1
|
Cole RN, Fang Q, Matsuoka K, Wang Z. Androgen receptor inhibitors in treating prostate cancer. Asian J Androl 2025; 27:144-155. [PMID: 39558858 PMCID: PMC11949463 DOI: 10.4103/aja202494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 09/24/2024] [Indexed: 11/20/2024] Open
Abstract
ABSTRACT Androgens play an important role in prostate cancer development and progression. Androgen action is mediated through the androgen receptor (AR), a ligand-dependent DNA-binding transcription factor. AR is arguably the most important target for prostate cancer treatment. Current USA Food and Drug Administration (FDA)-approved AR inhibitors target the ligand-binding domain (LBD) and have exhibited efficacy in prostate cancer patients, particularly when used in combination with androgen deprivation therapy. Unfortunately, patients treated with the currently approved AR-targeting agents develop resistance and relapse with castration-resistant prostate cancer (CRPC). The major mechanism leading to CRPC involves reactivation of AR signaling mainly through AR gene amplification, mutation, and/or splice variants. To effectively inhibit the reactivated AR signaling, new approaches to target AR are being actively explored. These new approaches include novel small molecule inhibitors targeting various domains of AR and agents that can degrade AR. The present review provides a summary of the existing FDA-approved AR antagonists and the current development of some of the AR targeting agents.
Collapse
Affiliation(s)
- Ryan N Cole
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232, USA
| | - Qinghua Fang
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232, USA
| | - Kanako Matsuoka
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232, USA
| | - Zhou Wang
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232, USA
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
2
|
Walther N, Schultz-Heienbrok R, Staß H, Corman VM, Gassen NC, Müller MA, Drosten C, Witzenrath M, Lee H, Posch MG. Clinical safety and pharmacokinetics of a novel oral niclosamide formulation compared with marketed niclosamide chewing tablets in healthy volunteers: A three-part randomized, double-blind, placebo-controlled trial. PLoS One 2025; 20:e0303924. [PMID: 39999124 PMCID: PMC11856320 DOI: 10.1371/journal.pone.0303924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 01/15/2025] [Indexed: 02/27/2025] Open
Abstract
AIM Niclosamide is an established anthelmintic substance and a promising candidate for treating cancer, viral infections, and other diseases. However, its solubility in aqueous media is low, and the systemic bioavailability of the commercially available chewing tablet is poor, limiting the use of niclosamide for systemic treatment. A liquid oral formulation using polyethylene glycol 400 was developed and investigated in healthy volunteers to assess safety, tolerability, and pharmacokinetics in comparison to the marketed tablet. (ClinicalTrials.gov: NCT04644705). METHODS The study consisted of three parts: Part A was a double-blind placebo-controlled single ascending dose trial in three dose groups (200, 600, and 1600 mg) with four participants receiving either the investigational niclosamide formulation or placebo (3:1) under fasted and/or fed conditions. Part B was a crossover study comparing 1600 mg investigational niclosamide solution with the marketed 2000 mg chewing tablet in four healthy volunteers. Part C was a double-blind placebo-controlled multiple-dose trial comparing 1200 mg and 1600 mg (verum: placebo 4:2) in two dose groups with six subjects each, who received daily doses for seven days. RESULTS No serious or severe adverse events occurred. The most frequent adverse events were mild to moderate gastrointestinal reactions. There was also no apparent dependence between drug exposure levels (AUC, Cmax) and the severity and incidence of adverse events detectable. A relevant food effect was observed with a mean AUClast about 2-fold higher in fed condition compared to fasted condition. In Part B, dose-normalized Cmax and AUClast were similar for niclosamide solution and tablet. Absorption of niclosamide solution was highly variable. Some individuals showed high absorption (Cmax > 2µg/ml) whereas others did absorb only marginally. Importantly, there was no dose linearity in the range of 200 mg - 1600 mg. No signs of relevant systemic drug accumulation after multiple administrations were observed. CONCLUSION Overall safety and tolerability observed in healthy subjects were benign. This is also true for individuals with high absorption (Cmax > 2µg/ml), encouraging further research into niclosamide as a potential therapeutic agent. Galenic optimization, however, will remain challenging as evident from the observed exposure variability and non-linear PK. Non-linearity, if confirmed by additional data, might make niclosamide more suitable for multi-dose rather than high single dose regimens. The observed food effect should also be considered when further investigating systemic niclosamide exposures. TRIAL REGISTRATION ClinicalTrials.gov NCT04644705.
Collapse
Affiliation(s)
- Niklas Walther
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Charité Research Organisation GmbH, Berlin, Germany
| | | | - Heino Staß
- Bayer AG, Research & Development, Pharmaceuticals, Wuppertal, Germany
| | - Victor M. Corman
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Infection Research, Braunschweig, Germany
| | - Nils C. Gassen
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Marcel A. Müller
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Infection Research, Braunschweig, Germany
| | - Christian Drosten
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Infection Research, Braunschweig, Germany
| | - Martin Witzenrath
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Lung Research, Berlin, Germany
| | - Hweeling Lee
- Charité Research Organisation GmbH, Berlin, Germany
| | - Maximilian G. Posch
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
3
|
Baek K, Woo MR, ud Din F, Choi YS, Kang MJ, Kim JO, Choi HG, Jin SG. Comparison of Solid Self-Nanoemulsifying Systems and Surface-Coated Microspheres: Improving Oral Bioavailability of Niclosamide. Int J Nanomedicine 2024; 19:13857-13874. [PMID: 39735329 PMCID: PMC11681811 DOI: 10.2147/ijn.s494083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 11/26/2024] [Indexed: 12/31/2024] Open
Abstract
Purpose This study aimed to develop a solid self-nanoemulsifying drug delivery system (SNEDDS) and surface-coated microspheres to improve the oral bioavailability of niclosamide. Methods A solubility screening study showed that liquid SNEDDS, prepared using an optimized volume ratio of corn oil, Cremophor RH40, and Tween 80 (20:24:56), formed nanoemulsions with the smallest droplet size. Niclosamide was incorporated into this liquid SNEDDS and spray-dried with calcium silicate to produce solid SNEDDS. Surface-coated microspheres were prepared using sodium alginate and poloxamer 407 and optimized through solubility and dissolution tests. Scanning electron microscopy, differential scanning calorimetry, and X-ray diffraction were used to evaluate the physicochemical properties of the prepared solid SNEDDS, surface-coated microspheres, and the drug alone. The solubility, dissolution, and oral bioavailability were also assessed. Results Physicochemical evaluation demonstrated that niclosamide was converted to an amorphous state in the Solid SNEDDS formulation, with enhanced solubility and oral bioavailability. In comparison to niclosamide alone, solid SNEDDS exhibited an increase in drug solubility (approximately 2500-fold vs 158-fold) and oral bioavailability (approximately 10-fold vs 1.65-fold), significantly outperforming surface-coated microspheres. Conclusion This solid SNEDDS formulation may be an excellent candidate for niclosamide with improved oral bioavailability for repurposing.
Collapse
Affiliation(s)
- Kyungho Baek
- Department of Pharmaceutical Engineering, Dankook University, Cheonan, South Korea
| | - Mi Ran Woo
- College of Pharmacy, Hanyang University, Ansan, South Korea
| | - Fakhar ud Din
- Department of Pharmacy, Quaid-I-Azam University, Islamabad, Pakistan
| | - Yong Seok Choi
- College of Pharmacy, Dankook University, Cheonan, South Korea
| | - Myung Joo Kang
- College of Pharmacy, Dankook University, Cheonan, South Korea
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, South Korea
| | - Han-Gon Choi
- College of Pharmacy, Hanyang University, Ansan, South Korea
| | - Sung Giu Jin
- Department of Pharmaceutical Engineering, Dankook University, Cheonan, South Korea
| |
Collapse
|
4
|
Han M, Lee YJ, Ahn SM, Seong JE, Lee JA, Lee YS, Kim JH, Ahn JY, Jeong SJ, Ku NS, Yeom JS, Choi JY. Efficacy of CP-COV03 (a niclosamide-based inorganic nanohybrid product) against severe fever with thrombocytopenia syndrome virus in an in vitro model. Microbiol Spectr 2024; 12:e0139924. [PMID: 39404350 PMCID: PMC11537022 DOI: 10.1128/spectrum.01399-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/08/2024] [Indexed: 11/07/2024] Open
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is a tick-borne infectious disease caused by the SFTS virus (SFTSV). CP-COV03 is a novel antiviral candidate that significantly enhanced the bioavailability of niclosamide through inorganic-based drug delivery technology. The active pharmaceutical ingredient of CP-COV03, niclosamide, has been previously shown to possess broad-spectrum antiviral activity against over 30 different viruses in the in vitro tests. The aim of this study is to confirm the antiviral activity of CP-COV03 against the SFTSV in an in vitro model. Vero cells and SFTS viral stock NCCP43270, a 2015 Gangwon Province isolate, were used to obtain the 50% tissue culture infective dose of the virus. Vero cells seeded in 96-well plates were infected with SFTSV for 1 h. SFTSV-infected cells were treated with CP-COV03 at various concentrations of 0.1-100 μM and incubated for 7 days. On the seventh day of the culture, the cytopathic effect (CPE) of SFTSV was checked by microscopy and the cell viability was checked by using Cell Counting Kit-8 assay. The CPE reduced as the CP-COV03 concentration increased. The 50% inhibitory concentration (IC50) range of CP-COV03 was below 0.125 µM, as determined from the viral titers of culture supernatants collected on the third day posttreatment of CP-COV03. The plaque reduction assay showed that the IC50 of CP-COV03 was 1.893 µM, as determined from the percentage reduction of plaque counts for each drug concentration on the second day posttreatment with CP-COV03. This study suggests that CP-COV03 could be used as a potential antiviral agent for SFTS.IMPORTANCEWe demonstrated a concentration-dependent response and identified low a IC50 of CP-COV03. This result is comparable to other antiviral drugs used against viruses like severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We believe that our study makes a significant contribution to the literature as our findings suggest that CP-COV03 may serve as a potential treatment for SFTS, highlighting its importance in the field of antiviral research.
Collapse
Affiliation(s)
- Min Han
- Division of Infectious Diseases, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
- AIDS Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Youn-Jung Lee
- Division of Infectious Diseases, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
- AIDS Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Sang Min Ahn
- Division of Infectious Diseases, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Jae Eun Seong
- Division of Infectious Diseases, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Jung Ah Lee
- Division of Infectious Diseases, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Yong Seop Lee
- Division of Infectious Diseases, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Jung Ho Kim
- Division of Infectious Diseases, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
- AIDS Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Jin Young Ahn
- Division of Infectious Diseases, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
- AIDS Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Su Jin Jeong
- Division of Infectious Diseases, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
- AIDS Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Nam Su Ku
- Division of Infectious Diseases, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
- AIDS Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Joon Sup Yeom
- Division of Infectious Diseases, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
- AIDS Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Jun Yong Choi
- Division of Infectious Diseases, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
- AIDS Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
5
|
Huang Z, Iqbal Z, Zhao Z, Chen X, Mahmmod A, Liu J, Li W, Deng Z. TMEM16 proteins: Ca 2+‑activated chloride channels and phospholipid scramblases as potential drug targets (Review). Int J Mol Med 2024; 54:81. [PMID: 39092585 PMCID: PMC11315658 DOI: 10.3892/ijmm.2024.5405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/06/2024] [Indexed: 08/04/2024] Open
Abstract
TMEM16 proteins, which function as Ca2+‑activated Cl‑ channels are involved in regulating a wide variety of cellular pathways and functions. The modulators of Cl‑ channels can be used for the molecule‑based treatment of respiratory diseases, cystic fibrosis, tumors, cancer, osteoporosis and coronavirus disease 2019. The TMEM16 proteins link Ca2+ signaling, cellular electrical activity and lipid transport. Thus, deciphering these complex regulatory mechanisms may enable a more comprehensive understanding of the physiological functions of the TMEM16 proteins and assist in ascertaining the applicability of these proteins as potential pharmacological targets for the treatment of a range of diseases. The present review examined the structures, functions and characteristics of the different types of TMEM16 proteins, their association with the pathogenesis of various diseases and the applicability of TMEM16 modulator‑based treatment methods.
Collapse
Affiliation(s)
- Zeqi Huang
- Department of Hand and Foot Surgery, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, Guangdong 518000, P.R. China
| | - Zoya Iqbal
- Department of Orthopaedics, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, Guangdong 518000, P.R. China
| | - Zhe Zhao
- Department of Hand and Foot Surgery, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, Guangdong 518000, P.R. China
| | - Xiaoqiang Chen
- Department of Hand and Foot Surgery, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, Guangdong 518000, P.R. China
| | - Ayesha Mahmmod
- Faculty of Pharmacy, The University of Lahore, Lahore, Punjab 58240, Pakistan
| | - Jianquan Liu
- Department of Hand and Foot Surgery, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, Guangdong 518000, P.R. China
| | - Wencui Li
- Department of Hand and Foot Surgery, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, Guangdong 518000, P.R. China
| | - Zhiqin Deng
- Department of Hand and Foot Surgery, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, Guangdong 518000, P.R. China
| |
Collapse
|
6
|
Jug M, Laffleur F, Millotti G. Revisiting Niclosamide Formulation Approaches - a Pathway Toward Drug Repositioning. Drug Des Devel Ther 2024; 18:4153-4182. [PMID: 39308694 PMCID: PMC11416123 DOI: 10.2147/dddt.s473178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/05/2024] [Indexed: 09/25/2024] Open
Abstract
Niclosamide (NIC), an anthelmintic drug, has garnered recent attention for its potential as an antiviral, antibacterial, and chemotherapeutic agent, among other applications. Repurposing NIC presents a current trend, offering significant time and cost savings compared to developing entirely new therapeutic chemical entities. However, its drawback lies in poor solubility, resulting in notably low oral bioavailability. This review consolidates efforts to overcome this limitation by summarizing twelve categories of formulations, spanning derivatives, amorphous solid dispersions, co-crystals, nanocrystals, micelles, nanohybrids, lipid nanoparticles and emulsions, cyclodextrins, polymeric nanoparticles, dry powders for inhalation, 3D printlets, and nanofibers. These formulations cover oral, injectable, inhalable and potentially (trans)dermal routes of administration. Additionally, we present a comprehensive overview of NIC characteristics, including physico-chemical properties, metabolism, safety, and pharmacokinetics. Moreover, we identify gaps in formulation and administration pathways that warrant further investigation to address NIC poor bioavailability.
Collapse
Affiliation(s)
- Mario Jug
- Department of Pharmaceutical Technology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, 10 000, Croatia
| | - Flavia Laffleur
- Department of Pharmaceutical Technology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, 6020, Austria
| | - Gioconda Millotti
- Faculty of Natural Sciences, Juraj Dobrila University of Pula, Pula, 52100, Croatia
| |
Collapse
|
7
|
Zunica ERM, Axelrod CL, Gilmore LA, Gnaiger E, Kirwan JP. The bioenergetic landscape of cancer. Mol Metab 2024; 86:101966. [PMID: 38876266 PMCID: PMC11259816 DOI: 10.1016/j.molmet.2024.101966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/08/2024] [Accepted: 06/09/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND Bioenergetic remodeling of core energy metabolism is essential to the initiation, survival, and progression of cancer cells through exergonic supply of adenosine triphosphate (ATP) and metabolic intermediates, as well as control of redox homeostasis. Mitochondria are evolutionarily conserved organelles that mediate cell survival by conferring energetic plasticity and adaptive potential. Mitochondrial ATP synthesis is coupled to the oxidation of a variety of substrates generated through diverse metabolic pathways. As such, inhibition of the mitochondrial bioenergetic system by restricting metabolite availability, direct inhibition of the respiratory Complexes, altering organelle structure, or coupling efficiency may restrict carcinogenic potential and cancer progression. SCOPE OF REVIEW Here, we review the role of bioenergetics as the principal conductor of energetic functions and carcinogenesis while highlighting the therapeutic potential of targeting mitochondrial functions. MAJOR CONCLUSIONS Mitochondrial bioenergetics significantly contribute to cancer initiation and survival. As a result, therapies designed to limit oxidative efficiency may reduce tumor burden and enhance the efficacy of currently available antineoplastic agents.
Collapse
Affiliation(s)
- Elizabeth R M Zunica
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - Christopher L Axelrod
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - L Anne Gilmore
- Department of Clinical Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | | | - John P Kirwan
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA.
| |
Collapse
|
8
|
Glajzner P, Bernat A, Jasińska-Stroschein M. Improving the treatment of bacterial infections caused by multidrug-resistant bacteria through drug repositioning. Front Pharmacol 2024; 15:1397602. [PMID: 38910882 PMCID: PMC11193365 DOI: 10.3389/fphar.2024.1397602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/20/2024] [Indexed: 06/25/2024] Open
Abstract
Drug repurposing (repositioning) is a dynamically-developing area in the search for effective therapy of infectious diseases. Repositioning existing drugs with a well-known pharmacological and toxicological profile is an attractive method for quickly discovering new therapeutic indications. The off-label use of drugs for infectious diseases requires much less capital and time, and can hasten progress in the development of new antimicrobial drugs, including antibiotics. The use of drug repositioning in searching for new therapeutic options has brought promising results for many viral infectious diseases, such as Ebola, ZIKA, Dengue, and HCV. This review describes the most favorable results for repositioned drugs for the treatment of bacterial infections. It comprises publications from various databases including PubMed and Web of Science published from 2015 to 2023. The following search keywords/strings were used: drug repositioning and/or repurposing and/or antibacterial activity and/or infectious diseases. Treatment options for infections caused by multidrug-resistant bacteria were taken into account, including methicillin-resistant staphylococci, multidrug-resistant Mycobacterium tuberculosis, or carbapenem-resistant bacteria from the Enterobacteriaceae family. It analyses the safety profiles of the included drugs and their synergistic combinations with antibiotics and discusses the potential of antibacterial drugs with antiparasitic, anticancer, antipsychotic effects, and those used in metabolic diseases. Drug repositioning may be an effective response to public health threats related to the spread of multidrug-resistant bacterial strains and the growing antibiotic resistance of microorganisms.
Collapse
Affiliation(s)
- Paulina Glajzner
- Department of Biopharmacy, Faculty of Pharmacy, Medical University of Lodz, Łódź, Poland
| | | | | |
Collapse
|
9
|
Caggiano EG, Taniguchi CM. UCP2 and pancreatic cancer: conscious uncoupling for therapeutic effect. Cancer Metastasis Rev 2024; 43:777-794. [PMID: 38194152 PMCID: PMC11156755 DOI: 10.1007/s10555-023-10157-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/13/2023] [Indexed: 01/10/2024]
Abstract
Pancreatic cancer has an exaggerated dependence on mitochondrial metabolism, but methods to specifically target the mitochondria without off target effects in normal tissues that rely on these organelles is a significant challenge. The mitochondrial uncoupling protein 2 (UCP2) has potential as a cancer-specific drug target, and thus, we will review the known biology of UCP2 and discuss its potential role in the pathobiology and future therapy of pancreatic cancer.
Collapse
Affiliation(s)
- Emily G Caggiano
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Cullen M Taniguchi
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
10
|
Siripongboonsitti T, Tawinprai K, Avirutnan P, Jitobaom K, Auewarakul P. A randomized trial to assess the acceleration of viral clearance by the combination Favipiravir/Ivermectin/Niclosamide in mild-to-moderate COVID-19 adult patients (FINCOV). J Infect Public Health 2024; 17:897-905. [PMID: 38569269 DOI: 10.1016/j.jiph.2024.03.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND The efficacy of the viral clearance and clinical outcomes of favipiravir (FPV) in outpatients being treated for coronavirus disease 2019 (COVID-19) is unclear. Ivermectin (IVM), niclosamide (NCL), and FPV demonstrated synergistic effects in vitro for exceed 78% inhibiting severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) replication. METHODS A phase 2, open-label, 1:1, randomized, controlled trial was conducted on Thai patients with mild-to-moderate COVID-19 who received either combination FPV/IVM/NCL therapy or FPV alone to assess the rate of viral clearance among individuals with mild-to-moderate COVID-19. RESULTS Sixty non-high-risk comorbid patients with mild-to-moderate COVID-19 were randomized; 30 received FPV/IVM/NCL, and 30 received FPV alone. Mixed-effects multiple linear regression analysis of the cycle threshold value from SARS-CoV-2 PCR demonstrated no statistically significant differences in viral clearance rates between the combined FPV/IVM/NCL therapy group and the FPV-alone group. World Health Organization Clinical Progression scores and symptomatic improvement did not differ between arms on days 3, 6, and 10, and no adverse events were reported. No patients required hospitalization, intensive care unit admission, or supplemental oxygen or died within 28 days. C-reactive protein on day 3 was lower in the FPV/IVM/NCL group. CONCLUSION Viral clearance rates did not differ significantly between the FPV/IVM/NCL combination therapy and FPV-alone groups of individuals with mild-to-moderate COVID-19, although the combined regimen demonstrated a synergistic effect in vitro. No discernible clinical benefit was observed. Further research is required to explore the potential benefits of FVP beyond its antiviral effects. TRIAL REGISTRATION TCTR20230403007, Registered 3 April 2023 - Retrospectively registered,https://trialsearch.who.int/Trial2.aspx?TrialID=TCTR20230403007.
Collapse
Affiliation(s)
- Taweegrit Siripongboonsitti
- Division of Infectious Diseases, Department of Medicine, Chulabhorn Hospital, Chulabhorn Royal Academy, Bangkok, Thailand; Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand.
| | - Kriangkrai Tawinprai
- Division of Infectious Diseases, Department of Medicine, Chulabhorn Hospital, Chulabhorn Royal Academy, Bangkok, Thailand; Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Panisadee Avirutnan
- Division of Dengue Hemorrhagic Fever Research, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kunlakanya Jitobaom
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Prasert Auewarakul
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
11
|
Needham D. Niclosamide: A career builder. J Control Release 2024; 369:786-856. [PMID: 37544514 DOI: 10.1016/j.jconrel.2023.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/24/2023] [Accepted: 07/08/2023] [Indexed: 08/08/2023]
Abstract
My contribution to honoring Professor Kinam Park celebrates and resonates with his scholarly career in drug delivery, his commitment to encouraging the next generation(s), and his efforts to keep us focused on clinically effective formulations. To do this I take as my example, niclosamide, a small molecule protonophore that, uniquely, can "target" all cell membranes, both plasma and organelle. As such, it acts upstream of many cell pathways and so has the potential to affect many of the essential events that a cell, and particularly a diseased cell or other entities like a virus, use to stay alive and prosper. Literature shows that it has so far been discovered to positively influence (at least): cancer, bacterial and viral infection, metabolic diseases such as Type II diabetes, NASH and NAFLD, artery constriction, endometriosis, neuropathic pain, rheumatoid arthritis, sclerodermatous graft-versus-host disease, systemic sclerosis, Parkinson's, and COPD. With such a fundamental action and broad-spectrum activity, I believe that studying niclosamide in all its manifestations, discovering if and to what extent it can contribute positively to disease control (and also where it can't), formulating it as effective therapeutics, and testing them in preclinical and clinical trials is a career builder for our next generation(s). The article is divided into two parts: Part I introduces niclosamide and other proton shunts mainly in cancer and viral infections and reviews an exponentially growing literature with some concepts and physicochemical properties that lead to its proton shunt mechanism. Part II focuses on repurposing by reformulation of niclosamide. I give two examples of "carrier-free formulations", - one for cancer (as a prodrug therapeutic of niclosamide stearate for i.v. and other administration routes, exemplified by our recent work on Osteosarcoma in mice and canine patients), and the other as a niclosamide solution formulation (that could provide the basis for a preventative nasal spray and early treatment option for COVID19 and other respiratory virus infections). My goal is to excite and enthuse, encourage, and motivate all involved in the drug development and testing process in academia, institutes, and industry, to learn more about this interesting molecule and others like it. To enable such endeavors, I give many proposed ideas throughout the document, that have been stimulated and inspired by gaps in the literature, urgent needs in disease, and new studies arising from our own work. The hope is that, by reading through this document and studying the suggested topics and references, the drug delivery and development community will continue our lineage and benefit from our legacy to achieve niclosamide's potential as an effective contributor to the treatment and control of many diseases and conditions.
Collapse
Affiliation(s)
- David Needham
- Department of Mechanical Engineering and Material Science, Duke University, Durham, NC 27708, USA; Translational Therapeutics, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK.
| |
Collapse
|
12
|
Slootbeek PHJ, Tolmeijer SH, Mehra N, Schalken JA. Therapeutic biomarkers in metastatic castration-resistant prostate cancer: does the state matter? Crit Rev Clin Lab Sci 2024; 61:178-204. [PMID: 37882463 DOI: 10.1080/10408363.2023.2266482] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/28/2023] [Indexed: 10/27/2023]
Abstract
The treatment of metastatic castration-resistant prostate cancer (mCRPC) has been fundamentally transformed by our greater understanding of its complex biological mechanisms and its entrance into the era of precision oncology. A broad aim is to use the extreme heterogeneity of mCRPC by matching already approved or new targeted therapies to the correct tumor genotype. To achieve this, tumor DNA must be obtained, sequenced, and correctly interpreted, with individual aberrations explored for their druggability, taking into account the hierarchy of driving molecular pathways. Although tumor tissue sequencing is the gold standard, tumor tissue can be challenging to obtain, and a biopsy from one metastatic site or primary tumor may not provide an accurate representation of the current genetic underpinning. Sequencing of circulating tumor DNA (ctDNA) might catalyze precision oncology in mCRPC, as it enables real-time observation of genomic changes in tumors and allows for monitoring of treatment response and identification of resistance mechanisms. Moreover, ctDNA can be used to identify mutations that may not be detected in solitary metastatic lesions and can provide a more in-depth understanding of inter- and intra-tumor heterogeneity. Finally, ctDNA abundance can serve as a prognostic biomarker in patients with mCRPC.The androgen receptor (AR)-axis is a well-established therapeutical target for prostate cancer, and through ctDNA sequencing, insights have been obtained in (temporal) resistance mechanisms that develop through castration resistance. New third-generation AR-axis inhibitors are being developed to overcome some of these resistance mechanisms. The druggability of defects in the DNA damage repair machinery has impacted the treatment landscape of mCRPC in recent years. For patients with deleterious gene aberrations in genes linked to homologous recombination, particularly BRCA1 or BRCA2, PARP inhibitors have shown efficacy compared to the standard of care armamentarium, but platinum-based chemotherapy may be equally effective. A hierarchy exists in genes associated with homologous recombination, where, besides the canonical genes in this pathway, not every other gene aberration predicts the same likelihood of response. Moreover, evidence is emerging on cross-resistance between therapies such as PARP inhibitors, platinum-based chemotherapy and even radioligand therapy that target this genotype. Mismatch repair-deficient patients can experience a beneficial response to immune checkpoint inhibitors. Activation of other cellular signaling pathways such as PI3K, cell cycle, and MAPK have shown limited success with monotherapy, but there is potential in co-targeting these pathways with combination therapy, either already witnessed or anticipated. This review outlines precision medicine in mCRPC, zooming in on the role of ctDNA, to identify genomic biomarkers that may be used to tailor molecularly targeted therapies. The most common druggable pathways and outcomes of therapies matched to these pathways are discussed.
Collapse
Affiliation(s)
- Peter H J Slootbeek
- Department of Medical Oncology, Radboud university medical center, Nijmegen, The Netherland
| | - Sofie H Tolmeijer
- Department of Medical Oncology, Radboud university medical center, Nijmegen, The Netherland
| | - Niven Mehra
- Department of Medical Oncology, Radboud university medical center, Nijmegen, The Netherland
| | - Jack A Schalken
- Department of Experimental Urology, Research Institute of Medical Innovation, Radboud university medical center, Nijmegen, The Netherlands
| |
Collapse
|
13
|
Liu Y, Guerrero DQ, Lechuga-Ballesteros D, Tan M, Ahmad F, Aleiwi B, Ellsworth EL, Chen B, Chua MS, So S. Lipid-Based Self-Microemulsion of Niclosamide Achieved Enhanced Oral Delivery and Anti-Tumor Efficacy in Orthotopic Patient-Derived Xenograft of Hepatocellular Carcinoma in Mice. Int J Nanomedicine 2024; 19:2639-2653. [PMID: 38500681 PMCID: PMC10946447 DOI: 10.2147/ijn.s442143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 02/20/2024] [Indexed: 03/20/2024] Open
Abstract
Introduction We previously identified niclosamide as a promising repurposed drug candidate for hepatocellular carcinoma (HCC) treatment. However, it is poorly water soluble, limiting its tissue bioavailability and clinical application. To overcome these challenges, we developed an orally bioavailable self-microemulsifying drug delivery system encapsulating niclosamide (Nic-SMEDDS). Methods Nic-SMEDDS was synthesized and characterized for its physicochemical properties, in vivo pharmacokinetics and absorption mechanisms, and in vivo therapeutic efficacy in an orthotopic patient-derived xenograft (PDX)-HCC mouse model. Niclosamide ethanolamine salt (NEN), with superior water solubility, was used as a positive control. Results Nic-SMEDDS (5.6% drug load) displayed favorable physicochemical properties and drug release profiles in vitro. In vivo, Nic-SMEDDS displayed prolonged retention time and plasma release profile compared to niclosamide or NEN. Oral administration of Nic-SMEDDS to non-tumor bearing mice improved niclosamide bioavailability and Cmax by 4.1- and 1.8-fold, respectively, compared to oral niclosamide. Cycloheximide pre-treatment blocked niclosamide absorption from orally administered Nic-SMEDDS, suggesting that its absorption was facilitated through the chylomicron pathway. Nic-SMEDDS (100 mg/kg, bid) showed greater anti-tumor efficacy compared to NEN (200 mg/kg, qd); this correlated with higher levels (p < 0.01) of niclosamide, increased caspase-3, and decreased Ki-67 in the harvested PDX tissues when Nic-SMEDDS was given. Biochemical analysis at the treatment end-point indicated that Nic-SMEDDS elevated lipid levels in treated mice. Conclusion We successfully developed an orally bioavailable formulation of niclosamide, which significantly enhanced oral bioavailability and anti-tumor efficacy in an HCC PDX mouse model. Our data support its clinical translation for the treatment of solid tumors.
Collapse
Affiliation(s)
- Yi Liu
- Department of Surgery, School of Medicine, Stanford University, Stanford, CA, USA
| | - David Quintanar Guerrero
- Laboratorio de Investigación y Posgrado en Tecnologías Farmacéuticas, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli, CP, 54745, Mexico
| | | | - Mingdian Tan
- Department of Surgery, School of Medicine, Stanford University, Stanford, CA, USA
| | - Faiz Ahmad
- Department of Surgery, School of Medicine, Stanford University, Stanford, CA, USA
| | - Bilal Aleiwi
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Edmund Lee Ellsworth
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Bin Chen
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Mei-Sze Chua
- Department of Surgery, School of Medicine, Stanford University, Stanford, CA, USA
| | - Samuel So
- Department of Surgery, School of Medicine, Stanford University, Stanford, CA, USA
| |
Collapse
|
14
|
Huang L, Zhang J, Deng Y, Wang H, Zhao P, Zhao G, Zeng W, Wang Y, Chen C, Wagstaff W, Haydon RC, Reid RR, He TC, Shen L, Luu HH, Zhao L. Niclosamide (NA) overcomes cisplatin resistance in human ovarian cancer. Genes Dis 2023; 10:1687-1701. [PMID: 37397523 PMCID: PMC10311098 DOI: 10.1016/j.gendis.2022.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/08/2022] [Accepted: 12/04/2022] [Indexed: 01/03/2023] Open
Abstract
Ovarian cancer (OC) is one of the most lethal malignancies of the female reproductive system. OC patients are usually diagnosed at advanced stages due to the lack of early diagnosis. The standard treatment for OC includes a combination of debulking surgery and platinum-taxane chemotherapy, while several targeted therapies have recently been approved for maintenance treatment. The vast majority of OC patients relapse with chemoresistant tumors after an initial response. Thus, there is an unmet clinical need to develop new therapeutic agents to overcome the chemoresistance of OC. The anti-parasite agent niclosamide (NA) has been repurposed as an anti-cancer agent and exerts potent anti-cancer activities in human cancers including OC. Here, we investigated whether NA could be repurposed as a therapeutic agent to overcome cisplatin-resistant (CR) in human OC cells. To this end, we first established two CR lines SKOV3CR and OVCAR8CR that exhibit the essential biological characteristics of cisplatin resistance in human cancer. We showed that NA inhibited cell proliferation, suppressed cell migration, and induced cell apoptosis in both CR lines at a low micromole range. Mechanistically, NA inhibited multiple cancer-related pathways including AP1, ELK/SRF, HIF1, and TCF/LEF, in SKOV3CR and OVCAR8CR cells. NA was further shown to effectively inhibit xenograft tumor growth of SKOV3CR cells. Collectively, our findings strongly suggest that NA may be repurposed as an efficacious agent to combat cisplatin resistance in chemoresistant human OC, and further clinical trials are highly warranted.
Collapse
Affiliation(s)
- Linjuan Huang
- Departments of Obstetrics and Gynecology, Orthopaedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400046, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jing Zhang
- Departments of Obstetrics and Gynecology, Orthopaedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400046, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Youling Deng
- Departments of Obstetrics and Gynecology, Orthopaedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400046, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Hao Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, The School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Piao Zhao
- Departments of Obstetrics and Gynecology, Orthopaedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400046, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Guozhi Zhao
- Departments of Obstetrics and Gynecology, Orthopaedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400046, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Wei Zeng
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Neurology, The Second Affiliated Hospital of Jianghan University, Wuhan, Hubei 430050, China
| | - Yonghui Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Clinical Laboratory Medicine, Shanghai Jiaotong University School of Medicine, Shanghai 200000, China
| | - Connie Chen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Rex C. Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Russell R. Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Suture Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Le Shen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Hue H. Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Ling Zhao
- Departments of Obstetrics and Gynecology, Orthopaedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400046, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| |
Collapse
|
15
|
Congregado Ruiz B, Rivero Belenchón I, Lendínez Cano G, Medina López RA. Strategies to Re-Sensitize Castration-Resistant Prostate Cancer to Antiandrogen Therapy. Biomedicines 2023; 11:biomedicines11041105. [PMID: 37189723 DOI: 10.3390/biomedicines11041105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/24/2023] [Accepted: 03/29/2023] [Indexed: 05/17/2023] Open
Abstract
Since prostate cancer (PCa) was described as androgen-dependent, the androgen receptor (AR) has become the mainstay of its systemic treatment: androgen deprivation therapy (ADT). Although, through recent years, more potent drugs have been incorporated, this chronic AR signaling inhibition inevitably led the tumor to an incurable phase of castration resistance. However, in the castration-resistant status, PCa cells remain highly dependent on the AR signaling axis, and proof of it is that many men with castration-resistant prostate cancer (CRPC) still respond to newer-generation AR signaling inhibitors (ARSis). Nevertheless, this response is limited in time, and soon, the tumor develops adaptive mechanisms that make it again nonresponsive to these treatments. For this reason, researchers are focused on searching for new alternatives to control these nonresponsive tumors, such as: (1) drugs with a different mechanism of action, (2) combination therapies to boost synergies, and (3) agents or strategies to resensitize tumors to previously addressed targets. Taking advantage of the wide variety of mechanisms that promote persistent or reactivated AR signaling in CRPC, many drugs explore this last interesting behavior. In this article, we will review those strategies and drugs that are able to resensitize cancer cells to previously used treatments through the use of "hinge" treatments with the objective of obtaining an oncological benefit. Some examples are: bipolar androgen therapy (BAT) and drugs such as indomethacin, niclosamide, lapatinib, panobinostat, clomipramine, metformin, and antisense oligonucleotides. All of them have shown, in addition to an inhibitory effect on PCa, the rewarding ability to overcome acquired resistance to antiandrogenic agents in CRPC, resensitizing the tumor cells to previously used ARSis.
Collapse
Affiliation(s)
- Belén Congregado Ruiz
- Urology and Nephrology Department, Biomedical Institute of Seville (IBIS), University Hospital Virgen del Rocío, 41013 Seville, Spain
| | - Inés Rivero Belenchón
- Urology and Nephrology Department, Biomedical Institute of Seville (IBIS), University Hospital Virgen del Rocío, 41013 Seville, Spain
| | - Guillermo Lendínez Cano
- Urology and Nephrology Department, Biomedical Institute of Seville (IBIS), University Hospital Virgen del Rocío, 41013 Seville, Spain
| | - Rafael Antonio Medina López
- Urology and Nephrology Department, Biomedical Institute of Seville (IBIS), University Hospital Virgen del Rocío, 41013 Seville, Spain
| |
Collapse
|
16
|
Kamolphiwong R, Kanokwiroon K, Wongrin W, Chaiyawat P, Klangjorhor J, Settakorn J, Teeyakasem P, Sangphukieo A, Pruksakorn D. Potential target identification for osteosarcoma treatment: Gene expression re-analysis and drug repurposing. Gene X 2023; 856:147106. [PMID: 36513192 DOI: 10.1016/j.gene.2022.147106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 11/18/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Survival rate of osteosarcoma has remained plateaued for the past three decades. New treatment is needed to improve survival rate. Drug repurposing, a method to identify new indications of previous drugs, which saves time and cost compared to the de novo drug discovery. Data mining from gene expression profile was carried out and new potential targets were identified by using drug repurposing strategy. Selected data were newly categorized as pathophysiology and metastasis groups. Data were normalized and calculated the differential gene expression. Genes with log fold change ≥ 2 and adjusted p-value ≤ 0.05 were selected as primary candidate genes (PCGs). PCGs were further enriched to determine the secondary candidate genes (SCGs) by protein interaction analysis, upstream transcription factor and related-protein kinase identification. PCGs and SCGs were further matched with gene targeted of corresponding drugs from the Drug Repurposing Hub. A total of 778 targets were identified (360 from PCGs, and 418 from SCGs). This newly identified KLHL13 is a new candidate target based on its molecular function. KLHL13 was upregulated in clinical samples. We found 256 drugs from matching processes (50anti-cancerand206non-anticancerdrugs). Clinical trials of anti-cancer drugs from 5 targets (CDK4, BCL-2, JUN, SRC, PIK3CA) are being performed for osteosarcoma treatment. Niclosamide and synthetic PPARɣ ligands are candidates for repurposing due to the possibility based on their mechanism and pharmacology properties. Re-analysis of gene expression profile could identify new potential targets, confirm a current implication, and expand the chance of repurposing drugs for osteosarcoma treatment.
Collapse
Affiliation(s)
- Rawikant Kamolphiwong
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Kanyanatt Kanokwiroon
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand.
| | - Weerinrada Wongrin
- Department of Statistics, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Parunya Chaiyawat
- Musculoskeletal Science and Translational Research Center, Department of Orthopaedics, Chiang Mai University, Chiang Mai, Thailand; Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Thailand
| | - Jeerawan Klangjorhor
- Musculoskeletal Science and Translational Research Center, Department of Orthopaedics, Chiang Mai University, Chiang Mai, Thailand; Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Thailand
| | - Jongkolnee Settakorn
- Department of Pathology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Pimpisa Teeyakasem
- Musculoskeletal Science and Translational Research Center, Department of Orthopaedics, Chiang Mai University, Chiang Mai, Thailand
| | - Apiwat Sangphukieo
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Thailand
| | - Dumnoensun Pruksakorn
- Musculoskeletal Science and Translational Research Center, Department of Orthopaedics, Chiang Mai University, Chiang Mai, Thailand; Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Thailand.
| |
Collapse
|
17
|
Verma P, Shukla N, Kumari S, Ansari M, Gautam NK, Patel GK. Cancer stem cell in prostate cancer progression, metastasis and therapy resistance. Biochim Biophys Acta Rev Cancer 2023; 1878:188887. [PMID: 36997008 DOI: 10.1016/j.bbcan.2023.188887] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/18/2023] [Accepted: 03/15/2023] [Indexed: 03/31/2023]
Abstract
Prostate cancer (PCa) is the most diagnosed malignancy in the men worldwide. Cancer stem cells (CSCs) are the sub-population of cells present in the tumor which possess unique properties of self-renewal and multilineage differentiation thus thought to be major cause of therapy resistance, disease relapse, and mortality in several malignancies including PCa. CSCs have also been shown positive for the common stem cells markers such as ALDH EZH2, OCT4, SOX2, c-MYC, Nanog etc. Therefore, isolation and characterization of CSCs specific markers which may discriminate CSCs and normal stem cells are critical to selectively eliminate CSCs. Rapid advances in the field offers a theoretical explanation for many of the enduring uncertainties encompassing the etiology and an optimism for the identification of new stem-cell targets, development of reliable and efficient therapies in the future. The emerging reports have also provided unprecedented insights into CSCs plasticity, quiescence, renewal, and therapeutic response. In this review, we discuss the identification of PCa stem cells, their unique properties, stemness-driving pathways, new diagnostics, and therapeutic interventions.
Collapse
|
18
|
Spray freeze dried niclosamide nanocrystals embedded dry powder for high dose pulmonary delivery. POWDER TECHNOL 2023; 415:118168. [PMID: 36533138 PMCID: PMC9746026 DOI: 10.1016/j.powtec.2022.118168] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
Based on the drug repositioning strategy, niclosamide (NCL) has shown potential applications for treating COVID-19. However, the development of new formulations for effective NCL delivery is still challenging. Herein, NCL-embedded dry powder for inhalation (NeDPI) was fabricated by a novel spray freeze drying technology. The addition of Tween-80 together with 1,2-Distearoyl-sn-glycero-3-phosphocholine showed the synergistic effects on improving both the dispersibility of primary NCL nanocrystals suspended in the feed liquid and the spherical structure integrity of the spray freeze dried (SFD) microparticle. The SFD microparticle size, morphology, crystal properties, flowability and aerosol performance were systematically investigated by regulating the feed liquid composition and freezing temperature. The addition of leucine as the aerosol enhancer promoted the microparticle sphericity with greatly improved flowability. The optimal sample (SF- 80D-N20L2D2T1) showed the highest fine particle fraction of ∼47.83%, equivalently over 3.8 mg NCL that could reach the deep lung when inhaling 10 mg dry powders.
Collapse
|
19
|
Wu M, Zhang R, Zhang Z, Zhang N, Li C, Xie Y, Xia H, Huang F, Zhang R, Liu M, Li X, Cen S, Zhou J. Selective androgen receptor degrader (SARD) to overcome antiandrogen resistance in castration-resistant prostate cancer. eLife 2023; 12:70700. [PMID: 36656639 PMCID: PMC9901937 DOI: 10.7554/elife.70700] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 01/18/2023] [Indexed: 01/20/2023] Open
Abstract
In patients with castration-resistant prostate cancer (CRPC), clinical resistances such as androgen receptor (AR) mutation, AR overexpression, and AR splice variants (ARVs) limit the effectiveness of second-generation antiandrogens (SGAs). Several strategies have been implemented to develop novel antiandrogens to circumvent the occurring resistance. Here, we found and identified a bifunctional small molecule Z15, which is both an effective AR antagonist and a selective AR degrader. Z15 could directly interact with the ligand-binding domain (LBD) and activation function-1 region of AR, and promote AR degradation through the proteasome pathway. In vitro and in vivo studies showed that Z15 efficiently suppressed AR, AR mutants and ARVs transcription activity, downregulated mRNA and protein levels of AR downstream target genes, thereby overcoming AR LBD mutations, AR amplification, and ARVs-induced SGAs resistance in CRPC. In conclusion, our data illustrate the synergistic importance of AR antagonism and degradation in advanced prostate cancer treatment.
Collapse
Affiliation(s)
- Meng Wu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical SciencesBeijingChina
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical SciencesBeijingChina
- Department of Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Rongyu Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal UniversityJinhuaChina
| | - Zixiong Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical SciencesBeijingChina
| | - Ning Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical SciencesBeijingChina
| | - Chenfan Li
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal UniversityJinhuaChina
| | - Yongli Xie
- Institute of Medicinal Biotechnology, Chinese Academy of Medical SciencesBeijingChina
| | - Haoran Xia
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical SciencesBeijingChina
| | - Fangjiao Huang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal UniversityJinhuaChina
| | - Ruoying Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal UniversityJinhuaChina
| | - Ming Liu
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical SciencesBeijingChina
| | - Xiaoyu Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical SciencesBeijingChina
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical SciencesBeijingChina
| | - Jinming Zhou
- Institute of Medicinal Biotechnology, Chinese Academy of Medical SciencesBeijingChina
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal UniversityJinhuaChina
| |
Collapse
|
20
|
Yang M, Wang AQ, Padilha EC, Shah P, Hagen NR, Ryu C, Shamim K, Huang W, Xu X. Use of physiological based pharmacokinetic modeling for cross-species prediction of pharmacokinetic and tissue distribution profiles of a novel niclosamide prodrug. Front Pharmacol 2023; 14:1099425. [PMID: 37113753 PMCID: PMC10126473 DOI: 10.3389/fphar.2023.1099425] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/13/2023] [Indexed: 04/29/2023] Open
Abstract
Introduction: Niclosamide (Nc) is an FDA-approved anthelmintic drug that was recently identified in a drug repurposing screening to possess antiviral activity against SARS-CoV-2. However, due to the low solubility and permeability of Nc, its in vivo efficacy was limited by its poor oral absorption. Method: The current study evaluated a novel prodrug of Nc (PDN; NCATS-SM4705) in improving in vivo exposure of Nc and predicted pharmacokinetic profiles of PDN and Nc across different species. ADME properties of the prodrug were determined in humans, hamsters, and mice, while the pharmacokinetics (PK) of PDN were obtained in mice and hamsters. Concentrations of PDN and Nc in plasma and tissue homogenates were measured by UPLC-MS/MS. A physiologically based pharmacokinetic (PBPK) model was developed based on physicochemical properties, pharmacokinetic and tissue distribution data in mice, validated by the PK profiles in hamsters and applied to predict pharmacokinetic profiles in humans. Results: Following intravenous and oral administration of PDN in mice, the total plasma clearance (CLp) and volume of distribution at steady-state (Vdss) were 0.061-0.063 L/h and 0.28-0.31 L, respectively. PDN was converted to Nc in both liver and blood, improving the systemic exposure of Nc in mice and hamsters after oral administration. The PBPK model developed for PDN and in vivo formed Nc could adequately simulate plasma and tissue concentration-time profiles in mice and plasma profiles in hamsters. The predicted human CLp/F and Vdss/F after an oral dose were 2.1 L/h/kg and 15 L/kg for the prodrug respectively. The predicted Nc concentrations in human plasma and lung suggest that a TID dose of 300 mg PDN would provide Nc lung concentrations at 8- to 60-fold higher than in vitro IC50 against SARS-CoV-2 reported in cell assays. Conclusion: In conclusion, the novel prodrug PDN can be efficiently converted to Nc in vivo and improves the systemic exposure of Nc in mice after oral administration. The developed PBPK model adequately depicts the mouse and hamster pharmacokinetic and tissue distribution profiles and highlights its potential application in the prediction of human pharmacokinetic profiles.
Collapse
|
21
|
Praphawatvet T, Cui Z, Williams RO. Pharmaceutical dry powders of small molecules prepared by thin-film freezing and their applications – A focus on the physical and aerosol properties of the powders. Int J Pharm 2022; 629:122357. [DOI: 10.1016/j.ijpharm.2022.122357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 11/11/2022]
|
22
|
Dewdney B, Ursich L, Fletcher EV, Johns TG. Anoctamins and Calcium Signalling: An Obstacle to EGFR Targeted Therapy in Glioblastoma? Cancers (Basel) 2022; 14:cancers14235932. [PMID: 36497413 PMCID: PMC9740065 DOI: 10.3390/cancers14235932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Glioblastoma is the most common form of high-grade glioma in adults and has a poor survival rate with very limited treatment options. There have been no significant advancements in glioblastoma treatment in over 30 years. Epidermal growth factor receptor is upregulated in most glioblastoma tumours and, therefore, has been a drug target in recent targeted therapy clinical trials. However, while many inhibitors and antibodies for epidermal growth factor receptor have demonstrated promising anti-tumour effects in preclinical models, they have failed to improve outcomes for glioblastoma patients in clinical trials. This is likely due to the highly plastic nature of glioblastoma tumours, which results in therapeutic resistance. Ion channels are instrumental in the development of many cancers and may regulate cellular plasticity in glioblastoma. This review will explore the potential involvement of a class of calcium-activated chloride channels called anoctamins in brain cancer. We will also discuss the integrated role of calcium channels and anoctamins in regulating calcium-mediated signalling pathways, such as epidermal growth factor signalling, to promote brain cancer cell growth and migration.
Collapse
Affiliation(s)
- Brittany Dewdney
- Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia
- Centre for Child Health Research, University of Western Australia, Perth, WA 6009, Australia
- Correspondence: ; Tel.: +61-8-6319-1023
| | - Lauren Ursich
- Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia
- School of Biomedical Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Emily V. Fletcher
- Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia
- Centre for Child Health Research, University of Western Australia, Perth, WA 6009, Australia
| | - Terrance G. Johns
- Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia
- Centre for Child Health Research, University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
23
|
Jiang H, Li AM, Ye J. The magic bullet: Niclosamide. Front Oncol 2022; 12:1004978. [PMID: 36479072 PMCID: PMC9720275 DOI: 10.3389/fonc.2022.1004978] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/12/2022] [Indexed: 08/27/2023] Open
Abstract
The term 'magic bullet' is a scientific concept proposed by the German Nobel laureate Paul Ehrlich in 1907, describing a medicine that could specifically and efficiently target a disease without harming the body. Oncologists have been looking for a magic bullet for cancer therapy ever since. However, the current therapies for cancers-including chemotherapy, radiation therapy, hormone therapy, and targeted therapy-pose either pan-cytotoxicity or only single-target efficacy, precluding their ability to function as a magic bullet. Intriguingly, niclosamide, an FDA-approved drug for treating tapeworm infections with an excellent safety profile, displays broad anti-cancer activity in a variety of contexts. In particular, niclosamide inhibits multiple oncogenic pathways such as Wnt/β-catenin, Ras, Stat3, Notch, E2F-Myc, NF-κB, and mTOR and activates tumor suppressor signaling pathways such as p53, PP2A, and AMPK. Moreover, niclosamide potentially improves immunotherapy by modulating pathways such as PD-1/PDL-1. We recently discovered that niclosamide ethanolamine (NEN) reprograms cellular metabolism through its uncoupler function, consequently remodeling the cellular epigenetic landscape to promote differentiation. Inspired by the promising results from the pre-clinical studies, several clinical trials are ongoing to assess the therapeutic effect of niclosamide in cancer patients. This current review summarizes the functions, mechanism of action, and potential applications of niclosamide in cancer therapy as a magic bullet.
Collapse
Affiliation(s)
- Haowen Jiang
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, United States
| | - Albert M. Li
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, United States
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, United States
| | - Jiangbin Ye
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, United States
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, United States
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
24
|
Constitutively Active Androgen Receptor in Hepatocellular Carcinoma. Int J Mol Sci 2022; 23:ijms232213768. [PMID: 36430245 PMCID: PMC9699340 DOI: 10.3390/ijms232213768] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/04/2022] [Accepted: 11/06/2022] [Indexed: 11/11/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the predominant type of liver cancer and a leading cause of cancer-related death globally. It is also a sexually dimorphic disease with a male predominance both in HCC and in its precursors, non-alcoholic fatty liver disease (NAFLD)/non-alcoholic steatohepatitis (NASH). The role of the androgen receptor (AR) in HCC has been well documented; however, AR-targeted therapies have failed to demonstrate efficacy in HCC. Building upon understandings of AR in prostate cancer (PCa), this review examines the role of AR in HCC, non-androgen-mediated mechanisms of induced AR expression, the existence of AR splice variants (AR-SV) in HCC and concludes by surveying current AR-targeted therapeutic approaches in PCa that show potential for efficacy in HCC in light of AR-SV expression.
Collapse
|
25
|
Ren J, Wang B, Wu Q, Wang G. Combination of niclosamide and current therapies to overcome resistance for cancer: New frontiers for an old drug. Biomed Pharmacother 2022; 155:113789. [DOI: 10.1016/j.biopha.2022.113789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/02/2022] Open
|
26
|
Bochner E, Gold S, Raj GV. Emerging hormonal agents for the treatment of prostate cancer. Expert Opin Emerg Drugs 2022; 27:301-309. [PMID: 36062456 DOI: 10.1080/14728214.2022.2121390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Prostate cancer is the most common solid organ malignancy in men in the United States. Until recently, treatment options for men with metastatic disease were limited and patients faced poor outcomes with minimal alternatives. The landscape of prostate cancer treatment has transformed and taken shape over the last 20 years with novel hormonal and non-hormonal therapeutics that have demonstrated significant improvement in survival. However, patients with advanced disease still face imminent progression on hormone blockade therapy. AREAS COVERED There is a significant market opportunity to devise novel, more potent agents for patients with hormone-resistant disease. Here we review the existing treatment options in men with advanced prostate cancer, the market opportunity within this field, goals of current research, and the novel agents under investigation, including androgen receptor degraders, testosterone synthesis pathway inhibitors, DNA-binding domain and N-terminal domain antagonists, and the combination of hormonal and non-hormonal agents. EXPERT OPINION Combination therapy regimens and novel agents targeting alternative binding domains of the androgen receptor are of great interest, as they may overcome resistance mechanisms and hold promise as the future of advanced prostate cancer treatment.
Collapse
Affiliation(s)
- Emily Bochner
- The Department of Urology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Sam Gold
- The Department of Urology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Ganesh V Raj
- The Department of Urology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| |
Collapse
|
27
|
Sutar Y, Nabeela S, Singh S, Alqarihi A, Solis N, Ghebremariam T, Filler S, Ibrahim AS, Date A, Uppuluri P. Niclosamide-loaded nanoparticles disrupt Candida biofilms and protect mice from mucosal candidiasis. PLoS Biol 2022; 20:e3001762. [PMID: 35976859 PMCID: PMC9385045 DOI: 10.1371/journal.pbio.3001762] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 07/21/2022] [Indexed: 11/19/2022] Open
Abstract
Candida albicans biofilms are a complex multilayer community of cells that are resistant to almost all classes of antifungal drugs. The bottommost layers of biofilms experience nutrient limitation where C. albicans cells are required to respire. We previously reported that a protein Ndu1 is essential for Candida mitochondrial respiration; loss of NDU1 causes inability of C. albicans to grow on alternative carbon sources and triggers early biofilm detachment. Here, we screened a repurposed library of FDA-approved small molecule inhibitors to identify those that prevent NDU1-associated functions. We identified an antihelminthic drug, Niclosamide (NCL), which not only prevented growth on acetate, C. albicans hyphenation and early biofilm growth, but also completely disengaged fully grown biofilms of drug-resistant C. albicans and Candida auris from their growth surface. To overcome the suboptimal solubility and permeability of NCL that is well known to affect its in vivo efficacy, we developed NCL-encapsulated Eudragit EPO (an FDA-approved polymer) nanoparticles (NCL-EPO-NPs) with high niclosamide loading, which also provided long-term stability. The developed NCL-EPO-NPs completely penetrated mature biofilms and attained anti-biofilm activity at low microgram concentrations. NCL-EPO-NPs induced ROS activity in C. albicans and drastically reduced oxygen consumption rate in the fungus, similar to that seen in an NDU1 mutant. NCL-EPO-NPs also significantly abrogated mucocutaneous candidiasis by fluconazole-resistant strains of C. albicans, in mice models of oropharyngeal and vulvovaginal candidiasis. To our knowledge, this is the first study that targets biofilm detachment as a target to get rid of drug-resistant Candida biofilms and uses NPs of an FDA-approved nontoxic drug to improve biofilm penetrability and microbial killing.
Collapse
Affiliation(s)
- Yogesh Sutar
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawai’i at Hilo, Hilo, Hawaii, United States of America
- Department of Pharmacology and Toxicology, R.K. Coit College of Pharmacy, University of Arizona, Tucson, Arizona, United States of America
| | - Sunna Nabeela
- Division of Infectious Disease, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Shakti Singh
- Division of Infectious Disease, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Abdullah Alqarihi
- Division of Infectious Disease, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Norma Solis
- Division of Infectious Disease, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Teklegiorgis Ghebremariam
- Division of Infectious Disease, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Scott Filler
- Division of Infectious Disease, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Ashraf S. Ibrahim
- Division of Infectious Disease, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, United States of America
- David Geffen School of Medicine, University of California (UCLA), Los Angeles, California, United States of America
| | - Abhijit Date
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawai’i at Hilo, Hilo, Hawaii, United States of America
- Department of Pharmacology and Toxicology, R.K. Coit College of Pharmacy, University of Arizona, Tucson, Arizona, United States of America
- Department of Ophthalmology and Vision Science, University of Arizona College of Medicine, Tucson, Arizona, United States of America
| | - Priya Uppuluri
- Division of Infectious Disease, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, United States of America
- David Geffen School of Medicine, University of California (UCLA), Los Angeles, California, United States of America
| |
Collapse
|
28
|
Dutta S, Polavaram NS, Islam R, Bhattacharya S, Bodas S, Mayr T, Roy S, Albala SAY, Toma MI, Darehshouri A, Borkowetz A, Conrad S, Fuessel S, Wirth M, Baretton GB, Hofbauer LC, Ghosh P, Pienta KJ, Klinkebiel DL, Batra SK, Muders MH, Datta K. Neuropilin-2 regulates androgen-receptor transcriptional activity in advanced prostate cancer. Oncogene 2022; 41:3747-3760. [PMID: 35754042 PMCID: PMC9979947 DOI: 10.1038/s41388-022-02382-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 06/03/2022] [Accepted: 06/10/2022] [Indexed: 01/22/2023]
Abstract
Aberrant transcriptional activity of androgen receptor (AR) is one of the dominant mechanisms for developing of castration-resistant prostate cancer (CRPC). Analyzing AR-transcriptional complex related to CRPC is therefore important towards understanding the mechanism of therapy resistance. While studying its mechanism, we observed that a transmembrane protein called neuropilin-2 (NRP2) plays a contributory role in forming a novel AR-transcriptional complex containing nuclear pore proteins. Using immunogold electron microscopy, high-resolution confocal microscopy, chromatin immunoprecipitation, proteomics, and other biochemical techniques, we delineated the molecular mechanism of how a specific splice variant of NRP2 becomes sumoylated upon ligand stimulation and translocates to the inner nuclear membrane. This splice variant of NRP2 then stabilizes the complex between AR and nuclear pore proteins to promote CRPC specific gene expression. Both full-length and splice variants of AR have been identified in this specific transcriptional complex. In vitro cell line-based assays indicated that depletion of NRP2 not only destabilizes the AR-nuclear pore protein interaction but also inhibits the transcriptional activities of AR. Using an in vivo bone metastasis model, we showed that the inhibition of NRP2 led to the sensitization of CRPC cells toward established anti-AR therapies such as enzalutamide. Overall, our finding emphasize the importance of combinatorial inhibition of NRP2 and AR as an effective therapeutic strategy against treatment refractory prostate cancer.
Collapse
Affiliation(s)
- Samikshan Dutta
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Navatha Shree Polavaram
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ridwan Islam
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sreyashi Bhattacharya
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sanika Bodas
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Thomas Mayr
- Rudolf Becker Laboratory for Prostate Cancer Research, Medical Faculty, University of Bonn, Germany,Institute of Pathology, Medical Faculty, University of Bonn, Germany,Institute of Pathology, Technische Universitaet Dresden, Dresden, Germany
| | - Sohini Roy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | | | - Marieta I. Toma
- Institute of Pathology, Medical Faculty, University of Bonn, Germany,Institute of Pathology, Technische Universitaet Dresden, Dresden, Germany
| | - Anza Darehshouri
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Angelika Borkowetz
- Department of Urology, Technische Universitaet Dresden, Dresden, Germany
| | - Stefanie Conrad
- Division of Endocrinology and Metabolic Bone Diseases, Department of Medicine III, Technische Universitaet Dresden, Dresden, Germany,Center for Healthy Aging, Technische Universitaet Dresden, Dresden, Germany
| | - Susanne Fuessel
- Department of Urology, Technische Universitaet Dresden, Dresden, Germany
| | - Manfred Wirth
- Department of Urology, Technische Universitaet Dresden, Dresden, Germany
| | - Gustavo B. Baretton
- Institute of Pathology, Technische Universitaet Dresden, Dresden, Germany,German Cancer Consortium (DKTK), partner site Dresden and German Research Center (DKFZ), Heidelberg, Germany,Tumor and Normal Tissue Bank of the University Cancer Center (UCC), University Hospital and Faculty of Medicine, Technische Universitaet Dresden, Germany
| | - Lorenz C. Hofbauer
- Division of Endocrinology and Metabolic Bone Diseases, Department of Medicine III, Technische Universitaet Dresden, Dresden, Germany,Center for Healthy Aging, Technische Universitaet Dresden, Dresden, Germany,German Cancer Consortium (DKTK), partner site Dresden and German Research Center (DKFZ), Heidelberg, Germany
| | - Paramita Ghosh
- Department of Biochemistry and Molecular Medicine, University of California Davis
| | - Kenneth J. Pienta
- The Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David L Klinkebiel
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Michael H. Muders
- Rudolf Becker Laboratory for Prostate Cancer Research, Medical Faculty, University of Bonn, Germany,Institute of Pathology, Medical Faculty, University of Bonn, Germany,Institute of Pathology, Technische Universitaet Dresden, Dresden, Germany
| | - Kaustubh Datta
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
29
|
Singh S, Weiss A, Goodman J, Fisk M, Kulkarni S, Lu I, Gray J, Smith R, Sommer M, Cheriyan J. Niclosamide-A promising treatment for COVID-19. Br J Pharmacol 2022; 179:3250-3267. [PMID: 35348204 PMCID: PMC9111792 DOI: 10.1111/bph.15843] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/09/2022] [Accepted: 02/23/2022] [Indexed: 12/15/2022] Open
Abstract
Vaccines have reduced the transmission and severity of COVID-19, but there remains a paucity of efficacious treatment for drug-resistant strains and more susceptible individuals, particularly those who mount a suboptimal vaccine response, either due to underlying health conditions or concomitant therapies. Repurposing existing drugs is a timely, safe and scientifically robust method for treating pandemics, such as COVID-19. Here, we review the pharmacology and scientific rationale for repurposing niclosamide, an anti-helminth already in human use as a treatment for COVID-19. In addition, its potent antiviral activity, niclosamide has shown pleiotropic anti-inflammatory, antibacterial, bronchodilatory and anticancer effects in numerous preclinical and early clinical studies. The advantages and rationale for nebulized and intranasal formulations of niclosamide, which target the site of the primary infection in COVID-19, are reviewed. Finally, we give an overview of ongoing clinical trials investigating niclosamide as a promising candidate against SARS-CoV-2.
Collapse
Affiliation(s)
- Shivani Singh
- Division of Pulmonary and Critical Care MedicineNYU School of MedicineNew YorkNew YorkUSA
| | - Anne Weiss
- Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkKongens LyngbyDenmark
- UNION Therapeutics Research ServicesHellerupDenmark
| | - James Goodman
- Department of MedicineCambridge University Hospitals NHS Foundation TrustCambridgeUK
| | - Marie Fisk
- Department of MedicineCambridge University Hospitals NHS Foundation TrustCambridgeUK
| | - Spoorthy Kulkarni
- Department of MedicineCambridge University Hospitals NHS Foundation TrustCambridgeUK
| | - Ing Lu
- Department of MedicineCambridge University Hospitals NHS Foundation TrustCambridgeUK
| | - Joanna Gray
- Department of MedicineCambridge University Hospitals NHS Foundation TrustCambridgeUK
| | - Rona Smith
- Department of MedicineCambridge University Hospitals NHS Foundation TrustCambridgeUK
- Cambridge Clinical Trials UnitCambridge University Hospitals NHS Foundation TrustCambridgeUK
| | - Morten Sommer
- Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkKongens LyngbyDenmark
- UNION TherapeuticsHellerupDenmark
| | - Joseph Cheriyan
- Department of MedicineCambridge University Hospitals NHS Foundation TrustCambridgeUK
- Cambridge Clinical Trials UnitCambridge University Hospitals NHS Foundation TrustCambridgeUK
| |
Collapse
|
30
|
Munoz E, Chen G, Hossain A, Wu S, Oceguera Nava E, Hang J, Lee T, Zhang Q, Wang G, Chen QH. Synthesis and biological evaluation of niclosamide PROTACs. Bioorg Med Chem Lett 2022; 72:128870. [PMID: 35772635 DOI: 10.1016/j.bmcl.2022.128870] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 11/02/2022]
Abstract
Roughly 268,000 new cases of prostate cancer and 34,000 deaths from prostate cancer are projected by the American Cancer Society to occur in the United States in 2022. Androgen receptor is a key protein in the proliferation and survival of prostate cancer cells and has been revealed to be overexpressed in 30% to 50% of castration-resistant prostate cancer patients. One promising approach to reducing the level of this protein is Proteolysis Targeting Chimeras (PROTACs) that is an emerging drug discovery technology. PROTACs are hetero-bifunctional molecules where one end binds to a protein of interest and the other to an E3 ligase ligand, initiating the Ubiquitin-Proteasome Pathway for protein degradation. Two PROTACs with niclosamide as androgen receptor ligand and VHL-032 as the E3 ligase ligand have been designed and synthesized for suppressing proliferation of androgen receptor-positive prostate cancer cells via degrading androgen receptor. The in vitro antiproliferative assessment suggested that they can selectively suppress PC-3, LNCaP, and 22Rv1 prostate cancer cell proliferation, but cannot inhibit DU145 cell proliferation. However, the mechanism of both compounds in suppressing prostate cancer cell proliferation is not through the AR PROTAC mechanism because they did not degrade AR in our Western Blotting assay up to 1 µM.
Collapse
Affiliation(s)
- Erick Munoz
- Department of Chemistry, California State University, Fresno, 2555 E. San Ramon Avenue, M/S SB70, Fresno, CA 93740, USA
| | - Guanglin Chen
- Department of Chemistry, California State University, Fresno, 2555 E. San Ramon Avenue, M/S SB70, Fresno, CA 93740, USA
| | - Ahamed Hossain
- Department of Chemistry and RCMI Cancer Research Center, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA
| | - Sitong Wu
- Department of Chemistry, California State University, Fresno, 2555 E. San Ramon Avenue, M/S SB70, Fresno, CA 93740, USA
| | - Esveidy Oceguera Nava
- Department of Chemistry, California State University, Fresno, 2555 E. San Ramon Avenue, M/S SB70, Fresno, CA 93740, USA
| | - Jasmine Hang
- Department of Chemistry, California State University, Fresno, 2555 E. San Ramon Avenue, M/S SB70, Fresno, CA 93740, USA
| | - Tong Lee
- Department of Chemistry, California State University, Fresno, 2555 E. San Ramon Avenue, M/S SB70, Fresno, CA 93740, USA
| | - Qiang Zhang
- Department of Chemistry and RCMI Cancer Research Center, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA
| | - Guangdi Wang
- Department of Chemistry and RCMI Cancer Research Center, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA.
| | - Qiao-Hong Chen
- Department of Chemistry, California State University, Fresno, 2555 E. San Ramon Avenue, M/S SB70, Fresno, CA 93740, USA.
| |
Collapse
|
31
|
Jitobaom K, Boonarkart C, Manopwisedjaroen S, Punyadee N, Borwornpinyo S, Thitithanyanont A, Avirutnan P, Auewarakul P. Synergistic anti-SARS-CoV-2 activity of repurposed anti-parasitic drug combinations. BMC Pharmacol Toxicol 2022; 23:41. [PMID: 35717393 PMCID: PMC9206137 DOI: 10.1186/s40360-022-00580-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 06/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND COVID-19 pandemic has claimed millions of lives and devastated the health service system, livelihood, and economy in many countries worldwide. Despite the vaccination programs in many countries, the spread of the pandemic continues, and effective treatment is still urgently needed. Although some antiviral drugs have been shown to be effective, they are not widely available. Repurposing of anti-parasitic drugs with in vitro anti-SARS-CoV-2 activity is a promising approach being tested in many clinical trials. Combination of these drugs is a plausible way to enhance their effectiveness. METHODS The in vitro anti-SARS-CoV-2 activity of combinations of niclosamide, ivermectin and chloroquine were evaluated in Vero E6 and lung epithelial cells, Calu-3. RESULTS All the two-drug combinations showed higher potency resulting in up to 4-fold reduction in the half maximal inhibitory concentration (IC50) values compared to individual drugs. Among these combinations, niclosamide-ivermectin achieved the highest inhibitory level of over 99%. Combination synergy analysis showed niclosamide-ivermectin combination to have the best synergy score with a mean Loewe synergy score of 4.28 and a peak synergy score of 24.6 in Vero E6 cells and a mean Loewe synergy score of 3.82 and a peak synergy score of 10.86 in Calu-3 cells. CONCLUSIONS The present study demonstrated the benefit of drug combinations on anti-SARS-CoV-2 activity. Niclosamide and ivermectin showed the best synergistic profile and should be further tested in clinical trials.
Collapse
Affiliation(s)
- Kunlakanya Jitobaom
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Chompunuch Boonarkart
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | | | - Nuntaya Punyadee
- Division of Dengue Hemorrhagic Fever Research, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.,Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Suparerk Borwornpinyo
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Arunee Thitithanyanont
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Panisadee Avirutnan
- Division of Dengue Hemorrhagic Fever Research, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.,Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Prasert Auewarakul
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.
| |
Collapse
|
32
|
Kuznik NC, Solozobova V, Lee II, Jung N, Yang L, Nienhaus K, Ntim EA, Rottenberg JT, Muhle-Goll C, Kumar AR, Peravali R, Gräßle S, Gourain V, Deville C, Cato L, Neeb A, Dilger M, Cramer von Clausbruch CA, Weiss C, Kieffer B, Nienhaus GU, Brown M, Bräse S, Cato ACB. A chemical probe for BAG1 targets androgen receptor-positive prostate cancer through oxidative stress signaling pathway. iScience 2022; 25:104175. [PMID: 35479411 PMCID: PMC9036123 DOI: 10.1016/j.isci.2022.104175] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 03/01/2022] [Accepted: 03/25/2022] [Indexed: 11/16/2022] Open
Abstract
BAG1 is a family of polypeptides with a conserved C-terminal BAG domain that functions as a nucleotide exchange factor for the molecular chaperone HSP70. BAG1 proteins also control several signaling processes including proteostasis, apoptosis, and transcription. The largest isoform, BAG1L, controls the activity of the androgen receptor (AR) and is upregulated in prostate cancer. Here, we show that BAG1L regulates AR dynamics in the nucleus and its ablation attenuates AR target gene expression especially those involved in oxidative stress and metabolism. We show that a small molecule, A4B17, that targets the BAG domain downregulates AR target genes similar to a complete BAG1L knockout and upregulates the expression of oxidative stress-induced genes involved in cell death. Furthermore, A4B17 outperformed the clinically approved antagonist enzalutamide in inhibiting cell proliferation and prostate tumor development in a mouse xenograft model. BAG1 inhibitors therefore offer unique opportunities for antagonizing AR action and prostate cancer growth. BAG1L interacts with a sequence overlapping a polyalanine tract in the AR NTD Knockdown of BAG1L increase AR dynamics in the nucleus BAG1L uses ROS pathway to regulate AR+ prostate cancer cell proliferation A small molecule BAG1 inhibitor inhibits prostate tumor growth in mouse xenografts
Collapse
Affiliation(s)
- Nane C Kuznik
- Institute of Biological and Chemical Systems, Biological Information Processing, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Valeria Solozobova
- Institute of Biological and Chemical Systems, Biological Information Processing, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Irene I Lee
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Nicole Jung
- Institute of Biological and Chemical Systems, Functional Molecular Systems, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Linxiao Yang
- Institute of Applied Physics, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Karin Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Emmanuel A Ntim
- Institute of Biological and Chemical Systems, Biological Information Processing, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Jaice T Rottenberg
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Claudia Muhle-Goll
- Institute of Biological Interfaces 4, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Amrish Rajendra Kumar
- Institute of Biological and Chemical Systems, Biological Information Processing, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Ravindra Peravali
- Institute of Biological and Chemical Systems, Biological Information Processing, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Simone Gräßle
- Institute of Biological and Chemical Systems, Functional Molecular Systems, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Victor Gourain
- LabEx IGO "Immunotherapy, Graft, Oncology", Centre de Recherche en Transplantation et Immunologie - UMR1064, 44093 Nantes, France
| | - Célia Deville
- Department of Integrative Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM, U964, CNRS, UMR-7104, Université de Strasbourg, 67404 Illkirch-Graffenstaden, France
| | - Laura Cato
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Antje Neeb
- Institute of Biological and Chemical Systems, Biological Information Processing, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Marco Dilger
- Institute of Biological and Chemical Systems, Biological Information Processing, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Christina A Cramer von Clausbruch
- Institute of Biological and Chemical Systems, Biological Information Processing, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Carsten Weiss
- Institute of Biological and Chemical Systems, Biological Information Processing, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Bruno Kieffer
- Department of Integrative Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM, U964, CNRS, UMR-7104, Université de Strasbourg, 67404 Illkirch-Graffenstaden, France
| | - G Ulrich Nienhaus
- Institute of Biological and Chemical Systems, Biological Information Processing, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
- Institute of Applied Physics, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
- Institute of Nanotechnology, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Myles Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Stefan Bräse
- Institute of Biological and Chemical Systems, Functional Molecular Systems, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Andrew C B Cato
- Institute of Biological and Chemical Systems, Biological Information Processing, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
33
|
Cesar-Silva D, Pereira-Dutra FS, Moraes Giannini AL, Jacques G. de Almeida C. The Endolysosomal System: The Acid Test for SARS-CoV-2. Int J Mol Sci 2022; 23:ijms23094576. [PMID: 35562967 PMCID: PMC9105036 DOI: 10.3390/ijms23094576] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 12/16/2022] Open
Abstract
This review aims to describe and discuss the different functions of the endolysosomal system, from homeostasis to its vital role during viral infections. We will initially describe endolysosomal system's main functions, presenting recent data on how its compartments are essential for host defense to explore later how SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2) and other coronaviruses subvert these organelles for their benefit. It is clear that to succeed, pathogens' evolution favored the establishment of ways to avoid, escape, or manipulate lysosomal function. The unavoidable coexistence with such an unfriendly milieu imposed on viruses the establishment of a vast array of strategies to make the most out of the invaded cell's machinery to produce new viruses and maneuvers to escape the host's defense system.
Collapse
Affiliation(s)
- Daniella Cesar-Silva
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; (D.C.-S.); (F.S.P.-D.)
| | - Filipe S. Pereira-Dutra
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; (D.C.-S.); (F.S.P.-D.)
| | - Ana Lucia Moraes Giannini
- Laboratory of Functional Genomics and Signal Transduction, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, Brazil;
| | - Cecília Jacques G. de Almeida
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; (D.C.-S.); (F.S.P.-D.)
- Correspondence: or
| |
Collapse
|
34
|
Huang J, Lin B, Li B. Anti-Androgen Receptor Therapies in Prostate Cancer: A Brief Update and Perspective. Front Oncol 2022; 12:865350. [PMID: 35372068 PMCID: PMC8965587 DOI: 10.3389/fonc.2022.865350] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 02/17/2022] [Indexed: 12/28/2022] Open
Abstract
Prostate cancer is a major health issue in western countries and is the second leading cause of cancer death in American men. Prostate cancer depends on the androgen receptor (AR), a transcriptional factor critical for prostate cancer growth and progression. Castration by surgery or medical treatment reduces androgen levels, resulting in prostatic atrophy and prostate cancer regression. Thus, metastatic prostate cancers are initially managed with androgen deprivation therapy. Unfortunately, prostate cancers rapidly relapse after castration therapy and progress to a disease stage called castration-resistant prostate cancer (CRPC). Currently, clinical treatment for CRPCs is focused on suppressing AR activity with antagonists like Enzalutamide or by reducing androgen production with Abiraterone. In clinical practice, these treatments fail to yield a curative benefit in CRPC patients in part due to AR gene mutations or splicing variations, resulting in AR reactivation. It is conceivable that eliminating the AR protein in prostate cancer cells is a promising solution to provide a potential curative outcome. Multiple strategies have emerged, and several potent agents that reduce AR protein levels were reported to eliminate xenograft tumor growth in preclinical models via distinct mechanisms, including proteasome-mediated degradation, heat-shock protein inhibition, AR splicing suppression, blockage of AR nuclear localization, AR N-terminal suppression. A few small chemical compounds are undergoing clinical trials combined with existing AR antagonists. AR protein elimination by enhanced protein or mRNA degradation is a realistic solution for avoiding AR reactivation during androgen deprivation therapy in prostate cancers.
Collapse
Affiliation(s)
- Jian Huang
- Pathological Diagnosis and Research Center, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Biyun Lin
- Pathological Diagnosis and Research Center, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Benyi Li
- Department of Urology, The University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
35
|
Villandre J, White V, Lear TB, Chen Y, Tuncer F, Vaiz E, Tuncer B, Lockwood K, Camarco D, Liu Y, Chen BB, Evankovich J. A Repurposed Drug Screen for Compounds Regulating Aquaporin 5 Stability in Lung Epithelial Cells. Front Pharmacol 2022; 13:828643. [PMID: 35145418 PMCID: PMC8821664 DOI: 10.3389/fphar.2022.828643] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/03/2022] [Indexed: 11/13/2022] Open
Abstract
Aquaporin 5 (AQP5) is expressed in several cell types in the lung and regulates water transport, which contributes to barrier function during injury and the composition of glandular secretions. Reduced AQP5 expression is associated with barrier dysfunction during acute lung injury, and strategies to enhance its expression are associated with favorable phenotypes. Thus, pharmacologically enhancing AQP5 expression could be beneficial. Here, we optimized a high-throughput assay designed to detect AQP5 abundance using a cell line stably expressing bioluminescent-tagged AQP5. We then screened a library of 1153 compounds composed of FDA-approved drugs for their effects on AQP5 abundance. We show compounds Niclosamide, Panobinostat, and Candesartan Celexitil increased AQP5 abundance, and show that Niclosamide has favorable cellular toxicity profiles. We determine that AQP5 levels are regulated in part by ubiquitination and proteasomal degradation in lung epithelial cells, and mechanistically Niclosamide increases AQP5 levels by reducing AQP5 ubiquitination and proteasomal degradation. Functionally, Niclosamide stabilized AQP5 levels in response to hypotonic stress, a stimulus known to reduce AQP5 levels. In complementary assays, Niclosamide increased endogenous AQP5 in both A549 cells and in primary, polarized human bronchial epithelial cells compared to control-treated cells. Further, we measured rapid cell volume changes in A549 cells in response to osmotic stress, an effect controlled by aquaporin channels. Niclosamide-treated A549 cell volume changes occurred more rapidly compared to control-treated cells, suggesting that increased Niclosamide-mediated increases in AQP5 expression affects functional water transport. Taken together, we describe a strategy to identify repurposed compounds for their effect on AQP5 protein abundance. We validated the effects of Niclosamide on endogenous AQP5 levels and in regulating cell-volume changes in response to tonicity changes. Our findings highlight a unique approach to screen for drug effects on protein abundance, and our workflow can be applied broadly to study compound effects on protein abundance in lung epithelial cells.
Collapse
Affiliation(s)
- John Villandre
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA, United States
- Aging Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Virginia White
- Aging Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Travis B. Lear
- Aging Institute, University of Pittsburgh, Pittsburgh, PA, United States
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yanwen Chen
- Aging Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ferhan Tuncer
- Aging Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Emily Vaiz
- Aging Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Beyza Tuncer
- Aging Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Karina Lockwood
- Aging Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Dan Camarco
- Aging Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yuan Liu
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA, United States
- Aging Institute, University of Pittsburgh, Pittsburgh, PA, United States
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Bill B. Chen
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA, United States
- Aging Institute, University of Pittsburgh, Pittsburgh, PA, United States
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - John Evankovich
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA, United States
- Aging Institute, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
36
|
Needham D. The pH Dependence of Niclosamide Solubility, Dissolution, and Morphology: Motivation for Potentially Universal Mucin-Penetrating Nasal and Throat Sprays for COVID19, its Variants and other Viral Infections. Pharm Res 2022; 39:115-141. [PMID: 34962625 PMCID: PMC8713544 DOI: 10.1007/s11095-021-03112-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/14/2021] [Indexed: 11/03/2022]
Abstract
MOTIVATION With the coronavirus pandemic still raging, prophylactic-nasal and early-treatment throat-sprays could help prevent infection and reduce viral load. Niclosamide has the potential to treat a broad-range of viral infections if local bioavailability is optimized as mucin-penetrating solutions that can reach the underlying epithelial cells. EXPERIMENTAL pH-dependence of supernatant concentrations and dissolution rates of niclosamide were measured in buffered solutions by UV/Vis-spectroscopy for niclosamide from different suppliers (AK Sci and Sigma), as precipitated material, and as cosolvates. Data was compared to predictions from Henderson-Hasselbalch and precipitation-pH models. Optical-microscopy was used to observe the morphologies of original, converted and precipitated niclosamide. RESULTS Niclosamide from the two suppliers had different polymorphs resulting in different dissolution behavior. Supernatant concentrations of the "AKSci-polymorph" increased with increasing pH, from 2.53μM at pH 3.66 to 300μM at pH 9.2, reaching 703μM at pH 9.63. However, the "Sigma-polymorph" equilibrated to much lower final supernatant concentrations, reflective of more stable polymorphs at each pH. Similarly, when precipitated from supersaturated solution, or as cosolvates, niclosamide also equilibrated to lower final supernatant concentrations. Polymorph equilibration though was avoided by using a solvent-exchange technique to make the solutions. CONCLUSIONS Given niclosamide's activity as a host cell modulator, optimized niclosamide solutions could represent universal prophylactic nasal and early treatment throat sprays against COVID19, its more contagious variants, and other respiratory viral infections. They are the simplest and potentially most effective formulations from both an efficacy standpoint as well as manufacturing and distribution, (no cold chain). They now just need testing.
Collapse
Affiliation(s)
- David Needham
- Department of Mechanical Engineering and Material Science, Duke University, Durham, North Carolina, 27708, USA.
- Professor of Translational Therapeutics, School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK.
| |
Collapse
|
37
|
Gontijo AVL, Pereira SL, de Lacerda Bonfante H. Can Drug Repurposing be Effective Against Carbapenem-Resistant Acinetobacter baumannii? Curr Microbiol 2021; 79:13. [PMID: 34905109 PMCID: PMC8669236 DOI: 10.1007/s00284-021-02693-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 09/09/2021] [Indexed: 11/25/2022]
Abstract
Carbapenem-resistant Acinetobacter baumannii has been classified as a top priority for the development of new therapies due to its resistance to most antibiotics. Drug repurposing may be a fast and inexpensive strategy for treating this pathogen. This review aims to critically evaluate repurposed drugs for the treatment of infections caused by carbapenem-resistant A. baumannii, correlating their antimicrobial activity with data available for toxicity and side effects. Some drugs have been suggested as promising candidates for repurposing; however, in some cases, high toxicity and low plasma concentrations reduce applicability in clinical practice. The most favorable applicability is offered by fusidic acid and colistin, possibly combined with a third agent, promising to be well tolerated and achieving satisfactory plasma concentrations.
Collapse
Affiliation(s)
- Aline Vidal Lacerda Gontijo
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Juiz de Fora (UFJF), Rua José Lourenço Kelmer, s/n, São Pedro, Juiz de Fora, Minas Gerais, 36036-900, Brazil.
| | - Sharlene Lopes Pereira
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Juiz de Fora (UFJF), Rua José Lourenço Kelmer, s/n, São Pedro, Juiz de Fora, Minas Gerais, 36036-900, Brazil
| | - Herval de Lacerda Bonfante
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Juiz de Fora (UFJF), Rua José Lourenço Kelmer, s/n, São Pedro, Juiz de Fora, Minas Gerais, 36036-900, Brazil
- Division of Rheumatology, Hospital Santa Casa de Misericórdia de Juiz de Fora (SCMJF), Juiz de Fora, Minas Gerais, Brazil
- Department of Internal Medicine, School of Medical Sciences, Health of Juiz de Fora (SUPREMA), Juiz de Fora, Minas Gerais, Brazil
| |
Collapse
|
38
|
Zunica ERM, Axelrod CL, Cho E, Spielmann G, Davuluri G, Alexopoulos SJ, Beretta M, Hoehn KL, Dantas WS, Stadler K, King WT, Pergola K, Irving BA, Langohr IM, Yang S, Hoppel CL, Gilmore LA, Kirwan JP. Breast cancer growth and proliferation is suppressed by the mitochondrial targeted furazano[3,4-b]pyrazine BAM15. Cancer Metab 2021; 9:36. [PMID: 34627389 PMCID: PMC8502397 DOI: 10.1186/s40170-021-00274-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 09/22/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Enhanced metabolic plasticity and diversification of energy production is a hallmark of highly proliferative breast cancers. This contributes to poor pharmacotherapy efficacy, recurrence, and metastases. We have previously identified a mitochondrial-targeted furazano[3,4-b]pyrazine named BAM15 that selectively reduces bioenergetic coupling efficiency and is orally available. Here, we evaluated the antineoplastic properties of uncoupling oxidative phosphorylation from ATP production in breast cancer using BAM15. METHODS The anticancer effects of BAM15 were evaluated in human triple-negative MDA-MB-231 and murine luminal B, ERα-negative EO771 cells as well as in an orthotopic allograft model of highly proliferative mammary cancer in mice fed a standard or high fat diet (HFD). Untargeted transcriptomic profiling of MDA-MB-231 cells was conducted after 16-h exposure to BAM15. Additionally, oxidative phosphorylation and electron transfer capacity was determined in permeabilized cells and excised tumor homogenates after treatment with BAM15. RESULTS BAM15 increased proton leak and over time, diminished cell proliferation, migration, and ATP production in both MDA-MB-231 and EO771 cells. Additionally, BAM15 decreased mitochondrial membrane potential, while inducing apoptosis and reactive oxygen species accumulation in MDA-MB-231 and EO771 cells. Untargeted transcriptomic profiling of MDA-MB-231 cells further revealed inhibition of signatures associated with cell survival and energy production by BAM15. In lean mice, BAM15 lowered body weight independent of food intake and slowed tumor progression compared to vehicle-treated controls. In HFD mice, BAM15 reduced tumor growth relative to vehicle and calorie-restricted weight-matched controls mediated in part by impaired cell proliferation, mitochondrial respiratory function, and ATP production. LC-MS/MS profiling of plasma and tissues from BAM15-treated animals revealed distribution of BAM15 in adipose, liver, and tumor tissue with low abundance in skeletal muscle. CONCLUSIONS Collectively, these data indicate that mitochondrial uncoupling may be an effective strategy to limit proliferation of aggressive forms of breast cancer. More broadly, these findings highlight the metabolic vulnerabilities of highly proliferative breast cancers which may be leveraged in overcoming poor responsiveness to existing therapies.
Collapse
Affiliation(s)
- Elizabeth R M Zunica
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA, 70808, USA.,Department of Nutrition, Case Western Reserve University, Cleveland, OH, 44109, USA.,Clinical Oncology and Metabolism, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - Christopher L Axelrod
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA, 70808, USA.,Department of Translational Services, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - Eunhan Cho
- School of Kinesiology, Louisiana State University, Baton Rouge, LA, USA
| | | | - Gangarao Davuluri
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA, 70808, USA.,Sarcopenia and Malnutrition Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - Stephanie J Alexopoulos
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Martina Beretta
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Kyle L Hoehn
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Wagner S Dantas
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA, 70808, USA
| | - Krisztian Stadler
- Department of Oxidative Stress and Disease, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - William T King
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA, 70808, USA.,Department of Translational Services, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - Kathryn Pergola
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA, 70808, USA.,Department of Translational Services, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - Brian A Irving
- School of Kinesiology, Louisiana State University, Baton Rouge, LA, USA
| | - Ingeborg M Langohr
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Shengping Yang
- Department of Biostatistics, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - Charles L Hoppel
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA, 70808, USA.,Department of Pharmacology, Case Western Reserve University, Cleveland, OH, 44109, USA
| | - L Anne Gilmore
- Clinical Oncology and Metabolism, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA.,Department of Clinical Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - John P Kirwan
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA, 70808, USA. .,Department of Nutrition, Case Western Reserve University, Cleveland, OH, 44109, USA. .,Department of Translational Services, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA.
| |
Collapse
|
39
|
Shrestha R, Johnson E, Byrne FL. Exploring the therapeutic potential of mitochondrial uncouplers in cancer. Mol Metab 2021; 51:101222. [PMID: 33781939 PMCID: PMC8129951 DOI: 10.1016/j.molmet.2021.101222] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/17/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Mitochondrial uncouplers are well-known for their ability to treat a myriad of metabolic diseases, including obesity and fatty liver diseases. However, for many years now, mitochondrial uncouplers have also been evaluated in diverse models of cancer in vitro and in vivo. Furthermore, some mitochondrial uncouplers are now in clinical trials for cancer, although none have yet been approved for the treatment of cancer. SCOPE OF REVIEW In this review we summarise published studies in which mitochondrial uncouplers have been investigated as an anti-cancer therapy in preclinical models. In many cases, mitochondrial uncouplers show strong anti-cancer effects both as single agents, and in combination therapies, and some are more toxic to cancer cells than normal cells. Furthermore, the mitochondrial uncoupling mechanism of action in cancer cells has been described in detail, with consistencies and inconsistencies between different structural classes of uncouplers. For example, many mitochondrial uncouplers decrease ATP levels and disrupt key metabolic signalling pathways such as AMPK/mTOR but have different effects on reactive oxygen species (ROS) production. Many of these effects oppose aberrant phenotypes common in cancer cells that ultimately result in cell death. We also highlight several gaps in knowledge that need to be addressed before we have a clear direction and strategy for applying mitochondrial uncouplers as anti-cancer agents. MAJOR CONCLUSIONS There is a large body of evidence supporting the therapeutic use of mitochondrial uncouplers to treat cancer. However, the long-term safety of some uncouplers remains in question and it will be critical to identify which patients and cancer types would benefit most from these agents.
Collapse
Affiliation(s)
- Riya Shrestha
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, 2052, Australia
| | - Edward Johnson
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, 2052, Australia
| | - Frances L Byrne
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, 2052, Australia.
| |
Collapse
|
40
|
Pinto MC, Silva IAL, Figueira MF, Amaral MD, Lopes-Pacheco M. Pharmacological Modulation of Ion Channels for the Treatment of Cystic Fibrosis. J Exp Pharmacol 2021; 13:693-723. [PMID: 34326672 PMCID: PMC8316759 DOI: 10.2147/jep.s255377] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/30/2021] [Indexed: 12/12/2022] Open
Abstract
Cystic fibrosis (CF) is a life-shortening monogenic disease caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR) protein, an anion channel that transports chloride and bicarbonate across epithelia. Despite clinical progress in delaying disease progression with symptomatic therapies, these individuals still develop various chronic complications in lungs and other organs, which significantly restricts their life expectancy and quality of life. The development of high-throughput assays to screen drug-like compound libraries have enabled the discovery of highly effective CFTR modulator therapies. These novel therapies target the primary defect underlying CF and are now approved for clinical use for individuals with specific CF genotypes. However, the clinically approved modulators only partially reverse CFTR dysfunction and there is still a considerable number of individuals with CF carrying rare CFTR mutations who remain without any effective CFTR modulator therapy. Accordingly, additional efforts have been pursued to identify novel and more potent CFTR modulators that may benefit a larger CF population. The use of ex vivo individual-derived specimens has also become a powerful tool to evaluate novel drugs and predict their effectiveness in a personalized medicine approach. In addition to CFTR modulators, pro-drugs aiming at modulating alternative ion channels/transporters are under development to compensate for the lack of CFTR function. These therapies may restore normal mucociliary clearance through a mutation-agnostic approach (ie, independent of CFTR mutation) and include inhibitors of the epithelial sodium channel (ENaC), modulators of the calcium-activated channel transmembrane 16A (TMEM16, or anoctamin 1) or of the solute carrier family 26A member 9 (SLC26A9), and anionophores. The present review focuses on recent progress and challenges for the development of ion channel/transporter-modulating drugs for the treatment of CF.
Collapse
Affiliation(s)
- Madalena C Pinto
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Lisboa, Portugal
| | - Iris A L Silva
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Lisboa, Portugal
| | - Miriam F Figueira
- Marsico Lung Institute/Cystic Fibrosis Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Margarida D Amaral
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Lisboa, Portugal
| | - Miquéias Lopes-Pacheco
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Lisboa, Portugal
| |
Collapse
|
41
|
Eedara BB, Alabsi W, Encinas-Basurto D, Polt R, Ledford JG, Mansour HM. Inhalation Delivery for the Treatment and Prevention of COVID-19 Infection. Pharmaceutics 2021; 13:1077. [PMID: 34371768 PMCID: PMC8308954 DOI: 10.3390/pharmaceutics13071077] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/23/2021] [Accepted: 06/26/2021] [Indexed: 02/07/2023] Open
Abstract
Coronavirus disease-2019 (COVID-19) is caused by coronavirus-2 (SARS-CoV-2) and has produced a global pandemic. As of 22 June 2021, 178 million people have been affected worldwide, and 3.87 million people have died from COVID-19. According to the Centers for Disease Control and Prevention (CDC) of the United States, COVID-19 virus is primarily transmitted between people through respiratory droplets and contact routes. Since the location of initial infection and disease progression is primarily through the lungs, the inhalation delivery of drugs directly to the lungs may be the most appropriate route of administration for treating COVID-19. This review article aims to present possible inhalation therapeutics and vaccines for the treatment of COVID-19 symptoms. This review covers the comparison between SARS-CoV-2 and other coronaviruses such as SARS-CoV/MERS, inhalation therapeutics for the treatment of COVID-19 symptoms, and vaccines for preventing infection, as well as the current clinical status of inhaled therapeutics and vaccines.
Collapse
Affiliation(s)
- Basanth Babu Eedara
- Skaggs Pharmaceutical Sciences Center, College of Pharmacy, The University of Arizona, 1703 E. Mabel Str., Tucson, AZ 85721, USA; (B.B.E.); (W.A.); (D.E.-B.)
| | - Wafaa Alabsi
- Skaggs Pharmaceutical Sciences Center, College of Pharmacy, The University of Arizona, 1703 E. Mabel Str., Tucson, AZ 85721, USA; (B.B.E.); (W.A.); (D.E.-B.)
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ 85721, USA;
| | - David Encinas-Basurto
- Skaggs Pharmaceutical Sciences Center, College of Pharmacy, The University of Arizona, 1703 E. Mabel Str., Tucson, AZ 85721, USA; (B.B.E.); (W.A.); (D.E.-B.)
| | - Robin Polt
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ 85721, USA;
| | - Julie G. Ledford
- Department of Immunobiology, The University of Arizona, Tucson, AZ 85724, USA;
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, AZ 85724, USA
- BIO5 Institute, The University of Arizona, Tucson, AZ 85719, USA
| | - Heidi M. Mansour
- Skaggs Pharmaceutical Sciences Center, College of Pharmacy, The University of Arizona, 1703 E. Mabel Str., Tucson, AZ 85721, USA; (B.B.E.); (W.A.); (D.E.-B.)
- BIO5 Institute, The University of Arizona, Tucson, AZ 85719, USA
- Department of Medicine, Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, AZ 85721, USA
| |
Collapse
|
42
|
Huang H, He Q, Guo B, Xu X, Wu Y, Li X. Progress in Redirecting Antiparasitic Drugs for Cancer Treatment. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:2747-2767. [PMID: 34188451 PMCID: PMC8235938 DOI: 10.2147/dddt.s308973] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/11/2021] [Indexed: 12/17/2022]
Abstract
Drug repurposing is a feasible strategy in developing novel medications. Regarding the cancer field, scientists are continuously making efforts to redirect conventional drugs into cancer treatment. This approach aims at exploring new applications in the existing agents. Antiparasitic medications, including artemisinin derivatives (ARTs), quinine-related compounds, niclosamide, ivermectin, albendazole derivatives, nitazoxanide and pyrimethamine, have been deeply investigated and widely applied in treating various parasitic diseases for a long time. Generally, their pharmacokinetic and pharmacodynamic properties are well understood, while the side effects are roughly acceptable. Scientists noticed that some of these agents have anticancer potentials and explored the underlying mechanisms to achieve drug repurposing. Recent studies show that these agents inhibit cancer progression via multiple interesting ways, inducing ferroptosis induction, autophagy regulation, mitochondrial disturbance, immunoregulation, and metabolic disruption. In this review, we summarize the recent advancement in uncovering antiparasitic drugs' anticancer properties from the perspective of their pharmacological targets. Instead of paying attention to the previously discovered mechanisms, we focus more on newly emerging ones that are worth noticing. While most investigations are focusing on the mechanisms of their antiparasitic effect, more in vivo exploration in clinical trials in the future is necessary. Moreover, we also paid attention to what limits the clinical application of these agents. For some of these agents like ARTs and niclosamide, drug modification, novel delivery system invention, or drug combination are strongly recommended for future exploration.
Collapse
Affiliation(s)
- Haoyang Huang
- Department of Clinical Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Qing He
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People's Republic of China.,Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People's Republic of China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong, 510080, People's Republic of China.,CAEA Center of Excellence on Nuclear Technology Applications for Insect Control, Beijing, 100048, People's Republic of China
| | - Binghua Guo
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, People's Republic of China
| | - Xudong Xu
- Department of Clinical Medicine, School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Yinjuan Wu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People's Republic of China.,Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People's Republic of China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong, 510080, People's Republic of China.,CAEA Center of Excellence on Nuclear Technology Applications for Insect Control, Beijing, 100048, People's Republic of China
| | - Xuerong Li
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People's Republic of China.,Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People's Republic of China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong, 510080, People's Republic of China.,CAEA Center of Excellence on Nuclear Technology Applications for Insect Control, Beijing, 100048, People's Republic of China
| |
Collapse
|
43
|
Gassen NC, Papies J, Bajaj T, Emanuel J, Dethloff F, Chua RL, Trimpert J, Heinemann N, Niemeyer C, Weege F, Hönzke K, Aschman T, Heinz DE, Weckmann K, Ebert T, Zellner A, Lennarz M, Wyler E, Schroeder S, Richter A, Niemeyer D, Hoffmann K, Meyer TF, Heppner FL, Corman VM, Landthaler M, Hocke AC, Morkel M, Osterrieder N, Conrad C, Eils R, Radbruch H, Giavalisco P, Drosten C, Müller MA. SARS-CoV-2-mediated dysregulation of metabolism and autophagy uncovers host-targeting antivirals. Nat Commun 2021; 12:3818. [PMID: 34155207 PMCID: PMC8217552 DOI: 10.1038/s41467-021-24007-w] [Citation(s) in RCA: 190] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/29/2021] [Indexed: 02/07/2023] Open
Abstract
Viruses manipulate cellular metabolism and macromolecule recycling processes like autophagy. Dysregulated metabolism might lead to excessive inflammatory and autoimmune responses as observed in severe and long COVID-19 patients. Here we show that SARS-CoV-2 modulates cellular metabolism and reduces autophagy. Accordingly, compound-driven induction of autophagy limits SARS-CoV-2 propagation. In detail, SARS-CoV-2-infected cells show accumulation of key metabolites, activation of autophagy inhibitors (AKT1, SKP2) and reduction of proteins responsible for autophagy initiation (AMPK, TSC2, ULK1), membrane nucleation, and phagophore formation (BECN1, VPS34, ATG14), as well as autophagosome-lysosome fusion (BECN1, ATG14 oligomers). Consequently, phagophore-incorporated autophagy markers LC3B-II and P62 accumulate, which we confirm in a hamster model and lung samples of COVID-19 patients. Single-nucleus and single-cell sequencing of patient-derived lung and mucosal samples show differential transcriptional regulation of autophagy and immune genes depending on cell type, disease duration, and SARS-CoV-2 replication levels. Targeting of autophagic pathways by exogenous administration of the polyamines spermidine and spermine, the selective AKT1 inhibitor MK-2206, and the BECN1-stabilizing anthelmintic drug niclosamide inhibit SARS-CoV-2 propagation in vitro with IC50 values of 136.7, 7.67, 0.11, and 0.13 μM, respectively. Autophagy-inducing compounds reduce SARS-CoV-2 propagation in primary human lung cells and intestinal organoids emphasizing their potential as treatment options against COVID-19.
Collapse
Affiliation(s)
- Nils C Gassen
- Department of Psychiatry and Psychotherapy, University of Bonn, Medical Faculty, Bonn, Germany.
| | - Jan Papies
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Infection Research (DZIF), partner site Charité, Berlin, Germany
| | - Thomas Bajaj
- Department of Psychiatry and Psychotherapy, University of Bonn, Medical Faculty, Bonn, Germany
| | - Jackson Emanuel
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Infection Research (DZIF), partner site Charité, Berlin, Germany
| | | | - Robert Lorenz Chua
- Center for Digital Health, Berlin Institute of Health (BIH) and Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jakob Trimpert
- Institute of Virology, Freie Universität Berlin, Berlin, Germany
| | - Nicolas Heinemann
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Infection Research (DZIF), partner site Charité, Berlin, Germany
| | - Christine Niemeyer
- Department of Psychiatry and Psychotherapy, University of Bonn, Medical Faculty, Bonn, Germany
| | - Friderike Weege
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Infection Research (DZIF), partner site Charité, Berlin, Germany
| | - Katja Hönzke
- Molecular Imaging of Immunoregulation, Medizinische Klinik m.S. Infektiologie & Pneumologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Tom Aschman
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Daniel E Heinz
- Department of Psychiatry and Psychotherapy, University of Bonn, Medical Faculty, Bonn, Germany
| | - Katja Weckmann
- Department of Psychiatry and Psychotherapy, University of Bonn, Medical Faculty, Bonn, Germany
| | - Tim Ebert
- Department of Psychiatry and Psychotherapy, University of Bonn, Medical Faculty, Bonn, Germany
| | - Andreas Zellner
- Department of Psychiatry and Psychotherapy, University of Bonn, Medical Faculty, Bonn, Germany
| | - Martina Lennarz
- Department of Psychiatry and Psychotherapy, University of Bonn, Medical Faculty, Bonn, Germany
| | - Emanuel Wyler
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Simon Schroeder
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Infection Research (DZIF), partner site Charité, Berlin, Germany
| | - Anja Richter
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Infection Research (DZIF), partner site Charité, Berlin, Germany
| | - Daniela Niemeyer
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Infection Research (DZIF), partner site Charité, Berlin, Germany
| | - Karen Hoffmann
- Molecular Imaging of Immunoregulation, Medizinische Klinik m.S. Infektiologie & Pneumologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Thomas F Meyer
- Laboratory of Infection Oncology, Institute of Clinical Molecular Biology, UKSH, Christian Albrechts University of Kiel, Kiel, Germany
| | - Frank L Heppner
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
- Cluster of Excellence, NeuroCure, Berlin, Germany
| | - Victor M Corman
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Infection Research (DZIF), partner site Charité, Berlin, Germany
| | - Markus Landthaler
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- IRI Life Sciences, Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andreas C Hocke
- Molecular Imaging of Immunoregulation, Medizinische Klinik m.S. Infektiologie & Pneumologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Markus Morkel
- Institute for Pathology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Cancer Consortium (DKTK) Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nikolaus Osterrieder
- Institute of Virology, Freie Universität Berlin, Berlin, Germany
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Christian Conrad
- Center for Digital Health, Berlin Institute of Health (BIH) and Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Roland Eils
- Center for Digital Health, Berlin Institute of Health (BIH) and Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Lung Research (DZL), Berlin, Germany
- Data Science Unit, Heidelberg University Hospital and BioQuant, Heidelberg, Germany
| | - Helena Radbruch
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | | | - Christian Drosten
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Infection Research (DZIF), partner site Charité, Berlin, Germany
| | - Marcel A Müller
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.
- German Center for Infection Research (DZIF), partner site Charité, Berlin, Germany.
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, Moscow, Russia.
| |
Collapse
|
44
|
Kanayama M, Lu C, Luo J, Antonarakis ES. AR Splicing Variants and Resistance to AR Targeting Agents. Cancers (Basel) 2021; 13:2563. [PMID: 34071114 PMCID: PMC8197115 DOI: 10.3390/cancers13112563] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 12/23/2022] Open
Abstract
Over the past decade, advances in prostate cancer research have led to discovery and development of novel biomarkers and effective treatments. As treatment options diversify, it is critical to further develop and use optimal biomarkers for the purpose of maximizing treatment benefit and minimizing unwanted adverse effects. Because most treatments for prostate cancer target androgen receptor (AR) signaling, aberrations affecting this drug target are likely to emerge following the development of castration-resistant prostate cancer (CRPC), and it is conceivable that such aberrations may play a role in drug resistance. Among the many AR aberrations, we and others have been studying androgen receptor splice variants (AR-Vs), especially AR-V7, and have conducted preclinical and clinical studies to develop and validate the clinical utility of AR-V7 as a prognostic and potential predictive biomarker. In this review, we first describe mechanisms of AR-V generation, regulation and their functions from a molecular perspective. We then discuss AR-Vs from a clinical perspective, focusing on the significance of AR-Vs detected in different types of human specimens and AR-Vs as potential therapeutic targets.
Collapse
Affiliation(s)
- Mayuko Kanayama
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (M.K.); (C.L.); (J.L.)
| | - Changxue Lu
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (M.K.); (C.L.); (J.L.)
| | - Jun Luo
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (M.K.); (C.L.); (J.L.)
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Emmanuel S. Antonarakis
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (M.K.); (C.L.); (J.L.)
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
45
|
Choi G, Piao H, Rejinold NS, Yu S, Kim KY, Jin GW, Choy JH. Hydrotalcite-Niclosamide Nanohybrid as Oral Formulation towards SARS-CoV-2 Viral Infections. Pharmaceuticals (Basel) 2021; 14:ph14050486. [PMID: 34069716 PMCID: PMC8160721 DOI: 10.3390/ph14050486] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/08/2021] [Accepted: 05/14/2021] [Indexed: 12/15/2022] Open
Abstract
COVID-19 has been affecting millions of individuals worldwide and, thus far, there is no accurate therapeutic strategy. This critical situation necessitates novel formulations for already existing, FDA approved, but poorly absorbable drug candidates, such as niclosamide (NIC), which is of great relevance. In this context, we have rationally designed NIC-loaded hydrotalcite composite nanohybrids, which were further coated with Tween 60 or hydroxypropyl methyl cellulose (HPMC), and characterized them in vitro. The optimized nanohybrids showed particle sizes <300 nm and were orally administrated to rats to determine whether they could retain an optimum plasma therapeutic concentration of NIC that would be effective for treating COVID-19. The pharmacokinetic (PK) results clearly indicated that hydrotalcite-based NIC formulations could be highly potential options for treating the ongoing pandemic and we are on our way to understanding the in vivo anti-viral efficacy sooner. It is worth mentioning that hydrotalcite–NIC nanohybrids maintained a therapeutic NIC level, even above the required IC50 value, after just a single administration in 8–12 h. In conclusion, we were very successfully able to develop a NIC oral formulation by immobilizing with hydrotalcite nanoparticles, which were further coated with Tween 60 or HPMC, in order to enhance their emulsification in the gastrointestinal tract.
Collapse
Affiliation(s)
- Goeun Choi
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea; (G.C.); (H.P.); (N.S.R.); (S.Y.)
- College of Science and Technology, Dankook University, Cheonan 31116, Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Korea
| | - Huiyan Piao
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea; (G.C.); (H.P.); (N.S.R.); (S.Y.)
| | - N. Sanoj Rejinold
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea; (G.C.); (H.P.); (N.S.R.); (S.Y.)
| | - Seungjin Yu
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea; (G.C.); (H.P.); (N.S.R.); (S.Y.)
- Department of Chemistry, College of Science and Technology, Dankook University, Cheonan 31116, Korea
| | - Ki-yeok Kim
- R&D Center, CnPharm Co., Ltd., Seoul 03759, Korea;
| | - Geun-woo Jin
- R&D Center, CnPharm Co., Ltd., Seoul 03759, Korea;
- Correspondence: (G.-w.J.); (J.-H.C.)
| | - Jin-Ho Choy
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea; (G.C.); (H.P.); (N.S.R.); (S.Y.)
- Department of Pre-medical Course, College of Medicine, Dankook University, Cheonan 31116, Korea
- Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
- Correspondence: (G.-w.J.); (J.-H.C.)
| |
Collapse
|
46
|
Backer V, Sjöbring U, Sonne J, Weiss A, Hostrup M, Johansen HK, Becker V, Sonne DP, Balchen T, Jellingsø M, Sommer MOA. A randomized, double-blind, placebo-controlled phase 1 trial of inhaled and intranasal niclosamide: A broad spectrum antiviral candidate for treatment of COVID-19. THE LANCET REGIONAL HEALTH. EUROPE 2021; 4:100084. [PMID: 33842908 PMCID: PMC8021896 DOI: 10.1016/j.lanepe.2021.100084] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Coronavirus disease 19 (COVID-19) is spreading globally and treatment options remain limited. A formulation of niclosamide, a potent anti-SARS-CoV-2 agent and a broad-spectrum antiviral treatment candidate, optimized for inhalation and intranasal administration (UNI91104) was developed. METHODS We conducted a randomized, placebo-controlled, double-blind, single-centre, dose-ascending Phase 1 trial to assess the safety of UNI91104 in Denmark (NCT04576312). Healthy volunteers were randomly assigned to a ascending single dose in cohort 1-4 and five doses over 2.5 days in cohort 5. Inclusion criteria included a minimum 80% of predicted lung function. Exclusion criteria included severe, clinically significant allergies and current acute or chronic condition especially airway diseases. Safety was evaluated through adverse events (AEs) and pulmonary function tests including forced expiratory volume in one second (FEV1) and fractional exhaled nitric oxide (FeNO) tests. The primary endpoints were defined as the frequency of reported AEs and the change of safety variables relative to pre-dose. Data from all enroled healthy volunteers receiving any amount of IMP was included in the primary analyses. The pharmacokinetics of UNI91104 was determined. FINDINGS The trial was conducted between 29 June 2020 and 08 August 2020. Thirty-four healthy volunteers received UNI91104 and ten placebo. No serious AEs or discontinuation were reported. Mild irritation in the upper respiratory tract following inhalation of UNI91104 was reported as most frequent AE (45 events in 26 healthy volunteers, 59% of all healthy volunteers). Nasal application was well-tolerated. There was no evidence of difference in the change of mean levels of pulmonary function tests between active and placebo group across all cohorts. Five healthy volunteers (11.4%) (1 on placebo) had signs of increased transient FeNO and 4 on active (9.1%) experienced asymptomatic drops in FEV1, which resolved spontaneously or were reversible with a β2-agonist. Niclosamide exhibited dose-proportional pharmacokinetics following inhalation and intranasal administration. INTERPRETATION UNI91104, a promising candidate for inhalation and intranasal therapy against COVID-19 and other viral respiratory tract infections is well-tolerated in healthy volunteers and warrants further testing in patient trials. FUNDING The study was funded by Innovationsfonden Denmark and UNION therapeutics.
Collapse
Affiliation(s)
- Vibeke Backer
- Department of Otorhinolaryngology, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
- Center for Physical Activity Research, Rigshospitalet, Ole Maaløes vej 24, 2200 Copenhagen, Denmark
| | - Ulf Sjöbring
- UNION therapeutics, Tuborg Havnevej 18, 2900 Hellerup, Denmark
| | - Jesper Sonne
- Department of Clinical Pharmacology, Bispebjerg and Frederiksberg Hospital, Bispebjerg Bakke 23, 2400 Copenhagen, NV, Denmark
| | - Anne Weiss
- Novo Nordisk Center for Biosustainability, Technical University Denmark, Kemitorvet 220, Kongens Lyngby, Denmark
- UNION therapeutics Research Services, Tuborg Havnevej 18, 2900 Hellerup, Denmark
| | - Morten Hostrup
- Department of Nutrition, Exercise and Sports, Section of Integrative Physiology, University of Copenhagen, Universitetsparken 13, 2100 Copenhagen, Denmark
| | - Helle Krogh Johansen
- Novo Nordisk Center for Biosustainability, Technical University Denmark, Kemitorvet 220, Kongens Lyngby, Denmark
- Department of Clinical Microbiology, Rigshospitalet, Henrik Harpestrengs Vej 4A, 2100 Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Victoria Becker
- Center for Physical Activity Research, Rigshospitalet, Ole Maaløes vej 24, 2200 Copenhagen, Denmark
| | - David P. Sonne
- Department of Clinical Pharmacology, Bispebjerg and Frederiksberg Hospital, Bispebjerg Bakke 23, 2400 Copenhagen, NV, Denmark
| | - Torben Balchen
- DanTrials, Bispebjerg and Frederiksberg Hospital, Nielsine Nielsens Vej 6B, 2400 Copenhagen NV, Denmark
| | - Mads Jellingsø
- UNION therapeutics, Tuborg Havnevej 18, 2900 Hellerup, Denmark
| | - Morten Otto Alexander Sommer
- UNION therapeutics, Tuborg Havnevej 18, 2900 Hellerup, Denmark
- Novo Nordisk Center for Biosustainability, Technical University Denmark, Kemitorvet 220, Kongens Lyngby, Denmark
| |
Collapse
|
47
|
A novel and highly effective mitochondrial uncoupling drug in T-cell leukemia. Blood 2021; 138:1317-1330. [PMID: 33876224 DOI: 10.1182/blood.2020008955] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 03/31/2021] [Indexed: 11/20/2022] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic malignancy. Despite recent advances in treatments with intensified chemotherapy regimens, relapse rates and associated morbidities remain high. In this context, metabolic dependencies have emerged as a druggable opportunity for the treatment of leukemia. Here, we tested the antileukemic effects of MB1-47, a newly developed mitochondrial uncoupling compound. MB1-47 treatment in T-ALL cells robustly inhibited cell proliferation via both cytostatic and cytotoxic effects as a result of compromised mitochondrial energy and metabolite depletion, which severely impaired nucleotide biosynthesis. Mechanistically, acute treatment with MB1-47 in primary leukemias promoted AMPK activation and downregulation of mTOR signaling, stalling anabolic pathways that support leukemic cell survival. Indeed, MB1-47 treatment in mice harboring either murine NOTCH1-induced primary leukemias or human T-ALL PDXs led to potent antileukemic effects with a significant extension in survival without overlapping toxicities. Overall, our findings demonstrate a critical role for mitochondrial oxidative phosphorylation in T-ALL and uncover MB1-47-driven mitochondrial uncoupling as a novel therapeutic strategy for the treatment of this disease.
Collapse
|
48
|
Wang G, Gaikwad H, McCarthy MK, Gonzalez-Juarrero M, Li Y, Armstrong M, Reisdorph N, Morrison TE, Simberg D. Lipid nanoparticle formulation of niclosamide (nano NCM) effectively inhibits SARS-CoV-2 replication in vitro. PRECISION NANOMEDICINE 2021; 4:724-737. [PMID: 34676370 PMCID: PMC8528232 DOI: 10.33218/001c.18813] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
As exemplified by the COVID-19 pandemic, highly infective respiratory viruses can spread rapidly in the population because of lack of effective approaches to control viral replication and spread. Niclosamide (NCM) is an old anthelminthic drug (World Health Organization essential medicine list) with pleiotropic pharmacological activities. Several recent publications demonstrated that NCM has broad antiviral activities and potently inhibits viral replication, including replication of SARS-CoV-2, SARS-CoV, and dengue viruses. Unfortunately, NCM is almost completely insoluble in water, which limits its clinical use. We developed a cost-effective lipid nanoparticle formulation of NCM (nano NCM) using only FDA-approved excipient and demonstrated potency against SARS-CoV-2 infection in cells (Vero E6 and ACE2-expressing lung epithelium cells).
Collapse
Affiliation(s)
- Guankui Wang
- Translational Bio-Nanosciences Laboratory, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045
- Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045
| | - Hanmant Gaikwad
- Translational Bio-Nanosciences Laboratory, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045
- Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045
| | - Mary K McCarthy
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045
| | - Mercedes Gonzalez-Juarrero
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80521
| | - Yue Li
- Translational Bio-Nanosciences Laboratory, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045
| | - Michael Armstrong
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045
| | - Nichole Reisdorph
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045
| | - Thomas E Morrison
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045
| | - Dmitri Simberg
- Translational Bio-Nanosciences Laboratory, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045
- Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045
| |
Collapse
|
49
|
Resistance to second-generation androgen receptor antagonists in prostate cancer. Nat Rev Urol 2021; 18:209-226. [PMID: 33742189 DOI: 10.1038/s41585-021-00438-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2021] [Indexed: 01/31/2023]
Abstract
The introduction of second-generation androgen receptor antagonists (SG-ARAs) has greatly impacted the treatment of metastatic prostate cancer, providing tolerable and efficacious alternatives to chemotherapy. SG-ARAs provide similar therapeutic benefit to abiraterone, a potent CYP17 inhibitor, and do not require the co-administration of prednisone. Despite considerable improvements in clinical outcomes in the settings of both castration sensitivity and castration resistance, the durability of clinical response to the SG-ARAs enzalutamide, apalutamide and darolutamide, similar to abiraterone, is limited by inevitable acquired resistance. Genomic aberrations that confer resistance to SG-ARAs or provide potential alternative treatment modalities have been identified in numerous studies, including alterations of the androgen receptor, DNA repair, cell cycle, PI3K-AKT-mTOR and Wnt-β-catenin pathways. To combat resistance, researchers have explored approaches to optimizing the utility of available treatments, as well as the use of alternative agents with a variety of targets, including AR-V7, AKT, EZH2 and HIF1α. Ongoing research to establish predictive biomarkers for the treatment of tumours with resistance to SG-ARAs led to the approval of the PARP inhibitors olaparib and rucaparib in pre-treated metastatic castration-resistant prostate cancer. The results of ongoing studies will help to shape precision medicine in prostate cancer and further optimize treatment paradigms to maximize clinical outcomes.
Collapse
|
50
|
Phase Ib trial of reformulated niclosamide with abiraterone/prednisone in men with castration-resistant prostate cancer. Sci Rep 2021; 11:6377. [PMID: 33737681 PMCID: PMC7973745 DOI: 10.1038/s41598-021-85969-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/25/2021] [Indexed: 12/19/2022] Open
Abstract
Niclosamide has preclinical activity against a wide range of cancers. In prostate cancer, it inhibits androgen receptor variant 7 and synergizes with abiraterone. The approved niclosamide formulation has poor oral bioavailability. The primary objective of this phase Ib trial was to identify a maximum tolerated dose (MTD) and recommended phase 2 dose (RP2D) of a novel reformulated orally-bioavailable niclosamide/PDMX1001 in combination with abiraterone and prednisone in men with castration-resistant prostate cancer (CRPC). Eligible patients had progressing CRPC, adequate end-organ function, and no prior treatment with abiraterone or ketoconazole. Patients were treated with escalating doses of niclosamide/PDMX1001 and standard doses of abiraterone and prednisone. Peak and trough niclosamide plasma levels were measured. Common Terminology Criteria for Adverse Events (CTCAE) v4.0 and Prostate Cancer Working Group 2 criteria were used to evaluate toxicities and responses. Nine patients with metastatic CRPC were accrued, with no dose-limiting toxicities observed at all dose levels. The recommended Phase II dose of niclosamide/PDMX1001 was 1200 mg orally (PO) three times daily plus abiraterone 1000 mg PO once daily and prednisone 5 mg PO twice daily. Trough and peak niclosamide concentrations exceeded the therapeutic threshold of > 0.2 µM. The combination was well tolerated with most frequent adverse effects of diarrhea. Five out of eight evaluable patients achieved a PSA response; two achieved undetectable PSA and radiographic response. A novel niclosamide/PDMX1001 reformulation achieved targeted plasma levels when combined with abiraterone and prednisone, and was well tolerated. Further study of niclosamide/PDMX1001 with this combination is warranted.
Collapse
|