1
|
Han X, Li Y, Wang E, Zhu H, Huang X, Pu W, Zhang M, Liu K, Zhao H, Liu Z, Zhao Y, Shen L, Li Y, Yang X, Wang QD, Ma X, Shen R, O Lui K, Wang L, He B, Zhou B. Exploring Origin-Dependent Susceptibility of Smooth Muscle Cells to Aortic Diseases Through Intersectional Genetics. Circulation 2025; 151:1248-1267. [PMID: 39925267 DOI: 10.1161/circulationaha.124.070782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 01/16/2025] [Indexed: 02/11/2025]
Abstract
BACKGROUND The developmental diversity among smooth muscle cells (SMCs) plays a crucial role in segment-specific aortic diseases. However, traditional genetic approaches are inadequate for enabling in vivo analysis of disease susceptibility associated with cellular origin. There is an urgent need to build genetic technologies that target different developmental origins to investigate the mechanisms of aortopathies, thereby facilitating the development of effective therapeutics. METHODS To address this challenge, we developed an advanced dual recombinase-mediated intersectional genetic system, specifically designed to precisely target SMCs from various developmental origins in mice. Specifically, we used Isl1-Dre, Wnt1-Dre, Meox1-DreER, and Upk3b-Dre to target SMC progenitors from the second heart field, cardiac neural crest, somites, and mesothelium, respectively. This system was combined with single-cell RNA sequencing to investigate the impact of TGF-β (transforming growth factor-β) signaling in different segments of the aorta by selectively knocking out Tgfbr2 in the ascending aorta and Smad4 in the aortic arch, respectively. RESULTS Through intersectional genetic approaches, we use the Myh11-Cre(ER) driver along with origin-specific Dre drivers to trace cells of diverse developmental origins within the SMC population. We found that a deficiency of Tgfbr2 in SMCs of the ascending aorta leads to aneurysm formation in this specific region. We also demonstrate the critical role of Smad4 in preserving aortic wall integrity and homeostasis in SMCs of the aortic arch. CONCLUSIONS Our approach to genetically targeting SMC subtypes provides a novel platform for exploring origin-dependent or location-specific aortic vascular diseases. This genetic system enables comprehensive analysis of contributions from different cell lineages to SMC behavior and pathology, thereby paving the way for targeted research and therapeutic interventions in the future.
Collapse
MESH Headings
- Animals
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Mice
- Receptor, Transforming Growth Factor-beta Type II/genetics
- Receptor, Transforming Growth Factor-beta Type II/metabolism
- Receptor, Transforming Growth Factor-beta Type II/deficiency
- Aortic Diseases/genetics
- Aortic Diseases/pathology
- Aortic Diseases/metabolism
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Mice, Knockout
- Genetic Predisposition to Disease
- Aorta/metabolism
- Aorta/pathology
- Signal Transduction
Collapse
Affiliation(s)
- Ximeng Han
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, China (X. Han, Y.L., L.S., B.H.)
- CAS CEMCS-CUHK Joint Laboratories, New Cornerstone Science Laboratory, Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai (X. Han, H. Zhu, X. Huang, W.P., M.Z., H. Zhao, Z.L., B.Z.)
| | - Yi Li
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, China (X. Han, Y.L., L.S., B.H.)
| | - Enci Wang
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China (E.W., Y.Z., L.W.)
| | - Huan Zhu
- CAS CEMCS-CUHK Joint Laboratories, New Cornerstone Science Laboratory, Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai (X. Han, H. Zhu, X. Huang, W.P., M.Z., H. Zhao, Z.L., B.Z.)
| | - Xiuzhen Huang
- CAS CEMCS-CUHK Joint Laboratories, New Cornerstone Science Laboratory, Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai (X. Han, H. Zhu, X. Huang, W.P., M.Z., H. Zhao, Z.L., B.Z.)
| | - Wenjuan Pu
- CAS CEMCS-CUHK Joint Laboratories, New Cornerstone Science Laboratory, Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai (X. Han, H. Zhu, X. Huang, W.P., M.Z., H. Zhao, Z.L., B.Z.)
| | - Mingjun Zhang
- CAS CEMCS-CUHK Joint Laboratories, New Cornerstone Science Laboratory, Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai (X. Han, H. Zhu, X. Huang, W.P., M.Z., H. Zhao, Z.L., B.Z.)
| | - Kuo Liu
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou (K.L., B.Z.)
| | - Huan Zhao
- CAS CEMCS-CUHK Joint Laboratories, New Cornerstone Science Laboratory, Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai (X. Han, H. Zhu, X. Huang, W.P., M.Z., H. Zhao, Z.L., B.Z.)
| | - Zixin Liu
- CAS CEMCS-CUHK Joint Laboratories, New Cornerstone Science Laboratory, Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai (X. Han, H. Zhu, X. Huang, W.P., M.Z., H. Zhao, Z.L., B.Z.)
| | - Yufei Zhao
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China (E.W., Y.Z., L.W.)
| | - Linghong Shen
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, China (X. Han, Y.L., L.S., B.H.)
| | - Yan Li
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, China (Y.L.)
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, China (Y.L.)
| | - Xiao Yang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, China (X.Y.)
| | - Qing-Dong Wang
- Bioscience Cardiovascular, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden (Q.-D.W.)
| | - Xin Ma
- Department of Pharmacology, Wuxi School of Medicine, Jiangnan University, China (X.M.)
| | - Ruling Shen
- Shanghai Laboratory Animal Research Center, China (R.S.)
| | - Kathy O Lui
- CAS CEMCS-CUHK Joint Laboratories, Department of Chemical Pathology; Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, Chinese University of Hong Kong, China (K.O.L.)
| | - Lixin Wang
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China (E.W., Y.Z., L.W.)
- Department of Vascular Surgery (Xiamen), Zhongshan Hospital, Fudan University, Xiamen, China (L.W.)
| | - Ben He
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, China (X. Han, Y.L., L.S., B.H.)
| | - Bin Zhou
- CAS CEMCS-CUHK Joint Laboratories, New Cornerstone Science Laboratory, Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai (X. Han, H. Zhu, X. Huang, W.P., M.Z., H. Zhao, Z.L., B.Z.)
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou (K.L., B.Z.)
- School of Life Science and Technology, ShanghaiTech University, China (B.Z.)
| |
Collapse
|
2
|
Chen J, Li B, Zuo S, Zhang K, Dai J, Chen L, Zhao Y. Pattern Recognition-Driven Detection of Circadian-Disruptive Compounds from Gene Expressions: High-Throughput Screening and Experimental Verification. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:5960-5972. [PMID: 40120133 DOI: 10.1021/acs.est.4c12466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Circadian rhythms regulate the timing of numerous biological functions in organisms. Besides well-known external stimuli like the light-dark cycle and temperature, circadian rhythms can also be modulated by environmental substances. However, this area remains largely underexplored. Here, we developed a robust Pattern Recognition-Driven Prediction Approach (PRD-PA) that enables the identification of circadian-disruptive compounds from large-scale zebrafish transcriptomic profiling. The approach utilizes a circadian gene panel consisting of over 270 Circadian-Indicating Genes (CIGs) with stable and robust periodicity and combines it with a predictive model, known as the Differential Gene Expression Values of an Individual Comparison Model (DGVICM), that can effectively predict internal circadian phases from transcriptomic samples. By analyzing 692 aggregated gene expression profiles across 40 environmental substances, several were identified as having significant circadian-disruptive potential. These include glucocorticoids (e.g., prednisone (PRE) and triamcinolone (TRI)), the antithyroid agent propylthiouracil (PTU), and the widely used UV filter benzophenone-3 (BP-3). Both glucocorticoids and PTU are well-documented disruptors of circadian rhythms, and BP-3's circadian-disrupting properties were validated through experimental exposures. Moreover, BP-3 analogs, including 2,4-dihydroxybenzophenone (BP-1) and 2,2'-dihydroxy-4-methoxybenzophenone (BP-8), were also found to exhibit similar circadian-disruptive effects. Overall, the present findings demonstrated the reliability of the PRD-PA approach for circadian disruption screening and highlighted the presence of diverse circadian-disruptive substances in our environment.
Collapse
Affiliation(s)
- Jierong Chen
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Boyang Li
- Department of Industrial Engineering and Management, College of Engineering, Peking University, Beijing 100080, China
| | - Shaoqi Zuo
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Kun Zhang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jiayin Dai
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Lili Chen
- School of Public Health, Southeast University, Nanjing 210009, China
| | - Yanbin Zhao
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
3
|
Wang Z, Wang S, Bi Y, Boiti A, Zhang S, Vallone D, Lan X, Foulkes NS, Zhao H. Light-regulated microRNAs shape dynamic gene expression in the zebrafish circadian clock. PLoS Genet 2025; 21:e1011545. [PMID: 39777894 PMCID: PMC11750094 DOI: 10.1371/journal.pgen.1011545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 01/21/2025] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
A key property of the circadian clock is that it is reset by light to remain synchronized with the day-night cycle. An attractive model to explore light input to the circadian clock in vertebrates is the zebrafish. Circadian clocks in zebrafish peripheral tissues and even zebrafish-derived cell lines are entrainable by direct light exposure thus providing unique insight into the function and evolution of light regulatory pathways. Our previous work has revealed that light-induced gene transcription is a key step in the entrainment of the circadian clock as well as enabling the more general adaptation of zebrafish cells to sunlight exposure. However, considerable evidence points to post-transcriptional regulatory mechanisms, notably microRNAs (miRNAs), playing an essential role in shaping dynamic changes in mRNA levels. Therefore, does light directly impact the function of miRNAs? Are there light-regulated miRNAs and if so, which classes of mRNA do they target? To address these questions, we performed a complete sequencing analysis of light-induced changes in the zebrafish transcriptome, encompassing small non-coding RNAs as well as mRNAs. Importantly, we identified sets of light-regulated miRNAs, with many regulatory targets representing light-inducible mRNAs including circadian clock genes and genes involved in redox homeostasis. We subsequently focused on the light-responsive miR-204-3-3p and miR-430a-3p which are predicted to regulate the expression of cryptochrome genes (cry1a and cry1b). Luciferase reporter assays validated the target binding of miR-204-3-3p and miR-430a-3p to the 3'UTRs of cry1a and cry1b, respectively. Furthermore, treatment with mimics and inhibitors of these two miRNAs significantly affected the dynamic expression of their target genes but also other core clock components (clock1a, bmal1b, per1b, per2, per3), as well as the rhythmic locomotor activity of zebrafish larvae. Thus, our identification of light-responsive miRNAs reveals new intricacy in the multi-level regulation of the circadian clockwork by light.
Collapse
Affiliation(s)
- Zuo Wang
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, China
| | - Shuang Wang
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, China
| | - Yi Bi
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, China
- Institute of Biological and Chemical Systems, Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Alessandra Boiti
- Institute of Biological and Chemical Systems, Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Shengxiang Zhang
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, China
| | - Daniela Vallone
- Institute of Biological and Chemical Systems, Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Nicholas S. Foulkes
- Institute of Biological and Chemical Systems, Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Haiyu Zhao
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, China
| |
Collapse
|
4
|
Fukuda R, Pak K, Kiuchi M, Hirata N, Mochimaru N, Tanaka R, Mitsui M, Ohya Y, Yoshida K. Longitudinal Correlations between Molecular Compositions of Stratum Corneum and Breast Milk Factors during Infancy: A Prospective Birth Cohort Study. Nutrients 2024; 16:1897. [PMID: 38931252 PMCID: PMC11206726 DOI: 10.3390/nu16121897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/31/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Breast milk contains numerous factors that are involved in the maturation of the immune system and development of the gut microbiota in infants. These factors include transforming growth factor-β1 and 2, immunoglobin A, and lactoferrin. Breast milk factors may also affect epidermal differentiation and the stratum corneum (SC) barrier in infants, but no studies examining these associations over time during infancy have been reported. In this single-center exploratory study, we measured the molecular components of the SC using confocal Raman spectroscopy at 0, 1, 2, 6, and 12 months of age in 39 infants born at our hospital. Breast milk factor concentrations from their mothers' breast milk were determined. Correlation coefficients for the two datasets were estimated for each molecular component of the SC and breast milk factor at each age and SC depth. The results showed that breast milk factors and molecular components of the SC during infancy were partly correlated with infant age in months and SC depth, suggesting that breast milk factors influence the maturation of the SC components. These findings may improve understanding of the pathogenesis of skin diseases associated with skin barrier abnormalities.
Collapse
Affiliation(s)
- Risa Fukuda
- Division of Dermatology, National Center for Child Health and Development, Tokyo 157-8535, Japan; (R.F.); (R.T.)
| | - Kyongsun Pak
- Division of Biostatistics, Department of Data Management, Center of Clinical Research and Development, National Center for Child Health and Development, Tokyo 157-8535, Japan
| | - Megumi Kiuchi
- Division of Research and Development, Pigeon Corporation, Ibaraki 300-2495, Japan
| | - Naoko Hirata
- Division of Research and Development, Pigeon Corporation, Ibaraki 300-2495, Japan
| | - Naoko Mochimaru
- Division of Dermatology, National Center for Child Health and Development, Tokyo 157-8535, Japan; (R.F.); (R.T.)
| | - Ryo Tanaka
- Division of Dermatology, National Center for Child Health and Development, Tokyo 157-8535, Japan; (R.F.); (R.T.)
| | - Mari Mitsui
- Center for Maternal-Fetal, Neonatal and Reproductive Medicine, National Center for Child Health and Development, Tokyo 157-8535, Japan
| | - Yukihiro Ohya
- Allergy Center, National Center for Child Health and Development, Tokyo 157-8535, Japan
| | - Kazue Yoshida
- Division of Dermatology, National Center for Child Health and Development, Tokyo 157-8535, Japan; (R.F.); (R.T.)
- Allergy Center, National Center for Child Health and Development, Tokyo 157-8535, Japan
| |
Collapse
|
5
|
Murgo E, Falco G, Serviddio G, Mazzoccoli G, Colangelo T. Circadian patterns of growth factor receptor-dependent signaling and implications for carcinogenesis. Cell Commun Signal 2024; 22:319. [PMID: 38858728 PMCID: PMC11163765 DOI: 10.1186/s12964-024-01676-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/21/2024] [Indexed: 06/12/2024] Open
Abstract
Several different signaling pathways that regulate cell proliferation and differentiation are initiated by binding of ligands to cell-surface and membrane-bound enzyme-linked receptors, such as receptor tyrosine kinases and serine-threonine kinases. They prompt phosphorylation of tyrosine and serine-threonine residues and initiate downstream signaling pathways and priming of intracellular molecules that convey the signal in the cytoplasm and nucleus, with transcriptional activation of specific genes enriching cell growth and survival-related cascades. These cell processes are rhythmically driven by molecular clockworks endowed in every cell type and when deregulated play a crucial role in cancer onset and progression. Growth factors and their matching receptor-dependent signaling are frequently overexpressed and/or dysregulated in many cancer types. In this review we focus on the interplay between biological clocks and Growth Factor Receptor-dependent signaling in the context of carcinogenesis.
Collapse
Affiliation(s)
- Emanuele Murgo
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Laboratory, Fondazione IRCCS "Casa Sollievo della Sofferenza",, Opera di Padre Pio da Pietrelcina, San Giovanni Rotondo, 71013, Italy
| | - Giorgia Falco
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Laboratory, Fondazione IRCCS "Casa Sollievo della Sofferenza",, Opera di Padre Pio da Pietrelcina, San Giovanni Rotondo, 71013, Italy
| | - Gaetano Serviddio
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Gianluigi Mazzoccoli
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Laboratory, Fondazione IRCCS "Casa Sollievo della Sofferenza",, Opera di Padre Pio da Pietrelcina, San Giovanni Rotondo, 71013, Italy.
| | - Tommaso Colangelo
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy.
- Cancer Cell Signaling Unit, Fondazione IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo (FG), San Giovanni Rotondo, Italy.
| |
Collapse
|
6
|
Ding C, Xiao T, Deng Y, Yang H, Xu B, Li J, Lv Z. The Teleost CXCL13-CXCR5 Axis Induces Inflammatory Cytokine Expression through the Akt-NF-κB, p38-AP-1, and p38-NF-κB Pathways. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:317-334. [PMID: 38054894 DOI: 10.4049/jimmunol.2300237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 11/08/2023] [Indexed: 12/07/2023]
Abstract
The ancestors of chemokines originate in the most primitive of vertebrates, which has recently attracted great interest in the immune functions and the underlying mechanisms of fish chemokines. In the current study, we identified an evolutionarily conserved chemokine, CiCXCL13, from a teleost fish, grass carp. CiCXCL13 was characterized by a typical SCY (small cytokine CXC) domain and four cysteine residues (C34, C36, C61, C77), with the first two cysteines separated by a random amino acid residue, although it shared 24.2-54.8% identity with the counterparts from other vertebrates. CiCXCL13 was an inducible chemokine, whose expression was significantly upregulated in the immune tissues of grass carps after grass carp reovirus infection. CiCXCL13 could bind to the membrane of grass carp head kidney leukocytes and promote cell migration, NO release, and the expression of >15 inflammatory cytokines, including IL-1β, TNF-α, IL-10 and TGF-β1, thus regulating the inflammatory response. Mechanistically, CiCXCL13 interacted with its evolutionarily conserved receptor CiCXCR5 and activated the Akt-NF-κB and p38-AP-1 pathways, as well as a previously unrevealed p38-NF-κB pathway, to efficiently induce inflammatory cytokine expression, which was distinct from that reported in mammals. Zebrafish CXCL13 induced inflammatory cytokine expression through Akt, p38, NF-κB, and AP-1 as CiCXCL13. Meanwhile, the CiCXCL13-CiCXCR5 axis-mediated inflammatory activity was negatively shaped by grass carp atypical chemokine receptor 2 (CiACKR2). The present study is, to our knowledge, the first to comprehensively define the immune function of CXCL13 in inflammatory regulation and the underlying mechanism in teleosts, and it provides a valuable perspective on the evolution and biology of fish chemokines.
Collapse
Affiliation(s)
- Chunhua Ding
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, China; and Fisheries College, Hunan Agricultural University, Changsha, China
| | - Tiaoyi Xiao
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, China; and Fisheries College, Hunan Agricultural University, Changsha, China
| | - Yadong Deng
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, China; and Fisheries College, Hunan Agricultural University, Changsha, China
| | - Hong Yang
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, China; and Fisheries College, Hunan Agricultural University, Changsha, China
| | - Baohong Xu
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, China; and Fisheries College, Hunan Agricultural University, Changsha, China
| | - Junhua Li
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, China; and Fisheries College, Hunan Agricultural University, Changsha, China
| | - Zhao Lv
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, China; and Fisheries College, Hunan Agricultural University, Changsha, China
| |
Collapse
|
7
|
Zinck NW, McInnis SJL, Franz-Odendaal TA. Intravitreal injection of FGF and TGF-β inhibitors disrupts cranial cartilage development. Differentiation 2023; 133:51-59. [PMID: 37481903 DOI: 10.1016/j.diff.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/25/2023]
Abstract
Cartilage development is a tightly regulated process that requires the interaction of epithelial and mesenchymal tissues layers to initiate the aggregation of mesenchyme in a condensation. Several signaling molecules have been implicated in cartilage formation including FGFs, WNTs, and members of the TGF-β super family. However, little is known about the earliest signals involved in these initial phases of development. Here we aimed to investigate whether direct intravitreal injection of pharmaceutical inhibitors for FGF and TGF-β signaling would perturb cranial cartilages in zebrafish. Via wholemount bone and cartilage staining, we found effects on multiple cranial cartilage elements. We found no effect on scleral cartilage development, however, the epiphyseal bar, basihyal, and basicapsular cartilages were disrupted. Interestingly, the epiphyseal bar arises from the same progenitor pool as the scleral cartilage, namely, the periocular ectomesenchyme. This study adds to the foundational knowledge about condensation induction of cranial cartilage development and provides insight into the timing and signaling involved in the early development of several craniofacial cartilage elements in zebrafish.
Collapse
Affiliation(s)
- Nicholas W Zinck
- Department of Medical Neuroscience, Dalhousie University, 5850 College Street, Halifax, NS, B3H 4R2, Canada; Department of Biology, Mount Saint Vincent University, 166 Bedford Highway, Halifax, NS, B3M 2J6, Canada
| | - Shea J L McInnis
- Department of Biology, Mount Saint Vincent University, 166 Bedford Highway, Halifax, NS, B3M 2J6, Canada; Department of Biology, Saint Mary's University, 923 Robie Street, Halifax, NS, B3H 3C3, Canada
| | - Tamara A Franz-Odendaal
- Department of Biology, Mount Saint Vincent University, 166 Bedford Highway, Halifax, NS, B3M 2J6, Canada.
| |
Collapse
|
8
|
Varshney S, Gora AH, Kiron V, Siriyappagouder P, Dahle D, Kögel T, Ørnsrud R, Olsvik PA. Polystyrene nanoplastics enhance the toxicological effects of DDE in zebrafish (Danio rerio) larvae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160457. [PMID: 36435242 DOI: 10.1016/j.scitotenv.2022.160457] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/15/2022] [Accepted: 11/20/2022] [Indexed: 06/16/2023]
Abstract
Anthropogenic releases of plastics, persistent organic pollutants (POPs), and heavy metals can impact the environment, including aquatic ecosystems. Nanoplastics (NPs) have recently emerged as pervasive environmental pollutants that have the ability to adsorb POPs and can cause stress in organisms. Among POPs, DDT and its metabolites are ubiquitous environmental pollutants due to their long persistence. Despite the discontinued use of DDT in Europe, DDT and its metabolites (primarily p,p'-DDE) are still found at detectable levels in fish feed used in salmon aquaculture. Our study aimed to look at the individual and combined toxicity of NPs (50 mg/L polystyrene) and DDE (100 μg/L) using zebrafish larvae as a model. We found no significant morphological, cardiac, respiratory, or behavioural changes in zebrafish larvae exposed to NPs alone. Conversely, morphological, cardiac and respiratory alterations were observed in zebrafish larvae exposed to DDE and NPs + DDE. Interestingly, behavioural changes were only observed in zebrafish larvae exposed to NPs + DDE. These findings were supported by RNA-seq results, which showed that some cardiac, vascular, and immunogenic pathways were downregulated only in zebrafish larvae exposed to NPs + DDE. In summary, we found an enhanced toxicological impact of DDE when combined with NPs.
Collapse
Affiliation(s)
- Shubham Varshney
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Adnan H Gora
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Viswanath Kiron
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | | | - Dalia Dahle
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Tanja Kögel
- Institute of Marine Research, Bergen, Norway; Faculty of Mathematics and Natural Sciences, University of Bergen, Norway
| | | | - Pål A Olsvik
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway; Institute of Marine Research, Bergen, Norway.
| |
Collapse
|
9
|
Sleep quality traits correlate with inflammatory markers in the breast tissue of women. Cytokine 2022; 160:156028. [PMID: 36099755 DOI: 10.1016/j.cyto.2022.156028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 08/23/2022] [Accepted: 08/30/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Several mechanisms have been posited to play a role in the sleep and breast cancer association, including alterations in immune function, but evidence remains inconclusive. A closer look at how sleep quality traits affect the breast microenvironment may provide clues for molecular mechanisms underlying the link between sleep and breast cancer. We examined the association between sleep quality traits (sleep duration, sleep aids, and insomnia) and tissue-based protein levels and gene expression of several inflammatory markers associated with breast cancer. METHODS Breast tissues (normal n = 165 and adipose n = 74) were surgically obtained from women diagnosed with breast cancer. Protein levels by immunohistochemistry were determined using the quickscore method for 11 inflammatory markers in the normal epithelial breast tissue (interleukin (IL)-6, IL-8, IL-10, tumor necrosis factor-alpha (TNF-α), C-reactive protein (CRP), cyclooxygenase-2 (COX-2), leptin, serum amyloid A1 (SAA1), lactoferrin, transforming growth factor-beta (TGF-β), and signal transducer and activator of transcription 3 markers (STAT3). Relative quantification of 4 genes (COX-2, IL-6, TNF-α and LEP) in the adipose breast tissue was carried out using qPCR. Patient characteristics and sleep traits (average sleep duration per night, taking sleeping aids in the past year, and the average number of insomnia episodes per month) were determined by telephone interview. Associations were tested using Spearman's rank correlation (rs) coefficients adjusted (ars) for age at surgery, menopausal status and PCR batch when applicable. Sleep duration categories (<7, 7-9, >9 h) and root- or log-transformed biomarker levels were examined with adjusted linear mixed models. RESULTS TGF-β and CRP levels in normal epithelial breast tissue were positively correlated with sleep aids (ars = 0.28, p = 0.013), and insomnia (ars = 0.23, p = 0.044) in postmenopausal women, respectively. IL-6 in the adipose breast tissue was inversely correlated with sleep aids (ars = -0.26, p = 0.029) in all women. None of the sleep traits significantly correlated with inflammatory markers in premenopausal women. Several markers tended to correlate at 0.05 ≥ p ≤ 0.10. Adjusted mean levels of inflammatory markers were significantly different across sleep duration categories (<7, 7-9, >9 h). Higher mean levels of IL-6, CRP, IL-10, and IL-6 and COX-2 expression were noted in the breast tissues of women sleeping < 7, and particularly, >9 h per night (p < 0.05). CONCLUSION Our findings indicate that sleep duration, sleep aids, and insomnia may differently affect women's breast tissues depending on menopausal status. From a public health perspective, these results warrant further validation in larger studies. Since sleep is a modifiable factor, it may be an interesting approach for breast cancer prevention.
Collapse
|
10
|
Feng G, Zhao J, Peng J, Luo B, Zhang J, Chen L, Xu Z. Circadian clock—A promising scientific target in oral science. Front Physiol 2022; 13:1031519. [PMCID: PMC9708896 DOI: 10.3389/fphys.2022.1031519] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/31/2022] [Indexed: 11/17/2022] Open
Abstract
The oral and maxillofacial organs play vital roles in chewing, maintaining facial beauty, and speaking. Almost all physiological processes display circadian rhythms that are driven by the circadian clock, allowing organisms to adapt to the changing environment. In recent years, increasing evidence has shown that the circadian clock system participates in oral and maxillofacial physiological and pathological processes, such as jaw and tooth development, salivary gland function, craniofacial malformations, oral carcinoma and other diseases. However, the roles of the circadian clock in oral science have not yet been comprehensively reviewed. Therefore, This paper provides a systematic and integrated perspective on the function of the circadian clock in the fields of oral science, reviews recent advances in terms of the circadian clock in oral and maxillofacial development and disease, dialectically analyzes the importance of the circadian clock system and circadian rhythm to the activities of oral and maxillofacial tissues, and focuses on analyzing the mechanism of the circadian clock in the maintenance of oral health, affecting the common diseases of the oral and maxillofacial region and the process of oral-related systemic diseases, sums up the chronotherapy and preventive measures for oral-related diseases based on changes in tissue activity circadian rhythms, meanwhile, comes up with a new viewpoint to promote oral health and human health.
Collapse
Affiliation(s)
- Guangxia Feng
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiajia Zhao
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Jinfeng Peng
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Beibei Luo
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaqi Zhang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
- *Correspondence: Lili Chen, ; Zhi Xu,
| | - Zhi Xu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
- *Correspondence: Lili Chen, ; Zhi Xu,
| |
Collapse
|
11
|
Mirian M, Hariri A, Yadollahi M, Kohandel M. Circadian and Immunity Cycle Talk in Cancer Destination: From Biological Aspects to In Silico Analysis. Cancers (Basel) 2022; 14:1578. [PMID: 35326729 PMCID: PMC8945968 DOI: 10.3390/cancers14061578] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 02/01/2023] Open
Abstract
Cancer is the leading cause of death and a major problem to increasing life expectancy worldwide. In recent years, various approaches such as surgery, chemotherapy, radiation, targeted therapies, and the newest pillar, immunotherapy, have been developed to treat cancer. Among key factors impacting the effectiveness of treatment, the administration of drugs based on the circadian rhythm in a person and within individuals can significantly elevate drug efficacy, reduce adverse effects, and prevent drug resistance. Circadian clocks also affect various physiological processes such as the sleep cycle, body temperature cycle, digestive and cardiovascular processes, and endocrine and immune systems. In recent years, to achieve precision patterns for drug administration using computational methods, the interaction of the effects of drugs and their cellular pathways has been considered more seriously. Integrated data-derived pathological images and genomics, transcriptomics, and proteomics analyses have provided an understanding of the molecular basis of cancer and dramatically revealed interactions between circadian and immunity cycles. Here, we describe crosstalk between the circadian cycle signaling pathway and immunity cycle in cancer and discuss how tumor microenvironment affects the influence on treatment process based on individuals' genetic differences. Moreover, we highlight recent advances in computational modeling that pave the way for personalized immune chronotherapy.
Collapse
Affiliation(s)
- Mina Mirian
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran; (M.M.); (A.H.)
| | - Amirali Hariri
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran; (M.M.); (A.H.)
| | - Mahtasadat Yadollahi
- School of Pharmacology and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran;
| | - Mohammad Kohandel
- Department of Applied Mathematics, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
12
|
Toedebusch RG, Lucchesi CA, Debebe ET, Wittenburg LA, Chen X, Toedebusch CM. Microglia-Derived Olfactomedin-like 3 Promotes Pro-Tumorigenic Microglial Function and Malignant Features of Glioma Cells. Int J Mol Sci 2021; 22:13052. [PMID: 34884869 PMCID: PMC8657851 DOI: 10.3390/ijms222313052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022] Open
Abstract
Under the influence of transforming growth factor-beta (TGFβ), glioma-associated microglia produce molecules that promote glioma growth and invasion. Olfactomedin-like 3 (Olfml3), a novel, secreted glycoprotein, is known to promote several non-CNS cancers. While it is a direct TGFβ1 target gene in microglia, the role of microglia-derived OLFML3 in glioma progression is unknown. Here, we tested the hypotheses that microglial Olfml3 is integral to the pro-tumorigenic glioma-associated microglia phenotype and promotes glioma cell malignancy. Using an Olfml3 knockout microglial cell line (N9), we demonstrated that Olfml3 is a direct target gene of all TGFβ isoforms in murine microglia. Moreover, loss of Olfml3 attenuated TGFβ-induced restraint on microglial immune function and production of cytokines that are critical in promoting glioma cell malignancy. Importantly, microglia-derived OLFML3 directly contributes to glioma cell malignancy through increased migration and invasion. While exposure to conditioned medium (CM) from isogenic control microglia pre-treated with TGFβ increased mouse glioma cell (GL261) migration and invasion, this effect was abolished with exposure to CM from TGFβ-treated Olfml3-/- microglia. Taken together, our data suggest that Olfml3 may serve as a gatekeeper for TGFβ-induced microglial gene expression, thereby promoting the pro-tumorigenic microglia phenotype and glioma cell malignancy.
Collapse
Affiliation(s)
| | | | | | | | | | - Christine M. Toedebusch
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; (R.G.T.); (C.A.L.); (E.T.D.); (L.A.W.); (X.C.)
| |
Collapse
|
13
|
Analysis of the influence of adalimumab to the expression pattern of mRNA and protein of TGF-β1-3 in dermal fibroblast exposed to lipopolysaccharide. Postepy Dermatol Alergol 2021; 38:597-602. [PMID: 34658700 PMCID: PMC8501426 DOI: 10.5114/ada.2020.94181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 03/03/2020] [Indexed: 01/17/2023] Open
Abstract
Introduction Psoriasis is a inflammatory illness, where incorrect expression of cytokines and bacteria lipopolysaccharide are observed. In the therapy of moderate to severe psoriasis anti-TNF drugs, i.e. adalimumab are used which have the influence for secreting another cytokines, such as transforming growth factor-β (TGF-β). Aim To analyse the expression profile of mRNA TGF-β1-3 and proteins (TGF-β1 and TGF-β2) it codes in normal human dermal fibroblasts (NHDF) exposed to bacterial lipopolysaccharide (induction of inflammation) and adalimumab (anti-TNF drug). Material and methods NHDFs treated with bacterial lipopolysaccharide at a medium concentration of 1 μg/ml for 8 h, and then added to an adalimumab culture at a concentration of 8 μg/ml and continued exposure of the fibroblasts to it for 2, 8 and 24 h. The molecular analysis included microarray, RTqPCR and ELISA assays. Results Treating the skin fibroblast cells with LPS resulted in significant statistical changes in the expression of TGF-β1 (↑) and TGF-β2 (↓) in comparison to the control culture. Likewise, after adding adalimumab to the culture of NHDF treated previously with LPS, significant changes in the expression of TGF-β1 (↑) and TGF-β2 (↓) were noted in comparison to the control culture (p < 0.05). On the protein level it can be determined that LPS and adalimumab cause an increase in the concentration of TGF-β1 and a decrease in the expression of TGF-β2 in comparison to the control culture. Conclusions Blocking the signalling dependant on TNF-α using adalimumab causes an increase in the expression of TGF-β1 and a simultaneous decrease in the case of TGF-β2.
Collapse
|
14
|
Decapentaplegic Acutely Defines the Connectivity of Central Pacemaker Neurons in Drosophila. J Neurosci 2021; 41:8338-8350. [PMID: 34429376 DOI: 10.1523/jneurosci.0397-21.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 07/12/2021] [Accepted: 08/11/2021] [Indexed: 11/21/2022] Open
Abstract
Rhythmic rest-activity cycles are controlled by an endogenous clock. In Drosophila, this clock resides in ∼150 neurons organized in clusters whose hierarchy changes in response to environmental conditions. The concerted activity of the circadian network is necessary for the adaptive responses to synchronizing environmental stimuli. Thus far, work was devoted to unravel the logic of the coordination of different clusters focusing on neurotransmitters and neuropeptides. We further explored communication in the adult male brain through ligands belonging to the bone morphogenetic protein (BMP) pathway. Herein we show that the lateral ventral neurons (LNvs) express the small morphogen decapentaplegic (DPP). DPP expression in the large LNvs triggered a period lengthening phenotype, the downregulation of which caused reduced rhythmicity and affected anticipation at dawn and dusk, underscoring DPP per se conveys time-of-day relevant information. Surprisingly, DPP expression in the large LNvs impaired circadian remodeling of the small LNv axonal terminals, likely through local modulation of the guanine nucleotide exchange factor Trio. These findings open the provocative possibility that the BMP pathway is recruited to strengthen/reduce the connectivity among specific clusters along the day and thus modulate the contribution of the clusters to the circadian network.SIGNIFICANCE STATEMENT The circadian clock relies on the communication between groups of so-called clock neurons to coordinate physiology and behavior to the optimal times across the day, predicting and adapting to a changing environment. The circadian network relies on neurotransmitters and neuropeptides to fine-tune connectivity among clock neurons and thus give rise to a coherent output. Herein we show that decapentaplegic, a ligand belonging to the BMP retrograde signaling pathway required for coordinated growth during development, is recruited by a group of circadian neurons in the adult brain to trigger structural remodeling of terminals on a daily basis.
Collapse
|
15
|
Ruggiero G, Ben-Moshe Livne Z, Wexler Y, Geyer N, Vallone D, Gothilf Y, Foulkes NS. Period 2: A Regulator of Multiple Tissue-Specific Circadian Functions. Front Mol Neurosci 2021; 14:718387. [PMID: 34539343 PMCID: PMC8446368 DOI: 10.3389/fnmol.2021.718387] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/03/2021] [Indexed: 12/26/2022] Open
Abstract
The zebrafish represents a powerful model for exploring how light regulates the circadian clock due to the direct light sensitivity of its peripheral clocks, a property that is retained even in organ cultures as well as zebrafish-derived cell lines. Light-inducible expression of the per2 clock gene has been predicted to play a vital function in relaying light information to the core circadian clock mechanism in many organisms, including zebrafish. To directly test the contribution of per2 to circadian clock function in zebrafish, we have generated a loss-of-function per2 gene mutation. Our results reveal a tissue-specific role for the per2 gene in maintaining rhythmic expression of circadian clock genes, as well as clock-controlled genes, and an impact on the rhythmic behavior of intact zebrafish larvae. Furthermore, we demonstrate that disruption of the per2 gene impacts on the circadian regulation of the cell cycle in vivo. Based on these results, we hypothesize that in addition to serving as a central element of the light input pathway to the circadian clock, per2 acts as circadian regulator of tissue-specific physiological functions in zebrafish.
Collapse
Affiliation(s)
- Gennaro Ruggiero
- Institute of Biological and Chemical Systems, Karlsruhe Institute of Technology, Karlsruhe, Germany.,Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Zohar Ben-Moshe Livne
- School of Neurobiology, Biochemistry and Biophysics, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yair Wexler
- School of Neurobiology, Biochemistry and Biophysics, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Nathalie Geyer
- Institute of Biological and Chemical Systems, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Daniela Vallone
- Institute of Biological and Chemical Systems, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Yoav Gothilf
- School of Neurobiology, Biochemistry and Biophysics, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Nicholas S Foulkes
- Institute of Biological and Chemical Systems, Karlsruhe Institute of Technology, Karlsruhe, Germany
| |
Collapse
|
16
|
Finger AM, Jäschke S, Del Olmo M, Hurwitz R, Granada AE, Herzel H, Kramer A. Intercellular coupling between peripheral circadian oscillators by TGF-β signaling. SCIENCE ADVANCES 2021; 7:7/30/eabg5174. [PMID: 34301601 PMCID: PMC8302137 DOI: 10.1126/sciadv.abg5174] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 06/08/2021] [Indexed: 05/04/2023]
Abstract
Coupling between cell-autonomous circadian oscillators is crucial to prevent desynchronization of cellular networks and disruption of circadian tissue functions. While neuronal oscillators within the mammalian central clock, the suprachiasmatic nucleus, couple intercellularly, coupling among peripheral oscillators is controversial and the molecular mechanisms are unknown. Using two- and three-dimensional mammalian culture models in vitro (mainly human U-2 OS cells) and ex vivo, we show that peripheral oscillators couple via paracrine pathways. We identify transforming growth factor-β (TGF-β) as peripheral coupling factor that mediates paracrine phase adjustment of molecular clocks through transcriptional regulation of core-clock genes. Disruption of TGF-β signaling causes desynchronization of oscillator networks resulting in reduced amplitude and increased sensitivity toward external zeitgebers. Our findings reveal an unknown mechanism for peripheral clock synchrony with implications for rhythmic organ functions and circadian health.
Collapse
Affiliation(s)
- Anna-Marie Finger
- Charité Universitätsmedizin Berlin, Institute for Medical Immunology, Laboratory of Chronobiology, Charitéplatz 1, 10117 Berlin, Germany.
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Sebastian Jäschke
- Charité Universitätsmedizin Berlin, Institute for Medical Immunology, Laboratory of Chronobiology, Charitéplatz 1, 10117 Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Marta Del Olmo
- Charité and Humboldt Universität zu Berlin, Institute for Theoretical Biology, Laboratory of Theoretical Chronobiology, Philippstraße 13, 10115 Berlin, Germany
| | - Robert Hurwitz
- Max Planck Institute for Infection Biology, Biochemistry-Protein Purification Core Facility, Charitéplatz 1, 10117 Berlin, Germany
| | - Adrián E Granada
- Charité-Universitätsmedizin, Charité Comprehensive Cancer Center, Laboratory of Systems Oncology, Charitéplatz 1, 10117 Berlin, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center, Partner Site Berlin, 69120, Heidelberg, Germany
| | - Hanspeter Herzel
- Charité and Humboldt Universität zu Berlin, Institute for Theoretical Biology, Laboratory of Theoretical Chronobiology, Philippstraße 13, 10115 Berlin, Germany
| | - Achim Kramer
- Charité Universitätsmedizin Berlin, Institute for Medical Immunology, Laboratory of Chronobiology, Charitéplatz 1, 10117 Berlin, Germany.
- Berlin Institute of Health (BIH), Berlin, Germany
| |
Collapse
|
17
|
Krylov VV, Izvekov EI, Pavlova VV, Pankova NA, Osipova EA. Circadian rhythms in zebrafish (Danio rerio) behaviour and the sources of their variability. Biol Rev Camb Philos Soc 2020; 96:785-797. [PMID: 33331134 DOI: 10.1111/brv.12678] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 12/12/2022]
Abstract
Over recent decades, changes in zebrafish (Danio rerio) behaviour have become popular quantitative indicators in biomedical studies. The circadian rhythms of behavioural processes in zebrafish are known to enable effective utilization of energy and resources, therefore attracting interest in zebrafish as a research model. This review covers a variety of circadian behaviours in this species, including diurnal rhythms of spawning, feeding, locomotor activity, shoaling, light/dark preference, and vertical position preference. Changes in circadian activity during zebrafish ontogeny are reviewed, including ageing-related alterations and chemically induced variations in rhythmicity patterns. Both exogenous and endogenous sources of inter-individual variability in zebrafish circadian behaviour are detailed. Additionally, we focus on different environmental factors with the potential to entrain circadian processes in zebrafish. This review describes two principal ways whereby diurnal behavioural rhythms can be entrained: (i) modulation of organismal physiological state, which can have masking or enhancing effects on behavioural endpoints related to endogenous circadian rhythms, and (ii) modulation of period and amplitude of the endogenous circadian rhythm due to competitive relationships between the primary and secondary zeitgebers. In addition, different peripheral oscillators in zebrafish can be entrained by diverse zeitgebers. This complicated orchestra of divergent influences may cause variability in zebrafish circadian behaviours, which should be given attention when planning behavioural studies.
Collapse
Affiliation(s)
- Viacheslav V Krylov
- I.D. Papanin Institute for Biology of Inland Waters Russian Academy of Sciences, Borok, Nekouz, Yaroslavl Oblast, 152742, Russia
| | - Evgeny I Izvekov
- I.D. Papanin Institute for Biology of Inland Waters Russian Academy of Sciences, Borok, Nekouz, Yaroslavl Oblast, 152742, Russia
| | - Vera V Pavlova
- I.D. Papanin Institute for Biology of Inland Waters Russian Academy of Sciences, Borok, Nekouz, Yaroslavl Oblast, 152742, Russia
| | - Natalia A Pankova
- I.D. Papanin Institute for Biology of Inland Waters Russian Academy of Sciences, Borok, Nekouz, Yaroslavl Oblast, 152742, Russia
| | - Elena A Osipova
- I.D. Papanin Institute for Biology of Inland Waters Russian Academy of Sciences, Borok, Nekouz, Yaroslavl Oblast, 152742, Russia
| |
Collapse
|
18
|
Lan H, Zhang W, Jin K, Liu Y, Wang Z. Modulating barriers of tumor microenvironment through nanocarrier systems for improved cancer immunotherapy: a review of current status and future perspective. Drug Deliv 2020; 27:1248-1262. [PMID: 32865029 PMCID: PMC7470050 DOI: 10.1080/10717544.2020.1809559] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/10/2020] [Accepted: 08/10/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer immunotherapy suppresses and destroys tumors by re-activating and sustaining the tumor-immune process, and thus improving the immune response of the body to the tumor. Immunotherapeutic strategies are showing promising results in pre-clinical and clinical trials, however, tumor microenvironment (TME) is extremely immunosuppressive. Thus, their translation from labs to clinics still faces issues. Recently, nanomaterial-based strategies have been developed to modulate the TME for robust immunotherapeutic responses. The combination of nanotechnology with immunotherapy potentiates the effectiveness of immunotherapy by increasing delivery and retention, and by reducing immunomodulation toxicity. This review aims to highlight the barriers offered by TME for hindering the efficiency of immunotherapy for cancer treatment. Next, we highlight various nano-carriers based strategies for modulating those barriers for achieving better therapeutic efficacy of cancer immunotherapy with higher safety. This review will add to the body of scientific knowledge and will be a good reference material for academia and industries.
Collapse
Affiliation(s)
- Huanrong Lan
- Department of Breast and Thyroid Surgery, Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province, China
| | - Wei Zhang
- Rehabilitation and Sports Medicine Research Institute of Zhejiang Province, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Ketao Jin
- Department of Colorectal Surgery, Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province, China
| | - Yuyao Liu
- Department of Colorectal Surgery, Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province, China
| | - Zhen Wang
- Rehabilitation and Sports Medicine Research Institute of Zhejiang Province, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
19
|
A role for TGFβ signalling in medium spiny neuron differentiation of human pluripotent stem cells. Neuronal Signal 2020; 4:NS20200004. [PMID: 32714602 PMCID: PMC7373249 DOI: 10.1042/ns20200004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/06/2020] [Accepted: 04/09/2020] [Indexed: 12/26/2022] Open
Abstract
Activin A and other TGFβ family members have been shown to exhibit a certain degree of promiscuity between their family of receptors. We previously developed an efficient differentiation protocol using Activin A to obtain medium spiny neurons (MSNs) from human pluripotent stem cells (hPSCs). However, the mechanism underlying Activin A-induced MSN fate specification remains largely unknown. Here we begin to tease apart the different components of TGFβ pathways involved in MSN differentiation and demonstrate that Activin A acts exclusively via ALK4/5 receptors to induce MSN progenitor fate during differentiation. Moreover, we show that Alantolactone, an indirect activator of SMAD2/3 signalling, offers an alternative approach to differentiate hPSC-derived forebrain progenitors into MSNs. Further fine tuning of TGFβ pathway by inhibiting BMP signalling with LDN193189 achieves accelerated MSN fate specification. The present study therefore establishes an essential role for TGFβ signalling in human MSN differentiation and provides a fully defined and highly adaptable small molecule-based protocol to obtain MSNs from hPSCs.
Collapse
|
20
|
Simak M, Lu HHS, Yang JM. Boolean function network analysis of time course liver transcriptome data to reveal novel circadian transcriptional regulators in mammals. J Chin Med Assoc 2019; 82:872-880. [PMID: 31469689 DOI: 10.1097/jcma.0000000000000180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Many biological processes in mammals are subject to circadian control at the molecular level. Disruption of circadian rhythms has been demonstrated to be associated with a wide range of diseases, such as diabetes mellitus, mental disorders, and cancer. Although the core circadian genes are well established, there are multiple reports of novel peripheral circadian regulators. The goal of this study was to provide a comprehensive computational analysis to identify novel potential circadian transcriptional regulators. METHODS To fulfill the aforementioned goal, we applied a Boolean function network method to analyze the microarray time course mouse and rat liver datasets available in the literature. The inferred direct pairwise relations were further investigated using the functional annotation tool. This approach generated a list of transcription factors (TFs) and cofactors, which were associated with significantly enriched circadian gene ontology (GO) categories. RESULTS As a result, we identified 93 transcriptional circadian regulators in mouse and 95 transcriptional circadian regulators in rat. Of these, 19 regulators in mouse and 21 regulators in rat were known, whereas the rest were novel. Furthermore, we validated novel circadian TFs with bioinformatics databases, previous large-scale circadian studies, and related small-scale studies. Moreover, according to predictions inferred from ChIP-Seq experiments reported in the database, 40 of our candidate circadian regulators were confirmed to have circadian genes as direct regulatory targets. In addition, we annotated candidate circadian regulators with disorders that were often associated with disruptions of circadian rhythm in the literature. CONCLUSION In summary, our computational analysis, which was followed by an extensive verification by means of a literature review, can contribute to translational study from endocrinology to cancer research and provide insights for future investigation.
Collapse
Affiliation(s)
- Maria Simak
- Bioinformatics Program, Taiwan International Graduate Program, Institute of Information Science, Academia Sinica, Taipei, Taiwan, ROC
- Institute of Statistics, National Chiao Tung University, Hsinchu, Taiwan, ROC
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan, ROC
| | | | - Jinn-Moon Yang
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan, ROC
| |
Collapse
|
21
|
Wolter ME, Svoboda KR. Doing the locomotion: Insights and potential pitfalls associated with using locomotor activity as a readout of the circadian rhythm in larval zebrafish. J Neurosci Methods 2019; 330:108465. [PMID: 31634493 DOI: 10.1016/j.jneumeth.2019.108465] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/20/2019] [Accepted: 10/15/2019] [Indexed: 11/25/2022]
Abstract
BACKGROUND Zebrafish have been used as a model to study circadian rhythms (CRs) for over 20 years by analyzing various endpoints including locomotor activity. Such studies often utilize high-throughput analysis monitoring activity of larvae placed in well plates numbering >48 wells per plate. Although the CR can be influenced by numerous factors, it is not clear if such effects are permanent. Here, we investigated the variability of CRs of larvae analyzed in different types of well plates and determined the permanency of experimentally-induced aberrations in CRs. NEW METHOD Utilized the tracking software Ethovision XT to investigate how different well plate sizes influence the CR. Re-tested subjects for recovery from long-term CR disruptions and evaluated CR patterns at the individual level. RESULTS CR tracking using locomotion as a readout is best in 24 well plates. CR consistency is not maintained in larvae tracked in 48 or 96 well plates. A perturbed CR due to constant light recovered after just 3 days of a normal light/dark cycle. COMPARISON WITH EXISTING METHODS Unlike other CR locomotor-based assays, our approach allowed for a medium-throughput analysis of individual CRs, minimized variability and allowed for the re-evaluation of larval CRs 4-5 days later. CONCLUSIONS This medium-throughput locomotor CR analysis allows for a standardized, less variable approach whereby larvae can be re-tested to identify potential long-term changes after experimental manipulations. Long-term behavioral experiments in 48 or 96 well plates may impart stress on the larvae due to space constraints which could impact nervous system function and/or behavior.
Collapse
Affiliation(s)
- Matthew E Wolter
- Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI 53205, USA
| | - Kurt R Svoboda
- Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI 53205, USA.
| |
Collapse
|
22
|
Falisse E, Ducos B, Stockwell PA, Morison IM, Chatterjee A, Silvestre F. DNA methylation and gene expression alterations in zebrafish early-life stages exposed to the antibacterial agent triclosan. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:1867-1877. [PMID: 30408875 DOI: 10.1016/j.envpol.2018.10.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/07/2018] [Accepted: 10/01/2018] [Indexed: 06/08/2023]
Abstract
There is increasing evidence that toxicant exposure can alter DNA methylation profile, one of the main epigenetic mechanisms, particularly during embryogenesis when DNA methylation patterns are being established. In order to investigate the effects of the antibacterial agent Triclosan on DNA methylation and its correlation with gene expression, zebrafish embryos were exposed during 7 days post-fertilization (starting at maximum 8-cells stage) to 50 and 100 μg/l, two conditions for which increased sensitivity and acclimation have been respectively reported. Although global DNA methylation was not significantly affected, a total of 171 differentially methylated fragments were identified by Reduced Representation Bisulfite Sequencing. The majority of these fragments were found between the two exposed groups, reflecting dose-dependant specific responses. Gene ontology analysis revealed that pathways involved in TGF-β signaling were enriched in larvae exposed to 50 μg/l, while de novo pyrimidine biosynthesis functions were overrepresented in fish exposed to 100 μg/l. In addition, gene expression analysis revealed a positive correlation between mRNA levels and DNA methylation patterns in introns, together with significant alterations of the transcription of genes involved in nervous system development, transcriptional factors and histone methyltransferases. Overall this work provides evidence that Triclosan alters DNA methylation in zebrafish exposed during embryogenesis as well as related genes expression and proposes concentration specific modes of action. Further studies will investigate the possible long-term consequences of these alterations, i.e. latent defects associated with developmental exposure and transgenerational effects, and the possible implications in terms of fitness and adaptation to environmental pollutants.
Collapse
Affiliation(s)
- Elodie Falisse
- Laboratory of Evolutionary and Adaptive Physiology, Institute of Life, Earth and Environment - University of Namur, 61 rue de Bruxelles, 5000, Namur, Belgium
| | - Bertrand Ducos
- High Throughput qPCR Facility of ENS, IBENS, 46 rue d'Ulm, 75005, PARIS, France
| | - Peter A Stockwell
- Department of Biochemistry, University of Otago, 710 Cumberland Street, Dunedin, 9016, New Zealand
| | - Ian M Morison
- Department of Pathology, Dunedin School of Medicine, University of Otago, 270 Great King Street, Dunedin, 9054, New Zealand
| | - Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, 270 Great King Street, Dunedin, 9054, New Zealand
| | - Frédéric Silvestre
- Laboratory of Evolutionary and Adaptive Physiology, Institute of Life, Earth and Environment - University of Namur, 61 rue de Bruxelles, 5000, Namur, Belgium.
| |
Collapse
|
23
|
Rong J, Zhu M, Munro J, Cornish J, McCarthy GM, Dalbeth N, Poulsen RC. Altered expression of the core circadian clock component PERIOD2 contributes to osteoarthritis-like changes in chondrocyte activity. Chronobiol Int 2018; 36:319-331. [PMID: 30403881 DOI: 10.1080/07420528.2018.1540493] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In osteoarthritis, chondrocytes undergo a phenotype shift characterised by reduced expression of SOX9 (sry-box 9) and increased production of cartilage-degrading enzymes, e.g. MMP13 (matrix metalloproteinase 13) and ADAMTS5 (a disintegrin and metalloproteinase with thrombospondin motifs 5). The chondrocyte clock is also altered. Specifically, the peak level of PER2 is elevated, but peak level of BMAL1 reduced in osteoarthritic chondrocytes. The purpose of this study was to determine whether increased PER2 expression causes disease-associated changes in chondrocyte activity and to identify whether known risk factors for osteoarthritis induce changes in PER2 and BMAL1 expression. Primary human chondrocytes isolated from macroscopically normal cartilage were serum-starved overnight then re-fed with serum-replete media with/without interleukin 1β (IL-1β) (10 ng/mL), hydrogen peroxide (100 µM) or basic calcium phosphate (BCP) crystals (50 µg/mL). Peak level of BMAL1 was lower, whereas PER2 levels remained elevated for longer, in chondrocytes treated with IL-1β, hydrogen peroxide or BCP crystals compared to untreated cells. Levels of SOX9 were lower, whereas levels of ADAMTS5 and MMP13 were higher, in chondrocytes exposed to any of the three treatments compared to untreated cells. Knockdown of PER2 using siRNA partially abrogated the effects of each treatment on chondrocyte phenotype marker expression. Similarly, in chondrocytes isolated from osteoarthritic cartilage PER2 knockdown was associated with increased SOX9, reduced ADAMTS5 and reduced RNA and protein levels of MMP13 indicating partial mitigation of the osteoarthritic phenotype. Conversely, further ablation of BMAL1 expression in osteoarthritic chondrocytes resulted in a further reduction in SOX9 and increase in MMP13 expression. Overexpression of PER2 in the H5 chondrocyte cell line led to increased ADAMTS5 and MMP13 and decreased SOX9 expression. Localised inflammation, oxidative stress and BCP crystal deposition in osteoarthritic joints may contribute to disease pathology by inducing changes in the chondrocyte circadian clock.
Collapse
Affiliation(s)
- Jing Rong
- a Department of Medicine , School of Medicine, University of Auckland , Auckland , New Zealand
| | - Mark Zhu
- a Department of Medicine , School of Medicine, University of Auckland , Auckland , New Zealand.,b Department of Surgery, School of Medicine , University of Auckland , Auckland , New Zealand
| | - Jacob Munro
- b Department of Surgery, School of Medicine , University of Auckland , Auckland , New Zealand
| | - Jillian Cornish
- a Department of Medicine , School of Medicine, University of Auckland , Auckland , New Zealand
| | | | - Nicola Dalbeth
- a Department of Medicine , School of Medicine, University of Auckland , Auckland , New Zealand
| | - Raewyn C Poulsen
- a Department of Medicine , School of Medicine, University of Auckland , Auckland , New Zealand
| |
Collapse
|