent knowledge concerning apoptosis-related molecules involved in the development of structures of head with a particular focus on caspases, cysteine proteases having a key position in apoptotic pathways. Since many classical apoptosis-related molecules, including caspases, are emerging in several non-apoptotic processes, these were also considered. The largest organ of the head region is the brain and its development has been extensively investigated, including the roles of apoptosis and related molecules. Neurogenesis research also includes sensory organs such as the eye and ear, efferent nervous system and associated muscles and glands. Caspases have been also associated with normal function of the skin and hair follicles. Regarding mineralised tissues within craniofacial morphogenesis, apoptosis in bones has been of interest along with palate fusion and tooth development. Finally, the role of apoptosis and caspases in angiogenesis, necessary for any tissue/organ development and maintenance/homeostasis, are discussed. Additionally, this review points to abnormalities of development resulting from improper expression/activation of apoptosis-related molecules.
Collapse
Affiliation(s)
- Eva Svandova
- Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Herve Lesot
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
| | - Paul Sharpe
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral, and Craniofacial Sciences, King’s College London, London, United Kingdom
| | - Eva Matalova
- Department of Physiology, University of Veterinary Sciences, Brno, Czechia
| |
Collapse
|
23
|
Martin-Folgar R, Torres-Ruiz M, de Alba M, Cañas-Portilla AI, González MC, Morales M. Molecular effects of polystyrene nanoplastics toxicity in zebrafish embryos (Daniorerio). CHEMOSPHERE 2023; 312:137077. [PMID: 36334746 DOI: 10.1016/j.chemosphere.2022.137077] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/06/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Plastics pose a health hazard to living beings and the environment. Plastic degradation produces nano-sized plastic particles (NPs) that end up in terrestrial and aquatic ecosystems, including oceans, rivers, and lakes. Their presence in air, drinking water, sediments, food, and personal care products leads to a variety of exposure routes for living beings, including humans. The toxicity mechanisms of these nanomaterials (NMs) in living organisms and ecosystems are currently unknown, making it a priority to understand their effects at the molecular and cellular levels. The zebrafish (Zf) (Danio rerio) is a model organism which has a high homology with humans and has been widely used to assess the hazard of different xenobiotics. In this study, the expression changes of different genes in 120 hpf Zf embryos (Zfe) after exposure to polystyrene (PS) NPs (30 nm) at concentrations of 0.1, 0.5 and 3 ppm were investigated. The results showed that the gene encoding heat shock protein (hsp70) was down-regulated in a dose-dependent manner. The genes encoding superoxide dismutase (SOD 1 and SOD 2), apoptotic genes (cas 1 and cas 8) and interleukin 1-β (il1β) were activated at the concentration of 3 ppm PS NP, while the anti-apoptotic gene Bcl2α was inhibited at 0.5 and 3 ppm. In addition, the neurotransmitter-related gene Acetyl-Cholinesterase (ache) was significantly inhibited and the DNA repair genes (gadd45α and rad51) were also down-regulated. In contrast, the mitochondrial metabolism-related gene cox1 did not alter its expression in any of the treatments. Most of the changes in gene expression occurred at the highest concentration of NPs. Overall, the results indicated that NPs generated cellular stress that caused certain alterations in normal gene expression (oxidative stress, apoptotic and inflammatory processes, neurotoxicity and anti-apoptotic proteins), but did not cause any mortality after 120 hpf exposure at the three concentrations assayed. These results highlight the need for further studies investigating the effects, at the molecular level, of these materials in humans and other living organisms.
Collapse
Affiliation(s)
- Raquel Martin-Folgar
- Grupo de Biología y Toxicología Ambiental, Departamento de Física Matemática y de Fluidos, Facultad de Ciencias, UNED. Urbanización Monte Rozas, Avda. Esparta S/nCrta. de Las Rozas Al Escorial Km 5, 28232, Las Rozas (Madrid), Spain.
| | - Mónica Torres-Ruiz
- Environmental Toxicology Unit, Centro Nacional de Sanidad Ambiental (CNSA), Instituto de Salud Carlos III (ISCIII), Ctra. Majadahonda-Pozuelo Km. 2,2., Majadahonda, Madrid, 28220, Spain
| | - Mercedes de Alba
- Environmental Toxicology Unit, Centro Nacional de Sanidad Ambiental (CNSA), Instituto de Salud Carlos III (ISCIII), Ctra. Majadahonda-Pozuelo Km. 2,2., Majadahonda, Madrid, 28220, Spain
| | - Ana Isabel Cañas-Portilla
- Environmental Toxicology Unit, Centro Nacional de Sanidad Ambiental (CNSA), Instituto de Salud Carlos III (ISCIII), Ctra. Majadahonda-Pozuelo Km. 2,2., Majadahonda, Madrid, 28220, Spain
| | - M Carmen González
- Grupo de Biología y Toxicología Ambiental, Departamento de Física Matemática y de Fluidos, Facultad de Ciencias, UNED. Urbanización Monte Rozas, Avda. Esparta S/nCrta. de Las Rozas Al Escorial Km 5, 28232, Las Rozas (Madrid), Spain; Environmental Toxicology Unit, Centro Nacional de Sanidad Ambiental (CNSA), Instituto de Salud Carlos III (ISCIII), Ctra. Majadahonda-Pozuelo Km. 2,2., Majadahonda, Madrid, 28220, Spain
| | - Mónica Morales
- Grupo de Biología y Toxicología Ambiental, Departamento de Física Matemática y de Fluidos, Facultad de Ciencias, UNED. Urbanización Monte Rozas, Avda. Esparta S/nCrta. de Las Rozas Al Escorial Km 5, 28232, Las Rozas (Madrid), Spain
| |
Collapse
|
24
|
Okeke ES, Luo M, Feng W, Zhang Y, Mao G, Chen Y, Zeng Z, Qian X, Sun L, Yang L, Wu X. Transcriptomic profiling and differential analysis revealed the neurodevelopmental toxicity mechanisms of zebrafish (Danio rerio) larvae in response to tetrabromobisphenol A bis(2-hydroxyethyl) ether (TBBPA-DHEE) exposure. Comp Biochem Physiol C Toxicol Pharmacol 2022; 259:109382. [PMID: 35640788 DOI: 10.1016/j.cbpc.2022.109382] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/07/2022] [Accepted: 05/23/2022] [Indexed: 12/20/2022]
Abstract
Tetrabromobisphenol A bis(2-hydroxyetyl) ether (TBBPA-DHEE) is among the main derivatives of Tetrabromobisphenol A (TBBPA). Result from previous study showed that TBBPA-DHEE can cause neurotoxicity in rat. In this study, zebrafish larvae were used for evaluation of TBBPA-DHEE-induced developmental toxicity, apoptosis, oxidative stress and the potential molecular mechanisms of action. Our result showed that TBBPA-DHEE exposure caused a significant concentration-dependent developmental toxicity endpoints like death rate, malformation rate, growth rate. TBBPA-DHEE altered locomotor and enzymes activities of larvae and caused apoptosis within the brain indicating the potential TBBPA-DHEE-induced cardiac, brain impairment in the zebrafish larvae. Our transcriptomic analysis shows that 691 genes were differentially expressed (DEGs) (539 upregulated, 152 downregulated). The KEGG and GO enrichment pathway analysis shows that the DEGs were involved in development, immunity, enzyme activity. Our study provides novel evidence on the neurodevelopmental toxicity and toxicity mechanism of TBBPA-DHEE which are vital for assessment of the environmental toxicity and risk assessment of the chemical.
Collapse
Affiliation(s)
- Emmanuel Sunday Okeke
- Institute of Environmental Health and Ecological Security, School of Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China; Department of Biochemistry, FBS & Natural Science Unit, SGS, University of Nigeria, Nsukka, Enugu State 410001, Nigeria
| | - Mengna Luo
- Institute of Environmental Health and Ecological Security, School of Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Weiwei Feng
- Institute of Environmental Health and Ecological Security, School of Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Yiran Zhang
- Institute of Environmental Health and Ecological Security, School of Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Guanghua Mao
- Institute of Environmental Health and Ecological Security, School of Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Yao Chen
- Institute of Environmental Health and Ecological Security, School of Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Zhengjia Zeng
- Institute of Environmental Health and Ecological Security, School of Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Xian Qian
- Institute of Environmental Health and Ecological Security, School of Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Lei Sun
- Institute of Environmental Health and Ecological Security, School of Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Liuqing Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Rd., Zhenjiang 212013, Jiangsu, China
| | - Xiangyang Wu
- Institute of Environmental Health and Ecological Security, School of Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China.
| |
Collapse
|
25
|
Li X, Chen T, Wu X, Li Z, Zhang X, Jiang X, Luo P, Hu C, Wong NK, Ren C. Evolutionarily Ancient Caspase-9 Sensitizes Immune Effector Coelomocytes to Cadmium-Induced Cell Death in the Sea Cucumber, Holothuria leucospilota. Front Immunol 2022; 13:927880. [PMID: 35911686 PMCID: PMC9330033 DOI: 10.3389/fimmu.2022.927880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/24/2022] [Indexed: 02/05/2023] Open
Abstract
Heavy-metal pollution has increasingly jeopardized the habitats of marine organisms including the sea cucumber, a seafloor scavenger vital to seawater bio-decontamination, ocean de-acidification and coral-reef protection. Normal physiology including immune functions of sea cucumbers is toxicologically modulated by marine metal pollutants such as cadmium (Cd). The processes underpinning Cd's toxic effects on immune systems in the sea cucumber, Holothuria leucospilota, are still poorly understood. To this end, we cloned and characterized a full-length caspase-9 (Hl-CASP9) cDNA in the sea cucumber, Holothuria leucospilota. Hl-CASP9 mRNA levels evolved dynamically during embryonic development. Coelomocytes, a type of phagocytic immune effectors central to H. leucospilota immunity, were found to express Hl-CASP9 mRNA most abundantly. Hl-CASP9 protein structurally resembles caspases-2 and -9 in both invertebrate and vertebrate species, comprising a CARD domain and a CASc domain. Remarkably, Hl-CASP9 was transcriptionally sensitive to abiotic oxidative stress inducers including hydrogen peroxide (H2O2), nitric oxide (•NO) and cadmium (Cd), but insensitive to immunostimulants including lipopolysaccharide (LPS), and poly(I:C). Overexpression of Hl-CASP9 augmented mitochondria-dependent apoptosis in HEK293T cells, while knock-down of Hl-CASP9 blunted Cd-induced coelomocyte apoptosis in vivo. Overall, we illustrate that an evolutionarily ancient caspase-9-dependent pathway exists to sensitize coelomocytes to premature cell death precipitated by heavy metal pollutants, with important implications for negative modulation of organismal immune response in marine invertebrates.
Collapse
Affiliation(s)
- Xiaomin Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences (CAS), Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ting Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences (CAS), Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Xiaofen Wu
- Institute for Integrative Biology of the Cell, University of Paris-Saclay, Paris, France
| | - Zhuobo Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences (CAS), Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xin Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences (CAS), Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiao Jiang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences (CAS), Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Peng Luo
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences (CAS), Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Chaoqun Hu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences (CAS), Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Nai-Kei Wong
- Clinical Pharmacology Section, Department of Pharmacology, Shantou University of Medical College, Shantou, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Chunhua Ren
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences (CAS), Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| |
Collapse
|
26
|
Yao L, Clark A. Comparing the folding landscapes of evolutionarily divergent procaspase-3. Biosci Rep 2022; 42:BSR20220119. [PMID: 35670809 PMCID: PMC9208311 DOI: 10.1042/bsr20220119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/20/2022] [Accepted: 06/06/2022] [Indexed: 11/17/2022] Open
Abstract
All caspases evolved from a common ancestor and subsequently developed into two general classes, inflammatory or apoptotic caspases. The caspase-hemoglobinase fold has been conserved throughout nearly one billion years of evolution and is utilized for both the monomeric and dimeric subfamilies of apoptotic caspases, called initiator and effector caspases, respectively. We compared the folding and assembly of procaspase-3b from zebrafish to that of human effector procaspases in order to examine the conservation of the folding landscape. Urea-induced equilibrium folding/unfolding of procaspase-3b showed a minimum three-state folding pathway, where the native dimer isomerizes to a partially folded dimeric intermediate, which then unfolds. A partially folded monomeric intermediate observed in the folding landscape of human procaspase-3 is not well-populated in zebrafish procaspase-3b. By comparing effector caspases from different species, we show that the effector procaspase dimer undergoes a pH-dependent conformational change, and that the conformational species in the folding landscape exhibit similar free energies. Together, the data show that the landscape for the caspase-hemoglobinase fold is conserved, yet it provides flexibility for species-specific stabilization or destabilization of folding intermediates resulting in changes in stability. The common pH-dependent conformational change in the native dimer, which yields an enzymatically inactive species, may provide an additional, albeit reversible, mechanism for controlling caspase activity in the cell.
Collapse
Affiliation(s)
- Liqi Yao
- Department of Biology, University of Texas at Arlington, Arlington, Texas 76019, U.S.A
| | - A. Clay Clark
- Department of Biology, University of Texas at Arlington, Arlington, Texas 76019, U.S.A
| |
Collapse
|
27
|
Del Vecchio G, Galindo-Sánchez CE, Tripp-Valdez MA, López-Landavery EA, Rosas C, Mascaró M. Transcriptomic response in thermally challenged seahorses Hippocampus erectus: The effect of magnitude and rate of temperature change. Comp Biochem Physiol B Biochem Mol Biol 2022; 262:110771. [PMID: 35691555 DOI: 10.1016/j.cbpb.2022.110771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/17/2022] [Accepted: 06/06/2022] [Indexed: 10/18/2022]
Abstract
Hippocampus erectus inhabiting the shallow coastal waters of the southern Gulf of Mexico are naturally exposed to marked temperature variations occurring in different temporal scales. Under such heterogeneous conditions, a series of physiological and biochemical adjustments take place to restore and maintain homeostasis. This study investigated the molecular mechanisms involved in the response of H. erectus to increased temperature using transcriptome analysis based on RNA-Seq technology. Data was obtained from seahorses after 0.5-h exposure to combinations of different target temperatures (26 °C: control, and increased to 30 and 33 °C) and rates of thermal increase (abrupt: < 5 min; gradual: 1-1.5 °C every 3 h). The transcriptome of seahorses was assembled de novo using Trinity software to obtain 29,211 genes and 30,479 transcripts comprising 27,520,965 assembled bases. Seahorse exposure to both 30 and 33 °C triggered characteristic processes of the cellular stress response, regardless of the rate of thermal change. The transcriptomic profiles of H. erectus suggest an arrest of muscle development processes, the activation of heat shock proteins, and a switch to anaerobic metabolism within the first 0.5 h of exposure to target temperatures to ensure energy supply. Interestingly, apoptotic processes involving caspase were activated principally in gradual treatments, suggesting that prolonged exposure to even sublethal temperatures results in the accumulation of deleterious effects that may eventually terminate in cellular death. Results herein validate 30 °C and 33 °C as potential upper limits of thermal tolerance for H. erectus at the southernmost boundary of its geographic distribution.
Collapse
Affiliation(s)
- G Del Vecchio
- Posgrado en Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - C E Galindo-Sánchez
- Departamento de Biotecnología Marina, Laboratorio de Genómica Funcional, CICESE, Ensenada, Baja California, Mexico. https://twitter.com/ClaraGalindo3
| | - M A Tripp-Valdez
- Departamento de Biotecnología Marina, Laboratorio de Genómica Funcional, CICESE, Ensenada, Baja California, Mexico. https://twitter.com/MiguelTripp
| | - E A López-Landavery
- Departamento de Biotecnología Marina, Laboratorio de Genómica Funcional, CICESE, Ensenada, Baja California, Mexico. https://twitter.com/EdgarLo30205255
| | - C Rosas
- Unidad Multidisciplinaria de Docencia e Investigación-Sisal, Facultad de Ciencias, Universidad Nacional Autónoma de México, Sisal, Yucatán, Mexico. https://twitter.com/DrCarlosRosasV
| | - M Mascaró
- Unidad Multidisciplinaria de Docencia e Investigación-Sisal, Facultad de Ciencias, Universidad Nacional Autónoma de México, Sisal, Yucatán, Mexico.
| |
Collapse
|
28
|
Chen P, Wang R, Chen G, An B, Liu M, Wang Q, Tao Y. Thyroid endocrine disruption and hepatotoxicity induced by bisphenol AF: Integrated zebrafish embryotoxicity test and deep learning. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153639. [PMID: 35131240 DOI: 10.1016/j.scitotenv.2022.153639] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
Bisphenol AF (BPAF) is an emerging contaminant prevalent in the environment as one of main substitutes of bisphenol A (BPA). It was found that BPAF exhibited estrogenic effects in zebrafish larvae in our previous study, while little is known about its effects on the thyroid and liver. A 7 d zebrafish embryotoxicity test was conducted to study the potential thyroid disruption and hepatotoxicity of BPAF. BPAF decreased levels of thyroid hormones and deiodinases but increased expressions of transthyretin at 12.5 and 125 μg/L after 7 d exposure, indicating that both the metabolism and transport of thyroid hormones were perturbed. The thyroid hormone receptor (TR) levels decreased significantly upon exposure to ≥12.5 μg/L BPAF, implying that BPAF acts as a TR antagonist, which coincided well with the prediction from the Direct Message Passing Neural Network. The liver impairment (mainly cell necrosis of hepatocytes) and apoptosis were triggered by 125 μg/L and ≥12.5 μg/L BPAF respectively, accompanied by the increased activities of caspase 3 and caspase 9. Thus BPAF might not be a safe alternative to BPA given the thyroid and liver toxicity. DMPNN appears useful to screen for thyroid disrupting activity from molecular structures.
Collapse
Affiliation(s)
- Pengyu Chen
- College of Oceanography, Hohai University, Nanjing 210024, China
| | - Ruihan Wang
- College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Geng Chen
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 330106, China
| | - Baihui An
- College of Oceanography, Hohai University, Nanjing 210024, China
| | - Ming Liu
- College of Oceanography, Hohai University, Nanjing 210024, China
| | - Qiang Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Yuqiang Tao
- College of Oceanography, Hohai University, Nanjing 210024, China.
| |
Collapse
|
29
|
Song Z, Zou J, Wang M, Chen Z, Wang Q. A Comparative Review of Pyroptosis in Mammals and Fish. J Inflamm Res 2022; 15:2323-2331. [PMID: 35431566 PMCID: PMC9012342 DOI: 10.2147/jir.s361266] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/30/2022] [Indexed: 12/22/2022] Open
Abstract
Pyroptosis is a form of programmed cell death, which is executed by gasdermin family proteins. Under the stimulation of pathogen- and/or damage-associated molecular patterns, pattern recognition receptors (PRRs) such as Nod like receptors could recruit apoptosis-associated speck-like protein containing a CARD (ASC) and pro-caspases to form inflammasomes and then activate caspases through various pathways. The activated caspases then cleave gasdermin family proteins, and N-terminal (NT) domains of gasdermins were released to form oligomeric pores, resulting in the increased membrane permeability, cell swelling, and final pyroptosis. During this process, caspases also promote the maturation and release of inflammatory cytokines such as IL-1β and IL-18, thus pyroptosis is also named inflammatory cell death. Unlike numerous gasdermin family proteins in mammals, only gasdermin E (GSDME) has been identified in fish. GSDME in fish can be cleaved by caspase-a/-b to release its NT domain and induce pyroptosis. Studies indicated that pyroptosis in fish mainly depends on NLR family pyrin domain-containing 3 (NLRP3) inflammasome. ASC and different caspase proteins also were identified in different fish species. The influences of pathogenic microorganism infection and environmental pollutants on fish pyroptosis were studied in recent years. Considering that fish living environment is affected by multiple factors such as water salinity, temperature, oxygen supply, and highly fluctuating food supply, the in-depth research about fish pyroptosis will contribute to revealing the mechanism of pyroptosis during evolution.
Collapse
Affiliation(s)
- Zixi Song
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, People’s Republic of China
| | - Jiahong Zou
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, People’s Republic of China
| | - Mengya Wang
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, People’s Republic of China
| | - Zhenwei Chen
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, People’s Republic of China
| | - Qingchao Wang
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, People’s Republic of China
- Correspondence: Qingchao Wang, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Shizishan Street 1st, Hongshan District, Wuhan, Hubei, People’s Republic of China, Tel +86-138 71499065, Fax +86-27 87282113, Email
| |
Collapse
|
30
|
Liu KE, Raymond MH, Ravichandran KS, Kucenas S. Clearing Your Mind: Mechanisms of Debris Clearance After Cell Death During Neural Development. Annu Rev Neurosci 2022; 45:177-198. [PMID: 35226828 PMCID: PMC10157384 DOI: 10.1146/annurev-neuro-110920-022431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Neurodevelopment and efferocytosis have fascinated scientists for decades. How an organism builds a nervous system that is precisely tuned for efficient behaviors and survival and how it simultaneously manages constant somatic cell turnover are complex questions that have resulted in distinct fields of study. Although neurodevelopment requires the overproduction of cells that are subsequently pruned back, very few studies marry these fields to elucidate the cellular and molecular mechanisms that drive nervous system development through the lens of cell clearance. In this review, we discuss these fields to highlight exciting areas of future synergy. We first review neurodevelopment from the perspective of overproduction and subsequent refinement and then discuss who clears this developmental debris and the mechanisms that control these events. We then end with how a more deliberate merger of neurodevelopment and efferocytosis could reframe our understanding of homeostasis and disease and discuss areas of future study. Expected final online publication date for the Annual Review of Neuroscience, Volume 45 is July 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Kendra E Liu
- Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia, USA; .,Program in Fundamental Neuroscience, University of Virginia, Charlottesville, Virginia, USA
| | - Michael H Raymond
- Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia, USA; .,Center for Clearance, University of Virginia, Charlottesville, Virginia, USA
| | - Kodi S Ravichandran
- Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia, USA; .,Center for Clearance, University of Virginia, Charlottesville, Virginia, USA.,Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA.,VIB-UGent Center for Inflammation Research and the Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Sarah Kucenas
- Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia, USA; .,Program in Fundamental Neuroscience, University of Virginia, Charlottesville, Virginia, USA.,Department of Biology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
31
|
Ferreira FJ, Carvalho L, Logarinho E, Bessa J. foxm1 Modulates Cell Non-Autonomous Response in Zebrafish Skeletal Muscle Homeostasis. Cells 2021; 10:cells10051241. [PMID: 34070077 PMCID: PMC8158134 DOI: 10.3390/cells10051241] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/01/2021] [Accepted: 05/11/2021] [Indexed: 12/23/2022] Open
Abstract
foxm1 is a master regulator of the cell cycle, contributing to cell proliferation. Recent data have shown that this transcription factor also modulates gene networks associated with other cellular mechanisms, suggesting non-proliferative functions that remain largely unexplored. In this study, we used CRISPR/Cas9 to disrupt foxm1 in the zebrafish terminally differentiated fast-twitching muscle cells. foxm1 genomic disruption increased myofiber death and clearance. Interestingly, this contributed to non-autonomous satellite cell activation and proliferation. Moreover, we observed that Cas9 expression alone was strongly deleterious to muscle cells. Our report shows that foxm1 modulates a muscle non-autonomous response to myofiber death and highlights underreported toxicity to high expression of Cas9 in vivo.
Collapse
Affiliation(s)
- Fábio J. Ferreira
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (F.J.F.); (L.C.)
- Vertebrate Development and Regeneration Group, IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
- Aging and Aneuploidy Group, IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
- Graduate Program in Areas of Basic and Applied Biology (GABBA), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-313 Porto, Portugal
| | - Leonor Carvalho
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (F.J.F.); (L.C.)
- Vertebrate Development and Regeneration Group, IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Elsa Logarinho
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (F.J.F.); (L.C.)
- Aging and Aneuploidy Group, IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
- Correspondence: (E.L.); (J.B.)
| | - José Bessa
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (F.J.F.); (L.C.)
- Vertebrate Development and Regeneration Group, IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
- Correspondence: (E.L.); (J.B.)
| |
Collapse
|
32
|
Zeng C, Hou ZS, Zhao HK, Xin YR, Liu MQ, Yang XD, Wen HS, Li JF. Identification and characterization of caspases genes in rainbow trout (Oncorhynchus mykiss) and their expression profiles after Aeromonas salmonicida and Vibrio anguillarum infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 118:103987. [PMID: 33359598 DOI: 10.1016/j.dci.2020.103987] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 12/20/2020] [Accepted: 12/20/2020] [Indexed: 06/12/2023]
Abstract
Caspases are highly conserved cysteine-dependent aspartyl-specific proteases that play an important role in regulating cell death and inflammation. However, the caspase genes have not been systematically studied in rainbow trout (Oncorhynchus mykiss). Rainbow trout experienced 4 rounds (4R) of genome duplication in the evolutionary history. Thereby an increased numbers of paralogs are observed in trout, probably with more complicated gene functions. We identified 18 caspase genes in rainbow trout, including two inflammatory caspases (casp1a, casp1b), six apoptosis executioner caspases (casp3, casp3a1, casp3a2, casp3b, casp6, and casp7), nine apoptosis initiator caspases (casp2a, casp2b, casp8, casp9a, casp9b, casp10a, casp10b, casp20a, and casp20b) and one uncategorized caspase gene (casp17). To investigate the potentially physiological functions of caspase genes, we challenged the rainbow trout with Aeromonas salmonicida (A. salmonicida) and Vibrio anguillarum (V. anguillarum). Results showed that the CASP3-regulated intrinsic apoptosis was activated after A. salmonicida infection, while the CASP8 and CASP6-regulated extrinsic apoptosis exerted the greatest effect on trout challenged with V. anguillarum. In response to V. anguillarum infection, the data of RNA-Seq further showed the casp8 was tightly integrated with the significantly enriched Gene Ontology terms and functional pathways, including apoptosis regulation, pathogen detection and immunomodulation. Our study provides a foundation for the physiological functions and regulatory network of the caspase genes in teleosts.
Collapse
Affiliation(s)
- Chu Zeng
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, China
| | - Zhi-Shuai Hou
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, China
| | - Hong-Kui Zhao
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, China
| | - Yuan-Ru Xin
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, China
| | - Meng-Qun Liu
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, China
| | - Xiao-Dong Yang
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, China
| | - Hai-Shen Wen
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, China.
| | - Ji-Fang Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, China.
| |
Collapse
|
33
|
Ya J, Xu Y, Wang G, Zhao H. Cadmium induced skeletal underdevelopment, liver cell apoptosis and hepatic energy metabolism disorder in Bufo gargarizans larvae by disrupting thyroid hormone signaling. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 211:111957. [PMID: 33493726 DOI: 10.1016/j.ecoenv.2021.111957] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/14/2021] [Accepted: 01/16/2021] [Indexed: 06/12/2023]
Abstract
Cadmium (Cd) is hazardous to human health and it is also highly detrimental to amphibian life. In this study, Bufo gargarizans larvae were exposed to environmentally relevant Cd concentrations of 5, 100 and 200 μg L-1 from Gosner stage (Gs) 26 to Gs 42 of metamorphic climax about 6 weeks. The results showed thyroid structural injuries and thyroid signaling disruption were induced by high Cd exposure (100 and 200 μg L-1). Moreover, tadpole skeleton including whole body, vertebrata, forelimb and hindlimb was developmentally delayed by high Cd exposure through downregulating the mRNA expressions of genes involved with skeletal ossification and growth pathway. Moreover, liver histopathological injuries were caused by high Cd exposure featured by hepatocytes malformation, nuclear degeneration and increasing melanomacrophage centers. Meanwhile, liver apoptosis rate showed on the rise in a dose-dependent way and Cd stimulated liver apoptosis by upregulating mRNA expressions of genes related to extrinsic and intrinsic apoptosis pathways. Furthermore, high Cd caused hepatic glucometabolism disorder by decreasing the genetic expressions associated with glycolysis and mitochondrial oxidative phosphorylation. In addition, liver lipid metabolism was disrupted by high Cd exposure through downregulating mRNA levels of genes related to fatty oxidation and upregulating mRNA levels of genes related to fatty acid synthesis. We suggested that Cd did great harm to tadpole health by disturbing thyroid function, skeletal growth, liver cell apoptosis signaling and hepatic energy metabolism pathway.
Collapse
Affiliation(s)
- Jing Ya
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Yifan Xu
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China; AP Center, Changzhou Senior High School of Jiangsu Province, Changzhou 213000, China
| | - Gang Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China; AP Center, Changzhou Senior High School of Jiangsu Province, Changzhou 213000, China
| | - Hongfeng Zhao
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
34
|
Liu Y, Xu X, Wang X, Zhu T, Li J, Pang Y, Li Q. Analysis of the lamprey genotype provides insights into caspase evolution and functional divergence. Mol Immunol 2021; 132:8-20. [PMID: 33524772 DOI: 10.1016/j.molimm.2021.01.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 01/14/2021] [Accepted: 01/18/2021] [Indexed: 12/28/2022]
Abstract
The cysteine-containing aspartate specific proteinase (caspase) family plays important roles in apoptosis and the maintenance of homeostasis in lampreys. We conducted genomic and functional comparisons of six distinct lamprey caspase groups with human counterparts to determine how these expanded molecules evolved to adapt to the changing caspase-mediated signaling pathways. Our results showed that lineage-specific duplication and rearrangement were responsible for expanding lamprey caspases 3 and 7, whereas caspases 1, 6, 8, and 9 maintained a relatively stable genome and protein structure. Lamprey caspase family molecules displayed various expression patterns and were involved in the innate immune response. Caspase 1 and 7 functioned as a pattern recognition receptor with a broad-spectrum of microbial recognition and bactericidal effect. Additionally, caspases 1 and 7 may induce cell apoptosis in a time- and dose-dependent manner; however, apoptosis was inhibited by caspase inhibitors. Thus, these molecules may reflect the original state of the vertebrates caspase family. Our phylogenetic and functional data provide insights into the evolutionary history of caspases and illustrate their functional characteristics in primitive vertebrates.
Collapse
Affiliation(s)
- Ying Liu
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Xiaoluan Xu
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Xiaotong Wang
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Ting Zhu
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Jun Li
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Yue Pang
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China.
| | - Qingwei Li
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China.
| |
Collapse
|
35
|
Remodeling hydrogen bond interactions results in relaxed specificity of Caspase-3. Biosci Rep 2021; 41:227600. [PMID: 33448281 PMCID: PMC7846959 DOI: 10.1042/bsr20203495] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/04/2021] [Accepted: 01/08/2021] [Indexed: 12/22/2022] Open
Abstract
Caspase (or cysteinyl-aspartate specific proteases) enzymes play important roles in apoptosis and inflammation, and the non-identical but overlapping specificity profiles (that is, cleavage recognition sequence) direct cells to different fates. Although all caspases prefer aspartate at the P1 position of the substrate, the caspase-6 subfamily shows preference for valine at the P4 position, while caspase-3 shows preference for aspartate. In comparison with human caspases, caspase-3a from zebrafish has relaxed specificity and demonstrates equal selection for either valine or aspartate at the P4 position. In the context of the caspase-3 conformational landscape, we show that changes in hydrogen bonding near the S3 subsite affect selection of the P4 amino acid. Swapping specificity with caspase-6 requires accessing new conformational space, where each landscape results in optimal binding of DxxD (caspase-3) or VxxD (caspase-6) substrate and simultaneously disfavors binding of the other substrate. Within the context of the caspase-3 conformational landscape, substitutions near the active site result in nearly equal activity against DxxD and VxxD by disrupting a hydrogen bonding network in the substrate binding pocket. The converse substitutions in zebrafish caspase-3a result in increased selection for P4 aspartate over valine. Overall, the data show that the shift in specificity that results in a dual function protease, as in zebrafish caspase-3a, requires fewer amino acid substitutions compared with those required to access new conformational space for swapping substrate specificity, such as between caspases-3 and -6.
Collapse
|
36
|
De Anna JS, Castro JM, Darraz LA, Elías FD, Cárcamo JG, Luquet CM. Exposure to hydrocarbons and chlorpyrifos alters the expression of nuclear receptors and antioxidant, detoxifying, and immune response proteins in the liver of the rainbow trout, Oncorhynchus mykiss. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111394. [PMID: 33031985 DOI: 10.1016/j.ecoenv.2020.111394] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/18/2020] [Accepted: 09/20/2020] [Indexed: 06/11/2023]
Abstract
The development of oil and gas production together with the fruit production in nearby areas of North Patagonia, Argentina, suggests aquatic pollution scenarios which include permanent oil pollution combined with short events of pesticides application. It has been reported that oil hydrocarbons activate the aryl hydrocarbon receptor (AhR) pathway in the rainbow trout, Oncorhynchus mykiss, and that the insecticide Chlorpyrifos (CPF) interacts with these effects. Thus, it is interesting to investigate whether hydrocarbons and insecticides, applied by separate or combined, can affect fish health and reproductive signaling by acting on different nuclear receptors' regulatory pathways. To study this kind of interactions, we exposed juvenile rainbow trout to water accommodated fraction (WAF) of crude oil (62 μg L-1 TPH) for 48 h and subsequently exposed the livers ex vivo to the insecticide Chlorpyrifos (CPF) (20 µg L-1) for 1 h. We analyzed the mRNA expression of nuclear receptors and proteins involved in detoxifying, antioxidant, immune and apoptosis responses by qRT-PCR. We also performed histopathological analysis. WAF induced the expression of the androgen (AR) and the Liver X receptor (LXR) by 8- and 3-fold, respectively. AR induction was reversed by subsequent exposure to CPF. The progesterone receptor (PR) and glucocorticoid receptor (GR) were increased 2-fold and 3-fold by WAF respectively, while estrogen and mineralocorticoid receptors were not affected. GR was also induced by CPF with an additive effect in the WAF-CPF treatment. The antioxidant genes, gamma glutamyl transferase (GGT), superoxide dismutase (SOD1) were induced by WAF (2-3-fold). WAF upregulated the ATP Binding Cassette Subfamily C Member 2 (ABCC2, MRP2) (4-fold) and downregulated alkaline phosphatase. WAF also induced the inflammatory interleukins (IL) IL-8, and IL-6 and the anti-inflammatory IL-10, while CPF induced the inflammatory tumor necrosis factor (-α) and IL-6, and activated the intrinsic apoptotic pathway through the induction of caspases 3 and 9. Both, WAF and CPF downregulated the expression of the extrinsic apoptosis initiator caspase 8 and the inflammatory caspase 1. In conclusion, WAF hydrocarbons alter O. mykiss endocrine regulation by inducing AR, PR and GR. The subsequent exposure to CPF reverses AR, suggesting a complex interaction of different pollutants in contaminated environments, WAF hydrocarbons alter liver metabolism by inducing the expression of LXR, GR, antioxidant and detoxifying enzymes, and both inflammatory and anti-inflammatory cytokines, and causing mild hepatic steatosis. CPF activates inflammatory and stress responses associated with the induction of inflammatory cytokines together with apoptosis initiator and executioner caspases.
Collapse
Affiliation(s)
- Julieta S De Anna
- Laboratorio de Ecotoxicología Acuática, Subsede INIBIOMA-CEAN (CONICET-Universidad Nacional del Comahue), Junín de los Andes, Neuquén, Argentina
| | - Juan M Castro
- Laboratorio de Ecotoxicología Acuática, Subsede INIBIOMA-CEAN (CONICET-Universidad Nacional del Comahue), Junín de los Andes, Neuquén, Argentina
| | - Luis Arias Darraz
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja, Valdivia, Chile
| | - Federico D Elías
- Centro Atómico Bariloche e Instituto Balseiro, CNEA, CONICET, Universidad Nacional de Cuyo, Bariloche, Argentina
| | - Juan G Cárcamo
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja, Valdivia, Chile; Centro FONDAP, Interdisciplinary Center for Aquaculture Research (INCAR), Chile
| | - Carlos M Luquet
- Laboratorio de Ecotoxicología Acuática, Subsede INIBIOMA-CEAN (CONICET-Universidad Nacional del Comahue), Junín de los Andes, Neuquén, Argentina.
| |
Collapse
|
37
|
Trivellin G, Tirosh A, Hernández-Ramírez LC, Gupta T, Tsai-Morris CH, Faucz FR, Burgess HA, Feldman B, Stratakis CA. The X-linked acrogigantism-associated gene gpr101 is a regulator of early embryonic development and growth in zebrafish. Mol Cell Endocrinol 2021; 520:111091. [PMID: 33248229 PMCID: PMC8771005 DOI: 10.1016/j.mce.2020.111091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 12/28/2022]
Abstract
We recently described X-linked acrogigantism (X-LAG), a condition of early childhood-onset pituitary gigantism associated with microduplications of the GPR101 receptor. The expression of GPR101 in hyperplastic pituitary regions and tumors in X-LAG patients, and GPR101's normally transient pituitary expression during fetal development, suggest a role in the regulation of growth. Nevertheless, little is still known about GPR101's physiological functions, especially during development. By using zebrafish models, we investigated the role of gpr101 during embryonic development and somatic growth. Transient ectopic gpr101 expression perturbed the embryonic body plan but did not affect growth. Loss of gpr101 led to a significant reduction in body size that was even more pronounced in the absence of maternal transcripts, as well as subfertility. These changes were accompanied by gastrulation and hypothalamic defects. In conclusion, both gpr101 loss- and gain-of-function affect, in different ways, fertility, embryonic patterning, growth and brain development.
Collapse
Affiliation(s)
- Giampaolo Trivellin
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA; Laboratory of Cellular and Molecular Endocrinology and Laboratory of Pharmacology and Brain Pathology, Humanitas Clinical and Research Center - IRCCS, Rozzano, Mi, Italy.
| | - Amit Tirosh
- NET Service and Endocrine Oncology Bioinformatics Lab, Sheba Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Ramat Gan, Israel
| | - Laura C Hernández-Ramírez
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Tripti Gupta
- Division of Developmental Biology, NICHD, NIH, Bethesda, MD, USA
| | | | - Fabio R Faucz
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Harold A Burgess
- Division of Developmental Biology, NICHD, NIH, Bethesda, MD, USA
| | - Benjamin Feldman
- Division of Developmental Biology, NICHD, NIH, Bethesda, MD, USA
| | - Constantine A Stratakis
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
38
|
Zanandrea R, Bonan CD, Campos MM. Zebrafish as a model for inflammation and drug discovery. Drug Discov Today 2020; 25:2201-2211. [PMID: 33035664 DOI: 10.1016/j.drudis.2020.09.036] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 08/17/2020] [Accepted: 09/30/2020] [Indexed: 12/24/2022]
Abstract
Zebrafish is a small teleost (bony) fish used in many areas of pharmacology and toxicology. This animal model has advantages for the discovery of anti-inflammatory drugs, such as the potential for real-time assessment of cell migration mechanisms. Additionally, zebrafish display a repertoire of inflammatory cells, mediators, and receptors that are similar to those in mammals, including humans. Inflammatory disease modeling in either larvae or adult zebrafish represents a promising tool for the screening of new anti-inflammatory compounds, contributing to our understanding of the mechanisms involved in chronic inflammatory conditions. In this review, we provide an overview of the characterization of inflammatory responses in zebrafish, emphasizing its relevance for drug discovery in this research area.
Collapse
Affiliation(s)
- Rodrigo Zanandrea
- Pontifícia Universidade Católica do Rio Grande do Sul, Escola de Medicina, Programa de Pós-Graduação em Medicina e Ciências da Saúde, Porto Alegre, RS, Brazil; Pontifícia Universidade Católica do Rio Grande do Sul, Escola de Ciências da Saúde e da Vida, Laboratório de Neuroquímica e Psicofarmacologia, Porto Alegre, RS, Brazil
| | - Carla D Bonan
- Pontifícia Universidade Católica do Rio Grande do Sul, Escola de Medicina, Programa de Pós-Graduação em Medicina e Ciências da Saúde, Porto Alegre, RS, Brazil; Pontifícia Universidade Católica do Rio Grande do Sul, Escola de Ciências da Saúde e da Vida, Laboratório de Neuroquímica e Psicofarmacologia, Porto Alegre, RS, Brazil; Pontifícia Universidade Católica do Rio Grande do Sul, Escola de Ciências da Saúde e da Vida, Programa de Pós-Graduação em Biologia Celular e Molecular, Porto Alegre, RS, Brazil
| | - Maria M Campos
- Pontifícia Universidade Católica do Rio Grande do Sul, Escola de Medicina, Programa de Pós-Graduação em Medicina e Ciências da Saúde, Porto Alegre, RS, Brazil; Pontifícia Universidade Católica do Rio Grande do Sul, Escola de Ciências da Saúde e da Vida, Programa de Pós-Graduação em Biologia Celular e Molecular, Porto Alegre, RS, Brazil; Pontifícia Universidade Católica do Rio Grande do Sul, Escola de Ciências da Saúde e da Vida, Centro de Pesquisa em Toxicologia e Farmacologia, Porto Alegre, RS, Brazil.
| |
Collapse
|
39
|
Li R, Liu S, Qiu W, Yang F, Zheng Y, Xiong Y, Li G, Zheng C. Transcriptomic analysis of bisphenol AF on early growth and development of zebrafish ( Danio rerio) larvae. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2020; 4:100054. [PMID: 36157705 PMCID: PMC9488094 DOI: 10.1016/j.ese.2020.100054] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/11/2020] [Accepted: 07/12/2020] [Indexed: 05/02/2023]
Abstract
Bisphenol AF (BPAF), an alternative to bisphenol A, is widely detected in aquatic environments. Owing to health concerns, the toxic effects of BPAF on organisms are drawing attention. The present study aims to evaluate the toxicity of BPAF, combining the results of omics techniques and experiment. Employing transcriptome sequencing (RNA-seq), we obtained 391, 648, 512, and 545 differentially expressed genes (DEGs) in 0.1, 1, 10, and 100 μg/L BPAF-exposed zebrafish larvae, respectively. Gene ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment revealed the early development, stimulus-response, and MAPK signaling pathway were significantly affected by BPAF. In addition, five hub genes (fgf3, fgf4, map2k1, myca, and casp3b) were highlighted as the key genes in MAPK signaling pathway using the protein-protein interaction network. Therefore, the RNA-seq results showed that early development and stimulus-response were the main processes affected by BPAF, which was consistent with our morphological and pathological results. The hatching rate of zebrafish embryos in 1 and 10 μg/L BPAF groups was significantly inhibited, and the oxidative stress indexes, including the level of total antioxidant capacity (T-AOC), superoxide dismutase (SOD), and lipid peroxidation (LPO), were significantly increased by the 100 μg/L BPAF treatment. Moreover, the activity of alkaline phosphatase (AKP) was significantly decreased in all BPAF exposure groups. In conclusion, exposure to BPAF at environmental relevant concentrations affected the early development and immune system of zebrafish larvae by modulating MAPK signaling pathway, and our results provide solid evidence for the future studies on the toxicity of bisphenols.
Collapse
Affiliation(s)
- Rongzhen Li
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Shuai Liu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Wenhui Qiu
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Corresponding author. State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Feng Yang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yi Zheng
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Shenzhen Municipal Engineering Lab of Environmental IoT Technologies, Southern University of Science and Technology, Shenzhen, 518055, Guangdong Province, China
| | - Ying Xiong
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Guanrong Li
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Chunmiao Zheng
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Corresponding author. State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
40
|
Li J, Dong L, Zhu D, Zhang M, Wang K, Chen F. An effector caspase Sp-caspase first identified in mud crab Scylla paramamosain exhibiting immune response and cell apoptosis. FISH & SHELLFISH IMMUNOLOGY 2020; 103:442-453. [PMID: 32446967 DOI: 10.1016/j.fsi.2020.05.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 05/10/2020] [Accepted: 05/15/2020] [Indexed: 06/11/2023]
Abstract
Apoptosis plays a key role in the immune defense against pathogen infection, and caspase is one of the most important protease enzyme families, which could initiate and execute apoptosis. Among crustaceans, several caspase genes have been reported. However, caspase in mud crab Scylla paramamosain, have not been identified yet. Here, in the present study, we characterized a new caspase, named as Sp-caspase, from S. paramamosain. The full-length cDNA sequence of Sp-caspase contained 966 bp open reading frame, encoding 322 amino acids, and its molecular weight was 36 kDa. This gene has three conserved domains of the caspase family, a prodomain, a large subunit P20 and a small subunit P10. Phylogenetic analysis showed that Sp-caspase was clustered into an effector caspase group. Sp-caspase mainly distributed in midgut, hepatopancreas, hemocytes and female ovaries, and the transcript was significantly regulated in different tissues after being challenged with Vibrio parahaemolyticus, Vibrio alginolyticus or LPS. After infection with V. alginolyticus, the apoptosis rate of hemocytes notably increased, while the mRNA level of Sp-caspase and hydrolysis activity of caspase 3/7 significantly decreased. Furthermore, in vitro assays showed that the recombinant protein tSp-caspase (deletion of Sp-caspase prodomain) could efficiently recognize and cleave human caspase 3/7 substrate Ac-DEVD-pNA, functioning as an effector caspase. Meanwhile, heterologous expression of Sp-caspase in several cell lines (HEK293T cells, HeLa cells and HighFive cells) could specifically induce cell apoptosis. Taken together, these data demonstrated that Sp-caspase could perform apoptosis as an effector caspase. In addition, it might be a negative regulator of hemocytes apoptosis under pathogen infection, which would contribute to homeostasis and immune defense of hemocytes in S. paramamosain.
Collapse
Affiliation(s)
- Jishan Li
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Lixia Dong
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Depeng Zhu
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Min Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Kejian Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China; State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, Fujian, China; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen University, Xiamen, Fujian, China
| | - Fangyi Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China; State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, Fujian, China; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
41
|
Zebrafish in Inflammasome Research. Cells 2019; 8:cells8080901. [PMID: 31443239 PMCID: PMC6721725 DOI: 10.3390/cells8080901] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/13/2019] [Accepted: 08/13/2019] [Indexed: 12/12/2022] Open
Abstract
Inflammasomes are cytosolic multiprotein complexes that regulate inflammatory responses to danger stimuli and infection, and their dysregulation is associated with an increasing number of autoinflammatory diseases. In recent years, zebrafish models of human pathologies to study inflammasome function in vivo have started to emerge. Here, we discuss inflammasome research in zebrafish in light of current knowledge about mammalian inflammasomes. We summarize the evolutionary conservation of inflammasome components between zebrafish and mammals, highlighting the similarities and possible divergence in functions of these components. We present new insights into the evolution of the caspase-1 family in the teleost lineage, and how its evolutionary origin may help contextualize its functions. We also review existing infectious and non-infectious models in zebrafish in which inflammasomes have been directly implicated. Finally, we discuss the advantages of zebrafish larvae for intravital imaging of inflammasome activation and summarize available tools that will help to advance inflammasome research.
Collapse
|