1
|
Basova LV, Riley T, Franklin D, Delorme-Walker V, Lim WL, Grant I, Letendre SL, Iudicello JE, Cherner M, Ellis RJ, Marcondes MCG. Identifying methamphetamine use predictors in HIV infection: Immune-dopaminergic signatures in peripheral leukocytes and the role of COMT genotype. Brain Behav Immun Health 2024; 42:100873. [PMID: 39430881 PMCID: PMC11490913 DOI: 10.1016/j.bbih.2024.100873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/24/2024] [Accepted: 09/28/2024] [Indexed: 10/22/2024] Open
Abstract
The pursuit of translational biomarkers is complex due to the heterogeneous human pathophysiology, but critical for disease diagnosis, prognosis, monitoring therapeutic efficacy, and for patient stratification. In HIV-associated neurocognitive impairment (NCI), biomarkers that delineate the trajectory of neuropathogenesis and neurocognitive sequelae are critical, particularly considering confounders such as substance use, including Methamphetamine (METH). METH use is a significant health concern among persons living with HIV (PWH), aggravating cognitive deficits and neuroinflammation despite of antiretrovirals, introducing elements in the microenvironment that are fundamentally differerent in relation to non-METH users, such as high levels of dopamine (DA) affecting HIV-innate immune targets. Yet, current biomarkers do not detect these differences. We hypothesized that predefined DA-induced signatures detectable in peripheral blood leukocytes, can distinguish HIV+ METH users compared to HIV-negative or PWH that are non METH users. The elevated expression of CD8A, CREBBP, CCL5, and combinations of dopaminergic pathway transcripts clustered METH users with detectable CSF viral load and major depressive disorder (MDD), indicating neuroimmune-mechanistic links. Cathecol-o-methyltransferase (COMT) gene polymorphisms affecting DA metabolism improved the identification of PWH using METH with biomarkers. The results indicate that underlying immunedopaminergic mechanisms provide signatures and genotypes that can identify PWH that are METH users and their attributes.
Collapse
Affiliation(s)
- Liana V. Basova
- San Diego Biomedical Research Institute, San Diego, CA, 92121, USA
| | - Tera Riley
- San Diego Biomedical Research Institute, San Diego, CA, 92121, USA
- National Institute for Drug Abuse, Summer Internship, 2023, USA
| | - Donald Franklin
- University of California San Diego, HIV Neurobehavioral Research Program, San Diego, CA, 92103, USA
| | | | - Wei Ling Lim
- San Diego Biomedical Research Institute, San Diego, CA, 92121, USA
| | - Igor Grant
- University of California San Diego, HIV Neurobehavioral Research Program, San Diego, CA, 92103, USA
| | - Scott L. Letendre
- University of California San Diego, HIV Neurobehavioral Research Program, San Diego, CA, 92103, USA
| | - Jennifer E. Iudicello
- University of California San Diego, HIV Neurobehavioral Research Program, San Diego, CA, 92103, USA
| | - Mariana Cherner
- University of California San Diego, HIV Neurobehavioral Research Program, San Diego, CA, 92103, USA
| | - Ronald J. Ellis
- University of California San Diego, HIV Neurobehavioral Research Program, San Diego, CA, 92103, USA
| | | |
Collapse
|
2
|
Proulx JM, Park IW, Borgmann K. HIV-1 and methamphetamine co-treatment in primary human astrocytes: TAARgeting ER/UPR dysfunction. NEUROIMMUNE PHARMACOLOGY AND THERAPEUTICS 2024; 3:139-154. [PMID: 39175523 PMCID: PMC11338011 DOI: 10.1515/nipt-2023-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/31/2024] [Indexed: 08/24/2024]
Abstract
Objectives Human immunodeficiency virus 1 (HIV-1) can invade the central nervous system (CNS) early during infection and persist in the CNS for life despite effective antiretroviral treatment. Infection and activation of residential glial cells lead to low viral replication and chronic inflammation, which damage neurons contributing to a spectrum of HIV-associated neurocognitive disorders (HAND). Substance use, including methamphetamine (METH), can increase one's risk and severity of HAND. Here, we investigate HIV-1/METH co-treatment in a key neurosupportive glial cell, astrocytes. Specifically, mitochondria-associated endoplasmic reticulum (ER) membrane (MAM) signaling pathways, such as calcium and the unfolded protein response (UPR), are key mechanisms underlying HAND pathology and arise as potential targets to combat astrocyte dysfunction. Methods Primary human astrocytes were transduced with a pseudotyped HIV-1 model and exposed to low-dose METH for seven days. We assessed changes in astrocyte HIV-1 infection, inflammation, mitochondrial antioxidant and dynamic protein expression, respiratory acitivity, mitochondrial calcium flux, and UPR/MAM mediator expression. We then tested a selective antagonist for METH-binding receptor, trace amine-associated receptor 1 (TAAR1) as a potetnial upstream regulator of METH-induced calcium flux and UPR/MAM mediator expression. Results Chronic METH exposure increased astrocyte HIV-1 infection. Moreover, HIV-1/METH co-treatment suppressed astrocyte antioxidant and metabolic capacity while increasing mitochondrial calcium load and protein expression of UPR messengers and MAM mediators. Notably, HIV-1 increases astrocyte TAAR1 expression, thus, could be a critical regulator of HIV-1/METH co-treatment in astrocytes. Indeed, selective antagonism of TAAR1 significantly inhibited cytosolic calcium flux and induction of UPR/MAM protein expression. Conclusion Altogether, our findings demonstrate HIV-1/METH-induced ER-mitochondrial dysfunction in astrocytes, whereas TAAR1 may be an upstream regulator for HIV-1/METH-mediated astrocyte dysfunction.
Collapse
Affiliation(s)
- Jessica M. Proulx
- Department of Microbiology, Immunology and Genetics at University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - In-Woo Park
- Department of Microbiology, Immunology and Genetics at University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Kathleen Borgmann
- Department of Microbiology, Immunology and Genetics at University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
- National Institute on Drug Abuse, North Bethesda, MD, 20852, USA
| |
Collapse
|
3
|
Miller EJ, Khoshbouei H. Immunity on ice: The impact of methamphetamine on peripheral immunity. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2023; 99:217-250. [PMID: 38467482 DOI: 10.1016/bs.apha.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Methamphetamine (METH) regulation of the dopamine transporter (DAT) and central nervous system (CNS) dopamine transmission have been extensively studied. However, our understanding of how METH influences neuroimmune communication and innate and adaptive immunity is still developing. Recent studies have shed light on the bidirectional communication between the CNS and the peripheral immune system. They have established a link between CNS dopamine levels, dopamine neuronal activity, and peripheral immunity. Akin to dopamine neurons in the CNS, a majority of peripheral immune cells also express DAT, implying that in addition to their effect in the CNS, DAT ligands such as methamphetamine may have a role in modulating peripheral immunity. For example, by directly influencing DAT-expressing peripheral immune cells and thus peripheral immunity, METH can trigger a feed-forward cascade that impacts the bidirectional communication between the CNS and peripheral immune system. In this review, we aim to discuss the current understanding of how METH modulates both innate and adaptive immunity and identify areas where knowledge gaps exist. These gaps will then be considered in guiding future research directions.
Collapse
Affiliation(s)
- Emily J Miller
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, United States.
| | - Habibeh Khoshbouei
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, United States.
| |
Collapse
|
4
|
Basova LV, Lindsey A, McGovern A, Rosander A, Delorme-Walker V, ElShamy WM, Pendyala VV, Gaskill PJ, Ellis RJ, Cherner M, Iudicello JE, Marcondes MCG. MRP8/14 Is a Molecular Signature Triggered by Dopamine in HIV Latent Myeloid Targets That Increases HIV Transcription and Distinguishes HIV+ Methamphetamine Users with Detectable CSF Viral Load and Brain Pathology. Viruses 2023; 15:1363. [PMID: 37376663 PMCID: PMC10304659 DOI: 10.3390/v15061363] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/01/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
There is a significant overlap between HIV infection and substance-use disorders. Dopamine (DA) is the most abundantly upregulated neurotransmitter in methamphetamine abuse, with receptors (DRD1-5) that are expressed by neurons as well as by a large diversity of cell types, including innate immune cells that are the targets of HIV infection, making them responsive to the hyperdopaminergic environment that is characteristic of stimulant drugs. Therefore, the presence of high levels of dopamine may affect the pathogenesis of HIV, particularly in the brain. The stimulation of HIV latently infected U1 promonocytes with DA significantly increased viral p24 levels in the supernatant at 24 h, suggesting effects on activation and replication. Using selective agonists to different DRDs, we found that DRD1 played a major role in activating viral transcription, followed by DRD4, which increased p24 with a slower kinetic rate compared to DRD1. Transcriptome and systems biology analyses led to the identification of a cluster of genes responsive to DA, where S100A8 and S100A9 were most significantly correlated with the early increase in p24 levels following DA stimulation. Conversely, DA increased the expression of these genes' transcripts at the protein level, MRP8 and MRP14, respectively, which form a complex also known as calprotectin. Interestingly, MRP8/14 was able to stimulate HIV transcription in latent U1 cells, and this occurred via binding of the complex to the receptor for an advanced glycosylation end-product (RAGE). Using selective agonists, both DRD1 and DRD4 increased MRP8/14 on the surface, in the cytoplasm, as well as secreted in the supernatants. On the other hand, while DRD1/5 did not affect the expression of RAGE, DRD4 stimulation caused its downregulation, offering a mechanism for the delayed effect via DRD4 on the p24 increase. To cross-validate MRP8/14 as a DA signature with a biomarker value, we tested its expression in HIV+ Meth users' postmortem brain specimens and peripheral cells. MRP8/14+ cells were more frequently identified in mesolimbic areas such as the basal ganglia of HIV+ Meth+ cases compared to HIV+ non-Meth users or to controls. Likewise, MRP8/14+ CD11b+ monocytes were more frequent in HIV+ Meth users, particularly in specimens from participants with a detectable viral load in the CSF. Overall, our results suggest that the MRP8 and MRP14 complex may serve as a signature to distinguish subjects using addictive substances in the context of HIV, and that this may play a role in aggravating HIV pathology by promoting viral replication in people with HIV who use Meth.
Collapse
Affiliation(s)
- Liana V. Basova
- San Diego Biomedical Research Institute, San Diego, CA 92121, USA
| | | | | | - Ashley Rosander
- San Diego Biomedical Research Institute, San Diego, CA 92121, USA
- Human Biology Program BISP, University of California San Diego, San Diego, CA 92037, USA
| | | | - Wael M. ElShamy
- San Diego Biomedical Research Institute, San Diego, CA 92121, USA
| | | | | | - Ronald J. Ellis
- HIV Neurobehavioral Research Program, University of California San Diego, San Diego, CA 92103, USA
| | - Mariana Cherner
- HIV Neurobehavioral Research Program, University of California San Diego, San Diego, CA 92103, USA
| | - Jennifer E. Iudicello
- HIV Neurobehavioral Research Program, University of California San Diego, San Diego, CA 92103, USA
| | | |
Collapse
|
5
|
Channer B, Matt SM, Nickoloff-Bybel EA, Pappa V, Agarwal Y, Wickman J, Gaskill PJ. Dopamine, Immunity, and Disease. Pharmacol Rev 2023; 75:62-158. [PMID: 36757901 PMCID: PMC9832385 DOI: 10.1124/pharmrev.122.000618] [Citation(s) in RCA: 104] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 12/14/2022] Open
Abstract
The neurotransmitter dopamine is a key factor in central nervous system (CNS) function, regulating many processes including reward, movement, and cognition. Dopamine also regulates critical functions in peripheral organs, such as blood pressure, renal activity, and intestinal motility. Beyond these functions, a growing body of evidence indicates that dopamine is an important immunoregulatory factor. Most types of immune cells express dopamine receptors and other dopaminergic proteins, and many immune cells take up, produce, store, and/or release dopamine, suggesting that dopaminergic immunomodulation is important for immune function. Targeting these pathways could be a promising avenue for the treatment of inflammation and disease, but despite increasing research in this area, data on the specific effects of dopamine on many immune cells and disease processes remain inconsistent and poorly understood. Therefore, this review integrates the current knowledge of the role of dopamine in immune cell function and inflammatory signaling across systems. We also discuss the current understanding of dopaminergic regulation of immune signaling in the CNS and peripheral tissues, highlighting the role of dopaminergic immunomodulation in diseases such as Parkinson's disease, several neuropsychiatric conditions, neurologic human immunodeficiency virus, inflammatory bowel disease, rheumatoid arthritis, and others. Careful consideration is given to the influence of experimental design on results, and we note a number of areas in need of further research. Overall, this review integrates our knowledge of dopaminergic immunology at the cellular, tissue, and disease level and prompts the development of therapeutics and strategies targeted toward ameliorating disease through dopaminergic regulation of immunity. SIGNIFICANCE STATEMENT: Canonically, dopamine is recognized as a neurotransmitter involved in the regulation of movement, cognition, and reward. However, dopamine also acts as an immune modulator in the central nervous system and periphery. This review comprehensively assesses the current knowledge of dopaminergic immunomodulation and the role of dopamine in disease pathogenesis at the cellular and tissue level. This will provide broad access to this information across fields, identify areas in need of further investigation, and drive the development of dopaminergic therapeutic strategies.
Collapse
Affiliation(s)
- Breana Channer
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Stephanie M Matt
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Emily A Nickoloff-Bybel
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Vasiliki Pappa
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Yash Agarwal
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Jason Wickman
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Peter J Gaskill
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| |
Collapse
|
6
|
Gaskill PJ, Khoshbouei H. Dopamine and norepinephrine are embracing their immune side and so should we. Curr Opin Neurobiol 2022; 77:102626. [PMID: 36058009 PMCID: PMC10481402 DOI: 10.1016/j.conb.2022.102626] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 01/10/2023]
Abstract
While the history of neuroimmunology is long, the explicit study of neuroimmune communication, and particularly the role of catecholamines in neuroimmunity, is still emerging. Recent studies have shown that catecholamines, norepinephrine, epinephrine, and dopamine, are central to multiple complex mechanisms regulating immune function. These studies show that catecholamines can be released from both the nervous system and directly from immune cells, mediating both autocrine and paracrine signaling. This commentary highlights the importance of catecholaminergic immunomodulation and discusses new considerations needed to study the role of catecholamines in immune homeostasis to best leverage their contribution to disease processes for the development of new therapeutic approaches.
Collapse
Affiliation(s)
- Peter J Gaskill
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA.
| | - Habibeh Khoshbouei
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, USA. https://twitter.com/Khoshbouei_lab
| |
Collapse
|
7
|
Basova LV, Vien W, Bortell N, Najera JA, Marcondes MCG. Methamphetamine signals transcription of IL1β and TNFα in a reactive oxygen species-dependent manner and interacts with HIV-1 Tat to decrease antioxidant defense mechanisms. Front Cell Neurosci 2022; 16:911060. [PMID: 36060276 PMCID: PMC9434488 DOI: 10.3389/fncel.2022.911060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Methamphetamine (Meth) abuse is a common HIV co-morbidity that is linked to aggravated Central Nervous System (CNS) inflammation, which accentuates HIV- associated neurological disorders, triggered both directly or indirectly by the drug. We used the well-established human innate immune macrophage cell line system (THP1) to demonstrate that Reactive Oxygen Species (ROS) immediately induced by Meth play a role in the increased transcription of inflammatory genes, in interaction with HIV-1 Tat peptide. Meth and Tat, alone and together, affect early events of transcriptional activity, as indicated by changes in RNA polymerase (RNAPol) recruitment patterns throughout the genome, via ROS-dependent and -independent mechanisms. IL1β (IL1β) and TNF α (TNFα), two genes with defining roles in the inflammatory response, were both activated in a ROS-dependent manner. We found that this effect occurred via the activation of the activator protein 1 (AP-1) comprising cFOS and cJUN transcription factors and regulated by the SRC kinase. HIV-1 Tat, which was also able to induce the production of ROS, did not further impact the effects of ROS in the context of Meth, but promoted gene activity independently from ROS, via additional transcription factors. For instance, HIV-1 Tat increased NFkB activation and activated gene clusters regulated by Tata box binding peptide, ING4 and IRF2. Importantly, HIV-1 Tat decreased the expression of anti-oxidant genes, where its suppression of the detoxifying machinery may contribute to the aggravation of oxidative stress induced by ROS in the context of Meth. Our results provide evidence of effects of Meth via ROS and interactions with HIV Tat that promote the transcription of inflammatory genes such as IL1β and TNFα.
Collapse
Affiliation(s)
- Liana V. Basova
- San Diego Biomedical Research Institute, San Diego, CA, United States
- The Scripps Research Institute, La Jolla, CA, United States
| | - Whitney Vien
- The Scripps Research Institute, La Jolla, CA, United States
- University of California San Diego, La Jolla, CA, United States
| | - Nikki Bortell
- The Scripps Research Institute, La Jolla, CA, United States
| | | | - Maria Cecilia Garibaldi Marcondes
- San Diego Biomedical Research Institute, San Diego, CA, United States
- The Scripps Research Institute, La Jolla, CA, United States
- *Correspondence: Maria Cecilia Garibaldi Marcondes,
| |
Collapse
|
8
|
COVID-19 and Parkinson's Disease: Possible Links in Pathology and Therapeutics. Neurotox Res 2022; 40:1586-1596. [PMID: 35829997 DOI: 10.1007/s12640-022-00540-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/30/2022] [Accepted: 06/28/2022] [Indexed: 02/07/2023]
Abstract
The outbreak of SARs-CoV-2 with emerging new variants is leading to global health crisis and has brought a major concern for patients with comorbidities. Parkinson's disease (PD) is a motor neurodegenerative disease involving various metabolic and psychological ailments along with the common occurrence of hyposmia as observed in COVID-19 patients. In addition, the observed surplus inflammatory responses in both diseases are also alarming. Alongside, angiotensin-converting enzyme 2 (ACE2) receptor, essentially required by SARS-CoV-2 to enter the cell and dopamine decarboxylase (DDC), required for dopamine synthesis is known to co-regulate in the non-neuronal cells. Taken together, these conditions suggested the probable reciprocal pathological relation between COVID-19 and PD and also suggested that during comorbidities, the disease diagnosis and therapeutics are critical and may engender severe health complications. In this review, we discuss various events and mechanisms which may have implications for the exacerbation of PD conditions and must be taken into account during the treatment of patients.
Collapse
|
9
|
Proulx J, Stacy S, Park IW, Borgmann K. A Non-Canonical Role for IRE1α Links ER and Mitochondria as Key Regulators of Astrocyte Dysfunction: Implications in Methamphetamine use and HIV-Associated Neurocognitive Disorders. Front Neurosci 2022; 16:906651. [PMID: 35784841 PMCID: PMC9247407 DOI: 10.3389/fnins.2022.906651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
Astrocytes are one of the most numerous glial cells in the central nervous system (CNS) and provide essential support to neurons to ensure CNS health and function. During a neuropathological challenge, such as during human immunodeficiency virus (HIV)-1 infection or (METH)amphetamine exposure, astrocytes shift their neuroprotective functions and can become neurotoxic. Identifying cellular and molecular mechanisms underlying astrocyte dysfunction are of heightened importance to optimize the coupling between astrocytes and neurons and ensure neuronal fitness against CNS pathology, including HIV-1-associated neurocognitive disorders (HAND) and METH use disorder. Mitochondria are essential organelles for regulating metabolic, antioxidant, and inflammatory profiles. Moreover, endoplasmic reticulum (ER)-associated signaling pathways, such as calcium and the unfolded protein response (UPR), are important messengers for cellular fate and function, including inflammation and mitochondrial homeostasis. Increasing evidence supports that the three arms of the UPR are involved in the direct contact and communication between ER and mitochondria through mitochondria-associated ER membranes (MAMs). The current study investigated the effects of HIV-1 infection and chronic METH exposure on astrocyte ER and mitochondrial homeostasis and then examined the three UPR messengers as potential regulators of astrocyte mitochondrial dysfunction. Using primary human astrocytes infected with pseudotyped HIV-1 or exposed to low doses of METH for 7 days, astrocytes had increased mitochondrial oxygen consumption rate (OCR), cytosolic calcium flux and protein expression of UPR mediators. Notably, inositol-requiring protein 1α (IRE1α) was most prominently upregulated following both HIV-1 infection and chronic METH exposure. Moreover, pharmacological inhibition of the three UPR arms highlighted IRE1α as a key regulator of astrocyte metabolic function. To further explore the regulatory role of astrocyte IRE1α, astrocytes were transfected with an IRE1α overexpression vector followed by activation with the proinflammatory cytokine interleukin 1β. Overall, our findings confirm IRE1α modulates astrocyte mitochondrial respiration, glycolytic function, morphological activation, inflammation, and glutamate uptake, highlighting a novel potential target for regulating astrocyte dysfunction. Finally, these findings suggest both canonical and non-canonical UPR mechanisms of astrocyte IRE1α. Thus, additional studies are needed to determine how to best balance astrocyte IRE1α functions to both promote astrocyte neuroprotective properties while preventing neurotoxic properties during CNS pathologies.
Collapse
|
10
|
Bellinger DL, Lorton D. Sympathetic Nerves and Innate Immune System in the Spleen: Implications of Impairment in HIV-1 and Relevant Models. Cells 2022; 11:cells11040673. [PMID: 35203323 PMCID: PMC8870141 DOI: 10.3390/cells11040673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/26/2022] [Accepted: 02/08/2022] [Indexed: 11/26/2022] Open
Abstract
The immune and sympathetic nervous systems are major targets of human, murine and simian immunodeficiency viruses (HIV-1, MAIDS, and SIV, respectively). The spleen is a major reservoir for these retroviruses, providing a sanctuary for persistent infection of myeloid cells in the white and red pulps. This is despite the fact that circulating HIV-1 levels remain undetectable in infected patients receiving combined antiretroviral therapy. These viruses sequester in immune organs, preventing effective cures. The spleen remains understudied in its role in HIV-1 pathogenesis, despite it hosting a quarter of the body’s lymphocytes and diverse macrophage populations targeted by HIV-1. HIV-1 infection reduces the white pulp, and induces perivascular hyalinization, vascular dysfunction, tissue infarction, and chronic inflammation characterized by activated epithelial-like macrophages. LP-BM5, the retrovirus that induces MAIDS, is a well-established model of AIDS. Immune pathology in MAIDs is similar to SIV and HIV-1 infection. As in SIV and HIV, MAIDS markedly changes splenic architecture, and causes sympathetic dysfunction, contributing to inflammation and immune dysfunction. In MAIDs, SIV, and HIV, the viruses commandeer splenic macrophages for their replication, and shift macrophages to an M2 phenotype. Additionally, in plasmacytoid dendritic cells, HIV-1 blocks sympathetic augmentation of interferon-β (IFN-β) transcription, which promotes viral replication. Here, we review viral–sympathetic interactions in innate immunity and pathophysiology in the spleen in HIV-1 and relevant models. The situation remains that research in this area is still sparse and original hypotheses proposed largely remain unanswered.
Collapse
|
11
|
Simmons SJ, Oliver CF, McCloskey NS, Reitz AB, Nayak SU, Watson MN, Rawls SM. Paradoxical anxiolytic effect of the 'bath salt' synthetic cathinone MDPV during early abstinence is inhibited by a chemokine CXCR4 or CCR5 receptor antagonist. Drug Alcohol Depend 2022; 230:109204. [PMID: 34871976 PMCID: PMC8729820 DOI: 10.1016/j.drugalcdep.2021.109204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 01/03/2023]
Abstract
Chemokine CXCR4 and CCR5 receptors are best known as HIV co-entry receptors, but evidence that CXCR4 or CCR5 blockade reduces rewarding and locomotor-stimulant effects of psychostimulants in rats suggests a role in psychostimulant use disorders. We investigated the impact of CXCR4 or CCR5 receptor antagonism on anxiety-related effects of the synthetic cathinone 3,4-methylenedioxypyrovalerone (MDPV) in the elevated zero-maze (EZM) assay. Rats exposed to a 4-day MDPV binge dosing paradigm and tested 24 or 72 h post-treatment spent more time in the open compartment at the 24-h time point but less time at the 72-h post-binge time point. Daily administration of AMD 3100, a CXCR4 antagonist (10 mg/kg), or maraviroc, a CCR5 antagonist (2.5 mg/kg), during MDPV treatment inhibited the MDPV-induced increase in time spent in the open compartment. Neither antagonist affected the MDPV-induced reduction in time spent in the open compartment at the 72-h post-binge time point. Cocaine, administered in the same paradigm as MDPV, did not increase time spent in the open compartment 24-h post-binge, suggesting specificity to MDPV. The present results identify a surprising anxiolytic-like effect of MDPV 24 h after cessation of repeated exposure that is sensitive to chemokine CXCR4 and CCR5 receptor activity.
Collapse
Affiliation(s)
- Steven J. Simmons
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Chicora F. Oliver
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Nicholas S. McCloskey
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Allen B. Reitz
- Fox Chase Chemical Diversity Center Inc., Doylestown, PA, USA
| | - Sunil U. Nayak
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Mia N. Watson
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Scott M. Rawls
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA,Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| |
Collapse
|
12
|
Prado C, Osorio-Barrios F, Falcón P, Espinoza A, Saez JJ, Yuseff MI, Pacheco R. Dopaminergic stimulation leads B-cell infiltration into the central nervous system upon autoimmunity. J Neuroinflammation 2021; 18:292. [PMID: 34920747 PMCID: PMC8680379 DOI: 10.1186/s12974-021-02338-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 12/02/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Recent evidence has shown dopamine as a major regulator of inflammation. Accordingly, dopaminergic regulation of immune cells plays an important role in the physiopathology of inflammatory disorders. Multiple sclerosis (MS) is an inflammatory disease involving a CD4+ T-cell-driven autoimmune response to central nervous system (CNS) derived antigens. Evidence from animal models has suggested that B cells play a fundamental role as antigen-presenting cells (APC) re-stimulating CD4+ T cells in the CNS as well as regulating T-cell response by mean of inflammatory or anti-inflammatory cytokines. Here, we addressed the role of the dopamine receptor D3 (DRD3), which displays the highest affinity for dopamine, in B cells in animal models of MS. METHODS Mice harbouring Drd3-deficient or Drd3-sufficient B cells were generated by bone marrow transplantation into recipient mice devoid of B cells. In these mice, we compared the development of experimental autoimmune encephalomyelitis (EAE) induced by immunization with a myelin oligodendrocyte glycoprotein (MOG)-derived peptide (pMOG), a model that leads to CNS-autoimmunity irrespective of the APC-function of B cells, or by immunization with full-length human MOG protein (huMOG), a model in which antigen-specific activated B cells display a fundamental APC-function in the CNS. APC-function was assessed in vitro by pulsing B cells with huMOG-coated beads and then co-culturing with MOG-specific T cells. RESULTS Our data show that the selective Drd3 deficiency in B cells abolishes the disease development in the huMOG-induced EAE model. Mechanistic analysis indicates that although DRD3-signalling did not affect the APC-function of B cells, DRD3 favours the CNS-tropism in a subset of pro-inflammatory B cells in the huMOG-induced EAE model, an effect that was associated with higher CXCR3 expression. Conversely, the results show that the selective Drd3 deficiency in B cells exacerbates the disease severity in the pMOG-induced EAE model. Further analysis shows that DRD3-stimulation increased the expression of the CNS-homing molecule CD49d in a B-cell subset with anti-inflammatory features, thus attenuating EAE manifestation in the pMOG-induced EAE model. CONCLUSIONS Our findings demonstrate that DRD3 in B cells exerts a dual role in CNS-autoimmunity, favouring CNS-tropism of pro-inflammatory B cells with APC-function and promoting CNS-homing of B cells with anti-inflammatory features. Thus, these results show DRD3-signalling in B cells as a critical regulator of CNS-autoimmunity.
Collapse
Affiliation(s)
- Carolina Prado
- Laboratorio de Neuroinmunología, Centro Ciencia & Vida, Fundación Ciencia & Vida, Avenida Zañartu #1482, Ñuñoa, 7780272, Santiago, Chile.,Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia, 7510156, Santiago, Chile
| | - Francisco Osorio-Barrios
- Laboratorio de Neuroinmunología, Centro Ciencia & Vida, Fundación Ciencia & Vida, Avenida Zañartu #1482, Ñuñoa, 7780272, Santiago, Chile
| | - Paulina Falcón
- Laboratorio de Neuroinmunología, Centro Ciencia & Vida, Fundación Ciencia & Vida, Avenida Zañartu #1482, Ñuñoa, 7780272, Santiago, Chile
| | - Alexandra Espinoza
- Laboratorio de Neuroinmunología, Centro Ciencia & Vida, Fundación Ciencia & Vida, Avenida Zañartu #1482, Ñuñoa, 7780272, Santiago, Chile
| | - Juan José Saez
- Laboratory of Immune Cell Biology, Department of Cellular and Molecular Biology, Pontificia Universidad Católica de Chile, 8330025, Santiago, Chile
| | - María Isabel Yuseff
- Laboratory of Immune Cell Biology, Department of Cellular and Molecular Biology, Pontificia Universidad Católica de Chile, 8330025, Santiago, Chile
| | - Rodrigo Pacheco
- Laboratorio de Neuroinmunología, Centro Ciencia & Vida, Fundación Ciencia & Vida, Avenida Zañartu #1482, Ñuñoa, 7780272, Santiago, Chile. .,Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia, 7510156, Santiago, Chile.
| |
Collapse
|
13
|
Miller DR, Bu M, Gopinath A, Martinez LR, Khoshbouei H. Methamphetamine Dysregulation of the Central Nervous System and Peripheral Immunity. J Pharmacol Exp Ther 2021; 379:372-385. [PMID: 34535563 PMCID: PMC9351721 DOI: 10.1124/jpet.121.000767] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/16/2021] [Indexed: 11/22/2022] Open
Abstract
Methamphetamine (METH) is a potent psychostimulant that increases extracellular monoamines, such as dopamine and norepinephrine, and affects multiple tissue and cell types in the central nervous system (CNS) and peripheral immune cells. The reinforcing properties of METH underlie its significant abuse potential and dysregulation of peripheral immunity and central nervous system functions. Together, the constellation of METH's effects on cellular targets and regulatory processes has led to immune suppression and neurodegeneration in METH addicts and animal models of METH exposure. Here we extensively review many of the cell types and mechanisms of METH-induced dysregulation of the central nervous and peripheral immune systems. SIGNIFICANCE STATEMENT: Emerging research has begun to show that methamphetamine regulates dopaminergic neuronal activity. In addition, METH affects non-neuronal brain cells, such as microglia and astrocytes, and immunological cells of the periphery. Concurrent disruption of bidirectional communication between dopaminergic neurons and glia in the CNS and peripheral immune cell dysregulation gives rise to a constellation of dysfunctional neuronal, cell, and tissue types. Therefore, understanding the pathophysiology of METH requires consideration of the multiple targets at the interface between basic and clinical neuroscience.
Collapse
Affiliation(s)
- Douglas R Miller
- Department of Neuroscience, College of Medicine (D.R.M., M.B., A.G., H.K.), and Department of Oral Biology, College of Dentistry (L.R.M.), University of Florida, Gainesville, Florida
| | - Mengfei Bu
- Department of Neuroscience, College of Medicine (D.R.M., M.B., A.G., H.K.), and Department of Oral Biology, College of Dentistry (L.R.M.), University of Florida, Gainesville, Florida
| | - Adithya Gopinath
- Department of Neuroscience, College of Medicine (D.R.M., M.B., A.G., H.K.), and Department of Oral Biology, College of Dentistry (L.R.M.), University of Florida, Gainesville, Florida
| | - Luis R Martinez
- Department of Neuroscience, College of Medicine (D.R.M., M.B., A.G., H.K.), and Department of Oral Biology, College of Dentistry (L.R.M.), University of Florida, Gainesville, Florida
| | - Habibeh Khoshbouei
- Department of Neuroscience, College of Medicine (D.R.M., M.B., A.G., H.K.), and Department of Oral Biology, College of Dentistry (L.R.M.), University of Florida, Gainesville, Florida
| |
Collapse
|
14
|
Fattakhov N, Torices S, Stangis M, Park M, Toborek M. Synergistic Impairment of the Neurovascular Unit by HIV-1 Infection and Methamphetamine Use: Implications for HIV-1-Associated Neurocognitive Disorders. Viruses 2021; 13:1883. [PMID: 34578464 PMCID: PMC8473422 DOI: 10.3390/v13091883] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/30/2021] [Accepted: 09/02/2021] [Indexed: 12/19/2022] Open
Abstract
The neurovascular units (NVU) are the minimal functional units of the blood-brain barrier (BBB), composed of endothelial cells, pericytes, astrocytes, microglia, neurons, and the basement membrane. The BBB serves as an important interface for immune communication between the brain and peripheral circulation. Disruption of the NVU by the human immunodeficiency virus-1 (HIV-1) induces dysfunction of the BBB and triggers inflammatory responses, which can lead to the development of neurocognitive impairments collectively known as HIV-1-associated neurocognitive disorders (HAND). Methamphetamine (METH) use disorder is a frequent comorbidity among individuals infected with HIV-1. METH use may be associated not only with rapid HIV-1 disease progression but also with accelerated onset and increased severity of HAND. However, the molecular mechanisms of METH-induced neuronal injury and cognitive impairment in the context of HIV-1 infection are poorly understood. In this review, we summarize recent progress in the signaling pathways mediating synergistic impairment of the BBB and neuronal injury induced by METH and HIV-1, potentially accelerating the onset or severity of HAND in HIV-1-positive METH abusers. We also discuss potential therapies to limit neuroinflammation and NVU damage in HIV-1-infected METH abusers.
Collapse
Affiliation(s)
- Nikolai Fattakhov
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (S.T.); (M.S.); (M.P.)
| | - Silvia Torices
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (S.T.); (M.S.); (M.P.)
| | - Michael Stangis
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (S.T.); (M.S.); (M.P.)
| | - Minseon Park
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (S.T.); (M.S.); (M.P.)
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (S.T.); (M.S.); (M.P.)
- Institute of Physiotherapy and Health Sciences, The Jerzy Kukuczka Academy of Physical Education, 40065 Katowice, Poland
| |
Collapse
|
15
|
Nickoloff-Bybel EA, Festa L, Meucci O, Gaskill PJ. Co-receptor signaling in the pathogenesis of neuroHIV. Retrovirology 2021; 18:24. [PMID: 34429135 PMCID: PMC8385912 DOI: 10.1186/s12977-021-00569-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/11/2021] [Indexed: 12/13/2022] Open
Abstract
The HIV co-receptors, CCR5 and CXCR4, are necessary for HIV entry into target cells, interacting with the HIV envelope protein, gp120, to initiate several signaling cascades thought to be important to the entry process. Co-receptor signaling may also promote the development of neuroHIV by contributing to both persistent neuroinflammation and indirect neurotoxicity. But despite the critical importance of CXCR4 and CCR5 signaling to HIV pathogenesis, there is only one therapeutic (the CCR5 inhibitor Maraviroc) that targets these receptors. Moreover, our understanding of co-receptor signaling in the specific context of neuroHIV is relatively poor. Research into co-receptor signaling has largely stalled in the past decade, possibly owing to the complexity of the signaling cascades and functions mediated by these receptors. Examining the many signaling pathways triggered by co-receptor activation has been challenging due to the lack of specific molecular tools targeting many of the proteins involved in these pathways and the wide array of model systems used across these experiments. Studies examining the impact of co-receptor signaling on HIV neuropathogenesis often show activation of multiple overlapping pathways by similar stimuli, leading to contradictory data on the effects of co-receptor activation. To address this, we will broadly review HIV infection and neuropathogenesis, examine different co-receptor mediated signaling pathways and functions, then discuss the HIV mediated signaling and the differences between activation induced by HIV and cognate ligands. We will assess the specific effects of co-receptor activation on neuropathogenesis, focusing on neuroinflammation. We will also explore how the use of substances of abuse, which are highly prevalent in people living with HIV, can exacerbate the neuropathogenic effects of co-receptor signaling. Finally, we will discuss the current state of therapeutics targeting co-receptors, highlighting challenges the field has faced and areas in which research into co-receptor signaling would yield the most therapeutic benefit in the context of HIV infection. This discussion will provide a comprehensive overview of what is known and what remains to be explored in regard to co-receptor signaling and HIV infection, and will emphasize the potential value of HIV co-receptors as a target for future therapeutic development. ![]()
Collapse
Affiliation(s)
- E A Nickoloff-Bybel
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA
| | - L Festa
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, 240 S. 40th Street, Philadelphia, PA, 19104, USA
| | - O Meucci
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA.,Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - P J Gaskill
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA.
| |
Collapse
|
16
|
Matt SM, Nickoloff-Bybel EA, Rong Y, Runner K, Johnson H, O'Connor MH, Haddad EK, Gaskill PJ. Dopamine Levels Induced by Substance Abuse Alter Efficacy of Maraviroc and Expression of CCR5 Conformations on Myeloid Cells: Implications for NeuroHIV. Front Immunol 2021; 12:663061. [PMID: 34093554 PMCID: PMC8170305 DOI: 10.3389/fimmu.2021.663061] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022] Open
Abstract
Despite widespread use of antiretroviral therapy (ART), HIV remains a major public health issue. Even with effective ART many infected individuals still suffer from the constellation of neurological symptoms now known as neuroHIV. These symptoms can be exacerbated by substance abuse, a common comorbidity among HIV-infected individuals. The mechanism(s) by which different types of drugs impact neuroHIV remains unclear, but all drugs of abuse increase central nervous system (CNS) dopamine and elevated dopamine increases HIV infection and inflammation in human myeloid cells including macrophages and microglia, the primary targets for HIV in the brain. Thus, drug-induced increases in CNS dopamine may be a common mechanism by which distinct addictive substances alter neuroHIV. Myeloid cells are generally infected by HIV strains that use the chemokine receptor CCR5 as a co-receptor, and our data indicate that in a subset of individuals, drug-induced levels of dopamine could interfere with the effectiveness of the CCR5 inhibitor Maraviroc. CCR5 can adopt distinct conformations that differentially regulate the efficiency of HIV entry and subsequent replication and using qPCR, flow cytometry, Western blotting and high content fluorescent imaging, we show that dopamine alters the expression of specific CCR5 conformations of CCR5 on the surface of human macrophages. These changes are not affected by association with lipid rafts, but do correlate with dopamine receptor gene expression levels, specifically higher levels of D1-like dopamine receptors. These data also demonstrate that dopamine increases HIV replication and alters CCR5 conformations in human microglia similarly to macrophages. These data support the importance of dopamine in the development of neuroHIV and indicate that dopamine signaling pathways should be examined as a target in antiretroviral therapies specifically tailored to HIV-infected drug abusers. Further, these studies show the potential immunomodulatory role of dopamine, suggesting changes in this neurotransmitter may also affect the progression of other diseases.
Collapse
Affiliation(s)
- Stephanie M Matt
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Emily A Nickoloff-Bybel
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Yi Rong
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Kaitlyn Runner
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Hannah Johnson
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Margaret H O'Connor
- Division of Infectious Diseases and HIV Medicine, Drexel University College of Medicine, Philadelphia, PA, United States.,Department of Medicine, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Elias K Haddad
- Division of Infectious Diseases and HIV Medicine, Drexel University College of Medicine, Philadelphia, PA, United States.,Department of Medicine, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Peter J Gaskill
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States
| |
Collapse
|
17
|
Dopaminergic signalling limits suppressive activity and gut homing of regulatory T cells upon intestinal inflammation. Mucosal Immunol 2021; 14:652-666. [PMID: 33184477 DOI: 10.1038/s41385-020-00354-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 10/09/2020] [Accepted: 10/21/2020] [Indexed: 02/04/2023]
Abstract
Evidence from inflammatory bowel diseases (IBD) patients and animal models has indicated that gut inflammation is driven by effector CD4+ T-cell, including Th1 and Th17. Conversely, Treg seem to be dysfunctional in IBD. Importantly, dopamine, which is abundant in the gut mucosa under homoeostasis, undergoes a sharp reduction upon intestinal inflammation. Here we analysed the role of the high-affinity dopamine receptor D3 (DRD3) in gut inflammation. Our results show that Drd3 deficiency confers a stronger immunosuppressive potency to Treg, attenuating inflammatory colitis manifestation in mice. Mechanistic analyses indicated that DRD3-signalling attenuates IL-10 production and limits the acquisition of gut-tropism. Accordingly, the ex vivo transduction of wild-type Treg with a siRNA for Drd3 induced a potent therapeutic effect abolishing gut inflammation. Thus, our findings show DRD3-signalling as a major regulator of Treg upon gut inflammation.
Collapse
|
18
|
Basova L, Lindsey A, McGovern AM, Ellis RJ, Marcondes MCG. Detection of H3K4me3 Identifies NeuroHIV Signatures, Genomic Effects of Methamphetamine and Addiction Pathways in Postmortem HIV+ Brain Specimens that Are Not Amenable to Transcriptome Analysis. Viruses 2021; 13:544. [PMID: 33805201 PMCID: PMC8064323 DOI: 10.3390/v13040544] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 12/30/2022] Open
Abstract
Human postmortem specimens are extremely valuable resources for investigating translational hypotheses. Tissue repositories collect clinically assessed specimens from people with and without HIV, including age, viral load, treatments, substance use patterns and cognitive functions. One challenge is the limited number of specimens suitable for transcriptional studies, mainly due to poor RNA quality resulting from long postmortem intervals. We hypothesized that epigenomic signatures would be more stable than RNA for assessing global changes associated with outcomes of interest. We found that H3K27Ac or RNA Polymerase (Pol) were not consistently detected by Chromatin Immunoprecipitation (ChIP), while the enhancer H3K4me3 histone modification was abundant and stable up to the 72 h postmortem. We tested our ability to use HeK4me3 in human prefrontal cortex from HIV+ individuals meeting criteria for methamphetamine use disorder or not (Meth +/-) which exhibited poor RNA quality and were not suitable for transcriptional profiling. Systems strategies that are typically used in transcriptional metadata were applied to H3K4me3 peaks revealing consistent genomic activity differences in regions where addiction and neuronal synapses pathway genes are represented, including genes of the dopaminergic system, as well as inflammatory pathways. The resulting comparisons mirrored previously observed effects of Meth on suppressing gene expression and provided insights on neurological processes affected by Meth. The results suggested that H3K4me3 detection in chromatin may reflect transcriptional patterns, thus providing opportunities for analysis of larger numbers of specimens from cases with substance use and neurological deficits. In conclusion, the detection of H3K4me3 in isolated chromatin can be an alternative to transcriptome strategies to increase the power of association using specimens with long postmortem intervals and low RNA quality.
Collapse
Affiliation(s)
- Liana Basova
- San Diego Biomedical Research Institute, San Diego, CA 92121, USA; (L.B.); (A.L.); (A.M.M.)
| | - Alexander Lindsey
- San Diego Biomedical Research Institute, San Diego, CA 92121, USA; (L.B.); (A.L.); (A.M.M.)
| | - Anne Marie McGovern
- San Diego Biomedical Research Institute, San Diego, CA 92121, USA; (L.B.); (A.L.); (A.M.M.)
| | - Ronald J. Ellis
- Departments of Neurosciences and Psychiatry, University of California San Diego, San Diego, CA 92103, USA;
| | | |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW The COVID-19 infection results in various viral-related physical and mental health problems, joined with the long-term psychological impact of the pandemic in general. However, the accompanying neurocognitive changes remain poorly understood. RECENT FINDINGS We synthetize the current knowledge of viral (SARS-CoV-2) induced inflammation, mechanisms to viral entry into the central nervous system and altered neurotransmitter systems to provide an informed neurobiological explanation for the rise of neurocognitive disorders (defined as per the DSM-5 criteria). SUMMARY The mild and major neurocognitive disorder symptoms due to the COVID-19 pandemic provide a unique opportunity to address the early changes underlying neurocognitive impairment at both clinical and molecular level. We discuss the utilization of the available evidence for their management and future novel therapeutic opportunities.
Collapse
|
20
|
Ahearn OC, Watson MN, Rawls SM. Chemokines, cytokines and substance use disorders. Drug Alcohol Depend 2021; 220:108511. [PMID: 33465606 PMCID: PMC7889725 DOI: 10.1016/j.drugalcdep.2021.108511] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/30/2020] [Accepted: 12/14/2020] [Indexed: 12/18/2022]
Abstract
Efficacious pharmacotherapies for the treatment of substance use disorders need to be expanded and improved. Non-neuronal cells, particularly astrocytes and microglia, have emerged as therapeutic targets for the development of pharmacotherapies to treat dependence and relapse that accompanies chronic drug use. Cytokines and chemokines are neuroimmune factors expressed in neurons, astrocytes, and microglia that demonstrate promising clinical utility as therapeutic targets for substance use disorders. In this review, we describe a role for cytokines and chemokines in the rewarding and reinforcing effects of alcohol, opioids, and psychostimulants. We also discuss emerging cytokine- and chemokine-based therapeutic strategies that differ from conventional strategies directed toward transporters and receptors within the dopamine, glutamate, GABA, serotonin, and GABA systems.
Collapse
Affiliation(s)
- Olivia C. Ahearn
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University Philadelphia, PA, USA
| | - Mia N. Watson
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University Philadelphia, PA, USA
| | - Scott M. Rawls
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University Philadelphia, PA, USA,Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| |
Collapse
|
21
|
Mason B, Calhoun C, Woytowicz V, Pina L, Kanda R, Dunn C, Alves A, Donaldson ST. CXCR4 inhibition with AMD3100 attenuates amphetamine induced locomotor activity in adolescent Long Evans male rats. PLoS One 2021; 16:e0247707. [PMID: 33647040 PMCID: PMC7920371 DOI: 10.1371/journal.pone.0247707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 02/11/2021] [Indexed: 02/02/2023] Open
Abstract
Adolescent psychostimulant abuse has been on the rise over the past decade. This trend has demonstrable ramifications on adolescent behavior and brain morphology, increasing risk for development of addiction during adolescence and in later adulthood. Neuroimmune substrates are implicated in the etiology of substance use disorders. To add to this body of work, the current study was developed to explore the role of a chemokine receptor, CXC Chemokine Receptor 4 (CXCR4), in the development of amphetamine (AMPH) sensitization. We targeted CXCR4 as it is implicated in developmental processes, dopaminergic transmission, neuroimmune responses, and the potentiation of psychostimulant abuse pathology. To evaluate the role of CXCR4 activity on the development of AMPH sensitization, a CXCR4 antagonist (Plerixafor; AMD3100) was administered to rats as a pretreatment variable. Specifically, adolescent Long Evans male rats (N = 37) were divided into four groups: (1) AMD3100 (IP, 4.0 mg/kg) + AMPH (IP, 4.0 mg/kg), (2) saline (SAL; 0.9% NaCl) + AMPH, (3) AMD3100 + SAL, and (4) SAL + SAL. Animals were first habituated to locomotor activity (LMA) chambers, then injected with a pretreatment drug (AMD3100 or SAL) followed by AMPH or SAL every other for four days. After a one-week withdrawal period, all animals were administered a low challenge dose of AMPH (IP, 1.0 mg/kg). AMPH-injected rats displayed significantly more locomotor activity compared to controls across all testing days. CXCR4 antagonism significantly attenuated AMPH-induced locomotor activity. On challenge day, AMD3100 pre-treated animals exhibited diminutive AMPH-induced locomotor activity compared to SAL pre-treated animals. Postmortem analyses of brain tissue revealed elevated CXCR4 protein levels in the striatum of all experimental groups. Our results implicate CXCR4 signaling in the development of AMPH sensitization and may represent an important therapeutic target for future research in psychostimulant abuse.
Collapse
Affiliation(s)
- Briana Mason
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Corey Calhoun
- Department of Psychology, University of Massachusetts Boston, Boston, Massachusetts, United States of America
| | - Victoria Woytowicz
- Department of Psychology, University of Massachusetts Boston, Boston, Massachusetts, United States of America
| | - Latifa Pina
- Department of Psychology, University of Massachusetts Boston, Boston, Massachusetts, United States of America
| | - Roshninder Kanda
- Department of Psychology, University of Massachusetts Boston, Boston, Massachusetts, United States of America
| | - Curtis Dunn
- Department of Psychology, University of Massachusetts Boston, Boston, Massachusetts, United States of America
| | - Antonio Alves
- Department of Psychology, University of Massachusetts Boston, Boston, Massachusetts, United States of America
| | - S. Tiffany Donaldson
- Department of Psychology, University of Massachusetts Boston, Boston, Massachusetts, United States of America
| |
Collapse
|
22
|
Sanchez-Alavez M, Bortell N, Basova L, Samad F, Marcondes MCG. Macrophages and brown adipocytes cross-communicate to modulate a thermogenic program following methamphetamine exposure. Int J Hyperthermia 2020; 37:1368-1382. [PMID: 33307890 PMCID: PMC9472558 DOI: 10.1080/02656736.2020.1849822] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Hyperthermia is a potentially lethal side-effect of Methamphetamine (Meth), a stimulant drug. Activation of non-shivering thermogenesis in brown adipose tissue (BAT) is partly responsible for Meth-induced rise in temperature, with contributing sympathetic neurotransmitters, such as norepinephrine (NE), and reactive oxygen species (ROS). However, the mechanisms controlling the development of a molecular thermogenic program in brown adipocytes (BA) following Meth are unknown. We hypothesize that Meth and NE affect BAT cells, BA and macrophages, to modify their physiology and interactions, with consequences to thermogenic genes. We also hypothesize that ROS play a critical role in signaling transcription of thermogenic genes and their regulatory components. Using primary BA and macrophage cultures, we measured Meth and NE interference with physiological and phenotypic measures that are relevant to thermogenesis in BAT. Meth caused both BA and macrophages to decrease mitochondrial maximal capacity and increase ROS. In BA, the thermogenic genes UCP1, PPARγ, PGC1α and GADD45γ were transcriptionally increased by Meth in a ROS-dependent manner. In macrophages, Meth increased oxidative stress response and caused a predominance of M2 subset markers. BA transcriptional changes in response to Meth and NE were significantly controlled by macrophages. The results suggest that BA and macrophages respond to Meth and NE, with effects on mitochondrial functions and transcription of genes involved in thermogenesis. ROS-dependent signals in BA and cellular interactions between BA and macrophages synergize to regulate the BAT environment and control critical pathways leading to Meth-hyperthermia.
Collapse
Affiliation(s)
- Manuel Sanchez-Alavez
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA.,Facultad de Medicina y Psicología, Universidad Autónoma de Baja California, Tijuana, México
| | - Nikki Bortell
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
| | - Liana Basova
- San Diego Biomedical Research Institute, San Diego, CA, USA
| | - Fahumiya Samad
- San Diego Biomedical Research Institute, San Diego, CA, USA
| | - Maria Cecilia Garibaldi Marcondes
- Facultad de Medicina y Psicología, Universidad Autónoma de Baja California, Tijuana, México.,San Diego Biomedical Research Institute, San Diego, CA, USA
| |
Collapse
|
23
|
Saloner R, Cherner M, Grelotti DJ, Paolillo EW, Moore DJ, Heaton RK, Letendre SL, Kumar A, Grant I, Ellis RJ. Lower CSF homovanillic acid relates to higher burden of neuroinflammation and depression in people with HIV disease. Brain Behav Immun 2020; 90:353-363. [PMID: 32966871 PMCID: PMC7544671 DOI: 10.1016/j.bbi.2020.09.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 09/08/2020] [Accepted: 09/13/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND HIV-related neuroinflammation has been proposed as a catalyst for dopaminergic dysregulation in mesocortical pathways, which may contribute to the pathogenesis of depression. Abnormalities in dopaminergic neurotransmission and depression are common in people with HIV (PWH), however the link between dopamine (DA) and depression in PWH is poorly characterized. This study investigated CSF dopaminergic biomarkers, specifically DA and its metabolite, homovanillic acid (HVA), and examined their relationship with depressive symptoms and CSF neuroinflammatory markers in PWH and HIV-seronegative (HIV-) individuals. METHODS Participants were 102 HIV- individuals and 123 PWH (mean age = 42) who underwent neuropsychiatric evaluations and lumbar puncture. Current depression severity was classified using the Beck Depression Inventory-II (BDI-II). CSF was assayed for DA and HVA using high performance liquid chromatography and neuroinflammatory markers using immunoassays. Linear regressions modelled BDI-II scores as a function of HIV, dopaminergic biomarker z-scores, and their interaction, controlling for psychosocial factors. Correlational analyses examined dopaminergic and neuroinflammatory relationships. RESULTS PWH had significantly higher BDI-II scores than HIV- participants. DA and HVA were not associated with HIV status but both significantly moderated the effect of HIV on BDI-II scores, such that PWH exhibited higher depressive symptoms than HIV- participants only at lower concentrations of HVA (z ≤ 0.06) and DA (z ≤ 0.11). In PWH only, lower HVA significantly correlated with higher BDI-II scores and higher neuroinflammation, including higher MCP-1 and IP-10. CONCLUSIONS Results suggest that the pathophysiology of depression in PWH differs from that in HIV- individuals. Specifically, lower central dopaminergic activity was selectively associated with greater depressive symptoms and neuroinflammation in PWH. With the rise in consideration of DA agonists for the treatment of depression, these results suggest that PWH may show a greater response to these agents than their HIV- peers.
Collapse
Affiliation(s)
- Rowan Saloner
- San Diego State University/University of California, San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, USA; Department of Psychiatry, University of California, San Diego, HIV Neurobehavioral Research Program, San Diego, CA, USA.
| | - Mariana Cherner
- Department of Psychiatry, University of California, San Diego, HIV Neurobehavioral Research Program, San Diego, CA, USA
| | - David J Grelotti
- Department of Psychiatry, University of California, San Diego, HIV Neurobehavioral Research Program, San Diego, CA, USA
| | - Emily W Paolillo
- San Diego State University/University of California, San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, USA; Department of Psychiatry, University of California, San Diego, HIV Neurobehavioral Research Program, San Diego, CA, USA
| | - David J Moore
- Department of Psychiatry, University of California, San Diego, HIV Neurobehavioral Research Program, San Diego, CA, USA
| | - Robert K Heaton
- Department of Psychiatry, University of California, San Diego, HIV Neurobehavioral Research Program, San Diego, CA, USA
| | - Scott L Letendre
- Department of Psychiatry, University of California, San Diego, HIV Neurobehavioral Research Program, San Diego, CA, USA
| | - Adarsh Kumar
- Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, USA
| | - Igor Grant
- Department of Psychiatry, University of California, San Diego, HIV Neurobehavioral Research Program, San Diego, CA, USA
| | - Ronald J Ellis
- Department of Psychiatry, University of California, San Diego, HIV Neurobehavioral Research Program, San Diego, CA, USA; Department of Neurosciences, University of California, San Diego, San Diego, CA, USA
| |
Collapse
|
24
|
Saloner R, Fields JA, Marcondes MCG, Iudicello JE, von Känel S, Cherner M, Letendre SL, Kaul M, Grant I. Methamphetamine and Cannabis: A Tale of Two Drugs and their Effects on HIV, Brain, and Behavior. J Neuroimmune Pharmacol 2020; 15:743-764. [PMID: 32929575 DOI: 10.1007/s11481-020-09957-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/10/2020] [Indexed: 12/12/2022]
Abstract
HIV infection and drug use intersect epidemiologically, and their combination can result in complex effects on brain and behavior. The extent to which drugs affect the health of persons with HIV (PWH) depends on many factors including drug characteristics, use patterns, stage of HIV disease and its treatment, comorbid factors, and age. To consider the range of drug effects, we have selected two that are in common use by PWH: methamphetamine and cannabis. We compare the effects of methamphetamine with those of cannabis, to illustrate how substances may potentiate, worsen, or even buffer the effects of HIV on the CNS. Data from human, animal, and ex vivo studies provide insights into how these drugs have differing effects on the persistent inflammatory state that characterizes HIV infection, including effects on viral replication, immune activation, mitochondrial function, gut permeability, blood brain barrier integrity, glia and neuronal signaling. Moving forward, we consider how these mechanistic insights may inform interventions to improve brain outcomes in PWH. This review summarizes literature from clinical and preclinical studies demonstrating the adverse effects of METH, as well as the potentially beneficial effects of cannabis, on the interacting systemic (e.g., gut barrier leakage/microbial translocation, immune activation, inflammation) and CNS-specific (e.g., glial activation/neuroinflammation, neural injury, mitochondrial toxicity/oxidative stress) mechanisms underlying HIV-associated neurocognitive disorders.
Collapse
Affiliation(s)
- Rowan Saloner
- Department of Psychiatry, HIV Neurobehavioral Research Program, University of California, San Diego, San Diego, CA, USA. .,Joint Doctoral Program in Clinical Psychology, San Diego State University/University of California, San Diego , San Diego, CA, USA.
| | - Jerel Adam Fields
- Department of Psychiatry, HIV Neurobehavioral Research Program, University of California, San Diego, San Diego, CA, USA
| | | | - Jennifer E Iudicello
- Department of Psychiatry, HIV Neurobehavioral Research Program, University of California, San Diego, San Diego, CA, USA
| | - Sofie von Känel
- Department of Psychiatry, HIV Neurobehavioral Research Program, University of California, San Diego, San Diego, CA, USA
| | - Mariana Cherner
- Department of Psychiatry, HIV Neurobehavioral Research Program, University of California, San Diego, San Diego, CA, USA
| | - Scott L Letendre
- Department of Psychiatry, HIV Neurobehavioral Research Program, University of California, San Diego, San Diego, CA, USA
| | - Marcus Kaul
- Department of Psychiatry, HIV Neurobehavioral Research Program, University of California, San Diego, San Diego, CA, USA.,Division of Biomedical Sciences, University of California, Riverside, Riverside, CA, USA
| | - Igor Grant
- Department of Psychiatry, HIV Neurobehavioral Research Program, University of California, San Diego, San Diego, CA, USA
| | | |
Collapse
|
25
|
Nayak SU, Cicalese S, Tallarida C, Oliver CF, Rawls SM. Chemokine CCR5 and cocaine interactions in the brain: Cocaine enhances mesolimbic CCR5 mRNA levels and produces place preference and locomotor activation that are reduced by a CCR5 antagonist. Brain Behav Immun 2020; 83:288-292. [PMID: 31557508 PMCID: PMC6906231 DOI: 10.1016/j.bbi.2019.09.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/06/2019] [Accepted: 09/21/2019] [Indexed: 01/22/2023] Open
Abstract
C-C chemokine receptor type 5, also known as CCR5 or CD195, is best known as a viral co-receptor that facilitates entry of HIV into cells. Evidence that CCR5 knockout mice display fewer dopamine neurons, lower striatal dopamine levels, and reduced locomotor activation compared to wild types also suggest a link between CCR5 receptors and cocaine dependence. Here, we tested the hypothesis using male Sprague-Dawley rats that cocaine-induced locomotor activation and conditioned place preference (CPP) are inhibited by a FDA-approved CCR5 antagonist (maraviroc), and that CCR5 gene expression in mesolimbic substrates is enhanced by repeated cocaine exposure. Pretreatment with maraviroc (1, 2.5, 5 mg/kg, IP) reduced hyperlocomotion induced by acute cocaine (10 mg/kg) without affecting spontaneous locomotor activity. For CPP experiments, rats conditioned with cocaine (10 mg/kg × 4 days, IP) were injected with maraviroc (1, 2.5, 5 mg/kg, IP) before each injection of cocaine. Maraviroc dose-dependently inhibited development of cocaine CPP, with a dose of 5 mg/kg producing a significant reduction. In rats treated repeatedly with cocaine (10 mg/kg × 4 days, IP), CCR5 gene expression was upregulated in the nucleus accumbens and ventral tegmental area but mRNA levels of CCR5 ligands (i.e., CCL3, CCL4 and CCL5) were not affected. Our results suggest that mesolimbic CCR5 receptors are dysregulated by cocaine exposure and, similar to CXCR4 and CCR2 receptors, influence behavioral effects related to the abuse liability of cocaine.
Collapse
Affiliation(s)
- Sunil U Nayak
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Stephanie Cicalese
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Chris Tallarida
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Chicora F. Oliver
- Department of Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Scott M. Rawls
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA,Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| |
Collapse
|
26
|
Chilunda V, Calderon TM, Martinez-Aguado P, Berman JW. The impact of substance abuse on HIV-mediated neuropathogenesis in the current ART era. Brain Res 2019; 1724:146426. [PMID: 31473221 PMCID: PMC6889827 DOI: 10.1016/j.brainres.2019.146426] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/16/2019] [Accepted: 08/28/2019] [Indexed: 12/21/2022]
Abstract
Approximately 37 million people worldwide are infected with human immunodeficiency virus (HIV). One highly significant complication of HIV infection is the development of HIV-associated neurocognitive disorders (HAND) in 15-55% of people living with HIV (PLWH), that persists even in the antiretroviral therapy (ART) era. The entry of HIV into the central nervous system (CNS) occurs within 4-8 days after peripheral infection. This establishes viral reservoirs that may persist even in the presence of ART. Once in the CNS, HIV infects resident macrophages, microglia, and at low levels, astrocytes. In response to chronic infection and cell activation within the CNS, viral proteins, inflammatory mediators, and host and viral neurotoxic factors produced over extended periods of time result in neuronal injury and loss, cognitive deficits and HAND. Substance abuse is a common comorbidity in PLWH and has been shown to increase neuroinflammation and cognitive disorders. Additionally, it has been associated with poor ART adherence, and increased viral load in the cerebrospinal fluid (CSF), that may also contribute to increased neuroinflammation and neuronal injury. Studies have examined mechanisms that contribute to neuroinflammation and neuronal damage in PLWH, and how substances of abuse exacerbate these effects. This review will focus on how substances of abuse, with an emphasis on methamphetamine (meth), cocaine, and opioids, impact blood brain barrier (BBB) integrity and transmigration of HIV-infected and uninfected monocytes across the BBB, as well as their effects on monocytes/macrophages, microglia, and astrocytes within the CNS. We will also address how these substances of abuse may contribute to HIV-mediated neuropathogenesis in the context of suppressive ART. Additionally, we will review the effects of extracellular dopamine, a neurotransmitter that is increased in the CNS by substances of abuse, on HIV neuropathogenesis and how this may contribute to neuroinflammation, neuronal insult, and HAND in PLWH with active substance use. Lastly, we will discuss some potential therapies to limit CNS inflammation and damage in HIV-infected substance abusers.
Collapse
Affiliation(s)
- Vanessa Chilunda
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, USA
| | - Tina M Calderon
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, USA
| | - Pablo Martinez-Aguado
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, USA
| | - Joan W Berman
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, USA; Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, USA.
| |
Collapse
|
27
|
Dopaminergic impact of cART and anti-depressants on HIV neuropathogenesis in older adults. Brain Res 2019; 1723:146398. [PMID: 31442412 DOI: 10.1016/j.brainres.2019.146398] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 08/09/2019] [Accepted: 08/19/2019] [Indexed: 01/21/2023]
Abstract
The success of combination antiretroviral therapy (cART) has transformed HIV infection into a chronic condition, resulting in an increase in the number of older, cART-treated adults living with HIV. This has increased the incidence of age-related, non-AIDS comorbidities in this population. One of the most common comorbidities is depression, which is also associated with cognitive impairment and a number of neuropathologies. In older people living with HIV, treating these overlapping disorders is complex, often creating pill burden or adverse drug-drug interactions that can exacerbate these neurologic disorders. Depression, NeuroHIV and many of the neuropsychiatric therapeutics used to treat them impact the dopaminergic system, suggesting that dopaminergic dysfunction may be a common factor in the development of these disorders. Further, changes in dopamine can influence the development of inflammation and the regulation of immune function, which are also implicated in the progression of NeuroHIV and depression. Little is known about the optimal clinical management of drug-drug interactions between cART drugs and antidepressants, particularly in regard to dopamine in older people living with HIV. This review will discuss those interactions, first examining the etiology of NeuroHIV and depression in older adults, then discussing the interrelated effects of dopamine and inflammation on these disorders, and finally reviewing the activity and interactions of cART drugs and antidepressants on each of these factors. Developing better strategies to manage these comorbidities is critical to the health of the aging, HIV-infected population, as the older population may be particularly vulnerable to drug-drug interactions affecting dopamine.
Collapse
|
28
|
D’Brant LY, Desta H, Khoo TC, Sharikova AV, Mahajan SD, Khmaladze A. Methamphetamine-induced apoptosis in glial cells examined under marker-free imaging modalities. JOURNAL OF BIOMEDICAL OPTICS 2019; 24:1-10. [PMID: 31025559 PMCID: PMC6990058 DOI: 10.1117/1.jbo.24.4.046503] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 04/05/2019] [Indexed: 05/05/2023]
Abstract
We used phase microscopy and Raman spectroscopic measurements to assess the response of in vitro rat C6 glial cells following methamphetamine treatment in real time. Digital holographic microscopy (DHM) and three-dimensional (3-D) tomographic nanoscopy allow measurements of live cell cultures, which yield information about cell volume changes. Tomographic phase imaging provides 3-D information about the refractive index distribution associated with the morphology of biological samples. DHM provides similar information, but for a larger population of cells. Morphological changes in cells are associated with alterations in cell cycle and initiation of cell death mechanisms. Raman spectroscopy measurements provide information about chemical changes within the cells. Our Raman data indicate that the chemical changes in proteins preceded morphological changes, which were seen with DHM. Our study also emphasizes that tomographic phase imaging, DHM, and Raman spectroscopy are imaging tools that can be utilized for noninvasive simultaneous monitoring of morphological and chemical changes in cells during apoptosis and can also be used to monitor other dynamic cell processes.
Collapse
Affiliation(s)
- Lianna Y. D’Brant
- State University of New York System (SUNY), Albany, New York, United States
| | - Habben Desta
- State University of New York System (SUNY), Albany, New York, United States
| | - Ting Chean Khoo
- State University of New York System (SUNY), Albany, New York, United States
| | - Anna V. Sharikova
- State University of New York, Jacobs School of Medicine & Biomedical Sciences, Buffalo, New York, United States
| | - Supriya D. Mahajan
- State University of New York System (SUNY), Albany, New York, United States
| | - Alexander Khmaladze
- State University of New York System (SUNY), Albany, New York, United States
- Address all correspondence to Alexander Khmaladze, E-mail:
| |
Collapse
|
29
|
Tjitro R, Campbell LA, Basova L, Johnson J, Najera JA, Lindsey A, Marcondes MCG. Modeling the Function of TATA Box Binding Protein in Transcriptional Changes Induced by HIV-1 Tat in Innate Immune Cells and the Effect of Methamphetamine Exposure. Front Immunol 2019; 9:3110. [PMID: 30778358 PMCID: PMC6369711 DOI: 10.3389/fimmu.2018.03110] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 12/17/2018] [Indexed: 01/24/2023] Open
Abstract
Innate immune cells are targets of HIV-1 infection in the Central Nervous System (CNS), generating neurological deficits. Infected individuals with substance use disorders as co-morbidities, are more likely to have aggravated neurological disorders, higher CNS viral load and inflammation. Methamphetamine (Meth) is an addictive stimulant drug, commonly among HIV+ individuals. The molecular basis of HIV direct effects and its interactions with Meth in host response, at the gene promoter level, are not well understood. The main HIV-1 peptide acting on transcription is the transactivator of transcription (Tat), which promotes replication by recruiting a Tata-box binding protein (TBP) to the virus long-terminal repeat (LTR). We tested the hypothesis that Tat can stimulate host gene expression through its ability to increase TBP, and thus promoting its binding to promoters that bear Tata-box binding motifs. Genes with Tata-box domains are mainly inducible, early response, and involved in inflammation, regulation and metabolism, relevant in HIV pathogenesis. We also tested whether Tat and Meth interact to trigger the expression of Tata-box bearing genes. The THP1 macrophage cell line is a well characterized innate immune cell system for studying signal transduction in inflammation. These cells are responsive to Tat, as well as to Meth, by recruiting RNA Polymerase (RNA Pol) to inflammatory gene promoters, within 15 min of stimulation (1). THP-1 cells, including their genetically engineered derivatives, represent valuable tools for investigating monocyte structure and function in both health and disease, as a consistent system (2). When differentiated, they mimic several aspects of the response of macrophages, and innate immune cells that are the main HIV-1 targets within the Central Nervous System (CNS). THP1 cells have been used to characterize the impact of Meth and resulting neurotransmitters on HIV entry (1), mimicking the CNS micro-environment. Integrative consensus sequence analysis in genes with enriched RNA Pol, revealed that TBP was a major transcription factor in Tat stimulation, while the co-incubation with Meth shifted usage to a distinct and diversified pattern. For validating these findings, we engineered a THP1 clone to be deficient in the expression of all major TBP splice variants, and tested its response to Tat stimulation, in the presence or absence of Meth. Transcriptional patterns in TBP-sufficient and deficient clones confirmed TBP as a dominant transcription factor in Tat stimulation, capable of inducing genes with no constitutive expression. However, in the presence of Meth, TBP was no longer necessary to activate the same genes, suggesting promoter plasticity. These findings demonstrate TBP as mechanism of host-response activation by HIV-1 Tat, and suggest that promoter plasticity is a challenge imposed by co-morbid factors such as stimulant drug addiction. This may be one mechanism responsible for limited efficacy of therapeutic approaches in HIV+ Meth abusers.
Collapse
Affiliation(s)
- Ryan Tjitro
- Department of Neurosciences, The Scripps Research Institute, La Jolla, CA, United States
| | - Lee A. Campbell
- LAC Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, United States
| | - Liana Basova
- Department of Neurosciences, The Scripps Research Institute, La Jolla, CA, United States
- San Diego Biomedical Research Institute, San Diego, CA, United States
| | - Jessica Johnson
- Department of Neurosciences, The Scripps Research Institute, La Jolla, CA, United States
| | - Julia A. Najera
- Department of Neurosciences, The Scripps Research Institute, La Jolla, CA, United States
| | - Alexander Lindsey
- San Diego Biomedical Research Institute, San Diego, CA, United States
| | - Maria Cecilia Garibaldi Marcondes
- Department of Neurosciences, The Scripps Research Institute, La Jolla, CA, United States
- San Diego Biomedical Research Institute, San Diego, CA, United States
| |
Collapse
|