1
|
Xu S, Ma Y, Zhang Y, Ying H, Tong X, Yang W, Pan Y, Rong Y, Dai Y, Zhang S, Han P. Intrinsic differences in mTOR activity mediates lineage-specific responses to cyclophosphamide in mouse and human granulosa cells. J Ovarian Res 2025; 18:49. [PMID: 40069773 PMCID: PMC11895326 DOI: 10.1186/s13048-025-01627-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 02/14/2025] [Indexed: 03/15/2025] Open
Abstract
BACKGROUND Cyclophosphamide (CTX) often induces oocyte and granulosa cell injury, leading to fertility loss in young female cancer survivors. Deciphering the mechanisms underlying follicular cell injury could offer novel insights into fertility preservation. Granulosa cells represent the most abundant cell type within the follicles and can be generally categorized as cumulus granulosa cells (CGCs) and mural granulosa cells (MGCs). Despite the essential roles of granulosa cells in supporting ovarian function in physiological conditions, their distinct lineage-specific responses to CTX remains elusive. RESULTS Here, we performed a genome-wide transcriptome analysis of murine mural and cumulus granulosa cells before and after CTX administration. Compared with MGCs, CGCs exhibited higher basal mammalian target of rapamycin (mTOR) activity and an increased DNA damage response post-injury. Pharmacological mTOR suppression or RNA interference-mediated gene silencing of Raptor, a key component of the mTORC1 complex, significantly reduced DNA damage in granulosa cells induced by 4-HC, an activated form of CTX. Notably, by examining human granulosa cells in response to 4-HC, our results uncovered a conserved role of mTOR inhibition in ovarian protection. CONCLUSIONS Taken together, our findings reveal that intrinsic variations in mTOR activity in CGC and MGC lineages determine their differential responses to CTX. Targeting this signaling pathway may prove beneficial in mitigating CTX-induced granulosa cell apoptosis and protecting against ovarian injury.
Collapse
Affiliation(s)
- Shiqian Xu
- Department of Cardiology, Center for Genetic Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
- Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, Zhejiang, China
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Hangzhou, China
| | - Yerong Ma
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Hangzhou, China
| | - Yinli Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Hangzhou, China
| | - Hanqi Ying
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Hangzhou, China
| | - Xiaomei Tong
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Hangzhou, China
| | - Weijie Yang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Hangzhou, China
| | - Yibin Pan
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Hangzhou, China
| | - Yan Rong
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Hangzhou, China
| | - Yangyang Dai
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Hangzhou, China
| | - Songying Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Hangzhou, China.
| | - Peidong Han
- Department of Cardiology, Center for Genetic Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China.
- Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, Zhejiang, China.
- Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Jain A, Singh S, Yadav S, Dubey A, Awasthi Y, Tiwari V, Kumar V, Dubey I, Trivedi SP, Kumar M. Oxidative toxicity mediated oophoritis alters ovarian growth in Channa punctatus under prolonged exposure to herbicide, paraquat dichloride. Sci Rep 2025; 15:1304. [PMID: 39779888 PMCID: PMC11711186 DOI: 10.1038/s41598-025-85555-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 01/03/2025] [Indexed: 01/11/2025] Open
Abstract
Herbicide paraquat dichloride, a potent redox agent found its way to natural water bodies and influences their health; however, its impact on the reproductive health of fish is potentially less studied and requires clear investigation. This study was conducted to elucidate its effect on the gonadal health of female fish, Channa punctatus over 60 days. The 96-h LC50 of test herbicide was calculated as 0.24 mL/L for the fish under examination, subsequently, three sub-lethal concentrations were taken in addition to control for the study. The experimental methodology included assessment of oxidative stress markers, hormone levels, expression of interrelated genes, and histological analysis to ascertain the damage to the ovary. At each exposure period, a significant (p < 0.05) rise in endogenous reactive oxygen species in blood cells and activities of oxidative markers in the ovary tissue were observed in treated groups. The gonadosomatic index of the ovary and hormone concentration in plasma decreased at the highest treatment concentration. A significant (p < 0.05) change in the expression of target genes for ovary growth, inflammation, and apoptosis was observed in the treated fish. Histopathological and ultrastructural investigations of the ovary tissue revealed the occurrence of oophoritis and reduced growth of the ovary in herbicide-treated fish. The findings conclude that, herbicide paraquat dichloride causes inflammation in the ovary, in addition to its growth reduction that ultimately, poses a threat to the fish population.
Collapse
Affiliation(s)
- Anamika Jain
- Environmental Toxicology & Bioremediation Laboratory (ETBL), Department of Zoology, University of Lucknow, Lucknow, 226007, India
| | - Shefalee Singh
- Environmental Toxicology & Bioremediation Laboratory (ETBL), Department of Zoology, University of Lucknow, Lucknow, 226007, India
| | - Seema Yadav
- Environmental Toxicology & Bioremediation Laboratory (ETBL), Department of Zoology, University of Lucknow, Lucknow, 226007, India
| | - Aastha Dubey
- Environmental Toxicology & Bioremediation Laboratory (ETBL), Department of Zoology, University of Lucknow, Lucknow, 226007, India
| | - Yashika Awasthi
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Vidyanand Tiwari
- Institute of Food Processing & Technology, University of Lucknow, Lucknow, 226007, India
| | | | - Indrani Dubey
- Department of Zoology, DBS College, Kanpur, 208006, UP, India
| | - Sunil P Trivedi
- Environmental Toxicology & Bioremediation Laboratory (ETBL), Department of Zoology, University of Lucknow, Lucknow, 226007, India
| | - Manoj Kumar
- Environmental Toxicology & Bioremediation Laboratory (ETBL), Department of Zoology, University of Lucknow, Lucknow, 226007, India.
| |
Collapse
|
3
|
Pouladvand N, Azarnia M, Zeinali H, Fathi R, Tavana S. An overview of different methods to establish a murine premature ovarian failure model. Animal Model Exp Med 2024; 7:835-852. [PMID: 39219374 PMCID: PMC11680483 DOI: 10.1002/ame2.12477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 07/14/2024] [Indexed: 09/04/2024] Open
Abstract
Premature ovarian failure (POF)is defined as the loss of normal ovarian function before the age of 40 and is characterized by increased gonadotropin levels and decreased estradiol levels and ovarian reserve, often leading to infertility. The incomplete understanding of the pathogenesis of POF is a major impediment to the development of effective treatments for this disease, so the use of animal models is a promising option for investigating and identifying the molecular mechanisms involved in POF patients and developing therapeutic agents. As mice and rats are the most commonly used models in animal research, this review article considers studies that used murine POF models. In this review based on the most recent studies, first, we introduce 10 different methods for inducing murine POF models, then we demonstrate the advantages and disadvantages of each one, and finally, we suggest the most practical method for inducing a POF model in these animals. This may help researchers find the method of creating a POF model that is most appropriate for their type of study and suits the purpose of their research.
Collapse
Affiliation(s)
- Negar Pouladvand
- Department of Embryology, Reproductive Biomedicine Research CenterRoyan Institute for Reproductive Biomedicine, ACECRTehranIran
- Department of Animal Biology, Faculty of Biological SciencesKharazmi UniversityTehranIran
| | - Mahnaz Azarnia
- Department of Animal Biology, Faculty of Biological SciencesKharazmi UniversityTehranIran
| | - Hadis Zeinali
- Department of Animal Biology, Faculty of Biological SciencesKharazmi UniversityTehranIran
| | - Rouhollah Fathi
- Department of Embryology, Reproductive Biomedicine Research CenterRoyan Institute for Reproductive Biomedicine, ACECRTehranIran
| | - Somayeh Tavana
- Department of Embryology, Reproductive Biomedicine Research CenterRoyan Institute for Reproductive Biomedicine, ACECRTehranIran
| |
Collapse
|
4
|
Almasi M, Shafiei G, Nikzad H, Karimian M, Moshkdanian G. The effect of L-carnitine in reactive oxygen species reduction and apoptotic gene expression in mice after cyclophosphamide: An experimental study. Int J Reprod Biomed 2024; 22:661-672. [PMID: 39494123 PMCID: PMC11528291 DOI: 10.18502/ijrm.v22i8.17262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/07/2024] [Accepted: 07/14/2024] [Indexed: 11/05/2024] Open
Abstract
Background Cyclophosphamide (CP), a utilized anticancer drug, is known to cause infertility in women. However, L-carnitine (LC), an antioxidant, has been shown to offer protective benefits against infertility. Objective This study aimed to evaluate the levels of reactive oxygen species (ROS) and apoptotic gene expression in mice treated with CP and LC. Materials and Methods 24 NMRI female mice (6-8 wk, 30 ± 5 gr) were divided into 4 groups: control group: received normal saline intraperitoneal (IP) injection for 10 days; CP group: received 75 mg/kg of CP as a single IP on the 10 th day of the experiment; LC group: received 200 mg/kg of LC IP for 10 days; LC+CP group: received LC for 10 days and CP single IP injection on the 10 th day of the experiment. After 10 days, mice were superovulated. The oviducts were then removed, and the oocytes of each group were collected for evaluating apoptotic gene expression B-cell lymphoma 2(Bcl2), Bcl2-associated X(Bax), and Caspase3 via real-time polymerase chain reaction and intracellular ROS levels by dichloro-dihydro-fluorescein diacetate fluorescence staining. Results Data revealed that LC in the LC+CP group significantly increased Bcl2 gene expression (p = 0.01), and decreased Bax and Caspase3 gene expression compared to the CP group (p = 0.03, p = 0.04). LC decreased the ROS level in the LC+CP group compared to the CP group (p < 0.001). Conclusion Findings suggest that LC can scavenge the ROS caused by CP and modulate the apoptotic pathway via downregulating the Bax and Caspase3 genes and upregulating the Bcl2 gene in oocytes of mice exposed to CP.
Collapse
Affiliation(s)
- Majid Almasi
- Gametogenesis Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Golnaz Shafiei
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Hossein Nikzad
- Gametogenesis Research Center, Kashan University of Medical Sciences, Kashan, Iran
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Karimian
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| | - Ghazaleh Moshkdanian
- Gametogenesis Research Center, Kashan University of Medical Sciences, Kashan, Iran
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
5
|
He W, Huang Z, Nian C, Huang L, Kong M, Liao M, Zhang Q, Li W, Hu Y, Wu J. Discovery and evaluation of novel spiroheterocyclic protective agents via a SIRT1 upregulation mechanism in cisplatin-induced premature ovarian failure. Bioorg Med Chem 2024; 110:117834. [PMID: 39029436 DOI: 10.1016/j.bmc.2024.117834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 07/21/2024]
Abstract
Currently, no effective treatment exists for premature ovarian failure (POF). To obtain compounds with protective effects against POF, we aimed to design and synthesize a series of spiroheterocyclic protective agents with a focus on minimizing toxicity while enhancing their protective effect against cisplatin-induced POF. This was achieved through systematic modifications of Michael receptors and linkers within the molecular structure of 1,5-diphenylpenta-1,4-dien-3-one analogs. To assess the cytotoxicity and activity of these compounds, we constructed quantitative conformational relationship models using an artificial intelligence random forest algorithm, resulting in R2 values exceeding 0.87. Among these compounds, j2 exhibited optimal protective activity. It significantly increased the survival of cisplatin-injured ovarian granulosa KGN cells, improved post-injury cell morphology, reduced apoptosis, and enhanced cellular estradiol (E2) levels. Subsequent investigations revealed that j2 may exert its protective effect via a novel mechanism involving the activation of the SIRT1/AKT signal pathway. Furthermore, in cisplatin-injured POF in rats, j2 was effective in increasing body, ovarian, and uterine weights, elevating the number of follicles at all levels in the ovary, improving ovarian and uterine structures, and increasing serum E2 levels in rats with cisplatin-injured POF. In conclusion, this study introduces a promising compound j2 and a novel target SIRT1 with substantial protective activity against cisplatin-induced POF.
Collapse
Affiliation(s)
- Wenfei He
- The Second Affiliated Hospital and Yuying Children's Hospital of the Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Oujiang Laboratory Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, Zhejiang 325000, China; School of Pharmaceutical Sciences, Wenzhou Medical Universtiy, Wenzhou, Zhejiang 325035, China.
| | - Zhicheng Huang
- School of Pharmaceutical Sciences, Wenzhou Medical Universtiy, Wenzhou, Zhejiang 325035, China; Department of Pharmacy, Ezhou Central Hospital, Ezhou, Hubei 436000, China
| | - Chunhui Nian
- School of Pharmaceutical Sciences, Wenzhou Medical Universtiy, Wenzhou, Zhejiang 325035, China
| | - Luoqi Huang
- The Second Affiliated Hospital and Yuying Children's Hospital of the Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Miaomiao Kong
- The 1th Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Mengqin Liao
- School of Pharmaceutical Sciences, Wenzhou Medical Universtiy, Wenzhou, Zhejiang 325035, China
| | - Qiong Zhang
- The Second Affiliated Hospital and Yuying Children's Hospital of the Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Wulan Li
- The 1th Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yue Hu
- The Second Affiliated Hospital and Yuying Children's Hospital of the Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| | - Jianzhang Wu
- The Second Affiliated Hospital and Yuying Children's Hospital of the Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Oujiang Laboratory Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, Zhejiang 325000, China; The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University; Wenzhou 325027, China.
| |
Collapse
|
6
|
Giaccari C, Antonouli S, Anifandis G, Cecconi S, Di Nisio V. An Update on Physiopathological Roles of Akt in the ReprodAKTive Mammalian Ovary. Life (Basel) 2024; 14:722. [PMID: 38929705 PMCID: PMC11204812 DOI: 10.3390/life14060722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/19/2024] [Accepted: 05/25/2024] [Indexed: 06/28/2024] Open
Abstract
The phosphoinositide 3-kinase (PI3K)/Akt pathway is a key signaling cascade responsible for the regulation of cell survival, proliferation, and metabolism in the ovarian microenvironment. The optimal finetuning of this pathway is essential for physiological processes concerning oogenesis, folliculogenesis, oocyte maturation, and embryo development. The dysregulation of PI3K/Akt can impair molecular and structural mechanisms that will lead to follicle atresia, or the inability of embryos to reach later stages of development. Due to its pivotal role in the control of cell proliferation, apoptosis, and survival mechanisms, the dysregulation of this molecular pathway can trigger the onset of pathological conditions. Among these, we will focus on diseases that can harm female fertility, such as polycystic ovary syndrome and premature ovarian failure, or women's general health, such as ovarian cancer. In this review, we report the functions of the PI3K/Akt pathway in both its physiological and pathological roles, and we address the existing application of inhibitors and activators for the balancing of the molecular cascade in ovarian pathological environments.
Collapse
Affiliation(s)
- Carlo Giaccari
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania “Luigi Vanvitelli”, 81100 Caserta, Italy;
| | - Sevastiani Antonouli
- Department of Obstetrics and Gynaecology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41334 Larisa, Greece; (S.A.); (G.A.)
| | - George Anifandis
- Department of Obstetrics and Gynaecology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41334 Larisa, Greece; (S.A.); (G.A.)
| | - Sandra Cecconi
- Department of Life, Health, and Environmental Sciences, Università dell’Aquila, 67100 L’Aquila, Italy
| | - Valentina Di Nisio
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, SE-14186 Stockholm, Sweden;
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, SE-14186 Stockholm, Sweden
| |
Collapse
|
7
|
Ahmadpour S, Moshkdanian G, Rezvani Z, Almasi M. L-carnitine fails to rescue chemotherapy injured ovaries by epigenetic changes of transcription factors. Gene 2024; 901:148128. [PMID: 38181927 DOI: 10.1016/j.gene.2024.148128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 11/14/2023] [Accepted: 01/02/2024] [Indexed: 01/07/2024]
Abstract
Cyclophosphamide (CP), as an anti-cancer drug, is frequently used to treat various types of cancer. A decreased number of ovarian follicles impaired normal ovarian function, and subsequent premature ovarian failure (POF) presented as a side effect of cyclophosphamide usage. These events may eventually affect the fertility rate of individuals. The present study showed the effect of cyclophosphamide on ovarian reserves and the protective effect of L-carnitine (LC) as an antioxidant to prevent POF. To design the study, six to eight-week-old NMRI female mice were divided into three groups: control, cyclophosphamide (CP), and cyclophosphamide + L-carnitine (CP + LC). Mice received drugs intraperitoneally (IP) for 21 days. In the following 24 h after the last injection, both ovaries were used to evaluate the expression of Sohlh1 and Lhx8 genes by Real-time PCR. Furthermore, the alteration of Lhx8 promoter methylation was examined by Methylation-sensitive high-resolution melting analysis (MS-HRM). The present data showed the negative effect of CP on regulator genes of oogenesis including Sohlh1 and Lhx8. In addition, an examination of the epigenetic status of the Lhx8 gene showed a change in promoter methylation of this gene following cyclophosphamide injection. Although, L-carnitine is an effective antioxidant in relieving oxidative stress caused by cyclophosphamide and its damage, in the present study, however, the use of L-carnitine failed to protect the ovaries from changes caused by CP injection. So, using cyclophosphamide can alter the expression of folliculogenesis genes through its effects on epigenetic changes and may cause POF. The results of the present study showed that L-carnitine consumption can't protect the ovaries against the adverse effects of CP.
Collapse
Affiliation(s)
- Sara Ahmadpour
- Biotechnology Department, Faculty of Chemistry, University of Kashan, Kashan, Iran
| | - Ghazaleh Moshkdanian
- Gametogenesis Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Science, Kashan, Iran.
| | - Zahra Rezvani
- Department of Cell and Molecular Biology, Faculty of Chemistry, University of Kashan, Iran
| | - Majid Almasi
- Gametogenesis Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Science, Kashan, Iran
| |
Collapse
|
8
|
Mahmood NMA. Protective effects of Azilsartan against cyclophosphamide-induced ovarian toxicity in rats model. Toxicol Res (Camb) 2024; 13:tfae027. [PMID: 38450178 PMCID: PMC10913384 DOI: 10.1093/toxres/tfae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/23/2024] [Accepted: 01/31/2024] [Indexed: 03/08/2024] Open
Abstract
Background Cyclophosphamide (CP) is an effective alkylating anticancer agent that is widely used in cancer chemotherapy, and it can cause ototoxicity and infertility in women. Objectives So, this study aimed to evaluate the protective effects of Azilsartan (AZ) as an antioxidant and anti-inflammatory agent in a rat model of CP-induced ovarian toxicity. Materials and Methods After receiving the 28 female Wister rats, they were acclimatized in proper environmental conditions for a week and then randomly divided into four groups based on the study protocol. After 15 days of the experiment, they were sacrificed, and organs were collected for biomarker detection (Using the ELISA technique) and histopathological analysis. Results The level of IL-10 was significantly (P < 0.05) decreased in all treated groups compared to control hostile groups, while the TNF-α level was significantly (P < 0.05) increased in AZ (220.67 ± 7.88 ng/mL) and AZ + CP groups (221.78 ± 9.11 ng/mL) compared to control negative/CP groups. Regarding the oxidative biomarker level, a significant increase was only found in the AZ + CP group (176.02 ± 6.71 nmol/mL) compared to the control negative group. On the other hand, histopathological findings revealed that ovarian sections in animals that received a single dose of CP had severe ovarian atrophy with significant follicular regression and deterioration, as well as depletion of stromal supportive tissues. Conclusions Azilsartan drastically reduced CP-induced ovarian toxicity in vivo by enhancing oxidative stress and inhibiting inflammatory effects in ovarian cells.
Collapse
Affiliation(s)
- Naza Mohammed Ali Mahmood
- Department of Pharmacology & Toxicology, College of Pharmacy, University of Sulaimani, Madam Meteeran Street, Sulaimaniyah 0046, Iraq
| |
Collapse
|
9
|
Ellibishy F, Tarek M, Abd-Elsalam MM, Elgayar N, El Bakly W. Metformin improves d-galactose induced premature ovarian insufficiency through PI3K-Akt-FOXO3a pathway. Adv Med Sci 2024; 69:70-80. [PMID: 38387407 DOI: 10.1016/j.advms.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/23/2023] [Accepted: 02/12/2024] [Indexed: 02/24/2024]
Abstract
PURPOSE Metformin (MET), a first-line treatment for type 2 diabetes mellitus, restores ovarian function in women with polycystic ovary syndrome. MET has been shown to increase the rate of success for in vitro fertilization when utilized in assisted reproductive technologies. This study was designed to examine the impact of MET on ovarian function and fertility in a mouse model of galactose-induced premature ovarian insufficiency (POI). We further investigated the underlying mechanisms. MATERIALS AND METHODS Female mice were divided into 4 groups: saline, d-galactose, d-galactose + MET, and MET. Body weight, ovarian index, and fertility were assessed. The hormonal profile was done. Advanced glycation end products (AGEPs), receptor for advanced glycation end products (RAGE), phosphoinositide 3-kinase (PI3K), protein kinase B (Akt), forkhead box O3a (FOXO3a) expression were measured. Ovarian follicle counting and morphology were analyzed. Immunohistochemistry of cleaved caspase-3 expression was performed. RESULTS Our findings demonstrated that MET reversed irregularities in the estrus cycle, enhanced the ovarian index, and improved the abnormal levels of hormones and AGEs induced by d-galactose. Furthermore, the expression levels of PI3K, Akt, FOXO3a, and RAGE were upregulated with d-galactose. However, MET attenuated their expression levels. The primordial follicles ratio was improved, whereas atretic follicles and apoptotic-related cleaved caspase-3 expression were decreased in the d-galactose + MET group compared to the d-galactose group. CONCLUSION This study demonstrates that MET partially rescued ovarian dysfunction and apoptosis induced by d-galactose via a mechanism involving PI3K-Akt-FOXO3a pathway. Our finding proposed that MET may be a promising alternative treatment for POI.
Collapse
Affiliation(s)
- Fatima Ellibishy
- Clinical Pharmacology Department, Faculty of Medicine, Kafr Elsheikh University, Kafr Elsheikh, Egypt.
| | - Maha Tarek
- Clinical Pharmacology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Marwa M Abd-Elsalam
- Histology & Cell Biology Department, Faculty of Medicine, Kafr Elsheikh University, Kafr Elsheikh, Egypt
| | - Nesreen Elgayar
- Clinical Pharmacology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Wesam El Bakly
- Clinical Pharmacology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
10
|
Liakath Ali F, Park HS, Beckman A, Eddy AC, Alkhrait S, Ghasroldasht MM, Al-Hendy A, Raheem O. Fertility Protection, A Novel Concept: Umbilical Cord Mesenchymal Stem Cell-Derived Exosomes Protect against Chemotherapy-Induced Testicular Cytotoxicity. Int J Mol Sci 2023; 25:60. [PMID: 38203232 PMCID: PMC10779299 DOI: 10.3390/ijms25010060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/15/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
Currently, there is no viable option for fertility preservation in prepubertal boys. Experimentally, controlled vitrification of testicular tissue has been evaluated and found to cause potential structural damage to the spermatogonial stem cell (SSC) niche during cryopreservation. In this report, we leveraged the regenerative effect of human umbilical cord-derived Mesenchymal stem cell exosomes (h-UCMSC-Exo) to protect against testicular damage from the cytotoxic effects of polychemotherapy (CTX). A chemotherapy-induced testicular dysfunctional model was established by CTX treatment with cyclophosphamide and Busulfan in vitro (human Sertoli cells) and in prepubescent mice. We assessed the effects of the exosomes by analyzing cell proliferation assays, molecular analysis, immunohistochemistry, body weight change, serum hormone levels, and fertility rate. Our data indicates the protective effect of h-UCMSC-Exo by preserving the SSC niche and preventing testicular damage in mice. Interestingly, mice that received multiple injections of h-UCMSC-Exo showed significantly higher fertility rates and serum testosterone levels (p < 0.01). Our study demonstrates that h-UCMSC-Exo can potentially be a novel fertility protection approach in prepubertal boys triaged for chemotherapy treatment.
Collapse
Affiliation(s)
- Farzana Liakath Ali
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; (F.L.A.)
| | - Hang-Soo Park
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; (F.L.A.)
| | - Analea Beckman
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; (F.L.A.)
| | - Adrian C. Eddy
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; (F.L.A.)
| | - Samar Alkhrait
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; (F.L.A.)
| | | | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; (F.L.A.)
| | - Omer Raheem
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; (F.L.A.)
- Department of Surgery, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
11
|
Ding X, Lv S, Guo Z, Gong X, Wang C, Zhang X, Meng K. Potential Therapeutic Options for Premature Ovarian Insufficiency: Experimental and Clinical Evidence. Reprod Sci 2023; 30:3428-3442. [PMID: 37460850 DOI: 10.1007/s43032-023-01300-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/10/2023] [Indexed: 12/03/2023]
Abstract
Premature ovarian insufficiency (POI) is a condition in which a woman experiences premature decline in ovarian function before the age of 40 years, manifested by menstrual disorders, decreased fertility, and possibly postmenopausal symptoms such as insomnia, hot flashes, and osteoporosis, and is one of the predominant clinical syndromes leading to female infertility. Genetic, immunologic, iatrogenic and other factors, alone or in combination, have been reported to trigger POI, yet the etiology remains unknown in most cases. The main methods currently used clinically to ameliorate menopausal symptoms due to hypoestrogenemia in POI patients are hormone replacement therapy, while the primary methods available to address infertility in POI patients are oocyte donation and cryopreservation techniques, both of which have limitations to some degree. In recent years, researchers have continued to explore more efficient and safe therapies, and have achieved impressive results in preclinical trials. In this article, we will mainly review the three most popular therapies and their related signaling pathways published in the past ten years, with the aim of providing ideas for clinical applications.
Collapse
Affiliation(s)
- Xuechun Ding
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Shenmin Lv
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Zhipeng Guo
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Xiaowei Gong
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Caiqin Wang
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Xiaoyan Zhang
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China
- College of Basic Medicine, Jining Medical University, Jining, China
| | - Kai Meng
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China.
- Lin He's Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China.
| |
Collapse
|
12
|
Bulbul M, Tekce A, Annac E, Korkmaz O, Onderci M, Korkmaz D, Demirci AM. Identification of royal jelly as a potential new drug to protect the ovarian reserve and uterus against cyclophosphamide in rats. Clin Exp Reprod Med 2023; 50:34-43. [PMID: 36935410 PMCID: PMC10030208 DOI: 10.5653/cerm.2022.05596] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 01/05/2023] [Indexed: 02/25/2023] Open
Abstract
OBJECTIVE The aim of this study was to investigate the effect of royal jelly (RJ), a powerful natural antioxidant, on cyclophosphamide-induced ovarian damage. METHODS Thirty-two Wistar albino rats were divided into four groups. Oral treatment was administered to all rats for 16 days after a single intraperitoneal injection. The control group received intraperitoneal and oral saline; the RJ group received intraperitoneal saline and 100 mg/kg/day oral RJ; the cyclophosphamide group received intraperitoneal 100 mg/kg cyclophosphamide and oral saline; and the treatment group received intraperitoneal 100 mg/kg cyclophosphamide and 100 mg/kg/day oral RJ. The groups were compared in terms of ovarian reserve tests and histopathological changes in the ovary and uterus. RESULTS All follicle counts were higher in the treatment group than in the cyclophosphamide group. The increase in the number of preantral follicles (p=0.001) and the decrease in the number of atretic follicles (p=0.004) were statistically significant. RJ treatment significantly improved follicular degeneration and cortical fibrosis in the ovary and epithelial and gland degeneration in the uterus due to cyclophosphamide toxicity. CONCLUSION According to these results, RJ reduces cyclophosphamide-related ovarian and endometrial damage in rats. For this reason, it should be further investigated to determine its effects on reproductive function.
Collapse
Affiliation(s)
- Mehmet Bulbul
- Department of Obstetrics and Gynecology, Karabuk University Faculty of Medicine, Karabuk, Turkey
| | - Ali Tekce
- Department of Obstetrics and Gynecology, Harran University Faculty of Veterinary Medicine, Sanliurfa, Turkey
| | - Ebru Annac
- Department of Histology and Embryology, Adiyaman University Faculty of Medicine, Adiyaman, Turkey
| | - Omer Korkmaz
- Department of Obstetrics and Gynecology, Harran University Faculty of Veterinary Medicine, Sanliurfa, Turkey
| | - Muhittin Onderci
- Department of Biochemistry, Adiyaman University Faculty of Medicine, Adiyaman, Turkey
| | - Deniz Korkmaz
- Department of Histology and Embryology, Harran University Faculty of Veterinary Medicine, Sanliurfa, Turkey
| | - Akin Mustafa Demirci
- Department of Microbiology, Harran University Faculty of Veterinary Medicine, Sanliurfa, Turkey
| |
Collapse
|
13
|
Zhang YT, Tian W, Lu YS, Li ZM, Ren DD, Zhang Y, Sha JY, Huo XH, Li SS, Sun YS. American ginseng with different processing methods ameliorate immunosuppression induced by cyclophosphamide in mice via the MAPK signaling pathways. Front Immunol 2023; 14:1085456. [PMID: 37153583 PMCID: PMC10160487 DOI: 10.3389/fimmu.2023.1085456] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 04/10/2023] [Indexed: 05/09/2023] Open
Abstract
This study aimed to clarify the effects of two processed forms of American ginseng (Panax quinquefolius L.) on immunosuppression caused by cyclophosphamide (CTX) in mice. In the CTX-induced immunosuppressive model, mice were given either steamed American ginseng (American ginseng red, AGR) or raw American ginseng (American ginseng soft branch, AGS) by intragastric administration. Serum and spleen tissues were collected, and the pathological changes in mice spleens were observed by conventional HE staining. The expression levels of cytokines were detected by ELISA, and the apoptosis of splenic cells was determined by western blotting. The results showed that AGR and AGS could relieve CTX-induced immunosuppression through the enhanced immune organ index, improved cell-mediated immune response, increased serum levels of cytokines (TNF-α, IFN-γ, and IL-2) and immunoglobulins (IgG, IgA, and IgM), as well as macrophage activities including carbon clearance and phagocytic index. AGR and AGS downregulated the expression of BAX and elevated the expression of Bcl-2, p-P38, p-JNK, and p-ERK in the spleens of CTX-injected animals. Compared to AGS, AGR significantly improved the number of CD4+CD8-T lymphocytes, the spleen index, and serum levels of IgA, IgG, TNF-α, and IFN-γ. The expression of the ERK/MAPK pathway was markedly increased. These findings support the hypothesis that AGR and AGS are effective immunomodulatory agents capable of preventing immune system hypofunction. Future research may investigate the exact mechanism to rule out any unforeseen effects of AGR and AGS.
Collapse
Affiliation(s)
- Yan-Ting Zhang
- Institute of Special Animal and Plant Sciences, China Academy of Agricultural Sciences, Changchun, China
| | - Wei Tian
- Institute of Cash Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, China
| | - Yu-Shun Lu
- Institute of Special Animal and Plant Sciences, China Academy of Agricultural Sciences, Changchun, China
| | - Zhi-Man Li
- Institute of Special Animal and Plant Sciences, China Academy of Agricultural Sciences, Changchun, China
| | - Duo-Duo Ren
- Institute of Special Animal and Plant Sciences, China Academy of Agricultural Sciences, Changchun, China
| | - Yue Zhang
- Institute of Special Animal and Plant Sciences, China Academy of Agricultural Sciences, Changchun, China
| | - Ji-Yue Sha
- Institute of Special Animal and Plant Sciences, China Academy of Agricultural Sciences, Changchun, China
| | - Xiao-Hui Huo
- Institute of Special Animal and Plant Sciences, China Academy of Agricultural Sciences, Changchun, China
| | - Shan-Shan Li
- Institute of Biological and Pharmaceutical Engineering, Jilin Agricultural Science and Technology University, Jilin, China
- *Correspondence: Shan-Shan Li, ; Yin-Shi Sun,
| | - Yin-Shi Sun
- Institute of Special Animal and Plant Sciences, China Academy of Agricultural Sciences, Changchun, China
- *Correspondence: Shan-Shan Li, ; Yin-Shi Sun,
| |
Collapse
|
14
|
Nsamou PCN, Momo ACT, Tchatat YBP, Fozin GRB, Kemka FX, Ngadjui E, Watcho P. The edible plant Amaranthus hybridus (Amaranthaceae) prevents the biochemical, histopathological and fertility impairments in colibri®-treated female rats. Toxicol Rep 2022; 9:422-431. [PMID: 35310145 PMCID: PMC8927798 DOI: 10.1016/j.toxrep.2022.03.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/14/2022] [Accepted: 03/04/2022] [Indexed: 11/24/2022] Open
Abstract
Colibri® a commercial formulation of Imidacloprid severely impairs the reproductive function. This study aimed at evaluating the preventive effects of Amaranthus hybridus on the reproductive toxicity of colibri® in female rats. Eighty rats (n = 10/group) were orally treated with colibri® (22.5 mg/kg) and co-administered with either aqueous or methanolic extracts of A. hybridus (55 or 110 mg/kg) within four weeks. Control animals received either distilled water (10 ml/kg), clomiphene citrate or vitamin E. Starting from day 18 of treatment till the end, half of animals in each group (n = 5) was used for the fertility test whereas the remaining rats were kept under treatment until sacrifice. Blood, ovaries, uterus and vagina were collected after sacrifice for measurement of sexual hormones, oxidative stress markers and histological assessment. Exposure of female rats to colibri® was followed by a significant reduction (p < 0.05) in the ovarian and uterine weights, LH, FSH, estradiol and progesterone levels as well as ovarian superoxide dismutase, catalase and peroxidase activities. Moreover, alteration of ovaries, uteri and vagina histology, increase in MDA concentration, decrease in fertility and parturition indices and, pup's viability were recorded. Co-administration of colibri® and plant extracts significantly (p < 0.05-0.001) prevented the above-mentioned damages through biochemical parameter regulations. These results suggest that A. hybridus exerts a preventive effect against colibri®-induced female reproductive toxicity.
Collapse
Affiliation(s)
- Prechmy Carole Ngueyong Nsamou
- Research Unit of Animal Physiology and Phytopharmacology, Faculty of Science, University of Dschang, P.O. BOX. 67, Dschang, Cameroon
| | - Aimé Césaire Tetsatsi Momo
- Research Unit of Animal Physiology and Phytopharmacology, Faculty of Science, University of Dschang, P.O. BOX. 67, Dschang, Cameroon
| | - Yannick Baudouin Petnga Tchatat
- Research Unit of Animal Physiology and Phytopharmacology, Faculty of Science, University of Dschang, P.O. BOX. 67, Dschang, Cameroon
| | - Georges Romeo Bonsou Fozin
- Research Unit of Animal Physiology and Phytopharmacology, Faculty of Science, University of Dschang, P.O. BOX. 67, Dschang, Cameroon
| | - François Xavier Kemka
- Research Unit of Animal Physiology and Phytopharmacology, Faculty of Science, University of Dschang, P.O. BOX. 67, Dschang, Cameroon
| | - Esther Ngadjui
- Research Unit of Animal Physiology and Phytopharmacology, Faculty of Science, University of Dschang, P.O. BOX. 67, Dschang, Cameroon
| | - Pierre Watcho
- Research Unit of Animal Physiology and Phytopharmacology, Faculty of Science, University of Dschang, P.O. BOX. 67, Dschang, Cameroon
| |
Collapse
|
15
|
Lange-Consiglio A, Capra E, Herrera V, Lang-Olip I, Ponsaerts P, Cremonesi F. Application of Perinatal Derivatives in Ovarian Diseases. Front Bioeng Biotechnol 2022; 10:811875. [PMID: 35141212 PMCID: PMC8818994 DOI: 10.3389/fbioe.2022.811875] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/05/2022] [Indexed: 12/18/2022] Open
Abstract
Reproductive diseases could lead to infertility and have implications for overall health, most importantly due to psychological, medical and socio-economic consequences for individuals and society. Furthermore, economical losses also occur in animal husbandry. In both human and veterinary medicine, hormonal and surgical treatments, as well as assisted reproductive technologies are used to cure reproductive disorders, however they do not improve fertility. With ovarian disorders being the main reproductive pathology in human and bovine, over the past 2 decades research has approached regenerative medicine in animal model to restore normal function. Ovarian pathologies are characterized by granulosa cell and oocyte apoptosis, follicular atresia, decrease in oocyte quality and embryonic development potential, oxidative stress and mitochondrial abnormalities, ultimately leading to a decrease in fertility. At current, application of mesenchymal stromal cells or derivatives thereof represents a valid strategy for regenerative purposes. Considering their paracrine/autocrine mode of actions that are able to regenerate injured tissues, trophic support, preventing apoptosis and fibrosis, promoting angiogenesis, stimulating the function and differentiation of endogenous stem cells and even reducing the immune response, are all important players in their future therapeutic success. Nevertheless, obtaining mesenchymal stromal cells (MSC) from adult tissues requires invasive procedures and implicates decreased cell proliferation and a reduced differentiation capacity with age. Alternatively, the use of embryonic stem cells as source of cellular therapeutic encountered several ethical concerns, as well as the risk of teratoma formation. Therefore, several studies have recently focussed on perinatal derivatives (PnD) that can be collected non-invasively and, most importantly, display similar characteristics in terms of regenerating-inducing properties, immune-modulating properties and hypo-immunogenicity. This review will provide an overview of the current knowledge and future perspectives of PnD application in the treatment of ovarian hypofunction.
Collapse
Affiliation(s)
- Anna Lange-Consiglio
- Dipartimento di Medicina Veterinaria, Università Degli Studi di Milano, Lodi, Italy
- Centro Clinico-Veterinario e Zootecnico-Sperimentale di Ateneo, Università Degli Studi di Milano, Lodi, Italy
- *Correspondence: Anna Lange-Consiglio,
| | - Emanuele Capra
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale Delle Ricerche IBBA CNR, Lodi, Italy
| | - Valentina Herrera
- Dipartimento di Medicina Veterinaria, Università Degli Studi di Milano, Lodi, Italy
| | - Ingrid Lang-Olip
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Peter Ponsaerts
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | - Fausto Cremonesi
- Dipartimento di Medicina Veterinaria, Università Degli Studi di Milano, Lodi, Italy
- Centro Clinico-Veterinario e Zootecnico-Sperimentale di Ateneo, Università Degli Studi di Milano, Lodi, Italy
| |
Collapse
|
16
|
Exploration of the Danggui Buxue Decoction Mechanism Regulating the Balance of ESR and AR in the TP53-AKT Signaling Pathway in the Prevention and Treatment of POF. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2021:4862164. [PMID: 35003302 PMCID: PMC8739177 DOI: 10.1155/2021/4862164] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 11/16/2021] [Indexed: 12/20/2022]
Abstract
Objective The purpose of this study was to explore the molecular mechanism of Danggui Buxue Decoction (DBD) intervening premature ovarian failure (POF). Methods The active compounds-targets network, active compounds-POF-targets network, and protein-protein interaction (PPI) network were constructed by a network pharmacology approach: Gene Ontology (GO) function and Kyoto Encyclopedia of Gene and Genome (KEGG) pathway analysis by DAVID 6.8 database. The molecular docking method was used to verify the interaction between core components of DBD and targets. Then, High-Performance Liquid Chromatography (HPLC) analysis was used to determine whether the DBD contained two key components including quercetin and kaempferol. Finally, the estrous cycle, organ index, ELISA, and western blot were used to verify that mechanism of DBD improved POF induced by cyclophosphamide (CTX) in rats. Results Based on the network database including TCMSP, Swiss Target Prediction, DisGeNET, DrugBank, OMIM, and Malacard, we built the active compounds-targets network and active compounds-POF-targets network. We found that 2 core compounds (quercetin and kaempferol) and 5 critical targets (TP53, IL6, ESR1, AKT1, and AR) play an important role in the treatment of POF with DBD. The GO and KEGG enrichment analysis showed that the common targets involved a variety of signaling pathways, including the reactive oxygen species metabolic process, release of Cytochrome C from mitochondria and apoptotic signaling pathway, p53 signaling pathway, the PI3K-Akt signaling pathway, and the estrogen signaling pathway. The molecular docking showed that quercetin, kaempferol, and 5 critical targets had good results regarding the binding energy. Chromatography showed that DBD contained quercetin and kaempferol compounds, which was consistent with the database prediction results. Based on the above results, we found that the process of DBD interfering POF is closely related to the balance of ESR and AR in TP53-AKT signaling pathway and verified animal experiments. In animal experiments, we have shown that DBD and its active compounds can effectively improve estrus cycle of POF rats, inhibit serum levels of FSH and LH, protein expression levels of Cytochrome C, BAX, p53, and IL6, and promote ovary index, uterine index, serum levels of E2 and AMH, and protein expression levels of AKT1, ESR1, AR, and BCL2. Conclusions DBD and its active components could treat POF by regulating the balance of ESR and AR in TP53-AKT signaling pathway.
Collapse
|
17
|
Melatonin Attenuates Cyclophosphamide-Induced Primordial Follicle Loss by Interaction with MT 1 Receptor and Modulation of PTEN/Akt/FOXO3a Proteins in the Mouse Ovary. Reprod Sci 2021; 29:2505-2514. [PMID: 34642909 DOI: 10.1007/s43032-021-00768-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/05/2021] [Indexed: 10/20/2022]
Abstract
This study evaluated the protective effect of melatonin before cyclophosphamide administration on ovarian function and its potential mechanism in a mouse model. Two studies were performed. In the first, mice were pretreated with melatonin (10, 20, or 30 mg/kg body weight, i.p.) once daily for 3 days, followed by injection with a single dose of cyclophosphamide (200 mg/kg body weight, i.p.) 30 min after the last melatonin injection. The second study analyzed whether melatonin type 1 and/or 2 receptors mediate the effects of melatonin on the ovary through administration of non-selective MT1/MT2 antagonist (luzindole) or selective MT2 antagonist (4-PPDOT) before the treatment with melatonin plus cyclophosphamide. After treatment groups, the ovaries were harvested and destined to histology, immunohistochemistry, and fluorescence analyses. Lastly, we examined the p-PTEN, p-Akt, and p-FOXO3a participation in the protective effect of melatonin in cyclophosphamide-induced ovarian damage. Results demonstrated that pretreatment with 20 mg/kg melatonin before cyclophosphamide administration showed more morphologically normal follicles, attenuated primordial follicle loss, decreased growing follicle atresia and mitochondrial damage, and increased GSH concentrations. Furthermore, treatment with luzindole blocked the protective effects of melatonin against the damage caused by cyclophosphamide. Additionally, pretreatment with 20 mg/kg melatonin regulated the PTEN/Akt/FOXO3a signaling pathway components after cyclophosphamide treatment. In conclusion, pretreatment with 20 mg/kg melatonin prevented primordial follicle loss and reduced apoptosis and oxidative damage in the mouse ovary during experimental chemotherapy with cyclophosphamide. Furthermore, the MT1 receptor and PTEN/Akt/FOXO3a proteins mediated these cytoprotective effects.
Collapse
|
18
|
Premature ovarian insufficiency: pathogenesis and therapeutic potential of mesenchymal stem cell. J Mol Med (Berl) 2021; 99:637-650. [PMID: 33641066 DOI: 10.1007/s00109-021-02055-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 01/29/2021] [Accepted: 02/21/2021] [Indexed: 12/14/2022]
Abstract
Primary ovarian insufficiency (POI) is defined as a reduction in ovarian function before the expected age of menopause. POI is known to increase the risk of cardiovascular disorders, osteoporosis, cognitive decline, and mood disorders, resulting in a reduced quality of life. Appropriate hormone replacement for premenopausal women decreases these adverse health risks and improves quality of life for women with POI, but does not prolong life expectancy. The potential etiologies of POI include chromosomal abnormalities and genetic mutations, autoimmune factors, and iatrogenic causes, including surgery, chemotherapy, and radiation therapy. A major association is suggested to exist between reproductive longevity and the DNA damage pathway response genes. DNA damage and repair in ovarian granulosa cells is strongly associated with POI. Depletion of oocytes with damaged DNA occurs through different cell death mechanisms, such as apoptosis, autophagy, and necroptosis, mediated by the phosphatase and tensin homolog (PTEN)/phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/forkhead transcription factors 3 (FOXO3) pathway. Mesenchymal stem cells (MSCs) are characterized by the ability of self-renewal and differentiation and play an important role in the regeneration of injured tissues. Transplantation of MSCs has been shown to functionally restore ovarian reserve in a POI mouse model. Recent advances in stem cell therapy are likely to be translated to new therapeutic options bringing new hope to patients with POI. The aim of this review is to summarize the pathogenic mechanisms that involve cell death and DNA damage and repair pathways and to discuss the stem cell-based therapies as potential therapeutic options for this gynecologic pathology.
Collapse
|
19
|
Wang F, Chen X, Sun B, Ma Y, Niu W, Zhai J, Sun Y. Hypermethylation-mediated downregulation of lncRNA PVT1 promotes granulosa cell apoptosis in premature ovarian insufficiency via interacting with Foxo3a. J Cell Physiol 2021; 236:5162-5175. [PMID: 33393111 DOI: 10.1002/jcp.30222] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023]
Abstract
Long noncoding RNA PVT1 is involved in the progression of female gynecological cancers. However, the role of PVT1 in ovarian granulosa cell apoptosis-mediated premature ovarian insufficiency (POI) remains unclear. This study aims to elucidate the role of PVT1 in ovarian granulosa cell apoptosis-mediated POI. The expression of PVT1 was compared between ovarian tissues from POI patients and normal controls. The methylation level in the PVT1 promoter region was detected by methylation-specific polymerase chain reaction. The interaction between PVT1 and forkhead box class O3A (Foxo3a) was confirmed by RNA pull-down and RNA immunoprecipitation assays. Granulosa cell apoptosis was detected using flow cytometry. The effect of PVT1 on transcription activity of Foxo3a was detected by luciferase reporter assay. The expression of PVT1 was low in the POI ovarian tissues compared with the controls, and such a low expression was related to the hypermethylation of the PVT1 promoter. PVT1 was localized in both the cytoplasm and the nucleus of granulosa cells. We determined that PVT1 could bind with Foxo3a and that downregulating PVT1 by small interfering RNAs inhibited Foxo3a phosphorylation by promoting SCP4-mediated Foxo3a dephosphorylation, resulting in an increase in Foxo3a transcription activity. Moreover, downregulating PVT1 promoted granulosa cell apoptosis by increasing the Foxo3a protein levels. An in vivo experiment showed that the injection of PVT1 overexpressing vectors restored the ovarian function in POI mice. Hypermethylation-induced downregulation of PVT1 promotes granulosa cell apoptosis in POI by inhibiting Foxo3a phosphorylation and increases the Foxo3a transcription activity.
Collapse
Affiliation(s)
- Fang Wang
- Reproductive Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xuemei Chen
- Department of Human Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Bo Sun
- Reproductive Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yujia Ma
- Reproductive Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wenbin Niu
- Reproductive Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jun Zhai
- Reproductive Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yingpu Sun
- Reproductive Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
20
|
Guo XB, Zhai JW, Xia H, Yang JK, Zhou JH, Guo WB, Yang C, Xia M, Xue KY, Liu CD, Zhou QZ. Protective effect of bone marrow mesenchymal stem cell-derived exosomes against the reproductive toxicity of cyclophosphamide is associated with the p38MAPK/ERK and AKT signaling pathways. Asian J Androl 2021; 23:386-391. [PMID: 33565424 PMCID: PMC8269825 DOI: 10.4103/aja.aja_98_20] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Spermatogenic dysfunction caused by cyclophosphamide (CP) chemotherapy has seriously influenced the life quality of patients. Unfortunately, treatments for CP-induced testicular spermatogenic dysfunction are limited, and the molecular mechanisms are not fully understood. For the first time, here, we explored the effects of bone marrow mesenchymal stem cell-derived exosomes (BMSC-exos) on CP-induced testicular spermatogenic dysfunction in vitro and in vivo. BMSC-exos could be taken up by spermatogonia (GC1-spg cells). CP-injured GC1-spg cells and BMSC-exos were cocultured at various doses, and then, cell proliferation was measured using 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay. In addition, photophosphorylation of extracellular-regulated kinase (ERK), p38 mitogen-activated protein kinase (p38MAPK), and protein kinase B (AKT) proteins was evaluated by western blotting as well as apoptosis in GC1-spg cells measured using flow cytometry. Treatment with BMSC-exos enhanced cell proliferation and reduced apoptosis of CP-injured GCI-spg cells. Phosphorylated levels of ERK, AKT, and p38MAPK proteins were reduced in CP-injured spermatogonia when co-treated with BMSC-exos, indicating that BMSC-exos acted against the reproductive toxicity of CP via the p38MAPK/ERK and AKT signaling pathways. In experiments in vivo, CP-treated rats received BMSC-exos by injection into the tail vein, and testis morphology was compared between treated and control groups. Histology showed that transfusion of BMSC-exos inhibited the pathological changes in CP-injured testes. Thus, BMSC-exos could counteract the reproductive toxicity of CP via the p38MAPK/ERK and AKT signaling pathways. The findings provide a potential treatment for CP-induced male spermatogenic dysfunction using BMSC-exos.
Collapse
Affiliation(s)
- Xiao-Bin Guo
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Jia-Wen Zhai
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Hui Xia
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Jian-Kun Yang
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Jun-Hao Zhou
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Wen-Bin Guo
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Cheng Yang
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Ming Xia
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Kang-Yi Xue
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Cun-Dong Liu
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Qi-Zhao Zhou
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| |
Collapse
|
21
|
IL-17 Affects the Progression, Metastasis, and Recurrence of Laryngeal Cancer via the Inhibition of Apoptosis through Activation of the PI3K/AKT/FAS/FASL Pathways. J Immunol Res 2020; 2020:2953191. [PMID: 33415169 PMCID: PMC7769679 DOI: 10.1155/2020/2953191] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/06/2020] [Accepted: 12/04/2020] [Indexed: 01/17/2023] Open
Abstract
Background Cytokines play important roles in the development and prognosis of laryngeal cancer (LC). Interleukin-17 (IL-17) from a distinct subset of CD4+ T cells may significantly induce cancer-elicited inflammation to prevent tumor immune surveillance. Methods The expression levels of IL-17 were examined among 60 patients with LC. Immunofluorescence colocalization experiments were performed to verify the localization of IL-17 and FAS/FASL in Hep-2 and Tu212 cells. The role of IL-17 was determined using siRNA techniques in the LC cell line. Results In the LC patients, cytokines were dysregulated in LC tissues compared with normal tissues. It was found that IL-17 was overexpressed in a cohort of 60 LC tumors paired with nontumor tissues. Moreover, high IL-17 expression was significantly associated with the advanced T category, the late clinical stage, differentiation, lymph node metastasis, and recurrence. In addition, the time course expression of FAS and FASL was observed after stimulation and treatment with the IL-17 stimulator. Finally, in vitro experiments demonstrated that IL-17 functioned as an oncogene by inhibiting the apoptosis of LC cells via the PI3K/AKT/FAS/FASL pathways. Conclusions In summary, these findings demonstrated for the first time the role of IL-17 as a tumor promoter and a prometastatic factor in LC and indicated that IL-17 may have an oncogenic role and serve as a potential prognostic biomarker and therapeutic target in LC.
Collapse
|
22
|
Ekiz Yılmaz T, Taşdemir M, Kaya M, Arıcan N, Ahıshalı B. The effects of magnesium sulfate on cyclophosphamide-induced ovarian damage: Folliculogenesis. Acta Histochem 2020; 122:151470. [PMID: 31812447 DOI: 10.1016/j.acthis.2019.151470] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/13/2019] [Accepted: 11/13/2019] [Indexed: 01/18/2023]
Abstract
Cyclophosphamide (CYP) is one of the alkylating chemotherapeutic agents and its adverse effects on folliculogenesis in the ovary are well-known due to the previous scientific research on this topic. Magnesium has various effects in organisms, including catalytic functions on the activation and inhibition of many enzymes, and regulatory functions on cell proliferation, cell cycle, and differentiation. In this study, the effects of magnesium sulfate (MgSO4) on CYP induced ovarian damage were investigated. Immature Wistar-Albino female rats of 28-days were treated with pregnant mare serum gonadotrophin (PMSG) to develop the first generation of preovulatory follicles. Rats of the experimental groups were then treated with either CYP (100 mg/kg, i.p) and MgSO4 (270 mg/kg loading dose; 27 mg/kg maintenance doseX12, i.p) solely or in combination. Following in-vivo 5-bromo-2-deoxyuridine (BrdU) labeling, animals were sacrificed and ovaries were embedded in paraffin and Epon. In the ovaries, added to the evaluation of general morphology and follicle count; BrdU and TUNEL-labeling, cleaved caspase-3 and p27 (cyclin-dependent kinase inhibitor) staining was also performed immunohistochemically and an ultrastructural evaluation was performed by transmission electron microscopy (TEM). The number of primordial follicles were decreased and multilaminar primary and atretic follicles were increased in CYP group. After MgSO4 treatment, while primordial follicle pool were elevated, the number of atretic follicles were decreased. Additionally, decreased BrdU-labeling, increased cleaved caspase 3 immunoreactivity and increased TUNEL labeling were observed in CYP group. In CYP treated animals, observations showed that while MgSO4 administration caused no alterations in BrdU proliferation index and caspase-3 immunoreactivity, it significantly reduced the TUNEL labeling. It was also observed that, while p27 immunoreactivity significantly increased in the nuclei of granulosa and theca cells in the CYP group; MgSO4 treatment significantly reduced these immunoreactivities. The ultrastructural observations showed frequent apoptotic profiles in granulosa and theca cells in both early and advanced stages of follicles in the CYP group and the MgSO4 treatment before the CYP application led to ultrastructural alleviation of the apoptotic process. In conclusion, our data suggest that MgSO4 may provide an option of pharmacologic treatment for fertility preservation owing to the beneficial effects of on chemotherapy-induced accelerated follicular apoptotic process, and the protection of the primordial follicle pool.
Collapse
Affiliation(s)
- Tuğba Ekiz Yılmaz
- Istanbul University, Istanbul Faculty of Medicine, Department of Histology and Embryology, Istanbul 34093, Turkey.
| | - Müge Taşdemir
- Istanbul University, Istanbul Faculty of Medicine, Department of Histology and Embryology, Istanbul 34093, Turkey.
| | - Mehmet Kaya
- Istanbul University, Istanbul Faculty of Medicine, Department of Physiology, Istanbul 34093, Turkey.
| | - Nadir Arıcan
- Istanbul University, Istanbul Faculty of Medicine, Department of Forensic Medicine, Istanbul 34093, Turkey.
| | - Bülent Ahıshalı
- Istanbul University, Istanbul Faculty of Medicine, Department of Histology and Embryology, Istanbul 34093, Turkey.
| |
Collapse
|
23
|
Liu H, Zhang Y, Li M, Luo P. Beneficial effect of Sepia esculenta ink polysaccharide on cyclophosphamide-induced immunosuppression and ovarian failure in mice. Int J Biol Macromol 2019; 140:1098-1105. [DOI: 10.1016/j.ijbiomac.2019.08.200] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 08/21/2019] [Accepted: 08/23/2019] [Indexed: 12/01/2022]
|
24
|
Han M, Cheng H, Wang J, Yu Y, Wang F, Zhu R, Wang W, Yang S, Li H. Abnormal aggregation of myeloid-derived suppressor cells in a mouse model of cyclophosphamide-induced premature ovarian failure. Gynecol Endocrinol 2019; 35:985-990. [PMID: 31124382 DOI: 10.1080/09513590.2019.1616173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Oocytes are extremely sensitive to radiation and chemotherapy, and premature ovarian failure (POF) is one of the side effects of anti-tumor therapy. The pathogenesis of POF is very complex and still not fully elucidated. A mouse POF model was established after 14 days of cyclophosphamide injection. POF mice presented ovarian atrophy, destroyed follicular structure, a reduction in the number of primordial and mature follicles, and an decrease in the number of corpora luteal along with increased level of follicle-stimulating hormone (FSH), decreased levels of estradiol (E2), and anti-Mullerian hormone (AMH). Additionally, the proportion of bone marrow myeloid-derived suppressor cells (MDSCs) in peripheral blood, spleen, and ovarian tissue increased. MDSCs were mainly distributed around follicles and corpora luteal. Levels of mTOR and p-mTOR increased in ovarian tissue and inhibition of mTOR with rapamycin reduced the aggregation of MDSCs in peripheral blood, spleen, and ovarian tissue. This investigation sheds new light on the modulatory role of mTOR and demonstrates that an increase in MDSC number may play a key role in the pathological reaction during POF. Inhibition of mTOR and reduction of MDSCs in the ovary may represent a novel strategy for the treatment of POF.
Collapse
Affiliation(s)
- Mutian Han
- Center for Reproduction and Genetics, Nanjing Medical University Affiliated Suzhou Hospital , Suzhou , China
| | - Hongbo Cheng
- Center for Reproduction and Genetics, Nanjing Medical University Affiliated Suzhou Hospital , Suzhou , China
| | - Jiaxiong Wang
- Center for Reproduction and Genetics, Nanjing Medical University Affiliated Suzhou Hospital , Suzhou , China
| | - Yi Yu
- Center for Reproduction and Genetics, Nanjing Medical University Affiliated Suzhou Hospital , Suzhou , China
| | - Fuxin Wang
- Center for Reproduction and Genetics, Nanjing Medical University Affiliated Suzhou Hospital , Suzhou , China
| | - Rui Zhu
- Center for Reproduction and Genetics, Nanjing Medical University Affiliated Suzhou Hospital , Suzhou , China
| | - Wei Wang
- Center for Reproduction and Genetics, Nanjing Medical University Affiliated Suzhou Hospital , Suzhou , China
| | - Shenmin Yang
- Center for Reproduction and Genetics, Nanjing Medical University Affiliated Suzhou Hospital , Suzhou , China
| | - Hong Li
- Center for Reproduction and Genetics, Nanjing Medical University Affiliated Suzhou Hospital , Suzhou , China
| |
Collapse
|
25
|
Guo F, Xia T, Zhang Y, Ma X, Yan Z, Hao S, Han Y, Ma R, Zhou Y, Du X. Menstrual blood derived mesenchymal stem cells combined with Bushen Tiaochong recipe improved chemotherapy-induced premature ovarian failure in mice by inhibiting GADD45b expression in the cell cycle pathway. Reprod Biol Endocrinol 2019; 17:56. [PMID: 31311554 PMCID: PMC6636150 DOI: 10.1186/s12958-019-0499-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 07/06/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND To investigate the therapeutic effects of menstrual blood derived mesenchymal stem cells (MB-MSCs) combined with Bushen Tiaochong recipe (BSTCR) on epirubicin induced premature ovarian failure (POF) in mice. METHODS Twenty-four female C57BL/6 mice of 6-8 weeks were intraperitoneally injected with epirubicin to induce POF, and then they were randomized into 4 groups of 6 mice each and treated with PBS, MB-MSCs, BSTCR, and MB-MSCs combined with BSTCR, respectively. Six mice of the same age were used as controls. Vaginal smear, TUNEL and hematoxylin-eosin staining were to observe estrous cycles, ovarian cell apoptosis and follicles. Enzyme-linked immunosorbent analysis determined serum estradiol, follicle-stimulating hormone (FSH) and anti-Müllerian hormone (AMH) levels. RT-qPCR and Western Blot analysis were to determine GADD45b, CyclinB1, CDC2 and pCDC2 expressions. RESULTS Epirubicin treatment resulted in a decrease in the number of primordial, primary, secondary and antral follicles, an increase in the number of atretic follicles and ovarian cell apoptosis, a decrease in estradiol and AMH levels, an increase in FSH levels, and estrous cycle arrest. However, MB-MSCs combined with BSTCR rescued epirubicin induced POF through down-regulating GADD45b and pCDC2 expressions, and up-regulating CyclinB1 and CDC2 expressions. The combined treatment showed better therapeutic efficacy than BSTCR or MB-MSCs alone. CONCLUSIONS MB-MSCs combined with BSTCR improved the ovarian function of epirubicin induced POF mice, which might be related to the inhibition of GADD45b expression and the promotion of CyclinB1 and CDC2 expressions. The combined treatment had better therapeutic efficacy than BSTCR or MB-MSCs alone.
Collapse
Affiliation(s)
- Fengyi Guo
- 0000 0000 9792 1228grid.265021.2Department of Obstetrics & Gynecology, General Hospital, Tianjin Medical University, NO.154, Anshan Road, Heping District, Tianjin, 300052 People’s Republic of China
| | - Tian Xia
- 0000 0004 1799 2712grid.412635.7Reproductive Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, No. 88 Chang Ling Street, Xi Qing district, Tianjin, 300112 China
| | - Yedan Zhang
- 0000 0000 9792 1228grid.265021.2Department of Obstetrics & Gynecology, General Hospital, Tianjin Medical University, NO.154, Anshan Road, Heping District, Tianjin, 300052 People’s Republic of China
| | - Xiaotong Ma
- 0000 0000 9792 1228grid.265021.2Department of Obstetrics & Gynecology, General Hospital, Tianjin Medical University, NO.154, Anshan Road, Heping District, Tianjin, 300052 People’s Republic of China
| | - Zhongrui Yan
- 0000 0000 9792 1228grid.265021.2Department of Obstetrics & Gynecology, General Hospital, Tianjin Medical University, NO.154, Anshan Road, Heping District, Tianjin, 300052 People’s Republic of China
| | - Shaohua Hao
- 0000 0000 9792 1228grid.265021.2Department of Obstetrics & Gynecology, General Hospital, Tianjin Medical University, NO.154, Anshan Road, Heping District, Tianjin, 300052 People’s Republic of China
| | - Yali Han
- 0000 0000 9792 1228grid.265021.2Department of Obstetrics & Gynecology, General Hospital, Tianjin Medical University, NO.154, Anshan Road, Heping District, Tianjin, 300052 People’s Republic of China
| | - Ruihong Ma
- 0000 0004 1799 2712grid.412635.7Reproductive Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, No. 88 Chang Ling Street, Xi Qing district, Tianjin, 300112 China
| | - Yuan Zhou
- grid.461843.cState Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020 China
| | - Xue Du
- 0000 0000 9792 1228grid.265021.2Department of Obstetrics & Gynecology, General Hospital, Tianjin Medical University, NO.154, Anshan Road, Heping District, Tianjin, 300052 People’s Republic of China
| |
Collapse
|
26
|
Zhang BF, Hu Y, Liu X, Cheng Z, Lei Y, Liu Y, Zhao X, Mu M, Yu L, Cheng ML. Correction: The role of AKT and FOXO3 in preventing ovarian toxicity induced by cyclophosphamide. PLoS One 2019; 14:e0215616. [PMID: 30986272 PMCID: PMC6464215 DOI: 10.1371/journal.pone.0215616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
[This corrects the article DOI: 10.1371/journal.pone.0201136.].
Collapse
|