1
|
Pöchhacker M, Tillmann U, Marko D, Varga E. Intraspecific variability within Karlodinium armiger (Dinophyceae) on a toxicological and metabolomic level. HARMFUL ALGAE 2025; 143:102808. [PMID: 40032440 DOI: 10.1016/j.hal.2025.102808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/08/2025] [Accepted: 02/04/2025] [Indexed: 03/05/2025]
Abstract
The species Karlodinium armiger occasionally co-occurs with Karlodinium veneficum during harmful algal blooms. The only toxin of this species described so far is karmitoxin, a highly ichthyotoxic compound very similar to the karlotoxins produced by K. veneficum. However, information on K. armiger is limited and based on a single Mediterranean strain (K-0668), with few studies investigating its toxicity. Given the high intraspecific variability known in K. veneficum, it was a significant achievement when two additional strains of K. armiger (MD-D6 and MD-D7) were isolated from the Labrador Sea in 2017, enabling comparative studies within this species. The toxicity of these three strains was assessed using the fish gill cell line RTgill-W1 and the cryptophyte Rhodomonas salina. An untargeted metabolomics approach using high-resolution tandem mass spectrometry, along with a computational workflow, provided insights into the metabolomic differences between the strains. Despite being cultivated under identical conditions, the metabolomic profiles and toxicological properties were distinct, even between MD-D6 and MD-D7, which were isolated from the same water sample. While MD-D7 did not exhibit significant toxicity, MD-D6 showed high toxicity and lytic potential, similar to K-0668. Interestingly, karmitoxin was only detected in K-0668, and neither karlotoxins nor any known analogs were detected in any strain. Within this comprehensive workflow, some molecules were found in MD-D6 that share the same chemical space as karmitoxin, making them interesting targets for further research. In conclusion, this study evaluated the toxicological and metabolic variability in three different strains of K. armiger and identified some putative toxin candidates in MD-D6.
Collapse
Affiliation(s)
- Magdalena Pöchhacker
- Unit Food Hygiene and Technology, Centre for Food Science and Veterinary Public Health, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine, Vienna, Vienna, Austria; Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria; Doctoral School in Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Urban Tillmann
- Department of Ecological Chemistry, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Elisabeth Varga
- Unit Food Hygiene and Technology, Centre for Food Science and Veterinary Public Health, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine, Vienna, Vienna, Austria; Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria.
| |
Collapse
|
2
|
Gracia Villalobos LL, Getino Mamet LN, Vázquez N, Soria G, Gonçalves RJ. The toxic dinoflagellate Alexandrium catenella adversely affects early life stages of tehuelche scallop. MARINE ENVIRONMENTAL RESEARCH 2023; 192:106221. [PMID: 37844368 DOI: 10.1016/j.marenvres.2023.106221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 10/03/2023] [Accepted: 10/07/2023] [Indexed: 10/18/2023]
Abstract
The effects of the toxic dinoflagellate Alexandrium catenella were investigated on growth, survival, and histopathology in larvae and spat of the Tehuelche scallop Aequipecten tehuelchus from Patagonia, Argentina. The study consisted of laboratory incubations of scallop larvae/spat with A. catenella, using environmentally realistic abundances of the dinoflagellate. Survival, growth, and histopathological effects were documented for scallop larvae/spat before, during, and after 7-day-long exposure to A. catenella. The scallops were grouped in flasks containing 0 (control), 20, 200, and 2000 cells mL-1 of A. catenella. The presence of A. catenella induced reduced larvae survival after 24 h, whereas a clear effect was observed after 3 days (survival of control larvae 95%, 72, and 79% for 20 and 200 cells mL-1, respectively, and 43% for 2000 cells mL-1). The growth rates of the control larvae and those exposed to 20 mL-1 cells were significantly different from zero. Histopathological effects (melanization, loss of connective tissue, necrosis, and inflammatory responses) were observed in spat exposed to A. catenella. These effects were more pronounced at the highest dinoflagellate concentration. Blooms of A. catenella frequently coincide with the reproductive season of A. tehuelchus, thus there is a need to further study the relationship between harmful algal blooms and the effect on scallops' natural populations in the region.
Collapse
Affiliation(s)
- Leilén L Gracia Villalobos
- Centro para El Estudio de Sistemas Marinos (CESIMAR), CCT CONICET-CENPAT, Boulevard Brown 2915 (9120) Puerto Madryn, Chubut, Argentina.
| | - Leandro N Getino Mamet
- Centro para El Estudio de Sistemas Marinos (CESIMAR), CCT CONICET-CENPAT, Boulevard Brown 2915 (9120) Puerto Madryn, Chubut, Argentina; Universidad Nacional de La Patagonia San Juan Bosco (UNPSJB), Boulevard Brown 3051 (9120) Puerto Madryn, Argentina.
| | - Nuria Vázquez
- Instituto de Biología de Organismos Marinos (IBIOMAR), CCT CONICET-CENPAT, Boulevard Brown 2915 (9120) Puerto Madryn, Argentina.
| | - Gaspar Soria
- Centro para El Estudio de Sistemas Marinos (CESIMAR), CCT CONICET-CENPAT, Boulevard Brown 2915 (9120) Puerto Madryn, Chubut, Argentina; Universidad Nacional de La Patagonia San Juan Bosco (UNPSJB), Boulevard Brown 3051 (9120) Puerto Madryn, Argentina.
| | - Rodrigo J Gonçalves
- Centro para El Estudio de Sistemas Marinos (CESIMAR), CCT CONICET-CENPAT, Boulevard Brown 2915 (9120) Puerto Madryn, Chubut, Argentina.
| |
Collapse
|
3
|
Khanjani MH, Sharifinia M, Mohammadi AR. The impact of microplastics on bivalve mollusks: A bibliometric and scientific review. MARINE POLLUTION BULLETIN 2023; 194:115271. [PMID: 37429180 DOI: 10.1016/j.marpolbul.2023.115271] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/12/2023]
Abstract
Bivalves are important members of the ecosystem and their populations are declining globally, making them a concern for their role in ecosystem services and the fishing industry. Bivalves are excellent bioindicators of MPs pollution due to their widespread distribution, filtering capabilities, and close association with human health. Microplastics (MPs) have direct and indirect impacts on bivalves, affecting their physiology, habitat structure, food sources, and persistence of organic pollutants. This review provides an extensive overview of the impact of MPs on bivalves, covering various aspects such as their economic significance, ecological roles, and importance in biomonitoring environmental quality. The article presents the current state of knowledge on the sources and pathways of MPs in aquatic environments and their effects on bivalves. The mechanisms underlying the effects of MPs on bivalves, including ingestion, filtration activity, feeding inhibition, accumulation, bioaccumulation, and reproduction, are also discussed. Additionally, a bibliometric analysis of research on MPs in bivalves is presented, highlighting the number of papers, geographical distribution, and keyword clusters relating to MPs. Finally, the review emphasizes the importance of ongoing research and the development of mitigation strategies to reduce the negative effects of MPs pollution on bivalves and their habitats in oceans and coastal waters.
Collapse
Affiliation(s)
- Mohammad Hossein Khanjani
- Department of Fisheries Sciences and Engineering, Faculty of Natural Resources, University of Jiroft, Jiroft, Kerman, Iran
| | - Moslem Sharifinia
- Shrimp Research Center, Iranian Fisheries Sciences Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Bushehr 75169-89177, Iran.
| | - Ali Reza Mohammadi
- Department of Environmental Science and Engineering, Faculty of Natural Resources, University of Jiroft, Jiroft, Iran.
| |
Collapse
|
4
|
Pan Y, Meng R, Li Y, Yang L, Mei L, Wu Y, Xu J, Zhou C, Yan X. Changes in biochemical metabolites in manila clam after a temporary culture with high-quality microalgal feed mixed with the dinoflagellate species Karlodinium veneficum and K. zhouanum. HARMFUL ALGAE 2023; 125:102422. [PMID: 37220975 DOI: 10.1016/j.hal.2023.102422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 02/20/2023] [Accepted: 03/05/2023] [Indexed: 05/25/2023]
Abstract
Phytoplankton composition is an important factor affecting the growth and physiological biochemical characteristics of filter-feeding bivalves. With the increasing trend in dinoflagellate biomass and blooms in mariculture areas, how the physio-biochemical traits and seafood quality of the mariculture organism are affected by the dinoflagellates, especially those at nonfatal levels, is not well understood. Different densities of two Karlodinium species, namely K. veneficum (KV) and K. zhouanum (KZ), mixed with high quality microalgal food Isochrysis galbana was applied in feeding manila clam Ruditapes philippinarum in a 14-day temporary culture, to comparatively study how the critical biochemical metabolites such as glycogen, free amino acids (FAAs), fatty acids (FAs), volatile organic compounds (VOCs) in the clam were affected. The survival rate of the clam showed dinoflagellate density and species specificity. The high-density KV group inhibited survival to 32% lower than that of the pure I. galbana control, respectively, while KZ at low concentrations did not significantly affect the survival compared with the control. In the high-density KV group, the glycogen and FAA contents decreased (p < 0.05), indicating that energy and protein metabolism were significantly affected. Amount of carnosine (49.91 ± 14.64 to 84.74 ± 8.59 μg/g of muscle wet weight) was detected in all the dinoflagellate-mixed groups, while it was not present in the field samples or in the pure I. galbana control, showing that carnosine participated in the anti-stress activities when the clam was exposed to the dinoflagellates. The global composition of FAs did not significantly vary among the groups. However, contents of the endogenous C18 PUFA precursors linoleic acid and α-linolenic acid significantly decreased in the high-density KV group compared to all the other groups, indicating that high density of KV affected the metabolisms of fatty acids. From the results of the changed VOC composition, oxidation of fatty acids and degradation of free amino acids might occur in the clams exposed to dinoflagellates. The increased VOCs, such as aldehydes, and decreased 1-octen-3-ol probably produced a more fishy taste and reduced food flavor quality when the clam was exposed to the dinoflagellates. This present study demonstrated that the biochemical metabolism and seafood qulity of the clam were affected. However, KZ with moderate density in the feed seemed to be beneficial in aquaculture for increasing the content of carnosine, a high-valued substance with multiple bioactivities.
Collapse
Affiliation(s)
- Yuanbo Pan
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315211, China; Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo 315211, China
| | - Ran Meng
- School of Marine Science, Ningbo University, Ningbo, Zhejiang 315211, China; Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo 315211, China
| | - Yanrong Li
- Ningbo Institute of Oceanography, Ningbo 315832, China
| | - Ling Yang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315211, China; Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo 315211, China
| | - Limin Mei
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315211, China; Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo 315211, China
| | - Yanhua Wu
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315211, China; Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo 315211, China
| | - Jilin Xu
- School of Marine Science, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Chengxu Zhou
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315211, China; Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo 315211, China.
| | - Xiaojun Yan
- School of Marine Science, Ningbo University, Ningbo, Zhejiang 315211, China; Ningbo Institute of Oceanography, Ningbo 315832, China; Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China.
| |
Collapse
|
5
|
Castrec J, Fabioux C, Le Goïc N, Boulais M, Soudant P, Hégaret H. The toxic dinoflagellate Alexandrium minutum affects oyster gamete health and fertilization potential. MARINE ENVIRONMENTAL RESEARCH 2021; 169:105401. [PMID: 34217094 DOI: 10.1016/j.marenvres.2021.105401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 06/13/2023]
Abstract
Dinoflagellates from the globally distributed genus Alexandrium are known to produce both paralytic shellfish toxins (PST) and uncharacterized bioactive extracellular compounds (BEC) with allelopathic, ichthyotoxic, hemolytic and cytotoxic activities. In France, blooms of Alexandrium minutum appear generally during the spawning period of most bivalves. These blooms could therefore alter gametes and/or larval development of bivalves, causing severe issues for ecologically and economically important species, such as the Pacific oyster Crassostrea (=Magallana) gigas. The aim of this work was to test the effects of three strains of A. minutum producing either only PST, only BEC, or both PST and BEC upon oyster gametes, and potential consequences on fertilization success. Oocytes and spermatozoa were exposed in vitro for 2 h to a range of environmentally realistic A. minutum concentrations (10-2.5 × 104 cells mL-1). Following exposure, gamete viability and reactive oxygen species (ROS) production were assessed by flow cytometry, spermatozoa motility and fertilization capacities of both spermatozoa and oocytes were analysed by microscopy. Viability and fertilization capacity of spermatozoa and oocytes were drastically reduced following exposure to 2.5 × 104 cells mL-1 of A. minutum. The BEC-producing strain was the most potent strain decreasing spermatozoa motility, increasing ROS production of oocytes, and decreasing fertilization, from the concentration of 2.5 × 103 cells mL-1. This study highlights the significant cellular toxicity of the BEC produced by A. minutum on oyster gametes. Physical contact between gametes and motile thecate A. minutum cells may also contribute to alter oyster gamete integrity. These results suggest that oyster gametes exposure to A. minutum blooms could affect oyster fertility and reproduction success.
Collapse
Affiliation(s)
- Justine Castrec
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, F-29280 Plouzane, France.
| | | | - Nelly Le Goïc
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, F-29280 Plouzane, France
| | - Myrina Boulais
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, F-29280 Plouzane, France
| | | | - Hélène Hégaret
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, F-29280 Plouzane, France
| |
Collapse
|
6
|
Durier G, Nadalini JB, Saint-Louis R, Genard B, Comeau LA, Tremblay R. Sensitivity to oil dispersants: Effects on the valve movements of the blue mussel Mytilus edulis and the giant scallop Placopecten magellanicus, in sub-arctic conditions. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 234:105797. [PMID: 33721721 DOI: 10.1016/j.aquatox.2021.105797] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/26/2021] [Accepted: 02/27/2021] [Indexed: 06/12/2023]
Abstract
In response to accidental oil spills at sea, chemical oil dispersants are utilized to limit negative impacts on nearby littoral zones. However, current evidence suggests that such dispersants may be toxic to aquatic organisms. Blue mussels (Mytilus edulis) and giant scallops (Placopecten magellanicus) were exposed to different environmentally relevant concentrations of oil dispersant and their behavioural responses were closely monitored using high frequency (10Hz) valvometry. Behavioural valve responses included rapid closures when oil dispersant was added to the experimental tanks. At higher concentrations, the mussels remained closed throughout the exposure period. The giant scallop displayed escape behaviours (clapping) prior to mortality, suggesting toxicity of the oil dispersant. Relationships between different behavioural indicators and oil dispersant concentrations were observed for both species, but with different trends. While scallops demonstrated positive correlations between gaping behaviours and dispersant concentration, mussels exhibited a concentration threshold beyond which the gaping behaviour was characteristic of longer closure periods. This study highlights behavioural response differences consistent with bivalve-specific biological traits: the continuous valve closure of an intertidal species, M. edulis, firmly attached to the substrate, and the escapement behaviours of a semi-mobile subtidal species, P. magellanicus. From these observations, it appears that valvometry could be used as a tool for environmental assessments.
Collapse
Affiliation(s)
- Guillaume Durier
- Institut des Sciences de la Mer, Université du Québec à Rimouski, 310 Allée des Ursulines, Rimouski, QC G5L 3A1, Canada.
| | - Jean-Bruno Nadalini
- Institut des Sciences de la Mer, Université du Québec à Rimouski, 310 Allée des Ursulines, Rimouski, QC G5L 3A1, Canada; Département de biologie, chimie et géographie, Université du Québec à Rimouski, Rimouski, Québec, Canada.
| | - Richard Saint-Louis
- Département de biologie, chimie et géographie, Université du Québec à Rimouski, Rimouski, Québec, Canada.
| | - Bertrand Genard
- Les laboratoires Iso-BioKem Inc., 367, rue Gratien-Gélinas, Rimouski, Québec, Canada.
| | - Luc A Comeau
- Fisheries and Oceans Canada, Gulf Region, Moncton, New Brunswick, Canada.
| | - Réjean Tremblay
- Institut des Sciences de la Mer, Université du Québec à Rimouski, 310 Allée des Ursulines, Rimouski, QC G5L 3A1, Canada.
| |
Collapse
|
7
|
Binzer SB, Varga E, Andersen AJC, Svenssen DK, de Medeiros LS, Rasmussen SA, Larsen TO, Hansen PJ. Karmitoxin production by Karlodinium armiger and the effects of K. armiger and karmitoxin towards fish. HARMFUL ALGAE 2020; 99:101905. [PMID: 33218431 DOI: 10.1016/j.hal.2020.101905] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/17/2020] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
The dinoflagellate Karlodinium armiger has a huge impact on wild and caged fish during blooms in coastal waters. Recently, a new toxin, karmitoxin, was chemically characterized from K. armiger and a quantification method was established, thereby allowing investigations of the fish killing mechanism. K. armiger is not able to grow in standard growth media that are based on nitrate as a nitrogen source, and successful cultures of this species have only been achieved in mixotrophic cultures after addition of a prey source. Here we show that addition of ammonium (up to 50 µM) to the growth media is a good alternative, as K. armiger batch cultures achieve growth rates, which are comparable to growth rates reached in mixotrophic cultures. Karmitoxin production (1.9 and 2.9 pg cell-1 d-1) and cellular karmitoxin content (8.72 ± 0.25 pg cell-1 and 7.14 ± 0.29 pg cell-1) were in the same range, though significantly different, in prey-fed cultures and monocultures supplied with ammonium, respectively. Net production of karmitoxin stopped when the K. armiger cultures reached stationary growth phase, indicating no accumulation of karmitoxin in cells or growth media. Toxicity tests towards sheepshead minnow fish larvae indicated rapid death of the fish larvae when exposed to high K. armiger cell concentrations (LT50 of 2.06 h at 44.9 × 103 cells mL-1 cultivated with ammonium). Purified toxins caused the same physical damage to fish larvae as living K. armiger cultures. An exposure of purified karmitoxin to fish larvae and rainbow trout gill cells indicated that the fish larvae were about three times less sensitive than gill cells. When comparing the effect of purified toxins with the effect of whole K. armiger cultures, twice the toxin concentration of the purified toxins was needed to cause the same effect. Although a loss of karmitoxin of twenty percent was observed during the incubation, this could not explain the apparent discrepancy. Other factors, like a direct effect of the K. armiger cells on the fish larvae or other, yet unknown toxins may influence the effect of whole cell cultures. To study the effects of released karmitoxin, fish larvae were exposed to a K. armiger culture that was treated with HP-20 resin, which adsorbs extracellular karmitoxin. The 24 h HP-20 treatment resulted in a K. armiger culture that had 37% less total karmitoxin, without a reduction in cell concentration, and a reduced toxic effect was observed in the HP-20 treated culture, as compared to non-treated controls. Fish larvae that were exposed to HP-20 treated culture were immobilized, but survived during the 12 h exposure, whereas the exposure to non-treated culture led to high mortality of the fish larvae. Direct observations under the microscope revealed no evidence of micropredation of K. armiger on the fish larvae during any of the exposures. Thus, the results presented here, indicate that released karmitoxin is the main cause for fish kills by K. armiger. Finally, we found that juvenile rainbow trout were six times more sensitive than fish larvae towards K. armiger, indicating that juvenile fish are more sensitive to K. armiger in bloom situations than early larval stages.
Collapse
Affiliation(s)
- Sofie Bjørnholt Binzer
- Marine Biological Section, University of Copenhagen, Strandpromenaden 5, 3000 Helsingør, Denmark
| | - Elisabeth Varga
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, 2800 Kgs. Lyngby, Denmark
| | - Aaron John Christian Andersen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, 2800 Kgs. Lyngby, Denmark; National Food Institute, Technical University of Denmark, Kemitorvet, 2800 Kgs. Lyngby, Denmark
| | - Daniel Killerup Svenssen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, 2800 Kgs. Lyngby, Denmark
| | - Lívia Soman de Medeiros
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, 2800 Kgs. Lyngby, Denmark
| | - Silas Anselm Rasmussen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, 2800 Kgs. Lyngby, Denmark
| | - Thomas Ostenfeld Larsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, 2800 Kgs. Lyngby, Denmark
| | - Per Juel Hansen
- Marine Biological Section, University of Copenhagen, Strandpromenaden 5, 3000 Helsingør, Denmark.
| |
Collapse
|
8
|
Vidyarathna NK, Papke E, Coyne KJ, Cohen JH, Warner ME. Functional trait thermal acclimation differs across three species of mid-Atlantic harmful algae. HARMFUL ALGAE 2020; 94:101804. [PMID: 32414505 DOI: 10.1016/j.hal.2020.101804] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 03/05/2020] [Accepted: 04/04/2020] [Indexed: 06/11/2023]
Abstract
Characterizing the thermal niche of harmful algae is crucial for understanding and projecting the effects of future climate change on harmful algal blooms. The effects of 6 different temperatures (18-32 °C) on the growth, photophysiology, and toxicity were examined in the dinoflagellate Karlodinium veneficum, and the raphidophytes, Heterosigma akashiwo and Chattonella subsalsa from the Delaware Inland Bays (DIB). K. veneficum and H. akashiwo had skewed unimodal growth patterns, with temperature optima (Topt) at 28.6 and 27.3 °C respectively and an upper thermal niche limit of 32 °C. In contrast, C. subsalsa growth increased linearly with temperature, suggesting Topt and upper thermal boundaries >32 °C. K. veneficum photosystem II (PSII) photochemical efficiency remained stable across all temperatures, while H. akashiwo PSII efficiency declined at higher temperature and C. subsalsa was susceptible to low temperature (~18 °C) photoinactivation. Cell toxicity thermal response was species-specific such that K. veneficum toxicity increased with temperature above Topt. Raphidophyte toxicity peaked at 25-28 °C and was in close agreement with Topt for growth in H. akashiwo but below C. subsalsa maximal growth. The mode of toxicity was markedly different between the dinoflagellate and the raphidophytes such that K. veneficum had greater hemolytic activity while the raphidophytes had pronounced fish gill cell toxicity. These results and patterns of natural abundance for these algae in the DIB suggest that continued ocean warming may contribute to C. subsalsa bloom formation while possibly promoting highly toxic blooms of K. veneficum.
Collapse
Affiliation(s)
- Nayani K Vidyarathna
- School of Marine Science and Policy, University of Delaware, Lewes, DE 19958, United States
| | - Erin Papke
- School of Marine Science and Policy, University of Delaware, Lewes, DE 19958, United States
| | - Kathryn J Coyne
- School of Marine Science and Policy, University of Delaware, Lewes, DE 19958, United States
| | - Jonathan H Cohen
- School of Marine Science and Policy, University of Delaware, Lewes, DE 19958, United States
| | - Mark E Warner
- School of Marine Science and Policy, University of Delaware, Lewes, DE 19958, United States.
| |
Collapse
|
9
|
Nielsen P, Krock B, Hansen PJ, Vismann B. Effects of the DSP-toxic dinoflagellate Dinophysis acuta on clearance and respiration rate of the blue mussel, Mytilus edulis. PLoS One 2020; 15:e0230176. [PMID: 32150599 PMCID: PMC7062251 DOI: 10.1371/journal.pone.0230176] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 02/24/2020] [Indexed: 01/06/2023] Open
Abstract
Diarrheic Shellfish Poisoning toxins (DST) are a severe health risk to shellfish consumers and can be a major problem for the shellfish industry. Bivalve molluscs can accumulate DST via ingestion of toxic dinoflagellates like Dinophysis spp., which are the most prominent producers of DST. The effects of DST-containing dinoflagellate Dinophysis acuta on bivalve clearance and respiration rate were investigated in the blue mussel (Mytilus edulis) exposed to different algal densities in a controlled laboratory study. Results showed that M. edulis exposed to D. acuta displayed a reduced clearance rate compared to M. edulis exposed to equivalent bio-volumes of the non-toxic cryptophyte Rhodomonas salina. Furthermore, M. edulis ceased to feed on D. acuta after 1 to 4 h, depending on D. acuta densities. The quickest response was observed at the highest densities of D. acuta. The estimated total amount of DST accumulated in the M. edulis exceeded the regulatory limit for human consumption and furthermore, intoxication of the M. edulis seemed to occur faster at high cell toxicity rather than at high cell density. However, respiration rates were, similar, irrespective of whether M. edulis were fed single diets of R. salina, D. acuta or a mixed diet of both algal species. In conclusion, the DST-containing D. acuta had a severe negative effect on the clearance of M. edulis, which can affect the conditions of the M. edulis negatively. Hence, DST may cause low quality M. edulis, due to reduced feeding when exposed to DST-containing D. acuta.
Collapse
Affiliation(s)
- Pernille Nielsen
- Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark
- * E-mail:
| | - Bernd Krock
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
| | - Per Juel Hansen
- Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark
| | - Bent Vismann
- Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark
| |
Collapse
|