1
|
Zhang L, Zheng B, Lu J, Wu H, Wu H, Zhang Q, Jiao L, Pan H, Zhou J. Evaluation of human antibodies from vaccinated volunteers for protection against Yersinia pestis infection. Microbiol Spectr 2024; 12:e0105424. [PMID: 39189763 PMCID: PMC11448073 DOI: 10.1128/spectrum.01054-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/26/2024] [Indexed: 08/28/2024] Open
Abstract
Yersinia pestis has a broad host range and has caused lethal bubonic and pneumonic plague in humans. With the emergence of multiple resistant strains and the potential for biothreat use, there is an urgent need for new therapeutic strategies that can protect populations from natural or deliberate infection. Targeting F1 has been proven to be the main strategy for developing vaccines and therapeutic antibodies, but data on anti-F1 antibodies, especially in humans, are scarce. To date, three human anti-F1 monoclonal antibodies (m252, αF1Ig2, and αF1Ig8) from naive populations have been reported. Here, we constructed an antibody library from vaccinees immunized with the plague subunit vaccine IIa by phage display. The genetic basis, epitopes, and biological functions of the obtained mAbs were assessed and evaluated in plague-challenged mice. Three human mAbs, namely, F3, F19, and F23, were identified. Their biolayer responses were 0.4, 0.6, and 0.6 nm, respectively. The dissociation constants (KD) of the F1 antigen were 1 pM, 0.165 nM, and 1 pM, respectively. Although derived from distinct Ab lineages, that is, VH3-30-D3-10-JH4 (F3&F23) and VH3-43-D6-19-JH4 (F19), these mAbs share similar binding sites in F1 with some overlap with αF1Ig8 but are distinct from αF1Ig2. Each of them provided a significant protective effect for Balb/c mice against a 100 median lethal dose (MLD) challenge of a virulent Y. pestis strain when administered at a dose of 100 µg. No synergistic or antagonistic effects were observed among them. These mAbs are novel and excellent candidates for further drug development and use in clinical practice.IMPORTANCEIn this study, we identified three human monoclonal antibodies with a high affinity to F1 protein of Yersinia pestis. We discovered that they have relatively lower somatic hypermutations compared with antibodies, m252, αF1Ig2, and αF1Ig8, derived from the naive library reported previously. We also observed that these mAbs share similar binding sites in F1 with some overlapping with αF1Ig8 but distinct from that of αF1Ig2. Furthermore, each of them could provide complete protection for mice against a lethal dose of Yersinia pestis challenge. Our data provided new insights into the anti-F1 Ab repertories and their associated epitopes during vaccination in humans. The findings support the additional novel protective human anti-F1Abs for potential therapeutics against plaque.
Collapse
Affiliation(s)
- Li Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Binyang Zheng
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Jing Lu
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Haisheng Wu
- Qinghai Institute for Endemic Disease Control and Prevention, Xining, China
| | - Hailian Wu
- Qinghai Institute for Endemic Disease Control and Prevention, Xining, China
| | - Qi Zhang
- Qinghai Institute for Endemic Disease Control and Prevention, Xining, China
| | - Lei Jiao
- Lanzhou Institute of Biological Products Co., Ltd., State Key Laboratory of Novel Vaccines for Emerging Infectious Diseases, Lanzhou, China
| | - Hongxing Pan
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Jianfang Zhou
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
2
|
Guo J, Zhong Y, Wang Y, Liu P, Jin H, Wang Y, Shi L, Wang P, Li W. Phylogenetic Relationships and Evolution of the Genus Eganvirus (186-Type) Yersinia pestis Bacteriophages. Viruses 2024; 16:748. [PMID: 38793629 PMCID: PMC11126057 DOI: 10.3390/v16050748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Plague is an endemic infectious disease caused by Yersinia pestis. In this study, we isolated fourteen phages with similar sequence arrangements to phage 186; these phages exhibited different lytic abilities in Enterobacteriaceae strains. To illustrate the phylogenetic relationships and evolutionary relationships between previously designated 186-type phages, we analysed the complete sequences and important genes of the phages, including whole-genome average nucleotide identity (ANI) and collinearity comparison, evolutionary analysis of four conserved structural genes (V, T, R, and Q genes), and analysis of the regulatory genes (cI, apl, and cII) and integrase gene (int). Phylogenetic analysis revealed that thirteen of the newly isolated phages belong to the genus Eganvirus and one belongs to the genus Felsduovirus in the family Peduoviridae, and these Eganvirus phages can be roughly clustered into three subgroups. The topological relationships exhibited by the whole-genome and structural genes seemed similar and stable, while the regulatory genes presented different topological relationships with the structural genes, and these results indicated that there was some homologous recombination in the regulatory genes. These newly isolated 186-type phages were mostly isolated from dogs, suggesting that the resistance of Canidae to Y. pestis infection may be related to the wide distribution of phages with lytic capability.
Collapse
Affiliation(s)
- Jin Guo
- National Institute for Communicable Disease Control and Prevention, China CDC, Changping, Beijing 102206, China; (J.G.); (Y.W.); (H.J.); (Y.W.)
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing 102206, China
| | - Youhong Zhong
- Yunnan Institute for Endemic Disease Control and Prevention, Dali 671000, China; (Y.Z.); (P.L.); (L.S.)
- Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Dali 671000, China
| | - Yiting Wang
- National Institute for Communicable Disease Control and Prevention, China CDC, Changping, Beijing 102206, China; (J.G.); (Y.W.); (H.J.); (Y.W.)
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing 102206, China
| | - Pan Liu
- Yunnan Institute for Endemic Disease Control and Prevention, Dali 671000, China; (Y.Z.); (P.L.); (L.S.)
- Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Dali 671000, China
| | - Haixiao Jin
- National Institute for Communicable Disease Control and Prevention, China CDC, Changping, Beijing 102206, China; (J.G.); (Y.W.); (H.J.); (Y.W.)
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing 102206, China
| | - Yumeng Wang
- National Institute for Communicable Disease Control and Prevention, China CDC, Changping, Beijing 102206, China; (J.G.); (Y.W.); (H.J.); (Y.W.)
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing 102206, China
| | - Liyuan Shi
- Yunnan Institute for Endemic Disease Control and Prevention, Dali 671000, China; (Y.Z.); (P.L.); (L.S.)
- Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Dali 671000, China
| | - Peng Wang
- Yunnan Institute for Endemic Disease Control and Prevention, Dali 671000, China; (Y.Z.); (P.L.); (L.S.)
- Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Dali 671000, China
| | - Wei Li
- National Institute for Communicable Disease Control and Prevention, China CDC, Changping, Beijing 102206, China; (J.G.); (Y.W.); (H.J.); (Y.W.)
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing 102206, China
| |
Collapse
|
3
|
Hartley L, Harold S, Hawe E. The efficacy, safety, and immunogenicity of plague vaccines: A systematic literature review. CURRENT RESEARCH IN IMMUNOLOGY 2023; 4:100072. [PMID: 37954941 PMCID: PMC10637890 DOI: 10.1016/j.crimmu.2023.100072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/25/2023] [Accepted: 09/29/2023] [Indexed: 11/14/2023] Open
Abstract
Plague remains endemic in many parts of the world, and despite efforts, no preventative vaccine is available. We performed a systemic review of available randomised controlled trials (RCTs) of live, attenuated, or killed plague vaccines vs. placebo, no intervention, or other plague vaccine to evaluate their efficacy, safety, and immunogenicity. Data sources included MEDLINE, Embase, and the Cochrane Library; clinical trial registers; and reference lists of included studies. Primary outcomes were efficacy, safety, and immunogenicity. Risk of bias was assessed using the Cochrane Collaborations tool. Only 2 RCTs, both on subunit vaccines, were included out of the 75 screened articles. The 2 trials included 240 participants with a follow-up of 3 months and 60 participants with a follow-up of 13 months, respectively. Safety evidence was limited, but both vaccines were well tolerated, with only mild to moderate adverse events. Both vaccines were immunogenic in a dose-dependent manner. However, given the limited data identified in this systematic review, we are unable to quantify the efficacy of vaccines to prevent plague, as well as their long-term safety and immunogenicity. More trials of plague vaccines are needed to generate additional evidence of their long-term effects.
Collapse
Affiliation(s)
- Louise Hartley
- RTI Health Solutions, The Pavilion, Towers Business Park, Wilmslow Road, Didsbury, Manchester, M20 2LS, UK
| | - Sydney Harold
- RTI Health Solutions, The Pavilion, Towers Business Park, Wilmslow Road, Didsbury, Manchester, M20 2LS, UK
| | - Emma Hawe
- RTI Health Solutions, The Pavilion, Towers Business Park, Wilmslow Road, Didsbury, Manchester, M20 2LS, UK
| |
Collapse
|
4
|
Chen B, Liu YF, Lu XY, Jiang DD, Wang X, Zhang QF, Yang GP, Yang X. Complete mitochondrial genome of Ctenophthalmus quadratus and Stenischia humilis in China provides insights into fleas phylogeny. Front Vet Sci 2023; 10:1255017. [PMID: 37771942 PMCID: PMC10526365 DOI: 10.3389/fvets.2023.1255017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 08/21/2023] [Indexed: 09/30/2023] Open
Abstract
Fleas (Order Siphonaptera) are common blood-feeding ectoparasites, which have important economic significance. Limited mitochondrial genome information has impeded the study of flea biology, population genetics and phylogenetics. The Ctenophthalmus quadratus and Stenischia humilis complete mt genomes are described in this study. The samples were collected from Jianchuan, Yunnan plague foci, China. The mt genomes of C. quadratus and S. humilis were 15,938 bp and 15,617 bp, respectively. The gene arrangement of mt genome was consistent with that of other fleas, which include 22 tRNA genes, 13 protein-coding genes, and two rRNA genes, with a total of 37 genes. The relationship between C. quadratus and S. humilis in fleas was inferred by phylogenetic analysis of mt genome sequence datasets. Phylogenetic analyzes showed that the C. quadratus and S. humilis belonged to different species in the same family, and were closely related to Hystrichopsylla weida qinlingensis in the same family; and revealed that the family Hystrichopsyllidae is paraphyletic, supporting the monophyly of the order Siphonaptera. This study decodes the complete mt genomes of the C. quadratus and S. humilis for the first time. The results demonstrate that the C. quadratus and S. humilis are distinct species, and fleas are monophyletic. Analysis of mt genome provides novel molecular data for further studying the phylogeny and evolution of fleas.
Collapse
Affiliation(s)
- Bin Chen
- Integrated Laboratory of Pathogenic Biology, College of Preclinical Medicine, Dali University, Dali, China
| | - Ya-fang Liu
- Integrated Laboratory of Pathogenic Biology, College of Preclinical Medicine, Dali University, Dali, China
| | - Xin-yan Lu
- Integrated Laboratory of Pathogenic Biology, College of Preclinical Medicine, Dali University, Dali, China
| | - Dan-dan Jiang
- School of Public Health, Dali University, Dali, China
| | - Xuan Wang
- Nanchang University Queen Mary School, Nanchang University, Nanchang, China
| | - Quan-fu Zhang
- Department of Gastroenterology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Guo-ping Yang
- Integrated Laboratory of Pathogenic Biology, College of Preclinical Medicine, Dali University, Dali, China
| | - Xing Yang
- Integrated Laboratory of Pathogenic Biology, College of Preclinical Medicine, Dali University, Dali, China
| |
Collapse
|
5
|
Qin J, Wu Y, Shi L, Zuo X, Zhang X, Qian X, Fan H, Guo Y, Cui M, Zhang H, Yang F, Kong J, Song Y, Yang R, Wang P, Cui Y. Genomic diversity of Yersinia pestis from Yunnan Province, China, implies a potential common ancestor as the source of two plague epidemics. Commun Biol 2023; 6:847. [PMID: 37582843 PMCID: PMC10427647 DOI: 10.1038/s42003-023-05186-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/26/2023] [Indexed: 08/17/2023] Open
Abstract
Plague, caused by Yersinia pestis, is a zoonotic disease that can reemerge and cause outbreaks following decades of latency in natural plague foci. However, the genetic diversity and spread pattern of Y. pestis during these epidemic-silent cycles remain unclear. In this study, we analyze 356 Y. pestis genomes isolated between 1952 and 2016 in the Yunnan Rattus tanezumi plague focus, China, covering two epidemic-silent cycles. Through high-resolution genomic epidemiological analysis, we find that 96% of Y. pestis genomes belong to phylogroup 1.ORI2 and are subdivided into two sister clades (Sublineage1 and Sublineage2) characterized by different temporal-spatial distributions and genetic diversity. Most of the Sublineage1 strains are isolated from the first epidemic-silent cycle, while Sublineage2 strains are predominantly from the second cycle and revealing a west to east spread. The two sister clades evolved in parallel from a common ancestor and independently lead to two separate epidemics, confirming that the pathogen responsible for the second epidemic following the silent interval is not a descendant of the causative strain of the first epidemic. Our results provide a mechanism for defining epidemic-silent cycles in natural plague foci, which is valuable in the prevention and control of future plague outbreaks.
Collapse
Affiliation(s)
- Jingliang Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yarong Wu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Liyuan Shi
- Yunnan Institute of Endemic Diseases Control and Prevention, Dali, China
| | - Xiujuan Zuo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xianglilan Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xiuwei Qian
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Hang Fan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yan Guo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Mengnan Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Haipeng Zhang
- Yunnan Institute of Endemic Diseases Control and Prevention, Dali, China
| | - Fengyi Yang
- Yunnan Institute of Endemic Diseases Control and Prevention, Dali, China
| | - Jinjiao Kong
- Yunnan Institute of Endemic Diseases Control and Prevention, Dali, China
| | - Yajun Song
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.
| | - Peng Wang
- Yunnan Institute of Endemic Diseases Control and Prevention, Dali, China.
| | - Yujun Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.
| |
Collapse
|
6
|
Qin J, Shi L, Wu Y, Kong J, Qian X, Zhang X, Zuo X, Fan H, Guo Y, Cui M, Dong S, Tan H, Zhong Y, Song Y, Yang R, Wang P, Cui Y. Genomic epidemiological analysis of county-scale Yersinia pestis spread pattern over 50 years in a Southwest Chinese prefecture. PLoS Negl Trop Dis 2023; 17:e0011527. [PMID: 37549110 PMCID: PMC10406180 DOI: 10.1371/journal.pntd.0011527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 07/11/2023] [Indexed: 08/09/2023] Open
Abstract
Plague, one of the most devastating infectious diseases in human history, is caused by the bacterium Yersinia pestis. Since the 1950s, the Dehong Dai-Jingpo Autonomous Prefecture (DH) in Yunnan Province, China, has recorded plague outbreaks that have resulted in 1,153 human cases and 379 deaths. The genetic diversity and transmission characteristics of Y. pestis strains in this region remain unknown. Here, we performed high-resolution genomic epidemiological analysis of 175 Y. pestis strains isolated from five counties and 19 towns in DH between 1953 and 2007. Phylogenetic analysis revealed that most DH strains were located in lineage 1.ORI2, which could be further subdivided into seven sub-phylogroups (SPG1-SPG7). The dominant sub-phylogroups of Y. pestis in DH varied during different periods and presented a population shift. Genomic evidence showed that plague might have emerged from the southwest of DH (e.g., Longchuan or Ruili counties) or its bordering countries, and subsequently spread to the northeast in multiple waves between 1982 and 2007. Our study infers a fine-scale phylogeny and spread pattern of the DH Y. pestis population, which extends our knowledge regarding its genetic diversity and provides clues for the future prevention and control of plague in this region.
Collapse
Affiliation(s)
- Jingliang Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Liyuan Shi
- Yunnan Institute of Endemic Diseases Control and Prevention, Dali, China
| | - Yarong Wu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jinjiao Kong
- Yunnan Institute of Endemic Diseases Control and Prevention, Dali, China
| | - Xiuwei Qian
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xianglilan Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xiujuan Zuo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Hang Fan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yan Guo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Mengnan Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Shanshan Dong
- Yunnan Institute of Endemic Diseases Control and Prevention, Dali, China
| | - Hongli Tan
- Yunnan Institute of Endemic Diseases Control and Prevention, Dali, China
| | - Youhong Zhong
- Yunnan Institute of Endemic Diseases Control and Prevention, Dali, China
| | - Yajun Song
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Peng Wang
- Yunnan Institute of Endemic Diseases Control and Prevention, Dali, China
| | - Yujun Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| |
Collapse
|
7
|
Bonczarowska JH, Susat J, Krause-Kyora B, Dangvard Pedersen D, Boldsen J, Larsen LA, Seeberg L, Nebel A, Unterweger D. Ancient Yersinia pestis genomes lack the virulence-associated Ypf Φ prophage present in modern pandemic strains. Proc Biol Sci 2023; 290:20230622. [PMID: 37464758 PMCID: PMC10354491 DOI: 10.1098/rspb.2023.0622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/19/2023] [Indexed: 07/20/2023] Open
Abstract
Yersinia pestis is the causative agent of at least three major plague pandemics (Justinianic, Medieval and Modern). Previous studies on ancient Y. pestis genomes revealed that several genomic alterations had occurred approximately 5000-3000 years ago and contributed to the remarkable virulence of this pathogen. How a subset of strains evolved to cause the Modern pandemic is less well-understood. Here, we examined the virulence-associated prophage (YpfΦ), which had been postulated to be exclusively present in the genomes of strains associated with the Modern pandemic. The analysis of two new Y. pestis genomes from medieval/early modern Denmark confirmed that the phage is absent from the genome of strains dating to this time period. An extended comparative genome analysis of over 300 strains spanning more than 5000 years showed that the prophage is found in the genomes of modern strains only and suggests an integration into the genome during recent Y. pestis evolution. The phage-encoded Zot protein showed structural homology to a virulence factor of Vibrio cholerae. Similar to modern Y. pestis, we observed phages with a common origin to YpfΦ in individual strains of other bacterial species. Our findings present an updated view on the prevalence of YpfΦ, which might contribute to our understanding of the host spectrum, geographical spread and virulence of Y. pestis responsible for the Modern pandemic.
Collapse
Affiliation(s)
- Joanna H. Bonczarowska
- Institute of Clinical Molecular Biology, Kiel University, Rosalind-Franklin-Straße 12, Kiel 24105, Germany
| | - Julian Susat
- Institute of Clinical Molecular Biology, Kiel University, Rosalind-Franklin-Straße 12, Kiel 24105, Germany
| | - Ben Krause-Kyora
- Institute of Clinical Molecular Biology, Kiel University, Rosalind-Franklin-Straße 12, Kiel 24105, Germany
| | - Dorthe Dangvard Pedersen
- Unit of Anthropology, Department of Forensic Medicine, University of Southern Denmark, Odense M, 5230, Denmark
| | - Jesper Boldsen
- Unit of Anthropology, Department of Forensic Medicine, University of Southern Denmark, Odense M, 5230, Denmark
| | | | - Lone Seeberg
- Museum Horsens Arkæologisk Afdeling, Fussingsvej 8, Horsens 8700, Denmark
| | - Almut Nebel
- Institute of Clinical Molecular Biology, Kiel University, Rosalind-Franklin-Straße 12, Kiel 24105, Germany
| | - Daniel Unterweger
- Institute for Experimental Medicine, Kiel University, Michaelisstraße 5, Kiel 24105, Germany
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Straße 2, Plön 24306, Germany
| |
Collapse
|
8
|
Advanced Molecular-Genetic Methods and Prospects for Their Application for the Indication and Identification of <i>Yersinia pestis</i> Strains. PROBLEMS OF PARTICULARLY DANGEROUS INFECTIONS 2023. [DOI: 10.21055/0370-1069-2022-4-29-40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
The review provides an analysis of the literature data on the use of various modern molecular-genetic methods for the indication and identification of Yersinia pestis strains with different properties and degree of virulence, which is caused by the diverse natural conditions in which they circulate. The methods are also considered from the perspective of their promising application at three levels (territorial, regional and federal) of the system for laboratory diagnosis of infectious diseases at the premises of Rospotrebnadzor organizations to solve the problem of maintaining the sanitary and epidemiological well-being of the country’s population. The main groups of methods considered are as follows: based on the analysis of the lengths of restriction fragments (ribo- and IS-typing, pulse gel electrophoresis); based on the analysis of specific fragments (DFR typing, VNTR typing); based on sequencing (MLST, CRISPR analysis, SNP analysis); PCR methods (including IPCR, SPA); isothermal amplification methods (LAMP, HDA, RPA, SEA, PCA, SHERLOCK); DNA-microarray; methods using aptamer technology; bio- and nano-sensors; DNA origami; methods based on neural networks. We can conclude that the rapid development of molecular diagnostics and genetics is aimed at increasing efficiency, multi-factorial approaches and simplifying the application of techniques with no need for expensive equipment and highly qualified personnel for analysis. At all levels of the system for laboratory diagnosis of infectious diseases at the Rospotrebnadzor organizations, it is possible to use methods based on PCR, isothermal amplification, SHERLOCK, biosensors, and small-sized sequencing devices. At the territorial level, at plague control stations, the use of immuno-PCR and SPA for the indication of Y. pestis is viable. At the regional level, introduction of the technologies based on the use of aptamers and DNA chips looks promising. For the federal level, the use of DNA origami methods and new technologies of whole genome sequencing is a prospect within the framework of advanced identification, molecular typing and sequencing of the genomes of plague agent strains.
Collapse
|
9
|
Esmaeili S, Esmaeili P, Mahmoudi A, Ghasemi A, Mohammadi A, Bagheri A, Sohrabi A, Rezaei F, Hanifi H, Neamati AH, Gouya MM, Mostafavi E. Serological evidence of Yersinia pestis infection in rodents and carnivores in Northwestern Iran. PLoS Negl Trop Dis 2023; 17:e0011021. [PMID: 36668675 PMCID: PMC9858819 DOI: 10.1371/journal.pntd.0011021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 12/12/2022] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Plague may recur after several decades in its endemic regions; therefore, the continuous monitoring of wildlife is essential, even when no human cases are reported in the old foci. The present study was conducted to monitor rodents and their ectoparasites as well as carnivores to learn about the epidemiology of plague infection in an old focus of Iran. METHODOLOGY The present study was conducted from 2019 to 2020 in Takestan county of Qazvin Province in northwestern Iran. Rodents were caught using live traps, and their fleas were separated. Blood and spleen specimens were taken from the captured rodents. Serum samples were also collected from sheepdogs and wild carnivores. The collected samples were tested by culture, serology (ELISA), and molecular methods to detect Yersinia pestis infection. FINDINGS A total of 399 small mammals were caught, of which 68.6% were Meriones persicus. A total of 2438 fleas were collected from the rodents, 95.3% of which were Xenopsylla buxtoni. Overall, 23 out of 377 tested rodents (5.7%, CI 95%, 3.9-9.0) had IgG antibodies against the F1 antigen of Y. pestis, and all the positive samples belonged to M. persicus. Nine (4.8%) out of 186 collected sera from the sheepdogs' serum and one serum from the Canis aureus had specific IgG antibodies against the F1 antigen of Y. pestis. There were no positive cases of Y. pestis in the rodents and fleas based on the culture and real-time PCR. CONCLUSION Serological evidence of Y. pestis circulation was observed in rodents and carnivores (sheepdogs and C. aureus). The presence of potential plague vectors and serological evidence of Y. pestis infection in the surveyed animals could probably raise the risk of infection and clinical cases of plague in the studied region. Training health personnel is therefore essential to encourage their detection of possible human cases of the disease.
Collapse
Affiliation(s)
- Saber Esmaeili
- National Reference Laboratory for Plague, Tularemia and Q Fever, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Akanlu, KabudarAhang, Hamadan, Iran
- Department of Epidemiology and Biostatics, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Parisa Esmaeili
- National Reference Laboratory for Plague, Tularemia and Q Fever, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Akanlu, KabudarAhang, Hamadan, Iran
- Department of Epidemiology and Biostatics, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Ahmad Mahmoudi
- Department of Biology, Faculty of Science, Urmia University, Urmia, Iran
| | - Ahmad Ghasemi
- National Reference Laboratory for Plague, Tularemia and Q Fever, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Akanlu, KabudarAhang, Hamadan, Iran
- Reference Health Laboratories, Ministry of Health and Medical Education, Tehran, Iran
| | - Ali Mohammadi
- Department of Epidemiology and Biostatics, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
- Department of Medical Entomology and Vector Control, School of Public Health and National Institute of Health Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Amin Bagheri
- Department of Epidemiology and Biostatics, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Aria Sohrabi
- National Reference Laboratory for Plague, Tularemia and Q Fever, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Akanlu, KabudarAhang, Hamadan, Iran
- Department of Epidemiology and Biostatics, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Farshid Rezaei
- Center for Communicable Disease Control, Ministry of Health and Medical Education, Tehran, Iran
| | - Hamed Hanifi
- Department of Epidemiology and Biostatics, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Amir Hesam Neamati
- Department of Epidemiology and Biostatics, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Mohammad Mehdi Gouya
- Center for Communicable Disease Control, Ministry of Health and Medical Education, Tehran, Iran
| | - Ehsan Mostafavi
- National Reference Laboratory for Plague, Tularemia and Q Fever, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Akanlu, KabudarAhang, Hamadan, Iran
- Department of Epidemiology and Biostatics, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
10
|
Epidemiological Characteristics of Human and Animal Plague in Yunnan Province, China, 1950 to 2020. Microbiol Spectr 2022; 10:e0166222. [PMID: 36219109 PMCID: PMC9784778 DOI: 10.1128/spectrum.01662-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
This study analyzed the epidemiological characteristics of 3,464 human plague cases and the distribution pattern of 4,968 Yersinia pestis isolates from humans, hosts, and vector insects from 1950 to 2020 among two natural plague foci in Yunnan Province, China. These foci include the Rattus flavipectus plague focus of the Yunnan, Guangdong, and Fujian provinces and the Apodemus chevrieri-Eothenomys miletus plague focus of the highlands of northwestern Yunnan Province. The case fatality rate for plague in humans was 18.39% (637/3,464), and the total isolation rate of Y. pestis was 0.17% (4,968/2,975,288). Despite that the frequency of human cases declined rapidly, the animal plague fluctuated greatly, alternating between activity and inactivity in these foci. The tendency among human cases can be divided into 4 stages, 1950 to 1955, 1956 to 1989, 1990 to 2005, and 2006 to 2020. Bubonic plague accounted for the majority of cases in Yunnan, where pneumonic and septicemic plague rarely occurred. The natural plague foci have been in a relatively active state due to the stability of local ecology. Dense human population and frequent contact with host animals contribute to the high risk of human infection. This study systematically analyzed the epidemic pattern of human plague and the distribution characteristics of Y. pestis in the natural plague foci in Yunnan, providing a scientific basis for further development and adjustment of plague prevention and control strategies. IMPORTANCE Yunnan is the origin of the third plague pandemic. The analysis of human and animal plague characteristics of plague foci in Yunnan enlightens the prevention and control of the next plague pandemics. The plague characteristics of Yunnan show that human plague occurred when animal plague reached a certain scale, and strengthened surveillance of animal plague and reducing the density of host animals and transmission vectors contribute to the prevention and control of human plague outbreaks. The phenomenon of alternation between the resting period and active period of plague foci in Yunnan further proves the endogenous preservation mechanism of plague.
Collapse
|
11
|
Ma X, Lu J, Liu W. Knowledge of Emerging and Reemerging Infectious Diseases in the Public of Guangzhou, Southern China. Front Public Health 2022; 10:718592. [PMID: 35211435 PMCID: PMC8861078 DOI: 10.3389/fpubh.2022.718592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 01/10/2022] [Indexed: 11/18/2022] Open
Abstract
Objective The objective of this study is to get the overall picture about the knowledge of emerging and reemerging infectious diseases in public in Guangzhou and provide a scientific basis for developing health information strategies. Methods We used the structured questionnaire to interview 1,000 Guangzhou residents by health enquiry hotline. Descriptive analysis was presented to evaluate the knowledge of the participants. Multiple logistic regression model was performed to determine the influence factors for knowledge of emerging and reemerging infectious diseases Results A total of 801 individuals completed the survey. About one-third had heard of Middle East respiratory syndrome (MERS) and Zika, whereas Ebola and plague about 50%. A total of 32.08% participants had never heard of any of the four diseases. Only 2.08% knew the sexual transmission of Zika and 90.17% had no idea about the epidemic region of plague. No more than 15% knew they should check their health status after returning from the epidemic region. Education level and income were the key factors that influenced knowledge rate. Conclusions The low-level knowledge called for the improvement in health information to the public, especially those with low level of education and income. Effective and precise health information was urged to carry out to improve the prevention for the emerging and reemerging infectious diseases.
Collapse
Affiliation(s)
- Xiaowei Ma
- Department of Public Health Emergency Preparedness and Response, Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Jianyun Lu
- Department of Infectious Disease Control and Prevention, Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Weisi Liu
- Department of Health Education and Promotion, Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| |
Collapse
|
12
|
Radka CD, Aller SG. Site 2 of the Yersinia pestis substrate-binding protein YfeA is a dynamic surface metal-binding site. Acta Crystallogr F Struct Biol Commun 2021; 77:286-293. [PMID: 34473105 PMCID: PMC8411934 DOI: 10.1107/s2053230x21008086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 08/05/2021] [Indexed: 11/10/2022] Open
Abstract
The substrate-binding protein YfeA (also known as YPO2439 or y1897) is a polyspecific metal-binding protein that is crucial for nutrient acquisition and virulence in Yersinia pestis, the causative microbe of plague. YfeA folds into a monomeric c-clamp like other substrate-binding proteins and has two metal-binding sites (sites 1 and 2). Site 2 is a bidentate surface site capable of binding Zn and Mn atoms and is a unique feature of YfeA. Occasionally, the site 2 residues of two YfeA molecules will cooperate with the histidine tag of a third YfeA molecule in coordinating the same metal and lead to metal-dependent crystallographic packing. Here, three crystal structures of YfeA are presented at 1.85, 2.05 and 2.25 Å resolution. A comparison of the structures reveals that the metal can be displaced at five different locations ranging from ∼4 to ∼16 Å away from the canonical site 2. These observations reveal different configurations of site 2 that enable cooperative metal binding and demonstrate how site 2 is dynamic and freely available for inter-protein metal coordination.
Collapse
Affiliation(s)
- Christopher D. Radka
- Department of Infectious Diseases, St Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Stephen G. Aller
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
13
|
Mathew B, Aoyagi KL, Fisher MA. Yersinia pestis Lipopolysaccharide Remodeling Confers Resistance to a Xenopsylla cheopis Cecropin. ACS Infect Dis 2021; 7:2536-2545. [PMID: 34319069 DOI: 10.1021/acsinfecdis.1c00275] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Fleas are major vectors of Yersinia pestis, the causative agent of plague. It has been proposed that Y. pestis has developed the ability to overcome the innate immune responses of fleas. Despite the fact that they transmit a number of bacterial infections, very little is known about the immune responses in fleas. In this study, we describe the antimicrobial activities of a cecropin from Xenopsylla cheopis (cheopin), an efficient vector for Y. pestis in the wild. This is the first cecropin-class antimicrobial peptide described from Siphonaptera insects. Cheopin showed potent activity against Gram-negative bacteria but little activity against wild-type Y. pestis KIM6+. Deletion of the aminoarabinose operon, which is responsible for the 4-amino-4-deoxy-l-arabinose (Ara4N) modification of LPS, rendered Y. pestis highly susceptible to cheopin. Confocal microscopy and whole cell binding assays indicated that Ara4N modification reduces the affinity of cheopin for Y. pestis. Further, cheopin only permeabilized bacterial membranes in the absence of Ara4N-modified LPS, which was correlated with bacterial killing. This study provides insights into innate immunity of the flea and evidence for the crucial role of Ara4N modification of Y. pestis LPS in conferring resistance against flea antimicrobial peptides.
Collapse
Affiliation(s)
- Basil Mathew
- Department of Pathology, University of Utah, Salt Lake City, Utah 84112, United States
| | - Kari L. Aoyagi
- Department of Pathology, University of Utah, Salt Lake City, Utah 84112, United States
| | - Mark A. Fisher
- Department of Pathology, University of Utah, Salt Lake City, Utah 84112, United States
- ARUP Laboratories, Salt Lake City, Utah 84112, United States
| |
Collapse
|
14
|
Roberts T, Parker DM, Bulterys PL, Rattanavong S, Elliott I, Phommasone K, Mayxay M, Chansamouth V, Robinson MT, Blacksell SD, Newton PN. A spatio-temporal analysis of scrub typhus and murine typhus in Laos; implications from changing landscapes and climate. PLoS Negl Trop Dis 2021; 15:e0009685. [PMID: 34432800 PMCID: PMC8386877 DOI: 10.1371/journal.pntd.0009685] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/22/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Scrub typhus (ST) and murine typhus (MT) are common but poorly understood causes of fever in Laos. We examined the spatial and temporal distribution of ST and MT, with the intent of informing interventions to prevent and control both diseases. METHODOLOGY AND PRINCIPLE FINDINGS This study included samples submitted from 2003 to 2017 to Mahosot Hospital, Vientiane, for ST and MT investigation. Serum samples were tested using IgM rapid diagnostic tests. Patient demographic data along with meteorological and environmental data from Laos were analysed. Approximately 17% of patients were positive for either ST (1,337/8,150 patients tested) or MT (1,283/7,552 patients tested). While both diseases occurred in inhabitants from Vientiane Capital, from the univariable analysis MT was positively and ST negatively associated with residence in Vientiane Capital. ST was highly seasonal, with cases two times more likely to occur during the wet season months of July-September compared to the dry season whilst MT peaked in the dry season. Multivariable regression analysis linked ST incidence to fluctuations in relative humidity whereas MT was linked to variation in temperature. Patients with ST infection were more likely to come from villages with higher levels of surface flooding and vegetation in the 16 days leading up to diagnosis. CONCLUSIONS The data suggest that as cities expand, high risk areas for MT will also expand. With global heating and risks of attendant higher precipitation, these data suggest that the incidence and spatial distribution of both MT and ST will increase.
Collapse
Affiliation(s)
- Tamalee Roberts
- Lao-Oxford-Mahosot-Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR
- Centre for Tropical Medicine & Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Daniel M. Parker
- University of California, Irvine, California, United States of America
| | - Philip L. Bulterys
- Department of Pathology, Stanford University, California, United States of America
| | - Sayaphet Rattanavong
- Lao-Oxford-Mahosot-Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR
| | - Ivo Elliott
- Lao-Oxford-Mahosot-Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR
- Centre for Tropical Medicine & Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Koukeo Phommasone
- Lao-Oxford-Mahosot-Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR
| | - Mayfong Mayxay
- Lao-Oxford-Mahosot-Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR
- Centre for Tropical Medicine & Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom
- Institute of Research and Education Development (IRED), University of Health Sciences, Ministry of Health, Vientiane, Lao PDR
| | - Vilada Chansamouth
- Lao-Oxford-Mahosot-Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR
- Centre for Tropical Medicine & Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Matthew T. Robinson
- Lao-Oxford-Mahosot-Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR
- Centre for Tropical Medicine & Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Stuart D. Blacksell
- Lao-Oxford-Mahosot-Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR
- Centre for Tropical Medicine & Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom
- Mahidol-Oxford-Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Paul N. Newton
- Lao-Oxford-Mahosot-Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR
- Centre for Tropical Medicine & Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom
- Mahidol-Oxford-Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
15
|
Li J, Wang Y, Liu F, Shen X, Wang Y, Fan M, Peng Y, Wang S, Feng Y, Zhang W, Lv Y, Zhang H, Lu X, Zhang E, Wei J, Chen L, Kan B, Zhang Z, Xu J, Wang W, Li W. Genetic source tracking of human plague cases in Inner Mongolia-Beijing, 2019. PLoS Negl Trop Dis 2021; 15:e0009558. [PMID: 34343197 PMCID: PMC8362994 DOI: 10.1371/journal.pntd.0009558] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/13/2021] [Accepted: 06/11/2021] [Indexed: 11/19/2022] Open
Abstract
On 12 November 2019, one couple from the Sonid Left Qi (County) in the Inner Mongolia Autonomous Region was diagnosed with pneumonic plague in Beijing. The wife acquired the infection from her husband. Thereafter, two bubonic plague cases were identified in Inner Mongolia on November 16th and 24th. In this study, genome-wide single nucleotide polymorphism (SNP) analysis was used to identify the phylogenetic relationship of Yersinia pestis strains isolated in Inner Mongolia. Strains isolated from reservoirs in 2018 and 2019 in Inner Mongolia, together with the strain isolated from Patient C, were further clustered into 2.MED3m, and two novel lineages (2.MED3q, 2.MED3r) in the 2.MED3 population. According to the analysis of PCR-based molecular subtyping methods, such as the MLVA 14 scheme and seven SNP allele sequencing, Patients A/B and D were classified as 2.MED3m. In addition, strains from rodents living near the patients' residences were clustered into the same lineage as patients. Such observations indicated that human plague cases originated from local reservoirs. Corresponding phylogenetic analysis also indicated that rodent plague strains in different areas in Inner Mongolia belong to different epizootics rather than being caused by spreading from the same epizootic in Meriones unguiculatus in 2019.
Collapse
Affiliation(s)
- Jianyun Li
- General Center for Disease Control and Prevention of Inner Mongolia Autonomous Region, Huhehot, China
| | - Yumeng Wang
- National Institute for Communicable Disease Control and Prevention (ICDC), China CDC, Changping, Beijing, China
- State Key Laboratory of Infectious Disease Prevention and Control, Changping, Beijing, China
| | - Fang Liu
- General Center for Disease Control and Prevention of Inner Mongolia Autonomous Region, Huhehot, China
| | - Xiaona Shen
- National Institute for Communicable Disease Control and Prevention (ICDC), China CDC, Changping, Beijing, China
- State Key Laboratory of Infectious Disease Prevention and Control, Changping, Beijing, China
| | - Yiting Wang
- National Institute for Communicable Disease Control and Prevention (ICDC), China CDC, Changping, Beijing, China
- State Key Laboratory of Infectious Disease Prevention and Control, Changping, Beijing, China
| | - Mengguang Fan
- General Center for Disease Control and Prevention of Inner Mongolia Autonomous Region, Huhehot, China
| | - Yao Peng
- National Institute for Communicable Disease Control and Prevention (ICDC), China CDC, Changping, Beijing, China
- State Key Laboratory of Infectious Disease Prevention and Control, Changping, Beijing, China
| | - Shuyi Wang
- General Center for Disease Control and Prevention of Inner Mongolia Autonomous Region, Huhehot, China
| | - Yilan Feng
- General Center for Disease Control and Prevention of Inner Mongolia Autonomous Region, Huhehot, China
| | - Wen Zhang
- National Institute for Communicable Disease Control and Prevention (ICDC), China CDC, Changping, Beijing, China
- State Key Laboratory of Infectious Disease Prevention and Control, Changping, Beijing, China
| | - Yanning Lv
- Beijing Center for Disease Control and Prevention, Beijing, China
| | - Huijuan Zhang
- National Institute for Communicable Disease Control and Prevention (ICDC), China CDC, Changping, Beijing, China
- State Key Laboratory of Infectious Disease Prevention and Control, Changping, Beijing, China
| | - Xin Lu
- National Institute for Communicable Disease Control and Prevention (ICDC), China CDC, Changping, Beijing, China
- State Key Laboratory of Infectious Disease Prevention and Control, Changping, Beijing, China
| | - Enmin Zhang
- National Institute for Communicable Disease Control and Prevention (ICDC), China CDC, Changping, Beijing, China
- State Key Laboratory of Infectious Disease Prevention and Control, Changping, Beijing, China
| | - Jianchun Wei
- National Institute for Communicable Disease Control and Prevention (ICDC), China CDC, Changping, Beijing, China
- State Key Laboratory of Infectious Disease Prevention and Control, Changping, Beijing, China
| | - Lijuan Chen
- Beijing Center for Disease Control and Prevention, Beijing, China
| | - Biao Kan
- National Institute for Communicable Disease Control and Prevention (ICDC), China CDC, Changping, Beijing, China
- State Key Laboratory of Infectious Disease Prevention and Control, Changping, Beijing, China
| | - Zhongbing Zhang
- General Center for Disease Control and Prevention of Inner Mongolia Autonomous Region, Huhehot, China
| | - Jianguo Xu
- National Institute for Communicable Disease Control and Prevention (ICDC), China CDC, Changping, Beijing, China
- State Key Laboratory of Infectious Disease Prevention and Control, Changping, Beijing, China
| | - Wenrui Wang
- General Center for Disease Control and Prevention of Inner Mongolia Autonomous Region, Huhehot, China
| | - Wei Li
- National Institute for Communicable Disease Control and Prevention (ICDC), China CDC, Changping, Beijing, China
- State Key Laboratory of Infectious Disease Prevention and Control, Changping, Beijing, China
| |
Collapse
|
16
|
Rotem S, Steinberger-Levy I, Israeli O, Zahavy E, Aloni-Grinstein R. Beating the Bio-Terror Threat with Rapid Antimicrobial Susceptibility Testing. Microorganisms 2021; 9:1535. [PMID: 34361970 PMCID: PMC8304332 DOI: 10.3390/microorganisms9071535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 11/16/2022] Open
Abstract
A bioterror event using an infectious bacterium may lead to catastrophic outcomes involving morbidity and mortality as well as social and psychological stress. Moreover, a bioterror event using an antibiotic resistance engineered bacterial agent may raise additional concerns. Thus, preparedness is essential to preclude and control the dissemination of the bacterial agent as well as to appropriately and promptly treat potentially exposed individuals or patients. Rates of morbidity, death, and social anxiety can be drastically reduced if the rapid delivery of antimicrobial agents for post-exposure prophylaxis and treatment is initiated as soon as possible. Availability of rapid antibiotic susceptibility tests that may provide key recommendations to targeted antibiotic treatment is mandatory, yet, such tests are only at the development stage. In this review, we describe the recently published rapid antibiotic susceptibility tests implemented on bioterror bacterial agents and discuss their assimilation in clinical and environmental samples.
Collapse
Affiliation(s)
| | | | | | | | - Ronit Aloni-Grinstein
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 74100, Israel; (S.R.); (I.S.-L.); (O.I.); (E.Z.)
| |
Collapse
|
17
|
Improved Selective BIN Agar for a Better Rate of Yersinia pestis Isolation from Primary Clinical Specimens in Suspected Madagascar Plague Cases. J Clin Microbiol 2021; 59:e0056421. [PMID: 33980652 PMCID: PMC8288266 DOI: 10.1128/jcm.00564-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
According to the WHO, 75% of the world's plague cases are found in Madagascar, with an average of 200 to 700 cases suspected annually (mainly bubonic plague). In 2017, a pneumonic plague epidemic of unusual proportions occurred, which raised several challenges for laboratory confirmation of cases, pointing to the need for the development of Yersinia pestis isolation procedures, especially those that can be performed in remote areas. As the WHO gold standard for plague diagnosis is bacterial culture, we sought to develop a simple method to prepare a highly selective medium, fit for use in remote areas where plague is endemic. The performance of the new medium, named improved BIN, was examined in terms of growth support and selectivity with spiked samples as well in isolating Y. pestis from clinical specimens, and it was compared to the results obtained with commercially available selective media. The preparation of the new medium is less complex and its performance was found to be superior to that of first-generation BIN medium. The growth support of the medium is higher, there is no batch diversity, and it maintains high selectivity properties. In 55 clinical specimens obtained from patients suspected to be infected with Y. pestis, approximately 20% more Y. pestis-positive isolates were identified by the improved BIN medium than were identified by commercially available selective media. The improved BIN medium is notably advantageous for the isolation of Y. pestis from clinical specimens obtained from plague patients, thus offering better surveillance tools and proper promotion of medical treatment to more patients suspected of being infected with Y. pestis.
Collapse
|
18
|
Pisarenko SV, Evchenko AY, Kovalev DA, Evchenko YМ, Bobrysheva OV, Shapakov NA, Volynkina AS, Kulichenko AN. Yersinia pestis strains isolated in natural plague foci of Caucasus and Transcaucasia in the context of the global evolution of species. Genomics 2021; 113:1952-1961. [PMID: 33862185 DOI: 10.1016/j.ygeno.2021.04.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/31/2021] [Accepted: 04/11/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND Plague is a highly dangerous vector-borne infectious disease that has left a significant mark on history of humankind. There are 13 natural plague foci in the Caucasus, located on the territory of the Russian Federation, Azerbaijan, Armenia and Georgia. We performed whole-genome sequencing of Y. pestis strains, isolated in the natural foci of the Caucasus and Transcaucasia. Using the data of whole-genome SNP analysis and Bayesian phylogeny methods, we carried out an evolutionary-phylogeographic analysis of modern population of the plague pathogen in order to determine the phylogenetic relationships of Y. pestis strains from the Caucasus with the strains from other countries. RESULTS We used 345 Y. pestis genomes to construct a global evolutionary phylogenetic reconstruction of species based on whole-genome SNP analysis. The genomes of 16 isolates were sequenced in this study, the remaining 329 genomes were obtained from the GenBank database. Analysis of the core genome revealed 3315 SNPs that allow differentiation of strains. The evolutionary phylogeographic analysis showed that the studied Y. pestis strains belong to the genetic lineages 0.PE2, 2.MED0, and 2.MED1. It was shown that the Y. pestis strains isolated on the territory of the East Caucasian high-mountain, the Transcaucasian high-mountain and the Priaraksinsky low-mountain plague foci belong to the most ancient of all existing genetic lineages - 0.PE2. CONCLUSIONS On the basis of the whole-genome SNP analysis of 345 Y. pestis strains, we describe the modern population structure of the plague pathogen and specify the place of the strains isolated in the natural foci of the Caucasus and Transcaucasia in the structure of the global population of Y. pestis. As a result of the retrospective evolutionary-phylogeographic analysis of the current population of the pathogen, we determined the probable time frame of the divergence of the genetic lineages of Y. pestis, as well as suggested the possible paths of the historical spread of the plague pathogen.
Collapse
Affiliation(s)
- Sergey V Pisarenko
- Stavropol Research Anti-Plague Institute, 355035 Stavropol, Russian Federation.
| | - Anna Yu Evchenko
- Stavropol Research Anti-Plague Institute, 355035 Stavropol, Russian Federation
| | - Dmitry A Kovalev
- Stavropol Research Anti-Plague Institute, 355035 Stavropol, Russian Federation
| | - Yuri М Evchenko
- Stavropol Research Anti-Plague Institute, 355035 Stavropol, Russian Federation
| | - Olga V Bobrysheva
- Stavropol Research Anti-Plague Institute, 355035 Stavropol, Russian Federation
| | - Nikolay A Shapakov
- Stavropol Research Anti-Plague Institute, 355035 Stavropol, Russian Federation
| | - Anna S Volynkina
- Stavropol Research Anti-Plague Institute, 355035 Stavropol, Russian Federation
| | | |
Collapse
|
19
|
Shi L, Qin J, Zheng H, Guo Y, Zhang H, Zhong Y, Yang C, Dong S, Yang F, Wu Y, Zhao G, Song Y, Yang R, Wang P, Cui Y. New Genotype of Yersinia pestis Found in Live Rodents in Yunnan Province, China. Front Microbiol 2021; 12:628335. [PMID: 33935990 PMCID: PMC8084289 DOI: 10.3389/fmicb.2021.628335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/24/2021] [Indexed: 12/11/2022] Open
Abstract
Yunnan Province, China is thought to be the original source of biovar Orientalis of Yersinia pestis, the causative agent of the third plague pandemic that has spread globally since the end of the 19th century. Although encompassing a large area of natural plague foci, Y. pestis strains have rarely been found in live rodents during surveillance in Yunnan, and most isolates are from rodent corpses and their fleas. In 2017, 10 Y. pestis strains were isolated from seven live rodents and three fleas in Heqing County of Yunnan. These strains were supposed to have low virulence to local rodents Eothenomys miletus and Apodemus chevrieri because the rodents were healthy and no dead animals were found in surrounding areas, as had occurred in previous epizootic disease. We performed microscopic and biochemical examinations of the isolates, and compared their whole-genome sequences and transcriptome with those of 10 high virulence Y. pestis strains that were isolated from nine rodents and one parasitic flea in adjacent city (Lijiang). We analyzed the phenotypic, genomic, and transcriptomic characteristics of live rodent isolates. The isolates formed a previously undefined monophyletic branch of Y. pestis that was named 1.IN5. Six SNPs, two indels, and one copy number variation were detected between live rodent isolates and the high virulence neighbors. No obvious functional consequence of these variations was found according to the known annotation information. Among genes which expression differential in the live rodent isolates compared to their high virulent neighbors, we found five iron transfer related ones that were significant up-regulated (| log2 (FC) | > 1, p.adjust < 0.05), indicating these genes may be related to the low-virulence phenotype. The novel genotype of Y. pestis reported here provides further insights into the evolution and spread of plague as well as clues that may help to decipher the virulence mechanism of this notorious pathogen.
Collapse
Affiliation(s)
- Liyuan Shi
- Yunnan Institute of Endemic Diseases Control and Prevention, Dali, China
| | - Jingliang Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.,School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Hongyuan Zheng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Ying Guo
- Yunnan Institute of Endemic Diseases Control and Prevention, Dali, China
| | - Haipeng Zhang
- Yunnan Institute of Endemic Diseases Control and Prevention, Dali, China
| | - Youhong Zhong
- Yunnan Institute of Endemic Diseases Control and Prevention, Dali, China
| | - Chao Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Shanshan Dong
- Yunnan Institute of Endemic Diseases Control and Prevention, Dali, China
| | - Fengyi Yang
- Yunnan Institute of Endemic Diseases Control and Prevention, Dali, China
| | - Yarong Wu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Guangyu Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.,School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yajun Song
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Peng Wang
- Yunnan Institute of Endemic Diseases Control and Prevention, Dali, China
| | - Yujun Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.,School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
20
|
Nelson CA, Fleck-Derderian S, Cooley KM, Meaney-Delman D, Becksted HA, Russell Z, Renaud B, Bertherat E, Mead PS. Antimicrobial Treatment of Human Plague: A Systematic Review of the Literature on Individual Cases, 1937-2019. Clin Infect Dis 2021; 70:S3-S10. [PMID: 32435802 DOI: 10.1093/cid/ciz1226] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Yersinia pestis remains endemic in Africa, Asia, and the Americas and is a known bioterrorism agent. Treatment with aminoglycosides such as streptomycin or gentamicin is effective when initiated early in illness but can have serious side effects. Alternatives such as fluoroquinolones, tetracyclines, and sulfonamides are potentially safer but lack robust human data on efficacy. METHODS We searched PubMed Central, Medline, Embase, and other databases for articles in any language with terms related to plague and antimicrobials. Articles that contained case-level information on antimicrobial treatment and patient outcome were included. We abstracted information related to patient demographics, clinical features, treatment, and fatality. RESULTS Among 5837 articles screened, we found 762 published cases of treated plague reported from 1937 to 2019. Fifty-nine percent were male; median age was 22 years (range, 8 days-80 years). The case fatality rate was 20% overall. Most patients had primary bubonic (63%), pneumonic (21%), or septicemic (5%) plague, with associated case fatality rates of 17%, 27%, and 38%, respectively. Among those treated with an aminoglycoside (n = 407 [53%]), the case fatality rate was 13%. Among those treated with a sulfonamide (n = 322 [42%]), tetracycline (n = 171 [22%]), or fluoroquinolone (n = 61 [8%]), fatality was 23%, 10%, and 12%, respectively. Case fatality rate did not substantially differ between patients treated with 1 vs 2 classes of antimicrobials considered to be effective for plague. CONCLUSIONS In addition to aminoglycosides, other classes of antimicrobials including tetracyclines, fluoroquinolones, and sulfonamides are effective for plague treatment, although publication bias and low numbers in certain treatment groups may limit interpretation.
Collapse
Affiliation(s)
- Christina A Nelson
- Bacterial Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - Shannon Fleck-Derderian
- Bacterial Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA.,Oak Ridge Institute for Science and Education, Centers for Disease Control and Prevention Fellowship Program, Oak Ridge, Tennessee, USA
| | - Katharine M Cooley
- Synergy America, Contracting Agency for Bacterial Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - Dana Meaney-Delman
- Infant Outcomes Monitoring, Research and Prevention Branch, Division of Birth Defects and Infant Disorders, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Heidi A Becksted
- Bacterial Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA.,Oak Ridge Institute for Science and Education, Centers for Disease Control and Prevention Fellowship Program, Oak Ridge, Tennessee, USA
| | - Zachary Russell
- Oak Ridge Institute for Science and Education, Centers for Disease Control and Prevention Fellowship Program, Oak Ridge, Tennessee, USA.,Emergency Preparedness and Response Branch, Division of Preparedness and Emerging Infections, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | | | - Paul S Mead
- Bacterial Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| |
Collapse
|
21
|
Jain R, Mahajan V. Analyzing the intensity of COVID-19 outbreak across Indian landscape through recovery deceased ratio and positive test ratio based ARIMA model. JOURNAL OF STATISTICS & MANAGEMENT SYSTEMS 2021. [DOI: 10.1080/09720510.2020.1833454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Ritu Jain
- Department of Electrical Engineering, Sardar Vallabhbhai National Institute of Technology, Surat 395007, Gujarat, India
| | - Vasundhara Mahajan
- Department of Electrical Engineering, Sardar Vallabhbhai National Institute of Technology, Surat 395007, Gujarat, India
| |
Collapse
|
22
|
History of the Plague: An Ancient Pandemic for the Age of COVID-19. Am J Med 2021; 134:176-181. [PMID: 32979306 PMCID: PMC7513766 DOI: 10.1016/j.amjmed.2020.08.019] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 08/20/2020] [Accepted: 08/20/2020] [Indexed: 12/20/2022]
Abstract
During the fourteenth century, the bubonic plague or Black Death killed more than one third of Europe or 25 million people. Those afflicted died quickly and horribly from an unseen menace, spiking high fevers with suppurative buboes (swellings). Its causative agent is Yersinia pestis, creating recurrent plague cycles from the Bronze Age into modern-day California and Mongolia. Plague remains endemic in Madagascar, Congo, and Peru. This history of medicine review highlights plague events across the centuries. Transmission is by fleas carried on rats, although new theories include via human body lice and infected grain. We discuss symptomatology and treatment options. Pneumonic plague can be weaponized for bioterrorism, highlighting the importance of understanding its clinical syndromes. Carriers of recessive familial Mediterranean fever (FMF) mutations have natural immunity against Y. pestis. During the Black Death, Jews were blamed for the bubonic plague, perhaps because Jews carried FMF mutations and died at lower plague rates than Christians. Blaming minorities for epidemics echoes across history into our current coronavirus pandemic and provides insightful lessons for managing and improving its outcomes.
Collapse
|
23
|
Kilgore PB, Sha J, Andersson JA, Motin VL, Chopra AK. A new generation needle- and adjuvant-free trivalent plague vaccine utilizing adenovirus-5 nanoparticle platform. NPJ Vaccines 2021; 6:21. [PMID: 33514747 PMCID: PMC7846801 DOI: 10.1038/s41541-020-00275-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023] Open
Abstract
A plague vaccine with a fusion cassette of YscF, F1, and LcrV encoding genes in an adenovirus-5 vector (rAd5-YFV) is evaluated for efficacy and immune responses in mice. Two doses of the vaccine provides 100% protection when administered intranasally against challenge with Yersinia pestis CO92 or its isogenic F1 mutant in short- or long- term immunization in pneumonic/bubonic plague models. The corresponding protection rates drop in rAd5-LcrV monovalent vaccinated mice in plague models. The rAd5-YFV vaccine induces superior humoral, mucosal and cell-mediated immunity, with clearance of the pathogen. Immunization of mice with rAd5-YFV followed by CO92 infection dampens proinflammatory cytokines and neutrophil chemoattractant production, while increasing Th1- and Th2-cytokine responses as well as macrophage/monocyte chemo-attractants when compared to the challenge control animals. This is a first study showing complete protection of mice from pneumonic/bubonic plague with a viral vector-based vaccine without the use of needles and the adjuvant.
Collapse
Affiliation(s)
- Paul B. Kilgore
- grid.176731.50000 0001 1547 9964Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX USA
| | - Jian Sha
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA. .,Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA.
| | - Jourdan A. Andersson
- grid.176731.50000 0001 1547 9964Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX USA
| | - Vladimir L. Motin
- grid.176731.50000 0001 1547 9964Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX USA ,grid.176731.50000 0001 1547 9964Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX USA ,grid.176731.50000 0001 1547 9964Department of Pathology, University of Texas Medical Branch, Galveston, TX USA ,grid.176731.50000 0001 1547 9964Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX USA ,grid.176731.50000 0001 1547 9964Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX USA
| | - Ashok K. Chopra
- grid.176731.50000 0001 1547 9964Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX USA ,grid.176731.50000 0001 1547 9964Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX USA ,grid.176731.50000 0001 1547 9964Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX USA ,grid.176731.50000 0001 1547 9964Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX USA
| |
Collapse
|
24
|
Gao J, Hu Y, Ju C, Liu J, Wang Y, Ma J, Shen X, Liu F, Guo J, Yu X, Zhang W, Wang S, Li K, Zhang Z, Kan B, Wang W, Cong X, Fan M, Li W, Shao K, Zhang T, Li J, Wang Y. Human Plague Case Diagnosed in Ningxia Tracked to Animal Reservoirs — Inner Mongolia Autonomous Region, China, 2021. China CDC Wkly 2021; 3:1109-1112. [PMID: 35186366 PMCID: PMC8855076 DOI: 10.46234/ccdcw2021.267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 12/21/2021] [Indexed: 12/03/2022] Open
Abstract
What is already known about this topic? There were a total of 4 and 3 human plague cases that occurred in the Inner Mongolia Autonomous Region in 2019 and 2020, respectively, with 1 and 2 deaths in 2019 and 2020 respectively, which indicated that plague still poses a significant threat to human health especially for farmers, shepherds, or residents living in native plague foci. What is added by this report? On August 14, 2021, 1 patient from the Otog Qi (County) in the Inner Mongolia sought treatment in Yinchuan City (the capital of Ningxia Hui Autonomous Region), where the patient was diagnosed with bubonic plague and secondary septicemic plague. The genetic source tracking of associated Yersiniapestis strains indicated that human plague cases were infected from animal reservoirs in Inner Mongolia.
What are the implications for public health practice? Major threats of plague to residents living in native plague foci are the infection by bites of bacterium-bearing fleas or direct contact with diseased or dead plague-infected animals. And the ability of early diagnostic is very critical for county-level hospital in native plague foci.
Collapse
Affiliation(s)
- Jianwei Gao
- Center for Disease Control and Prevention of Ningxia Hui Autonomous Region, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Yanhong Hu
- General Center for Disease Control and Prevention of Inner Mongolia Autonomous Region, Huhhot, Inner Mongolia Autonomous Region, China
| | - Cheng Ju
- The Base for Control and Prevention of Plague and Brucellosis, Chinese Center for Disease Control and Prevention, Baicheng, Jilin, China
| | - Jingyuan Liu
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yiting Wang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- State Key Laboratory of Infectious Disease Prevention and Control, Beijing, China
| | - Jiangtao Ma
- Center for Disease Control and Prevention of Ningxia Hui Autonomous Region, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Xiaona Shen
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- State Key Laboratory of Infectious Disease Prevention and Control, Beijing, China
| | - Fang Liu
- General Center for Disease Control and Prevention of Inner Mongolia Autonomous Region, Huhhot, Inner Mongolia Autonomous Region, China
| | - Jin Guo
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- State Key Laboratory of Infectious Disease Prevention and Control, Beijing, China
| | - Xinxin Yu
- General Center for Disease Control and Prevention of Inner Mongolia Autonomous Region, Huhhot, Inner Mongolia Autonomous Region, China
| | - Wen Zhang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- State Key Laboratory of Infectious Disease Prevention and Control, Beijing, China
| | - Shuyi Wang
- General Center for Disease Control and Prevention of Inner Mongolia Autonomous Region, Huhhot, Inner Mongolia Autonomous Region, China
| | - Kun Li
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- State Key Laboratory of Infectious Disease Prevention and Control, Beijing, China
| | - Zhongbing Zhang
- General Center for Disease Control and Prevention of Inner Mongolia Autonomous Region, Huhhot, Inner Mongolia Autonomous Region, China
| | - Biao Kan
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- State Key Laboratory of Infectious Disease Prevention and Control, Beijing, China
| | - Wenrui Wang
- General Center for Disease Control and Prevention of Inner Mongolia Autonomous Region, Huhhot, Inner Mongolia Autonomous Region, China
| | - Xianbin Cong
- The Base for Control and Prevention of Plague and Brucellosis, Chinese Center for Disease Control and Prevention, Baicheng, Jilin, China
| | - Mengguang Fan
- General Center for Disease Control and Prevention of Inner Mongolia Autonomous Region, Huhhot, Inner Mongolia Autonomous Region, China
| | - Wei Li
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- State Key Laboratory of Infectious Disease Prevention and Control, Beijing, China
| | - Kuidong Shao
- The Base for Control and Prevention of Plague and Brucellosis, Chinese Center for Disease Control and Prevention, Baicheng, Jilin, China
- Kuidong Shao,
| | - Tao Zhang
- Center for Disease Control and Prevention of Ningxia Hui Autonomous Region, Yinchuan, Ningxia Hui Autonomous Region, China
- Tao Zhang,
| | - Jianyun Li
- General Center for Disease Control and Prevention of Inner Mongolia Autonomous Region, Huhhot, Inner Mongolia Autonomous Region, China
- Jianyun Li,
| | - Yumeng Wang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- State Key Laboratory of Infectious Disease Prevention and Control, Beijing, China
- Yumeng Wang,
| |
Collapse
|
25
|
Aloni-Grinstein R, Shifman O, Gur D, Aftalion M, Rotem S. MAPt: A Rapid Antibiotic Susceptibility Testing for Bacteria in Environmental Samples as a Means for Bioterror Preparedness. Front Microbiol 2020; 11:592194. [PMID: 33224128 PMCID: PMC7674193 DOI: 10.3389/fmicb.2020.592194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/30/2020] [Indexed: 12/24/2022] Open
Abstract
Antibiotic resistance of bio-threat agents holds major concerns especially in light of advances in methods for engineering pathogens with antibiotic resistance. Preparedness means for rapid identification and prompt proper medical treatment are of need to contain the event and prevent morbidity and spreading of the disease by properly treating exposed individuals before symptoms appearance. Herein, we describe a novel, rapid, simple, specific, and sensitive method named Micro-Agar-PCR-test (MAPt), which determines antibiotic susceptibility of bio-terror pathogens, directly from environmental samples, with no need for any prior isolation, quantification, or enrichment steps. As proof of concept, we have used this approach to obtain correct therapeutic antibiotic minimal inhibitory concentration (MIC) values for the Tier-1 select agents, Bacillus anthracis, Yersinia pestis, and Francisella tularensis, spiked in various environmental samples recapitulating potential bioterror scenarios. The method demonstrated efficiency for a broad dynamic range of bacterial concentrations, both for fast-growing as well as slow-growing bacteria and most importantly significantly shortening the time for accurate results from days to a few hours. The MAPt allows us to address bioterror agents-contaminated environmental samples, offering rational targeted prophylactic treatment, before the onset of morbidity in exposed individuals. Hence, MAPt is expected to provide data for decision-making personal for treatment regimens before the onset of symptoms in infected individuals.
Collapse
Affiliation(s)
- Ronit Aloni-Grinstein
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Ohad Shifman
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - David Gur
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Moshe Aftalion
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Shahar Rotem
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| |
Collapse
|
26
|
He WQ, Xiong YQ, Ge J, Chen YX, Chen XJ, Zhong XS, Ou ZJ, Gao YH, Cheng MJ, Mo Y, Wen YQ, Qiu M, Huo ST, Chen SW, Zheng XY, He H, Li YZ, You FF, Zhang MY, Chen Q. Composition of gut and oropharynx bacterial communities in Rattus norvegicus and Suncus murinus in China. BMC Vet Res 2020; 16:413. [PMID: 33129337 PMCID: PMC7603701 DOI: 10.1186/s12917-020-02619-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 10/13/2020] [Indexed: 02/08/2023] Open
Abstract
Background Rattus norvegicus and Suncus murinus are important reservoirs of zoonotic bacterial diseases. An understanding of the composition of gut and oropharynx bacteria in these animals is important for monitoring and preventing such diseases. We therefore examined gut and oropharynx bacterial composition in these animals in China. Results Proteobacteria, Firmicutes and Bacteroidetes were the most abundant phyla in faecal and throat swab samples of both animals. However, the composition of the bacterial community differed significantly between sample types and animal species. Firmicutes exhibited the highest relative abundance in throat swab samples of R. norvegicus, followed by Proteobacteria and Bacteroidetes. In throat swab specimens of S. murinus, Proteobacteria was the predominant phylum, followed by Firmicutes and Bacteroidetes. Firmicutes showed the highest relative abundance in faecal specimens of R. norvegicus, followed by Bacteroidetes and Proteobacteria. Firmicutes and Proteobacteria had almost equal abundance in faecal specimens of S. murinus, with Bacteroidetes accounting for only 3.07%. The family Streptococcaceae was most common in throat swab samples of R. norvegicus, while Prevotellaceae was most common in its faecal samples. Pseudomonadaceae was the predominant family in throat swab samples of S. murinus, while Enterobacteriaceae was most common in faecal samples. We annotated 33.28% sequences from faecal samples of S. murinus as potential human pathogenic bacteria, approximately 3.06-fold those in R. norvegicus. Potential pathogenic bacteria annotated in throat swab samples of S. murinus were 1.35-fold those in R. norvegicus. Conclusions Bacterial composition of throat swabs and faecal samples from R. norvegicus differed from those of S. murinus. Both species carried various pathogenic bacteria, therefore both should be closely monitored in the future, especially for S. murinus. Supplementary information Supplementary information accompanies this paper at 10.1186/s12917-020-02619-6.
Collapse
Affiliation(s)
- Wen-Qiao He
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China
| | - Yi-Quan Xiong
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China.,Chinese Evidence-based Medicine Center and CREAT Group, West China Hospital, Sichuan University, Chengdu, 610000, China
| | - Jing Ge
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China.,Medical Office of Wuxi People's Hospital, Wu Xi, 214000, China
| | - Yan-Xia Chen
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China
| | - Xue-Jiao Chen
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China
| | - Xue-Shan Zhong
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China
| | - Ze-Jin Ou
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China
| | - Yu-Han Gao
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China
| | - Ming-Ji Cheng
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China
| | - Yun Mo
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China
| | - Yu-Qi Wen
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China
| | - Min Qiu
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China
| | - Shu-Ting Huo
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China
| | - Shao-Wei Chen
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China
| | - Xue-Yan Zheng
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China
| | - Huan He
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China
| | - Yong-Zhi Li
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China
| | - Fang-Fei You
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China
| | - Min-Yi Zhang
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China
| | - Qing Chen
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China.
| |
Collapse
|
27
|
Bai Y, Motin V, Enscore RE, Osikowicz L, Rosales Rizzo M, Hojgaard A, Kosoy M, Eisen RJ. Pentaplex real-time PCR for differential detection of Yersinia pestis and Y. pseudotuberculosis and application for testing fleas collected during plague epizootics. Microbiologyopen 2020; 9:e1105. [PMID: 32783386 PMCID: PMC7568250 DOI: 10.1002/mbo3.1105] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/04/2020] [Accepted: 07/18/2020] [Indexed: 12/13/2022] Open
Abstract
Upon acquiring two unique plasmids (pMT1 and pPCP1) and genome rearrangement during the evolution from Yersinia pseudotuberculosis, the plague causative agent Y. pestis is closely related to Y. pseudotuberculosis genetically but became highly virulent. We developed a pentaplex real-time PCR assay that not only detects both Yersinia species but also differentiates Y. pestis strains regarding their plasmid profiles. The five targets used were Y. pestis-specific ypo2088, caf1, and pst located on the chromosome, plasmids pMT1 and pPCP1, respectively; Y. pseudotuberculosis-specific chromosomal gene opgG; and 18S ribosomal RNA gene as an internal control for flea DNA. All targets showed 100% specificity and high sensitivity with limits of detection ranging from 1 fg to 100 fg, with Y. pestis-specific pst as the most sensitive target. Using the assay, Y. pestis strains were differentiated 100% by their known plasmid profiles. Testing Y. pestis and Y. pseudotuberculosis-spiked flea DNA showed there is no interference from flea DNA on the amplification of targeted genes. Finally, we applied the assay for testing 102 fleas collected from prairie dog burrows where prairie dog die-off was reported months before flea collection. All flea DNA was amplified by 18S rRNA; no Y. pseudotuberculosis was detected; one flea was positive for all Y. pestis-specific targets, confirming local Y. pestis transmission. Our results indicated the assay is sensitive and specific for the detection and differentiation of Y. pestis and Y. pseudotuberculosis. The assay can be used in field investigations for the rapid identification of the plague causative agent.
Collapse
Affiliation(s)
- Ying Bai
- Bacterial Disease BranchDivision of Vector‐Borne DiseasesCenters for Disease Control and PreventionFort CollinsColoradoUSA
| | - Vladimir Motin
- Department of PathologyDepartment of Microbiology & ImmunologyThe University of Texas Medical Branch at GalvestonGalvestonTexasUSA
| | - Russell E. Enscore
- Bacterial Disease BranchDivision of Vector‐Borne DiseasesCenters for Disease Control and PreventionFort CollinsColoradoUSA
| | - Lynn Osikowicz
- Bacterial Disease BranchDivision of Vector‐Borne DiseasesCenters for Disease Control and PreventionFort CollinsColoradoUSA
| | - Maria Rosales Rizzo
- Bacterial Disease BranchDivision of Vector‐Borne DiseasesCenters for Disease Control and PreventionFort CollinsColoradoUSA
| | - Andrias Hojgaard
- Bacterial Disease BranchDivision of Vector‐Borne DiseasesCenters for Disease Control and PreventionFort CollinsColoradoUSA
| | | | - Rebecca J. Eisen
- Bacterial Disease BranchDivision of Vector‐Borne DiseasesCenters for Disease Control and PreventionFort CollinsColoradoUSA
| |
Collapse
|
28
|
Gibbs ME, Lountos GT, Gumpena R, Waugh DS. Crystal structure of UDP-glucose pyrophosphorylase from Yersinia pestis, a potential therapeutic target against plague. Acta Crystallogr F Struct Biol Commun 2019; 75:608-615. [PMID: 31475928 PMCID: PMC6718147 DOI: 10.1107/s2053230x19011154] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/09/2019] [Indexed: 11/10/2022] Open
Abstract
Yersinia pestis, the causative agent of bubonic plague, is one of the most lethal pathogens in recorded human history. Today, the concern is the possible misuse of Y. pestis as an agent in bioweapons and bioterrorism. Current therapies for the treatment of plague include the use of a small number of antibiotics, but clinical cases of antibiotic resistance have been reported in some areas of the world. Therefore, the discovery of new drugs is required to combat potential Y. pestis infection. Here, the crystal structure of the Y. pestis UDP-glucose pyrophosphorylase (UGP), a metabolic enzyme implicated in the survival of Y. pestis in mouse macrophages, is described at 2.17 Å resolution. The structure provides a foundation that may enable the rational design of inhibitors and open new avenues for the development of antiplague therapeutics.
Collapse
Affiliation(s)
- Morgan E. Gibbs
- Macromolecular Crystallography Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - George T. Lountos
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Rajesh Gumpena
- Macromolecular Crystallography Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - David S. Waugh
- Macromolecular Crystallography Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| |
Collapse
|
29
|
Demeure C, Dussurget O, Fiol GM, Le Guern AS, Savin C, Pizarro-Cerdá J. Yersinia pestis and plague: an updated view on evolution, virulence determinants, immune subversion, vaccination and diagnostics. Microbes Infect 2019; 21:202-212. [DOI: 10.1016/j.micinf.2019.06.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 03/18/2019] [Indexed: 01/08/2023]
|
30
|
Demeure CE, Dussurget O, Mas Fiol G, Le Guern AS, Savin C, Pizarro-Cerdá J. Yersinia pestis and plague: an updated view on evolution, virulence determinants, immune subversion, vaccination, and diagnostics. Genes Immun 2019; 20:357-370. [PMID: 30940874 PMCID: PMC6760536 DOI: 10.1038/s41435-019-0065-0] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 03/18/2019] [Indexed: 12/30/2022]
Abstract
Plague is a vector-borne disease caused by Yersinia pestis. Transmitted by fleas from rodent reservoirs, Y. pestis emerged <6000 years ago from an enteric bacterial ancestor through events of gene gain and genome reduction. It is a highly remarkable model for the understanding of pathogenic bacteria evolution, and a major concern for public health as highlighted by recent human outbreaks. A complex set of virulence determinants, including the Yersinia outer-membrane proteins (Yops), the broad-range protease Pla, pathogen-associated molecular patterns (PAMPs), and iron capture systems play critical roles in the molecular strategies that Y. pestis employs to subvert the human immune system, allowing unrestricted bacterial replication in lymph nodes (bubonic plague) and in lungs (pneumonic plague). Some of these immunogenic proteins as well as the capsular antigen F1 are exploited for diagnostic purposes, which are critical in the context of the rapid onset of death in the absence of antibiotic treatment (less than a week for bubonic plague and <48 h for pneumonic plague). Here, we review recent research advances on Y. pestis evolution, virulence factor function, bacterial strategies to subvert mammalian innate immune responses, vaccination, and problems associated with pneumonic plague diagnosis.
Collapse
Affiliation(s)
| | - Olivier Dussurget
- Yersinia Research Unit, Institut Pasteur, F-75724, Paris, France
- Université Paris-Diderot, Sorbonne Paris Cité, F-75013, Paris, France
| | - Guillem Mas Fiol
- Yersinia Research Unit, Institut Pasteur, F-75724, Paris, France
- Université Paris-Diderot, Sorbonne Paris Cité, F-75013, Paris, France
| | - Anne-Sophie Le Guern
- Yersinia Research Unit, Institut Pasteur, F-75724, Paris, France
- National Reference Laboratory 'Plague & Other Yersiniosis', Institut Pasteur, F-75724, Paris, France
- World Health Organization Collaborating Research & Reference Centre for Yersinia, Institut Pasteur, F-75724, Paris, France
| | - Cyril Savin
- Yersinia Research Unit, Institut Pasteur, F-75724, Paris, France
- National Reference Laboratory 'Plague & Other Yersiniosis', Institut Pasteur, F-75724, Paris, France
- World Health Organization Collaborating Research & Reference Centre for Yersinia, Institut Pasteur, F-75724, Paris, France
| | - Javier Pizarro-Cerdá
- Yersinia Research Unit, Institut Pasteur, F-75724, Paris, France.
- National Reference Laboratory 'Plague & Other Yersiniosis', Institut Pasteur, F-75724, Paris, France.
- World Health Organization Collaborating Research & Reference Centre for Yersinia, Institut Pasteur, F-75724, Paris, France.
| |
Collapse
|
31
|
Dion MB, Labrie SJ, Shah SA, Moineau S. CRISPRStudio: A User-Friendly Software for Rapid CRISPR Array Visualization. Viruses 2018; 10:v10110602. [PMID: 30388811 PMCID: PMC6267562 DOI: 10.3390/v10110602] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 02/07/2023] Open
Abstract
The CRISPR-Cas system biologically serves as an adaptive defense mechanism against phages. However, there is growing interest in exploiting the hypervariable nature of the CRISPR locus, often of viral origin, for microbial typing and tracking. Moreover, the spacer content of any given strain provides a phage resistance profile. Large-scale CRISPR typing studies require an efficient method for showcasing CRISPR array similarities across multiple isolates. Historically, CRISPR arrays found in microbes have been represented by colored shapes based on nucleotide sequence identity and, while this approach is now routinely used, only scarce computational resources are available to automate the process, making it very time-consuming for large datasets. To alleviate this tedious task, we introduce CRISPRStudio, a command-line tool developed to accelerate CRISPR analysis and standardize the preparation of CRISPR array figures. It first compares nucleotide spacer sequences present in a dataset and then clusters them based on sequence similarity to assign a meaningful representative color. CRISPRStudio offers versatility to suit different biological contexts by including options such as automatic sorting of CRISPR loci and highlighting of shared spacers, while remaining fast and user-friendly.
Collapse
Affiliation(s)
- Moïra B Dion
- Département de Biochimie, de Microbiologie, et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Québec City, QC G1V 0A6, Canada.
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Québec City, QC G1V 0A6, Canada.
| | - Simon J Labrie
- SyntBioLab Inc., 4820 rue de la Pascaline, Lévis, QC G6W 0L9, Canada.
| | - Shiraz A Shah
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Ledreborg Alle 34, 2820 Gentofte, Denmark.
| | - Sylvain Moineau
- Département de Biochimie, de Microbiologie, et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Québec City, QC G1V 0A6, Canada.
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Québec City, QC G1V 0A6, Canada.
| |
Collapse
|