1
|
Li ZJ, Yang ZH, Wang JH, Liu YB, Wang H, Liu MY, Mu QQ, Tang LX, Xu ZY, Liu PP, Hu JJ, Bao ZM. Deciphering the genetic basis of sex differentiation in silver-lipped pearl oyster ( Pinctada maxima) based on integrative transcriptomic analysis. Zool Res 2025; 46:285-300. [PMID: 39973138 PMCID: PMC12000136 DOI: 10.24272/j.issn.2095-8137.2024.266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/22/2024] [Indexed: 02/21/2025] Open
Abstract
The silver-lipped pearl oyster ( Pinctada maxima) is the largest and most commercially valuable pearl-producing oyster, renowned for its ability to generate large, lustrous pearls. This species is a sequential hermaphrodite, with pearl production displaying notable sexual dimorphism. Consequently, understanding the molecular mechanisms governing sex determination and differentiation is crucial for advancing breeding strategies in the pearl oyster industry. To elucidate these mechanisms, this study conducted integrative transcriptomic analyses of P. maxima gonadal tissues using isoform sequencing (Iso-seq) and RNA sequencing (RNA-seq). Comparative analysis of ovarian and testicular tissues identified 2 768 differentially expressed genes (DEGs). Gene co-expression network analysis delineated four key modules, including three sex-specific modules and one shared module. Key genes implicated in sex determination and maintenance were identified, including FOXL2, NANOS1, and β-catenin, important for ovarian maintenance, and DMRT, SOX30, FEM1, and FOXJ1, crucial for testicular maintenance. These genes, widely studied in other taxa, were confirmed as hub genes in the sex-related modules of P. maxima. Interestingly, genes within the shared module were significantly enriched in the spliceosome pathway. Alternative splicing analysis highlighted its extensive role in gonadal tissues, with more pronounced activity observed in the testis compared to the ovary. Nearly half (47.83%, 375) of the identified genes undergoing differential alternative splicing (DASGs) also exhibited differential transcript usage (DTUGs), while only 17% of DTUGs overlapped with DEGs. Genes associated with sex differentiation, such as DMRT, β-catenin, and U2AF2, displayed sex-specific and/or sex-biased isoforms. These findings offer novel insights into the molecular basis of sex differentiation in P. maxima, which could inform the development of targeted breeding strategies aimed at sex control, thereby enhancing pearl quality and yield in aquaculture. This study offers a robust molecular foundation for advancing breeding programs and optimizing production in the pearl oyster industry.
Collapse
Affiliation(s)
- Zi-Jian Li
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, Hainan 572000, China
| | - Zhi-Hui Yang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, Hainan 572000, China
| | - Jia-Hui Wang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, Hainan 572000, China
| | - Yi-Bing Liu
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, Hainan 572000, China
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong 266003, China
| | - Hui Wang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, Hainan 572000, China
| | - Ming-Yang Liu
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, Hainan 572000, China
| | - Qian-Qian Mu
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, Hainan 572000, China
| | - Li-Xia Tang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, Hainan 572000, China
| | - Zhen-Yuan Xu
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, Hainan 572000, China
| | - Ping-Ping Liu
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, Hainan 572000, China
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong 266003, China. E-mail:
| | - Jing-Jie Hu
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, Hainan 572000, China
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong 266003, China
| | - Zhen-Min Bao
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, Hainan 572000, China
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong 266003, China
| |
Collapse
|
2
|
Fang J, Li G, Luo W, Hu Q. Understanding Genetic Regulation of Sex Differentiation in Hermaphroditic Fish. Animals (Basel) 2025; 15:119. [PMID: 39858119 PMCID: PMC11759146 DOI: 10.3390/ani15020119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/24/2024] [Accepted: 01/04/2025] [Indexed: 01/27/2025] Open
Abstract
As a fundamental taxonomic group within vertebrates, fish represent an invaluable resource for investigating the mechanisms underlying sex determination and differentiation owing to their extensive geographical distribution and rich biodiversity. Within this biological cohort, the processes of sex determination and differentiation are intricately governed by both genetic factors and the complex interplay of environmental cues. While variations in external environmental factors, particularly temperature, can exert a modulatory influence on sex differentiation in fish to a limited degree, genetic factors remain the primary determinants of sexual traits. Hermaphroditic fish display three distinct types of sexual transitions: protandry (male to female), protogyny (female-to-male), bidirectional sex change (both directions serially). These fish, characterized by their unique reproductive strategies and sexual plasticity, serve as exemplary natural models for elucidating the mechanisms of sex differentiation and sexual transitions in fish. The present review delves into the histological dynamics during gonadal development across three types of sequential hermaphroditic fish, meticulously delineating the pivotal characteristics at each stage, from the inception of primordial gonads to sexual specialization. Furthermore, it examines the regulatory genes and associated signaling pathways that orchestrate sex determination and differentiation. By systematically synthesizing these research advancements, this paper endeavors to offer a comprehensive and profound insight into the intricate mechanisms governing sex differentiation in sequential hermaphroditic fish.
Collapse
Affiliation(s)
- Junchao Fang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (J.F.); (G.L.)
| | - Guanglve Li
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (J.F.); (G.L.)
| | - Wenyin Luo
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China;
| | - Qiaomu Hu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (J.F.); (G.L.)
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China;
| |
Collapse
|
3
|
Fu C, Yang D, Long WC, Xiao X, Wang H, Jiang N, Yang Y. Genome-wide identification, molecular evolution and gene expression of P450 gene family in Cyrtotrachelus buqueti. BMC Genomics 2024; 25:453. [PMID: 38720243 PMCID: PMC11080265 DOI: 10.1186/s12864-024-10372-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/02/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Insect Cytochrome P450 monooxygenase (CYPs or P450s) plays an important role in detoxifying insecticides, causing insect populations to develop resistance. However, the molecular functions of P450 gene family in Cyrtotrachelus buqueti genome are still lacking. RESULTS In this study, 71 CbuP450 genes have been identified. The amino acids length of CbuP450 proteins was between 183 aa ~ 1041 aa. They are proteins with transmembrane domains. The main component of their secondary structure is α-helix and random coils. Phylogenetic analysis showed that C. buqueti and Rhynchophorus ferrugineus were the most closely related. This gene family has 29 high-frequency codons, which tend to use A/T bases and A/T ending codons. Gene expression analysis showed that CbuP450_23 in the female adult may play an important role on high temperature resistance, and CbuP450_17 in the larval may play an important role on low temperature tolerance. CbuP450_10, CbuP450_17, CbuP450_23, CbuP450_10, CbuP450_16, CbuP450_20, CbuP450_23 and CbuP450_ 29 may be related to the regulation of bamboo fiber degradation genes in C. buqueti. Protein interaction analysis indicates that most CbuP450 proteins are mainly divided into three aspects: encoding the biosynthesis of ecdysteroids, participating in the decomposition of synthetic insecticides, metabolizing insect hormones, and participating in the detoxification of compounds. CONCLUSIONS We systematically analyzed the gene and protein characteristics, gene expression, and protein interactions of CbuP450 gene family, revealing the key genes involved in the stress response of CbuP450 gene family in the resistance of C. buqueti to high or low temperature stress, and identified the key CbuP450 proteins involved in important life activity metabolism. These results provided a reference for further research on the function of P450 gene family in C. buqueti.
Collapse
Affiliation(s)
- Chun Fu
- Key Laboratory of Sichuan Province for Bamboo Pests Control and Resource Development, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, 614000, Sichuan, China.
- College of Life Science, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, 614000, Sichuan, China.
| | - Ding Yang
- Key Laboratory of Sichuan Province for Bamboo Pests Control and Resource Development, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, 614000, Sichuan, China
- College of Life Science, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, 614000, Sichuan, China
| | - Wen Cong Long
- Key Laboratory of Sichuan Province for Bamboo Pests Control and Resource Development, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, 614000, Sichuan, China
- College of Life Science, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, 614000, Sichuan, China
| | - XiMeng Xiao
- Key Laboratory of Sichuan Province for Bamboo Pests Control and Resource Development, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, 614000, Sichuan, China
- College of Life Science, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, 614000, Sichuan, China
| | - HanYu Wang
- Key Laboratory of Sichuan Province for Bamboo Pests Control and Resource Development, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, 614000, Sichuan, China
- College of Life Science, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, 614000, Sichuan, China
| | - Na Jiang
- College of Tourism and Geographical Science, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, 614000, Sichuan, China
| | - YaoJun Yang
- Key Laboratory of Sichuan Province for Bamboo Pests Control and Resource Development, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, 614000, Sichuan, China.
- College of Life Science, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, 614000, Sichuan, China.
| |
Collapse
|
4
|
Cui H, Zhu H, Ban W, Li Y, Chen R, Li L, Zhang X, Chen K, Xu H. Characterization of Two Gonadal Genes, zar1 and wt1b, in Hermaphroditic Fish Asian Seabass ( Lates calcarifer). Animals (Basel) 2024; 14:508. [PMID: 38338151 PMCID: PMC10854929 DOI: 10.3390/ani14030508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Zygote arrest-1 (Zar1) and Wilms' tumor 1 (Wt1) play an important role in oogenesis, with the latter also involved in testicular development and gender differentiation. Here, Lczar1 and Lcwt1b were identified in Asian seabass (Lates calcarifer), a hermaphrodite fish, as the valuable model for studying sex differentiation. The cloned cDNA fragments of Lczar1 were 1192 bp, encoding 336 amino acids, and contained a zinc-binding domain, while those of Lcwt1b cDNA were 1521 bp, encoding a peptide of 423 amino acids with a Zn finger domain belonging to Wt1b family. RT-qPCR analysis showed that Lczar1 mRNA was exclusively expressed in the ovary, while Lcwt1b mRNA was majorly expressed in the gonads in a higher amount in the testis than in the ovary. In situ hybridization results showed that Lczar1 mRNA was mainly concentrated in oogonia and oocytes at early stages in the ovary, but were undetectable in the testis. Lcwt1b mRNA was localized not only in gonadal somatic cells (the testis and ovary), but also in female and male germ cells in the early developmental stages, such as those of previtellogenic oocytes, spermatogonia, spermatocytes and spermatids. These results indicated that Lczar1 and Lcwt1b possibly play roles in gonadal development. Therefore, the findings of this study will provide a basis for clarifying the mechanism of Lczar1 and Lcwt1b in regulating germ cell development and the sex reversal of Asian seabass and even other hermaphroditic species.
Collapse
Affiliation(s)
- Han Cui
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Fisheries, Southwest University, Chongqing 402460, China; (H.C.); (H.Z.); (W.B.); (Y.L.); (R.C.); (L.L.); (X.Z.)
- Key Laboratory of Freshwater Fish Reproduction and Development, Chongqing 400715, China
- Key Laboratory of Aquatic Sciences of Chongqing, Ministry of Education, Chongqing 400715, China
| | - Haoyu Zhu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Fisheries, Southwest University, Chongqing 402460, China; (H.C.); (H.Z.); (W.B.); (Y.L.); (R.C.); (L.L.); (X.Z.)
- Key Laboratory of Freshwater Fish Reproduction and Development, Chongqing 400715, China
- Key Laboratory of Aquatic Sciences of Chongqing, Ministry of Education, Chongqing 400715, China
| | - Wenzhuo Ban
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Fisheries, Southwest University, Chongqing 402460, China; (H.C.); (H.Z.); (W.B.); (Y.L.); (R.C.); (L.L.); (X.Z.)
- Key Laboratory of Freshwater Fish Reproduction and Development, Chongqing 400715, China
- Key Laboratory of Aquatic Sciences of Chongqing, Ministry of Education, Chongqing 400715, China
| | - Yulin Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Fisheries, Southwest University, Chongqing 402460, China; (H.C.); (H.Z.); (W.B.); (Y.L.); (R.C.); (L.L.); (X.Z.)
- Key Laboratory of Freshwater Fish Reproduction and Development, Chongqing 400715, China
- Key Laboratory of Aquatic Sciences of Chongqing, Ministry of Education, Chongqing 400715, China
| | - Ruyi Chen
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Fisheries, Southwest University, Chongqing 402460, China; (H.C.); (H.Z.); (W.B.); (Y.L.); (R.C.); (L.L.); (X.Z.)
- Key Laboratory of Freshwater Fish Reproduction and Development, Chongqing 400715, China
- Key Laboratory of Aquatic Sciences of Chongqing, Ministry of Education, Chongqing 400715, China
| | - Lingli Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Fisheries, Southwest University, Chongqing 402460, China; (H.C.); (H.Z.); (W.B.); (Y.L.); (R.C.); (L.L.); (X.Z.)
- Key Laboratory of Freshwater Fish Reproduction and Development, Chongqing 400715, China
- Key Laboratory of Aquatic Sciences of Chongqing, Ministry of Education, Chongqing 400715, China
| | - Xiaoling Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Fisheries, Southwest University, Chongqing 402460, China; (H.C.); (H.Z.); (W.B.); (Y.L.); (R.C.); (L.L.); (X.Z.)
- Key Laboratory of Freshwater Fish Reproduction and Development, Chongqing 400715, China
- Key Laboratory of Aquatic Sciences of Chongqing, Ministry of Education, Chongqing 400715, China
| | - Kaili Chen
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Fisheries, Southwest University, Chongqing 402460, China; (H.C.); (H.Z.); (W.B.); (Y.L.); (R.C.); (L.L.); (X.Z.)
- Key Laboratory of Freshwater Fish Reproduction and Development, Chongqing 400715, China
- Key Laboratory of Aquatic Sciences of Chongqing, Ministry of Education, Chongqing 400715, China
| | - Hongyan Xu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Fisheries, Southwest University, Chongqing 402460, China; (H.C.); (H.Z.); (W.B.); (Y.L.); (R.C.); (L.L.); (X.Z.)
- Key Laboratory of Freshwater Fish Reproduction and Development, Chongqing 400715, China
- Key Laboratory of Aquatic Sciences of Chongqing, Ministry of Education, Chongqing 400715, China
| |
Collapse
|
5
|
Shen X, Hu J, Yáñez JM, Bastos Gomes G, Poon ZWJ, Foster D, Alarcon JF, Shao L, Guo X, Shao Y, Huerlimann R, Li C, Goulden E, Anderson K, Fan G, Domingos JA. Exploring the cobia (Rachycentron canadum) genome: unveiling putative male heterogametic regions and identification of sex-specific markers. Gigascience 2024; 13:giae034. [PMID: 38995143 PMCID: PMC11240236 DOI: 10.1093/gigascience/giae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/19/2024] [Accepted: 05/22/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND Cobia (Rachycentron canadum) is the only member of the Rachycentridae family and exhibits considerable sexual dimorphism in growth rate. Sex determination in teleosts has been a long-standing basic biological question, and the molecular mechanisms of sex determination/differentiation in cobia are completely unknown. RESULTS Here, we reported 2 high-quality, chromosome-level annotated male and female cobia genomes with assembly sizes of 586.51 Mb (contig/scaffold N50: 86.0 kb/24.3 Mb) and 583.88 Mb (79.9 kb/22.5 Mb), respectively. Synteny inference among perciform genomes revealed that cobia and the remora Echeneis naucrates were sister groups. Further, whole-genome resequencing of 31 males and 60 females, genome-wide association study, and sequencing depth analysis identified 3 short male-specific regions within a 10.7-kb continuous genomic region on male chromosome 18, which hinted at an undifferentiated sex chromosome system with a putative XX/XY mode of sex determination in cobia. Importantly, the only 2 genes within/between the male-specific regions, epoxide hydrolase 1 (ephx1, renamed cephx1y) and transcription factor 24 (tcf24, renamed ctcf24y), showed testis-specific/biased gene expression, whereas their counterparts cephx1x and ctf24x, located in female chromosome 18, were similarly expressed in both sexes. In addition, male-specific PCR targeting the cephx1y gene revealed that this genomic feature is conserved in cobia populations from Panama, Brazil, Australia, and Japan. CONCLUSION The first comprehensive genomic survey presented here is a valuable resource for future studies on cobia population structure and dynamics, conservation, and evolutionary history. Furthermore, it establishes evidence of putative male heterogametic regions with 2 genes playing a potential role in the sex determination of the species, and it provides further support for the rapid evolution of sex-determining mechanisms in teleost fish.
Collapse
Affiliation(s)
- Xueyan Shen
- Tropical Futures Institute, James Cook University Singapore, 387380, Singapore
| | - Jie Hu
- BGI-Qingdao, BGI-Shenzhen, Qingdao, Shandong 266555, China
| | - José M Yáñez
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, 8820808 Santiago, Chile
| | - Giana Bastos Gomes
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 117604, Singapore
| | | | | | | | - Libin Shao
- BGI-Qingdao, BGI-Shenzhen, Qingdao, Shandong 266555, China
| | - Xinyu Guo
- BGI-Qingdao, BGI-Shenzhen, Qingdao, Shandong 266555, China
| | - Yunchang Shao
- China National GeneBank, BGI-Shenzhen, Shenzhen, Guangdong 518120, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
- Geogia Tech Shenzhen Institute (GTSI), Tianjin University, Shen Zhen 518067, China
| | - Roger Huerlimann
- Marine Climate Change Unit, Okinawa Institute of Science and Technology (OIST), Okinawa, 904-0495, Japan
| | - Chengze Li
- Marine Climate Change Unit, Okinawa Institute of Science and Technology (OIST), Okinawa, 904-0495, Japan
| | - Evan Goulden
- Department of Agriculture and Fisheries, Queensland Government, Bribie Island Research Centre, Woorim, QLD 4507, Australia
| | - Kelli Anderson
- Department of Agriculture and Fisheries, Queensland Government, Bribie Island Research Centre, Woorim, QLD 4507, Australia
| | - Guangyi Fan
- BGI-Qingdao, BGI-Shenzhen, Qingdao, Shandong 266555, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, Guangdong 518120, China
- BGI-Shenzhen, Shenzhen, Guangdong 518083, China
| | - Jose A Domingos
- Tropical Futures Institute, James Cook University Singapore, 387380, Singapore
- Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville QLD 4811, Australia
| |
Collapse
|
6
|
Marc AF, Guppy JL, Marshall H, Jerry DR, Rudd D, Paris DBBP. Optimization of a non-activating medium for short-term chilled storage of barramundi (Lates calcarifer) testicular spermatozoa. FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:559-576. [PMID: 37193910 PMCID: PMC10415525 DOI: 10.1007/s10695-023-01191-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 04/06/2023] [Indexed: 05/18/2023]
Abstract
Reliable short-term chilled sperm storage is a critical prerequisite to using advanced reproductive techniques for captive breeding of barramundi (Asian sea bass; Lates calcarifer). Marine Ringer's solution (MRS) is a common non-activating medium (NAM) and has previously been used to store sperm from wild-caught barramundi. However, MRS-stored spermatozoa from captive-bred barramundi were observed to lyse within 30 min incubation. Therefore, this study aimed to optimize the composition of NAM for short-term chilled storage by characterizing and mimicking the biochemical profile of seminal and blood plasma of captive-bred barramundi. To further understand the effect of each component, osmolality was first examined to determine its effect on sperm viability. Thereafter, the effects of NaHCO3, pH, and Na+ and K+ concentrations on sperm motility were investigated. Optimization of the NAM formula was achieved through iterative adaptions. The increase in NAM osmolality from 260 to 400 mOsm/kg led to a significant improvement in sperm viability. Moreover, using HEPES instead of NaHCO3 as buffering agent significantly enhanced sperm motility and velocity. As a result, sperm samples diluted with optimized NAM (185 mM NaCl, 5.1 mM KCl, 1.6 mM CaCl2·2H2O, 1.1 mM MgSO4·7H2O, 10.0 mM HEPES, 5.6 mM D+ glucose, 400 mOsm/kg, pH 7.4) and stored at 4 °C showed no significant loss in total motility for up to 48 h and retained progressive motility for up to 72 h. The optimized NAM developed in this study significantly extended the functional lifespan of spermatozoa during chilled storage, permitting the ongoing development of advanced reproductive technologies for barramundi.
Collapse
Affiliation(s)
- Adrien F. Marc
- Gamete and Embryology (GAME) Laboratory, College of Public Health, Medical & Veterinary Sciences, James Cook University, Townsville, QLD 4811 Australia
- College of Public Health, Medical, and Veterinary Sciences, James Cook University, Townsville, QLD 4811 Australia
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD 4811 Australia
| | - Jarrod L. Guppy
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD 4811 Australia
- Australian Research Council Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD 4811 Australia
| | - Hayley Marshall
- College of Public Health, Medical, and Veterinary Sciences, James Cook University, Townsville, QLD 4811 Australia
| | - Dean R. Jerry
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD 4811 Australia
- Australian Research Council Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD 4811 Australia
- Tropical Futures Institute, James Cook University, Geylang, Singapore
| | - Donna Rudd
- College of Public Health, Medical, and Veterinary Sciences, James Cook University, Townsville, QLD 4811 Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811 Australia
| | - Damien B. B. P. Paris
- Gamete and Embryology (GAME) Laboratory, College of Public Health, Medical & Veterinary Sciences, James Cook University, Townsville, QLD 4811 Australia
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD 4811 Australia
| |
Collapse
|
7
|
Erenpreisa J, Vainshelbaum NM, Lazovska M, Karklins R, Salmina K, Zayakin P, Rumnieks F, Inashkina I, Pjanova D, Erenpreiss J. The Price of Human Evolution: Cancer-Testis Antigens, the Decline in Male Fertility and the Increase in Cancer. Int J Mol Sci 2023; 24:11660. [PMID: 37511419 PMCID: PMC10380301 DOI: 10.3390/ijms241411660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
The increasing frequency of general and particularly male cancer coupled with the reduction in male fertility seen worldwide motivated us to seek a potential evolutionary link between these two phenomena, concerning the reproductive transcriptional modules observed in cancer and the expression of cancer-testis antigens (CTA). The phylostratigraphy analysis of the human genome allowed us to link the early evolutionary origin of cancer via the reproductive life cycles of the unicellulars and early multicellulars, potentially driving soma-germ transition, female meiosis, and the parthenogenesis of polyploid giant cancer cells (PGCCs), with the expansion of the CTA multi-families, very late during their evolution. CTA adaptation was aided by retrovirus domestication in the unstable genomes of mammals, for protecting male fertility in stress conditions, particularly that of humans, as compensation for the energy consumption of a large complex brain which also exploited retrotransposition. We found that the early and late evolutionary branches of human cancer are united by the immunity-proto-placental network, which evolved in the Cambrian and shares stress regulators with the finely-tuned sex determination system. We further propose that social stress and endocrine disruption caused by environmental pollution with organic materials, which alter sex determination in male foetuses and further spermatogenesis in adults, bias the development of PGCC-parthenogenetic cancer by default.
Collapse
Affiliation(s)
| | | | - Marija Lazovska
- Molecular Genetics Scientific Laboratory, Riga Stradins University, Dzirciema 16, LV-1007 Riga, Latvia
| | - Roberts Karklins
- Molecular Genetics Scientific Laboratory, Riga Stradins University, Dzirciema 16, LV-1007 Riga, Latvia
| | - Kristine Salmina
- Latvian Biomedical Research and Study Centre, Ratsupites 1-1k, LV-1067 Riga, Latvia
| | - Pawel Zayakin
- Latvian Biomedical Research and Study Centre, Ratsupites 1-1k, LV-1067 Riga, Latvia
| | - Felikss Rumnieks
- Latvian Biomedical Research and Study Centre, Ratsupites 1-1k, LV-1067 Riga, Latvia
| | - Inna Inashkina
- Latvian Biomedical Research and Study Centre, Ratsupites 1-1k, LV-1067 Riga, Latvia
| | - Dace Pjanova
- Latvian Biomedical Research and Study Centre, Ratsupites 1-1k, LV-1067 Riga, Latvia
- Molecular Genetics Scientific Laboratory, Riga Stradins University, Dzirciema 16, LV-1007 Riga, Latvia
| | - Juris Erenpreiss
- Molecular Genetics Scientific Laboratory, Riga Stradins University, Dzirciema 16, LV-1007 Riga, Latvia
- Clinic iVF-Riga, Zala 1, LV-1010 Riga, Latvia
| |
Collapse
|
8
|
Adolfi MC, Depincé A, Wen M, Pan Q, Herpin A. Development of Ovaries and Sex Change in Fish: Bringing Potential into Action. Sex Dev 2023; 17:84-98. [PMID: 36878204 DOI: 10.1159/000526008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 07/08/2022] [Indexed: 03/08/2023] Open
Abstract
BACKGROUND Encompassing about half of the 60,000 species of vertebrates, fish display the greatest diversity of sex determination mechanisms among metazoans. As such that phylum offers a unique playground to study the impressive variety of gonadal morphogenetic strategies, ranging from gonochorism, with either genetic or environmental sex determination, to unisexuality, with either simultaneous or consecutive hermaphroditism. SUMMARY From the two main types of gonads, the ovaries embrace the important role to produce the larger and non-motile gametes, which is the basis for the development of a future organism. The production of the egg cells is complex and involves the formation of follicular cells, which are necessary for the maturation of the oocytes and the production of feminine hormones. In this vein, our review focuses on the development of ovaries in fish with special emphasis on the germ cells, including those that transition from one sex to the other as part of their life cycle and those that are capable of transitioning to the opposite sex depending on environmental cues. KEY MESSAGES Clearly, establishing an individual as either a female or a male is not accomplished by the sole development of two types of gonads. In most cases, that dichotomy, be it final or transient, is accompanied by coordinated transformations across the entire organism, leading to changes in the physiological sex as a whole. These coordinated transformations require both molecular and neuroendocrine networks, but also anatomical and behavioural adjustments. Remarkably, fish managed to tame the ins and outs of sex reversal mechanisms to take the most advantages of changing sex as adaptive strategies in some situations.
Collapse
Affiliation(s)
- Mateus Contar Adolfi
- Developmental Biochemistry, Biocenter, University of Würzburg, Würzburg, Germany
| | | | - Ming Wen
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Qiaowei Pan
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Amaury Herpin
- Fish Physiology and Genomics, INRAE, UR 1037, Rennes, France
| |
Collapse
|
9
|
Identification of sex-specific splicing via comparative transcriptome analysis of gonads from sea cucumber Apostichopus japonicus. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 45:101031. [PMID: 36371882 DOI: 10.1016/j.cbd.2022.101031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/31/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
Alternative splicing (AS) is an essential post-transcriptional regulation mechanism for sex differentiation and gonadal development, which has rarely been reported in marine invertebrates. Sea cucumber (Apostichopus japonicus) is an economically important marine benthic echinoderm with a potential XX/XY sex determination mechanism, whose molecular mechanism in the gonadal differentiation has not been clearly understood. In this study, we analyzed available RNA-seq datasets of male and female gonads to explore if AS mechanism exerts an essential function in sex differentiation and gonadal development of A. japonicus. In our results, a total of 20,338 AS events from 7219 alternatively spliced genes, and 189 sexually differential alternative splicing (DAS) events from 156 genes were identified in gonadal transcriptome of sea cucumber. Gene Ontology analysis indicated that these DAS genes were significantly enriched in spermatogenesis-related GO terms. Maximal Clique Centrality (MCC) was then applied for protein-protein interaction (PPI) analysis to search for protein interactions and hub DAS gene. Among all DAS genes, we identified 10 DAS genes closely related to spermatogenesis and (or) sperm motility and a hub gene dnah1. Thus, this study revealed that alternative isoforms were generated from certain genes in female and male gonads through alternative splicing, which may provide direct evidence that alternative splicing mechanisms participate in female and male gonads. These results suggested a novel perspective for explaining the molecular mechanisms underlying gonadal differentiation between male and female sea cucumbers.
Collapse
|
10
|
Valdivieso A, Anastasiadi D, Ribas L, Piferrer F. Development of epigenetic biomarkers for the identification of sex and thermal stress in fish using DNA methylation analysis and machine learning procedures. Mol Ecol Resour 2023; 23:453-470. [PMID: 36305237 PMCID: PMC10098837 DOI: 10.1111/1755-0998.13725] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/28/2022] [Accepted: 10/14/2022] [Indexed: 01/04/2023]
Abstract
The sex ratio is a key ecological demographic parameter crucial for population viability. However, the epigenetic mechanisms operating during gonadal development regulating gene expression and the sex ratio remain poorly understood. Moreover, there is interest in the development of epigenetic markers associated with a particular phenotype or as sentinels of environmental effects. Here, we profiled DNA methylation and gene expression of 10 key genes related to sex development and stress, including steroidogenic enzymes, and growth and transcription factors. We provide novel information on the sex-related differences and on the influence of elevated temperature on these genes in zebrafish, a species with mixed genetic and environmental influences on sex ratios. We identified both positive (e.g., amh, cyp11c and hsd11b2) and negative (e.g., cyp11a1 and dmrt1) correlations in unexposed males, and negative correlation (amh) in exposed females between DNA methylation and gene expression levels. Further, we combined DNA methylation analysis with machine learning procedures and found a series of informative CpGs capable not only of correctly identifying sex (based on cyp19a1a DNA methylation levels) but also of identifying whether males and females had been exposed to abnormally elevated temperature when young (based on amh and foxl2a DNA methylation levels, respectively). This was achieved in the absence of conspicuous morphological alterations of the gonads. These DNA methylation-based epigenetic biomarkers represent molecular resources that can correctly recapitulate past thermal history and pave the way for similar findings in other species to assess potential ecological effects of environmental disturbances in the context of climate change.
Collapse
Affiliation(s)
- Alejandro Valdivieso
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain.,IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Montpellier, France
| | - Dafni Anastasiadi
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain.,The New Zealand Institute for Plant and Food Research Limited, Nelson, New Zealand
| | - Laia Ribas
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Francesc Piferrer
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| |
Collapse
|
11
|
Shen X, Yáñez JM, Bastos Gomes G, Poon ZWJ, Foster D, Alarcon JF, Domingos JA. Comparative gonad transcriptome analysis in cobia ( Rachycentron canadum). Front Genet 2023; 14:1128943. [PMID: 37091808 PMCID: PMC10117682 DOI: 10.3389/fgene.2023.1128943] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/24/2023] [Indexed: 04/25/2023] Open
Abstract
Background: Cobia (Rachycentron canadum) is a species of fish with high commercial potential particularly due to fast growth rates. The evidence of sexual size dimorphism favoring females indicate potential benefits in having a monosex culture. However, the involvement of genetic factors responsible for sexual development and gonadal maintenance that produces phenotypic sex in cobia is largely unknown. Methods: In the present study, we performed transcriptome sequencing of cobia to identify sex-biased significantly differentially expressed genes (DEGs) in testes and ovaries. The reliability of the gonad transcriptome data was validated by qPCR analysis of eight selected significantly differential expressed sex-related candidate genes. Results: This comparative gonad transcriptomic analysis revealed that 7,120 and 4,628 DEGs are up-regulated in testes or ovaries, respectively. Further functional annotation analyses identified 76 important candidate genes involved in sex determination cascades or sex differentiation, including 42 known testis-biased DEGs (dmrt1, amh and sox9 etc.), and 34 known ovary-biased DEGs (foxl2, sox3 and cyp19a etc.). Moreover, eleven significantly enriched pathways functionally related to sex determination and sex differentiation were identified, including Wnt signaling pathway, oocyte meiosis, the TGF-beta signaling pathway and MAPK signaling pathway. Conclusion: This work represents the first comparative gonad transcriptome study in cobia. The putative sex-associated DEGs and pathways provide an important molecular basis for further investigation of cobia's sex determination, gonadal development as well as potential control breeding of monosex female populations for a possible aquaculture setting.
Collapse
Affiliation(s)
- Xueyan Shen
- Tropical Futures Institute, James Cook University Singapore, Singapore, Singapore
- *Correspondence: Xueyan Shen, ; Jose A. Domingos,
| | - José M. Yáñez
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Giana Bastos Gomes
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | | | | | | | - Jose A. Domingos
- Tropical Futures Institute, James Cook University Singapore, Singapore, Singapore
- Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, QLD, Australia
- *Correspondence: Xueyan Shen, ; Jose A. Domingos,
| |
Collapse
|
12
|
Xiong Y, Wang DY, Guo W, Gong G, Chen ZX, Tang Q, Mei J. Sexually Dimorphic Gene Expression in X and Y Sperms Instructs Sexual Dimorphism of Embryonic Genome Activation in Yellow Catfish ( Pelteobagrus fulvidraco). BIOLOGY 2022; 11:1818. [PMID: 36552327 PMCID: PMC9775105 DOI: 10.3390/biology11121818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/02/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022]
Abstract
Paternal factors play an important role in embryonic morphogenesis and contribute to sexual dimorphism in development. To assess the effect of paternal DNA on sexual dimorphism of embryonic genome activation, we compared X and Y sperm and different sexes of embryos before sex determination. Through transcriptome sequencing (RNA-seq) and whole-genome bisulfite sequencing (WGBS) of X and Y sperm, we found a big proportion of upregulated genes in Y sperm, supported by the observation that genome-wide DNA methylation level is slightly lower than in X sperm. Cytokine-cytokine receptor interaction, TGF-beta, and toll-like receptor pathways play important roles in spermatogenesis. Through whole-genome re-sequencing (WGRS) of parental fish and RNA-seq of five early embryonic stages, we found the low-blastocyst time point is a key to maternal transcriptome degradation and zygotic genome activation. Generally, sexual differences emerged from the bud stage. Moreover, through integrated analysis of paternal SNPs and gene expression, we evaluated the influence of paternal inheritance on sexual dimorphism of genome activation. Besides, we screened out gata6 and ddx5 as potential instructors for early sex determination and gonad development in yellow catfish. This work is meaningful for revealing the molecular mechanisms of sex determination and sexual dimorphism of fish species.
Collapse
Affiliation(s)
- Yang Xiong
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Dan-Yang Wang
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenjie Guo
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Gaorui Gong
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhen-Xia Chen
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Qin Tang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Jie Mei
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
13
|
Liu Z, Zhou T, Gao D. Genetic and epigenetic regulation of growth, reproduction, disease resistance and stress responses in aquaculture. Front Genet 2022; 13:994471. [PMID: 36406125 PMCID: PMC9666392 DOI: 10.3389/fgene.2022.994471] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/20/2022] [Indexed: 11/25/2022] Open
Abstract
Major progress has been made with genomic and genetic studies in aquaculture in the last decade. However, research on epigenetic regulation of aquaculture traits is still at an early stage. It is apparent that most, if not all, aquaculture traits are regulated at both genetic and epigenetic levels. This paper reviews recent progress in understanding of genetic and epigenetic regulation of important aquaculture traits such as growth, reproduction, disease resistance, and stress responses. Although it is challenging to make generalized statements, DNA methylation is mostly correlated with down-regulation of gene expression, especially when at promoters and enhancers. As such, methylation of growth factors and their receptors is negatively correlated with growth; hypomethylation of genes important for stress tolerance is correlated with increased stress tolerance; hypomethylation of genes important for male or female sex differentiation leads to sex differentiation into males or females, respectively. It is apparent that environmental regulation of aquaculture traits is mediated at the level of epigenetic regulation, and such environment-induced epigenetic changes appeared to be intergenerationally inherited, but evidences for transgenerational inheritance are still limited.
Collapse
Affiliation(s)
- Zhanjiang Liu
- Department of Biology, College of Arts and Sciences, Syracuse University, Syracuse, NY, United States,*Correspondence: Zhanjiang Liu,
| | - Tao Zhou
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Dongya Gao
- Department of Biology, College of Arts and Sciences, Syracuse University, Syracuse, NY, United States
| |
Collapse
|
14
|
Zhi F, Jiang DN, Mustapha UF, Li SX, Shi HJ, Li GL, Zhu CH. Expression and regulation of 42Sp50 in spotted scat (Scatophagus argus). Front Genet 2022; 13:964150. [PMID: 36035129 PMCID: PMC9403048 DOI: 10.3389/fgene.2022.964150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
42Sp50 is an isoform of the eukaryotic translation elongation factor 1 A (eEF1A) and is vital for fish ovarian development. Spotted scat (Scatophagus argus) is a popular marine cultured fish species in Southern Asia and China, and its artificial reproduction is complicated, with a relatively low success ratio in practice. In this study, the 42Sp50 gene was cloned from spotted scat. Tissue distribution analysis showed that 42Sp50 was mainly expressed in the ovary. qRT-PCR showed that 42Sp50 expression levels gradually decreased insignificantly in the ovaries from phase II to IV. Western blot analysis showed that 42Sp50 was highly expressed in the ovary, while it was almost undetectable in the testis. Immunohistochemistry analysis stained 42Sp50 mainly in the cytoplasm of the previtellogenic oocytes in ovaries of normal XX-female and sex-reversed XY-female. Aside from fish and amphibians, 42Sp50 was also identified in some reptile species using genomic database searching. Analyses of the transcriptome data from four different fish species (Hainan medaka (Oryzias curvinotus), silver sillago (Sillago sihama), Nile tilapia (Oreochromis niloticus), and Hong Kong catfish (Clarias fuscus)) revealed ovaries biased expression of 42Sp50 in all, similar to spotted scat. While the neighbor genes of 42Sp50 did not show ovary biased expression in the fish species analyzed. Bisulfite Sequencing PCR (BSP) results showed that the DNA methylation level of 42Sp50 promoter was low in ovaries, testes, and muscles. The luciferase reporter assay demonstrated that Dmrt4 activated 42Sp50 expression in the presence of Sf1 or Foxh1. These results suggest that 42Sp50 may be involved in regulating the early phase oocytes development of spotted scat.
Collapse
|
15
|
Mustapha UF, Zhi F, Huang YQ, Assan D, Li GL, Jiang DN. First account of a transient intersex in spotted scat, Scatophagus argus: a marine gonochoristic fish. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:1011-1023. [PMID: 35804212 DOI: 10.1007/s10695-022-01097-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
This study presents the first incidence of intersex associated with testis-ova in spotted scat (Scatophagus argus) reared in a controlled environment. The testis-ova is associated with the abnormal occurrence of primary oocytes (POs) in some male testis and is referred to as ectopic primary oocytes (Ecto-PO), whiles individuals with Ecto-PO are called "Ecto-PO gonad/individuals." We investigated gonads of 129 male spotted scat aged 4-12 and 18 months after hatch (mah) by histological studies for the presence of female sexual characteristics. A total of 20 out of 88 gonads representing 22.7% of male fish aged 6-12, or 15.5% of all male fish sampled, were found to have visible Ecto-PO. At least, the Ecto-PO had an average of 7 oocytes per gonadal section, indicating high severity. The Ecto-PO appears after sex differentiation and degenerates during sexual maturation. The Ecto-PO did not significantly influence the expression pattern of male and female sex-related genes performed using qPCR. Immunofluorescence of 42sp50 specifically stained the Ecto-PO without influence from the surrounding testicular tissues. In addition, temperature did not correlate with the proliferation of the Ecto-PO, but rather gonad developmental strategy. The results show that the naturally occurring Ecto-PO might not be detrimental to testis development and could be considered a frequent-high-level incidence of natural aberration. This study highlights the intricacy of fish sex differentiation and provides a new research chapter to ascertain the mystery behind the occurrence of Ecto-PO.
Collapse
Affiliation(s)
- Umar Farouk Mustapha
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy culture, Guangdong Province Famous Fish Reproduction and Breeding Engineering Technology Research Center, Zhanjiang, 524088, China
| | - Fei Zhi
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy culture, Guangdong Province Famous Fish Reproduction and Breeding Engineering Technology Research Center, Zhanjiang, 524088, China
| | - Yuang-Qing Huang
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy culture, Guangdong Province Famous Fish Reproduction and Breeding Engineering Technology Research Center, Zhanjiang, 524088, China
| | - Daniel Assan
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy culture, Guangdong Province Famous Fish Reproduction and Breeding Engineering Technology Research Center, Zhanjiang, 524088, China
| | - Guang-Li Li
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy culture, Guangdong Province Famous Fish Reproduction and Breeding Engineering Technology Research Center, Zhanjiang, 524088, China
| | - Dong-Neng Jiang
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy culture, Guangdong Province Famous Fish Reproduction and Breeding Engineering Technology Research Center, Zhanjiang, 524088, China.
| |
Collapse
|
16
|
Dynamics of sexual development in teleosts with a note on Mugil cephalus. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2022.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Zhou T, Chen G, Chen M, Wang Y, Zou G, Liang H. Direct Full-Length RNA Sequencing Reveals an Important Role of Epigenetics During Sexual Reversal in Chinese Soft-Shelled Turtle. Front Cell Dev Biol 2022; 10:876045. [PMID: 35399508 PMCID: PMC8990255 DOI: 10.3389/fcell.2022.876045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/10/2022] [Indexed: 11/29/2022] Open
Abstract
Sex dimorphism is a key feature of Chinese soft-shelled turtle (Pelodiscus sinensis). The males (M) have higher econosmic value than females (F) due to wider calipash and faster growth. Exogenous hormones like estradiol and methyltestosterone can induce sexual reversal to form new phenotypes (pseudo-female, PF; pseudo-male, PM) without changing the genotype. The possibility of inducing sexual reversal is particularly important in aquaculture breeding, but the underlying biological mechanisms remain unclear. Here we applied a direct RNA sequencing method with ultralong reads using Oxford Nanopore Technologies to study the transcriptome complexity in P. sinensis. Nanopore sequencing of the four gender types (M, F, PF, and PM) showed that the distribution of read length and gene expression was more similar between same-sex phenotypes than same-sex genotypes. Compared to turtles with an M phenotype, alternative splicing was more pronounced in F turtles, especially at alternative 3′ splice sites, alternative 5′ splice sites, and alternative first exons. Furthermore, the two RNA methylation modifications m5C and m6A were differentially distributed across gender phenotypes, with the M type having more modification sites in coding sequence regions, but fewer modification sites in 3′UTR regions. Quantitative analysis of enriched m6A RNAs revealed that the N6-methylated levels of Odf2, Pacs2, and Ak1 were significantly higher in M phenotype individuals, while the N6-methylated levels of Ube2o were reduced after sexual reversal from both M and F phenotypes. Taken together, these findings reveal an important role of epigenetics during sexual reversal in Chinese soft-shelled turtles.
Collapse
Affiliation(s)
- Tong Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan, China
| | - Guobin Chen
- Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Meng Chen
- Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan, China
| | - Yubin Wang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Guiwei Zou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan, China
- *Correspondence: Guiwei Zou, ; Hongwei Liang,
| | - Hongwei Liang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan, China
- *Correspondence: Guiwei Zou, ; Hongwei Liang,
| |
Collapse
|
18
|
Budd AM, Robins JB, Whybird O, Jerry DR. Epigenetics underpins phenotypic plasticity of protandrous sex change in fish. Ecol Evol 2022; 12:e8730. [PMID: 35342607 PMCID: PMC8931711 DOI: 10.1002/ece3.8730] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 02/22/2022] [Indexed: 11/06/2022] Open
Abstract
Phenotypic plasticity is an important driver of species resilience. Often mediated by epigenetic changes, phenotypic plasticity enables individual genotypes to express variable phenotypes in response to environmental change. Barramundi (Lates calcarifer) are a protandrous (male-first) sequential hermaphrodite that exhibits plasticity in length-at-sex change between geographic regions. This plasticity is likely to be mediated by changes in DNA methylation (DNAm), a well-studied epigenetic modification. To investigate the relationships between length, sex, and DNAm in a sequential hermaphrodite, here, we compare DNAm in four conserved vertebrate sex-determining genes in male and female barramundi of differing lengths from three geographic regions of northern Australia. Barramundi first mature as male and later sex change to female upon the attainment of a larger body size; however, a general pattern of increasing female-specific DNAm markers with increasing length was not observed. Significant differences in DNAm between males and females of similar lengths suggest that female-specific DNAm arises rapidly during sex change, rather than gradually with fish growth. The findings also reveal that region-specific differences in length-at-sex change are accompanied by differences in DNAm and are consistent with variability in remotely sensed sea temperature and salinity. Together, these findings provide the first in situ evidence for epigenetically and environmentally mediated sex change in a protandrous hermaphrodite and offer significant insight into the molecular and ecological processes governing the marked and unique plasticity of sex in fish.
Collapse
Affiliation(s)
- Alyssa M Budd
- Centre for Sustainable Tropical Fisheries and Aquaculture James Cook University Townsville Qld Australia
- Centre for Tropical Bioinformatics and Molecular Biology James Cook University Townsville Qld Australia
| | - Julie B Robins
- Ecosciences Precinct Department of Agriculture and Fisheries Brisbane Qld Australia
| | - Olivia Whybird
- Northern Fisheries Centre Department of Agriculture and Fisheries Cairns Qld Australia
| | - Dean R Jerry
- Centre for Sustainable Tropical Fisheries and Aquaculture James Cook University Townsville Qld Australia
- Tropical Futures Institute James Cook University Singapore City Singapore
| |
Collapse
|
19
|
Bélanger C, Cardinal T, Leduc E, Viger RS, Pilon N. CHARGE syndrome-associated proteins FAM172A and CHD7 influence male sex determination and differentiation through transcriptional and alternative splicing mechanisms. FASEB J 2022; 36:e22176. [PMID: 35129866 PMCID: PMC9304217 DOI: 10.1096/fj.202100837rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 11/11/2022]
Abstract
To gain further insight into chromatin‐mediated regulation of mammalian sex determination, we analyzed the role of the CHARGE syndrome‐associated proteins FAM172A and CHD7. This study is based on our prior discoveries that a subset of corresponding mutant mice display complete male‐to‐female sex reversal, and that both of these proteins regulate co‐transcriptional alternative splicing in neural crest cells. Here, we report that FAM172A and CHD7 are present in the developing gonads when sex determination normally occurs in mice. The interactome of FAM172A in pre‐Sertoli cells again suggests a role at the chromatin‐spliceosome interface, like in neural crest cells. Accordingly, analysis of Fam172a‐mutant pre‐Sertoli cells revealed transcriptional and splicing dysregulation of hundreds of genes. Many of these genes are similarly affected in Chd7‐mutant pre‐Sertoli cells, including several known key regulators of sex determination and subsequent formation of testis cords. Among them, we notably identified Sry as a direct transcriptional target and WNT pathway‐associated Lef1 and Tcf7l2 as direct splicing targets. The identified molecular defects are also associated with the abnormal morphology of seminiferous tubules in mutant postnatal testes. Altogether, our results thus identify FAM172A and CHD7 as new players in the regulation of male sex determination and differentiation in mice, and further highlight the importance of chromatin‐mediated regulatory mechanisms in these processes.
Collapse
Affiliation(s)
- Catherine Bélanger
- Molecular Genetics of Development Laboratory, Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montréal, Québec, Canada.,Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, Québec, Canada
| | - Tatiana Cardinal
- Molecular Genetics of Development Laboratory, Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montréal, Québec, Canada.,Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, Québec, Canada
| | - Elizabeth Leduc
- Molecular Genetics of Development Laboratory, Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montréal, Québec, Canada.,Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, Québec, Canada
| | - Robert S Viger
- Reproduction, Mother and Child Health, Centre de recherche en reproduction, développement et santé intergénérationnelle (CRDSI), Centre de recherche du CHU de Québec-Université Laval, Quebec City, Québec, Canada.,Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Quebec City, Québec, Canada
| | - Nicolas Pilon
- Molecular Genetics of Development Laboratory, Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montréal, Québec, Canada.,Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, Québec, Canada.,Département de pédiatrie, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
20
|
Heydenrych MJ, Saunders BJ, Bunce M, Jarman SN. Epigenetic Measurement of Key Vertebrate Population Biology Parameters. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.617376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The age, sex, and sexual maturity of individual animals are key parameters in assessing wild populations and informing conservation management strategies. These parameters represent the reproductive potential of a population and can indicate recovery rates or vulnerabilities. Natural populations of wild animals are difficult to study; logistically, economically, and due to the impacts of invasive biomonitoring. Genetic and epigenetic analyses offer a low impact, low cost, and information-rich alternative. As epigenetic mechanisms are intrinsically linked with both biological aging and reproductive processes, DNA methylation can be used as a suitable biomarker for population biology study. This review assesses published research utilizing DNA methylation analysis in relation to three key population parameters: age, sex, and sexual maturity. We review studies on wild vertebrates that investigate epigenetic age relationships, with successful age estimation assays designed for mammals, birds, and fish. For both determination of sex and identification of sexual maturity, very little has been explored regarding DNA methylation-based assays. Related research, however, confirms the links between DNA methylation and these processes. Future development of age estimation assays for underrepresented and key conservation taxa is suggested, as is the experimental development and design of DNA methylation-based assays for both sex and sexual maturity identification, further expanding the genomics toolkit for population biology studies.
Collapse
|
21
|
Li Y, Wang J, Elzo MA, Fan H, Du K, Xia S, Shao J, Lai T, Hu S, Jia X, Lai S. Molecular Profiling of DNA Methylation and Alternative Splicing of Genes in Skeletal Muscle of Obese Rabbits. Curr Issues Mol Biol 2021; 43:1558-1575. [PMID: 34698087 PMCID: PMC8929151 DOI: 10.3390/cimb43030110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/05/2021] [Accepted: 10/07/2021] [Indexed: 12/11/2022] Open
Abstract
DNA methylation and the alternative splicing of precursor messenger RNAs (pre-mRNAs) are two important genetic modification mechanisms. However, both are currently uncharacterized in the muscle metabolism of rabbits. Thus, we constructed the Tianfu black rabbit obesity model (obese rabbits fed with a 10% high-fat diet and control rabbits from 35 days to 70 days) and collected the skeletal muscle samples from the two groups for Genome methylation sequencing and RNA sequencing. DNA methylation data showed that the promoter regions of 599 genes and gene body region of 2522 genes had significantly differential methylation rates between the two groups, of which 288 genes had differential methylation rates in promoter and gene body regions. Analysis of alternative splicing showed 555 genes involved in exon skipping (ES) patterns, and 15 genes existed in differential methylation regions. Network analysis showed that 20 hub genes were associated with ubiquitinated protein degradation, muscle development pathways, and skeletal muscle energy metabolism. Our findings suggest that the two types of genetic modification have potential regulatory effects on skeletal muscle development and provide a basis for further mechanistic studies in the rabbit.
Collapse
Affiliation(s)
- Yanhong Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (J.W.); (H.F.); (K.D.); (S.X.); (J.S.); (T.L.); (S.H.); (X.J.)
| | - Jie Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (J.W.); (H.F.); (K.D.); (S.X.); (J.S.); (T.L.); (S.H.); (X.J.)
| | - Mauricio A. Elzo
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611, USA;
| | - Huimei Fan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (J.W.); (H.F.); (K.D.); (S.X.); (J.S.); (T.L.); (S.H.); (X.J.)
| | - Kun Du
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (J.W.); (H.F.); (K.D.); (S.X.); (J.S.); (T.L.); (S.H.); (X.J.)
| | - Siqi Xia
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (J.W.); (H.F.); (K.D.); (S.X.); (J.S.); (T.L.); (S.H.); (X.J.)
| | - Jiahao Shao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (J.W.); (H.F.); (K.D.); (S.X.); (J.S.); (T.L.); (S.H.); (X.J.)
| | - Tianfu Lai
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (J.W.); (H.F.); (K.D.); (S.X.); (J.S.); (T.L.); (S.H.); (X.J.)
| | - Shenqiang Hu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (J.W.); (H.F.); (K.D.); (S.X.); (J.S.); (T.L.); (S.H.); (X.J.)
| | - Xianbo Jia
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (J.W.); (H.F.); (K.D.); (S.X.); (J.S.); (T.L.); (S.H.); (X.J.)
| | - Songjia Lai
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (J.W.); (H.F.); (K.D.); (S.X.); (J.S.); (T.L.); (S.H.); (X.J.)
- Correspondence:
| |
Collapse
|
22
|
Gómez-Redondo I, Planells B, Navarrete P, Gutiérrez-Adán A. Role of Alternative Splicing in Sex Determination in Vertebrates. Sex Dev 2021; 15:381-391. [PMID: 34583366 DOI: 10.1159/000519218] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/26/2021] [Indexed: 11/19/2022] Open
Abstract
During the process of sex determination, a germ-cell-containing undifferentiated gonad is converted into either a male or a female reproductive organ. Both the composition of sex chromosomes and the environment determine sex in vertebrates. It is assumed that transcription level regulation drives this cascade of mechanisms; however, transcription factors can alter gene expression beyond transcription initiation by controlling pre-mRNA splicing and thereby mRNA isoform production. Using the key time window in sex determination and gonad development in mice, it has been reported that new non-transcriptional events, such as alternative splicing, could play a key role in sex determination in mammals. We know the role of key regulatory factors, like WT1(+/-KTS) or FGFR2(b/c) in pre-mRNA splicing and sex determination, indicating that important steps in the vertebrate sex determination process probably operate at a post-transcriptional level. Here, we discuss the role of pre-mRNA splicing regulators in sex determination in vertebrates, focusing on the new RNA-seq data reported from mice fetal gonadal transcriptome.
Collapse
Affiliation(s)
| | - Benjamín Planells
- Departamento de Reproducción Animal, INIA, Madrid, Spain.,School of Biosciences, University of Nottingham, Nottingham, United Kingdom
| | | | | |
Collapse
|
23
|
Guo CY, Tseng PW, Hwang JS, Wu GC, Chang CF. Potential role of DNA methylation of cyp19a1a promoter during sex change in protogynous orange-spotted grouper, Epinephelus coioides. Gen Comp Endocrinol 2021; 311:113840. [PMID: 34216589 DOI: 10.1016/j.ygcen.2021.113840] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/24/2021] [Accepted: 06/26/2021] [Indexed: 11/26/2022]
Abstract
Estrogen has a pivotal role in early female differentiation and further ovarian development. Aromatase (Cyp19a) is responsible for the conversion of androgens to estrogens in vertebrates. In teleosts, cyp19a1a and it paralog cyp19a1b are mainly expressed in the ovary and hypothalamus, respectively. Decreased plasma estrogen levels and lower cyp19a1a expression are associated with the initiation of female-to-male sex change in protogynous grouper. However, an 17α-methyltestosterone (MT)-induced the sex change from a female to a precocious male is a transient phase, and a reversible sex change (induced male-to-female) occurs after chemical withdrawal. Thus, we used this characteristic to study the epigenetic modification of cyp19a1a promoter in orange-spotted grouper. CpG-rich region with a CpG island is located on the putative regulatory region of distal cyp19a1a promoter. Our results showed that cyp19a1a promoter exhibited tissue-specific methylation status. Low methylation levels of distal cyp19a1a promoter and hypomethylated (0-40%) clones of cyp19a1a promoter region were widely observed in the ovary but not shown in testis and other tissues. In femaleness, higher numbers of hypomethylated clones of cyp19a1a promoter region were observed in the vitellogenic oocyte stage compared to the primary oocyte stage. Furthermore, decreased numbers of hypomethylated clones of cyp19a1a promoter region were associated with the maleness during the female-to-male sex change. DNA methylation inhibitor (5-aza-2'-deoxycytidine) delayed the spermatogenesis process (according to germ cell stage and numbers: by decrease of sperm and increase of spermatocytes) but did not influence the reversed sex change in MT-induced bi-directional sex change. These results suggest that epigenetic modification of cyp19a1a promoter may play an important role during the sex change in orange-spotted grouper.
Collapse
Affiliation(s)
- Chun-Yang Guo
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan; Institute of Marine Biology, National Taiwan Ocean University, Keelung, Taiwan
| | - Peng-Wei Tseng
- Doctoral Degree Program in Marine Biotechnology, National Taiwan Ocean University, Keelung, Taiwan; Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei, Taiwan
| | - Jiang-Shiou Hwang
- Institute of Marine Biology, National Taiwan Ocean University, Keelung, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
| | - Guan-Chung Wu
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan.
| | - Ching-Fong Chang
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan.
| |
Collapse
|
24
|
Han J, Hu Y, Qi Y, Yuan C, Naeem S, Huang D. High temperature induced masculinization of zebrafish by down-regulation of sox9b and esr1 via DNA methylation. J Environ Sci (China) 2021; 107:160-170. [PMID: 34412779 DOI: 10.1016/j.jes.2021.01.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/28/2021] [Accepted: 01/28/2021] [Indexed: 05/15/2023]
Abstract
Elevated temperature could influence the sex differentiation by altering the expression of sex-related genes in fish. However, the underlying mechanisms by which the gene expression is altered remain poorly understood. Here, we aimed to explore the role of DNA methylation in sex differentiation of zebrafish (Danio rerio) in response to elevated temperature. The results showed that high temperature (33°C) exposure of fish from 20 to 30 days post fertilization (dpf), compared to normal temperature (28°C), resulted in male-biased sex ratio and decreased expression of female-related genes including cyp19a1a, sox9b and esr1. Meanwhile, the expressions of DNA methyltransferases dnmt3a1 and dnmt3a2, and the DNA methylation levels in sox9b and esr1 promoter were significantly increased by high temperature, strongly implying that DNA methylation is involved in high temperature-induced masculinization of zebrafish. Co-treatment with 5-aza-2'-deoxycytidine (a DNA methylation inhibitor) attenuated the high temperature-induced masculinizing effect, recovered the expression of esr1 and sox9b, suppressed the transcription of dnmt3a1 and dnmt3a2, and decreased the methylation of esr1 and sox9b promoter, further confirming that DNA methylation plays an important role in high temperature-induced masculinization of zebrafish. Furthermore, the methylation of sox9b promoter decreased the enrichment of transcription factor CREB (cAMP-responsive element binding proteins). Overall, these findings suggest that high temperature induce masculinization of zebrafish by down-regulation of female-related genes via DNA methylation, providing a new insight in understanding the epigenetic mechanism of thermal-mediated sex differentiation in fish.
Collapse
Affiliation(s)
- Jiangyuan Han
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yan Hu
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yongmei Qi
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Cong Yuan
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Sajid Naeem
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Dejun Huang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China..
| |
Collapse
|
25
|
Ran X, Hu F, Mao N, Ruan Y, Yi F, Niu X, Huang S, Li S, You L, Zhang F, Tang L, Wang J, Liu J. Differences in gene expression and variable splicing events of ovaries between large and small litter size in Chinese Xiang pigs. Porcine Health Manag 2021; 7:52. [PMID: 34470660 PMCID: PMC8411529 DOI: 10.1186/s40813-021-00226-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/20/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Although lots of quantitative trait loci (QTLs) and genes present roles in litter size of some breeds, the information might not make it clear for the huge diversity of reproductive capability in pig breeds. To elucidate the inherent mechanisms of heterogeneity of reproductive capability in litter size of Xiang pig, we performed transcriptome analysis for the expression profile in ovaries using RNA-seq method. RESULTS We identified 1,419 up-regulated and 1,376 down-regulated genes in Xiang pigs with large litter size. Among them, 1,010 differentially expressed genes (DEGs) were differently spliced between two groups with large or small litter sizes. Based on GO and KEGG analysis, numerous members of genes were gathered in ovarian steroidogenesis, steroid biosynthesis, oocyte maturation and reproduction processes. CONCLUSIONS Combined with gene biological function, twelve genes were found out that might be related with the reproductive capability of Xiang pig, of which, eleven genes were recognized as hub genes. These genes may play a role in promoting litter size by elevating steroid and peptide hormones supply through the ovary and facilitating the processes of ovulation and in vivo fertilization.
Collapse
Affiliation(s)
- Xueqin Ran
- College of Animal Science, Institute of Agro-Bioengineering and Key Laboratory of Plant Resource Conservative and Germplam Innovation in Mountainous Region (Ministry of Education), Guizhou University, 550025, Guiyang, China
| | - Fengbin Hu
- College of Animal Science, Institute of Agro-Bioengineering and Key Laboratory of Plant Resource Conservative and Germplam Innovation in Mountainous Region (Ministry of Education), Guizhou University, 550025, Guiyang, China
| | - Ning Mao
- College of Animal Science, Institute of Agro-Bioengineering and Key Laboratory of Plant Resource Conservative and Germplam Innovation in Mountainous Region (Ministry of Education), Guizhou University, 550025, Guiyang, China
| | - Yiqi Ruan
- College of Animal Science, Institute of Agro-Bioengineering and Key Laboratory of Plant Resource Conservative and Germplam Innovation in Mountainous Region (Ministry of Education), Guizhou University, 550025, Guiyang, China
| | - Fanli Yi
- College of Animal Science, Institute of Agro-Bioengineering and Key Laboratory of Plant Resource Conservative and Germplam Innovation in Mountainous Region (Ministry of Education), Guizhou University, 550025, Guiyang, China
| | - Xi Niu
- College of Animal Science, Institute of Agro-Bioengineering and Key Laboratory of Plant Resource Conservative and Germplam Innovation in Mountainous Region (Ministry of Education), Guizhou University, 550025, Guiyang, China
| | - Shihui Huang
- College of Animal Science, Institute of Agro-Bioengineering and Key Laboratory of Plant Resource Conservative and Germplam Innovation in Mountainous Region (Ministry of Education), Guizhou University, 550025, Guiyang, China
| | - Sheng Li
- College of Animal Science, Institute of Agro-Bioengineering and Key Laboratory of Plant Resource Conservative and Germplam Innovation in Mountainous Region (Ministry of Education), Guizhou University, 550025, Guiyang, China
| | - Longjiang You
- College of Animal Science, Institute of Agro-Bioengineering and Key Laboratory of Plant Resource Conservative and Germplam Innovation in Mountainous Region (Ministry of Education), Guizhou University, 550025, Guiyang, China
| | - Fuping Zhang
- College of Animal Science, Institute of Agro-Bioengineering and Key Laboratory of Plant Resource Conservative and Germplam Innovation in Mountainous Region (Ministry of Education), Guizhou University, 550025, Guiyang, China
| | - Liangting Tang
- College of Animal Science, Institute of Agro-Bioengineering and Key Laboratory of Plant Resource Conservative and Germplam Innovation in Mountainous Region (Ministry of Education), Guizhou University, 550025, Guiyang, China
| | - Jiafu Wang
- College of Animal Science, Institute of Agro-Bioengineering and Key Laboratory of Plant Resource Conservative and Germplam Innovation in Mountainous Region (Ministry of Education), Guizhou University, 550025, Guiyang, China.
| | - Jianfeng Liu
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China
| |
Collapse
|
26
|
Domingos JA, Shen X, Terence C, Senapin S, Dong HT, Tan MR, Gibson-Kueh S, Jerry DR. Scale Drop Disease Virus (SDDV) and Lates calcarifer Herpes Virus (LCHV) Coinfection Downregulate Immune-Relevant Pathways and Cause Splenic and Kidney Necrosis in Barramundi Under Commercial Farming Conditions. Front Genet 2021; 12:666897. [PMID: 34220943 PMCID: PMC8249934 DOI: 10.3389/fgene.2021.666897] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/19/2021] [Indexed: 01/31/2023] Open
Abstract
Marine farming of barramundi (Lates calcarifer) in Southeast Asia is currently severely affected by viral diseases. To better understand the biological implications and gene expression response of barramundi in commercial farming conditions during a disease outbreak, the presence of pathogens, comparative RNAseq, and histopathology targeting multiple organs of clinically “sick” and “healthy” juveniles were investigated. Coinfection of scale drop disease virus (SDDV) and L. calcarifer herpes virus (LCHV) were detected in all sampled fish, with higher SDDV viral loads in sick than in healthy fish. Histopathology showed that livers in sick fish often had moderate to severe abnormal fat accumulation (hepatic lipidosis), whereas the predominant pathology in the kidneys shows moderate to severe inflammation and glomerular necrosis. The spleen was the most severely affected organ, with sick fish presenting severe multifocal and coalescing necrosis. Principal component analysis (PC1 and PC2) explained 70.3% of the observed variance and strongly associated the above histopathological findings with SDDV loads and with the sick phenotypes, supporting a primary diagnosis of the fish being impacted by scale drop disease (SDD). Extracted RNA from kidney and spleen of the sick fish were also severely degraded likely due to severe inflammation and tissue necrosis, indicating failure of these organs in advanced stages of SDD. RNAseq of sick vs. healthy barramundi identified 2,810 and 556 differentially expressed genes (DEGs) in the liver and muscle, respectively. Eleven significantly enriched pathways (e.g., phagosome, cytokine-cytokine-receptor interaction, ECM-receptor interaction, neuroactive ligand-receptor interaction, calcium signaling, MAPK, CAMs, etc.) and gene families (e.g., tool-like receptor, TNF, lectin, complement, interleukin, chemokine, MHC, B and T cells, CD molecules, etc.) relevant to homeostasis and innate and adaptive immunity were mostly downregulated in sick fish. These DEGs and pathways, also previously identified in L. calcarifer as general immune responses to other pathogens and environmental stressors, suggest a failure of the clinically sick fish to cope and overcome the systemic inflammatory responses and tissue degeneration caused by SDD.
Collapse
Affiliation(s)
- Jose A Domingos
- Tropical Futures Institute, James Cook University, Singapore, Singapore.,Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, QLD, Australia
| | - Xueyan Shen
- Tropical Futures Institute, James Cook University, Singapore, Singapore
| | - Celestine Terence
- Tropical Futures Institute, James Cook University, Singapore, Singapore
| | - Saengchan Senapin
- Faculty of Science, Fish Health Platform, Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Mahidol University, Bangkok, Thailand.,National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand
| | - Ha Thanh Dong
- Faculty of Science, Fish Health Platform, Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Mahidol University, Bangkok, Thailand.,Faculty of Science and Technology, Suan Sunandha Rajabhat University, Bangkok, Thailand
| | - Marie R Tan
- School of Applied Science (SAS), Republic Polytechnic, Singapore, Singapore
| | - Susan Gibson-Kueh
- Tropical Futures Institute, James Cook University, Singapore, Singapore
| | - Dean R Jerry
- Tropical Futures Institute, James Cook University, Singapore, Singapore.,Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, QLD, Australia
| |
Collapse
|
27
|
Casas L, Saborido-Rey F. Environmental Cues and Mechanisms Underpinning Sex Change in Fish. Sex Dev 2021; 15:108-121. [PMID: 34111868 DOI: 10.1159/000515274] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/07/2021] [Indexed: 11/19/2022] Open
Abstract
Fishes are the only vertebrates that undergo sex change during their lifetime, but even within this group, a unique reproductive strategy is displayed by only 1.5% of the teleosts. This lability in alternating sexual fate is the result of the simultaneous suppression and activation of opposing male and female networks. Here, we provide a brief review summarizing recent advances in our understanding of the environmental cues that trigger sex change and their perception, integration, and translation into molecular cascades that convert the sex of an individual. We particularly focus on molecular events underpinning the complex behavioral and morphological transformation involved in sex change, dissecting the main molecular players and regulatory networks that shape the transformation of one sex into the opposite. We show that histological changes and molecular pathways governing gonadal reorganization are better described than the neuroendocrine basis of sex change and that, despite important advances, information is lacking for the majority of hermaphrodite species. We highlight significant gaps in our knowledge of how sex change takes place and suggest future research directions.
Collapse
Affiliation(s)
- Laura Casas
- Ecology and Marine Resources, Institute of Marine Research (IIM-CSIC), Vigo, Spain
| | - Fran Saborido-Rey
- Ecology and Marine Resources, Institute of Marine Research (IIM-CSIC), Vigo, Spain
| |
Collapse
|
28
|
Wang Y, Guo B. The divergence of alternative splicing between ohnologs in teleost fishes. BMC Ecol Evol 2021; 21:98. [PMID: 34034651 PMCID: PMC8146666 DOI: 10.1186/s12862-021-01833-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 05/19/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Gene duplication and alternative splicing (AS) are two distinct mechanisms generating new materials for genetic innovations. The evolutionary link between gene duplication and AS is still controversial, due to utilizing duplicates from inconsistent ages of duplication events in earlier studies. With the aid of RNA-seq data, we explored evolutionary scenario of AS divergence between duplicates with ohnologs that resulted from the teleost genome duplication event in zebrafish, medaka, and stickleback. RESULTS Ohnologs in zebrafish have fewer AS forms compared to their singleton orthologs, supporting the function-sharing model of AS divergence between duplicates. Ohnologs in stickleback have more AS forms compared to their singleton orthologs, which supports the accelerated model of AS divergence between duplicates. The evolution of AS in ohnologs in medaka supports a combined scenario of the function-sharing and the accelerated model of AS divergence between duplicates. We also found a small number of ohnolog pairs in each of the three teleosts showed significantly asymmetric AS divergence. For example, the well-known ovary-factor gene cyp19a1a has no AS form but its ohnolog cyp19a1b has multiple AS forms in medaka, suggesting that functional divergence between duplicates might have result from AS divergence. CONCLUSIONS We found that a combined scenario of function-sharing and accelerated models for AS evolution in ohnologs in teleosts and rule out the independent model that assumes a lack of correlation between gene duplication and AS. Our study thus provided insights into the link between gene duplication and AS in general and ohnolog divergence in teleosts from AS perspective in particular.
Collapse
Affiliation(s)
- Yuwei Wang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Baocheng Guo
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650201, China.
| |
Collapse
|
29
|
Pierron F, Lorioux S, Héroin D, Daffe G, Etcheverria B, Cachot J, Morin B, Dufour S, Gonzalez P. Transgenerational epigenetic sex determination: Environment experienced by female fish affects offspring sex ratio. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 277:116864. [PMID: 33714788 DOI: 10.1016/j.envpol.2021.116864] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/22/2021] [Accepted: 02/27/2021] [Indexed: 06/12/2023]
Abstract
Sex determination is a complex process that can be influenced by environment in various taxa. Disturbed environments can affect population sex ratios and thus threaten their viability. Emerging evidences support a role of epigenetic mechanisms, notably DNA methylation, in environmental sex determination (ESD). In this work, using zebrafish as model and a transgenerational experiment comprising 4 successive generations, we report a strength link between the promotor methylation level of three genes in female gonads and population sex ratio. One generation of zebrafish was exposed throughout its lifetime to cadmium (Cd), a non-essential metal, at an environmentally relevant concentration. The subsequent generations were not exposed. At the first and the third generation a subset of individuals was exposed to an elevated temperature, a well-known masculinizing factor in zebrafish. While heat was associated to an increase in the methylation level of cyp19a1a gene and population masculinization, foxl2a/dmrt1 methylation levels appeared to be influenced by Cd and fish density leading to offspring feminization. Ancestral Cd exposure indeed led to a progressive feminization of the population over generations and affected the sex plastic response of zebrafish in response to heat. The effect of Cd on the methylation level of foxl2a was observed until the third generation, supporting potential transgenerational inheritance. Our results support (i) a key role of cyp19a1a methylation in SD in zebrafish in response to environmental cues and (ii) the fact that the environment experienced by parents, namely mothers in the present case, can affect their offspring sex ratio via environment-induced DNA methylation changes in gonads.
Collapse
Affiliation(s)
- Fabien Pierron
- Univ. Bordeaux, CNRS, EPOC, EPHE, UMR 5805, F-33600, Pessac, France.
| | - Sophie Lorioux
- Univ. Bordeaux, CNRS, EPOC, EPHE, UMR 5805, F-33600, Pessac, France
| | - Débora Héroin
- Univ. Bordeaux, CNRS, EPOC, EPHE, UMR 5805, F-33600, Pessac, France
| | - Guillemine Daffe
- Univ. Bordeaux, CNRS, INRAE, La Rochelle Univ., UMS 2567 POREA, F-33615, Pessac, France
| | | | - Jérôme Cachot
- Univ. Bordeaux, CNRS, EPOC, EPHE, UMR 5805, F-33600, Pessac, France
| | - Bénédicte Morin
- Univ. Bordeaux, CNRS, EPOC, EPHE, UMR 5805, F-33600, Pessac, France
| | - Sylvie Dufour
- Laboratory Biology of Aquatic Organisms and Ecosystems (BOREA), Muséum National D'Histoire Naturelle, CNRS, IRD, Sorbonne Université, Université de Caen Normandie, Université des Antilles, 75231, Paris Cedex, 05, France
| | - Patrice Gonzalez
- Univ. Bordeaux, CNRS, EPOC, EPHE, UMR 5805, F-33600, Pessac, France
| |
Collapse
|
30
|
Xie QP, Li BB, Zhan W, Liu F, Tan P, Wang X, Lou B. A Transient Hermaphroditic Stage in Early Male Gonadal Development in Little Yellow Croaker, Larimichthys polyactis. Front Endocrinol (Lausanne) 2021; 11:542942. [PMID: 33584533 PMCID: PMC7873647 DOI: 10.3389/fendo.2020.542942] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 12/07/2020] [Indexed: 01/13/2023] Open
Abstract
Animal taxa show remarkable variability in sexual reproduction, where separate sexes, or gonochorism, is thought to have evolved from hermaphroditism for most cases. Hermaphroditism accounts for 5% in animals, and sequential hermaphroditism has been found in teleost. In this study, we characterized a novel form of the transient hermaphroditic stage in little yellow croaker (Larimichthys polyactis) during early gonadal development. The ovary and testis were indistinguishable from 7 to 40 days post-hatching (dph). Morphological and histological examinations revealed an intersex stage of male gonads between 43 and 80 dph, which consist of germ cells, somatic cells, efferent duct, and early primary oocytes (EPOs). These EPOs in testis degenerate completely by 90 dph through apoptosis yet can be rescued by exogenous 17-β-estradiol. Male germ cells enter the mitotic flourishing stage before meiosis is initiated at 180 dph, and they undergo normal spermatogenesis to produce functional sperms. This transient hermaphroditic stage is male-specific, and the ovary development appears to be normal in females. This developmental pattern is not found in the sister species Larimichthys crocea or any other closely related species. Further examinations of serum hormone levels indicate that the absence of 11-ketotestosterone and elevated levels of 17-β-estradiol delineate the male intersex gonad stage, providing mechanistic insights on this unique phenomenon. Our research is the first report on male-specific transient hermaphroditism and will advance the current understanding of fish reproductive biology. This unique gonadal development pattern can serve as a useful model for studying the evolutionary relationship between hermaphroditism and gonochorism, as well as teleost sex determination and differentiation strategies.
Collapse
Affiliation(s)
- Qing-Ping Xie
- Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Marine Fisheries Research Institute of Zhejiang Province, Zhoushan, China
| | - Bing-Bing Li
- School of Fishery, Zhejiang Ocean University, Zhoushan, China
| | - Wei Zhan
- Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Feng Liu
- Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Peng Tan
- Marine Fisheries Research Institute of Zhejiang Province, Zhoushan, China
| | - Xu Wang
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Alabama Agricultural Experiment Station, Auburn, AL, United States
- The HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States
| | - Bao Lou
- Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
31
|
Wu GC, Dufour S, Chang CF. Molecular and cellular regulation on sex change in hermaphroditic fish, with a special focus on protandrous black porgy, Acanthopagrus schlegelii. Mol Cell Endocrinol 2021; 520:111069. [PMID: 33127483 DOI: 10.1016/j.mce.2020.111069] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/19/2022]
Abstract
In teleost fish, sex can be determined by genetic factors, environmental factors, or both. Unlike in gonochoristic fish, in which sex is fixed in adults, sex can change in adults of hermaphroditic fish species. Thus, sex is generated during the initial gonadal differentiation stage (primary sex differentiation) and later during sexual fate alternation (secondary sex differentiation) in hermaphroditic fish species. Depending on the species, sex phase alternation can be induced by endogenous cues (such as individual age and body size) or by social cues (such as sex ratio or relative body size within the population). In general, the fluctuation in plasma estradiol-17β (E2) levels is correlated with the sexual fate alternation in hermaphroditic fish. Hormonal treatments can artificially induce sexual phase alternation in sequential hermaphroditic fishes, but in a transient and reversible manner. This is the case for the E2-induced female phase in protandrous black porgy and the methyltestosterone (MT)- or aromatase inhibitor (AI)-induced male phase in protogynous grouper. Recent reviews have focused on the different forms of sex change in fish who undergo sequential sex change, especially in terms of gene expression and the role of hormones. In this review, we use the protandrous black porgy, a nonsocial cue-influenced hermaphroditic species, with digonic gonads (ovarian and testis separated by a connective tissue), as a model to describe our findings and discuss the molecular and cellular regulation of sexual fate determination in hermaphroditic fish.
Collapse
Affiliation(s)
- Guan-Chung Wu
- Department of Aquaculture, National Taiwan Ocean University, Keelung, 20224, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - Sylvie Dufour
- Laboratory Biology of Aquatic Organisms and Ecosystems (BOREA), Muséum National d'Histoire Naturelle, CNRS, IRD, Sorbonne Université, Université de Caen Normandie, Université des Antilles, 75231, Paris Cedex 05, France
| | - Ching-Fong Chang
- Department of Aquaculture, National Taiwan Ocean University, Keelung, 20224, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 20224, Taiwan.
| |
Collapse
|
32
|
Genome-wide investigation of Dmrt gene family in large yellow croaker (Larimichthys crocea). Theriogenology 2020; 156:272-282. [PMID: 32791392 DOI: 10.1016/j.theriogenology.2020.07.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 07/02/2020] [Accepted: 07/07/2020] [Indexed: 12/27/2022]
Abstract
The Dmrt (Doublesex and Mab-3 related transcription factor) gene family is a class of crucial transcription factors characterized by a conserved DM (Doublesex/Mab-3) domain. Previous researches indicate this gene family is involved in various physiological processes, especially in sex determination/differentiation and gonad development. Despite the vital roles of the Dmrt gene family in physiological processes, the comprehensive characterization and analysis of the dmrt genes in large yellow croaker (Larimichthys crocea), one of the most commercially important marine fish in China, have not been described. In this study, we performed the first genome-wide systematic analysis of L. crocea dmrt genes through the bioinformatics method. A total of seven members of the Dmrt gene family including Lcdmrt1, Lcdmrt2a, Lcdmrt2b, Lcdmrt3, Lcdmrt4, Lcdmrt5, and Lcdmrt6 were excavated based on the genome data of L. crocea. Further analysis revealed that the dmrt genes of L. crocea were distributed unevenly across four chromosomes. There were three dmrt genes (Lcdmrt1, Lcdmrt2a, and Lcdmrt3) on 3rd chromosome, one (Lcdmrt6) on 13th chromosome, one (Lcdmrt4) on 14th chromosome, two on (Lcdmrt5 and Lcdmrt2b) 17th chromosome. The gene structure analysis indicated that the number of introns of different dmrt genes of L. crocea had some differences: Lcdmrt1 had four introns, Lcdmrt2a, Lcdmrt2b, and Lcdmrt6 had two introns, Lcdmrt3, Lcdmrt4, and Lcdmrt5 had only one intron. The expression pattern analysis with published gonad transcriptome datasets and further confirmed by qRT-PCR revealed that these members of the Dmrt gene family except for Lcdmrt4 were all sexually dimorphic and preferred expressing in testis. Furthermore, the expression pattern analysis also revealed that the expression level of Lcdmrt1 and Lcdmrt6 was significantly higher than that of other members, suggesting that these two genes may play a more important role in testis. Overall, our studies provide a comprehensive insight into the Dmrt gene family members and a basis for the further study of their biological functions in L. crocea.
Collapse
|
33
|
Caballero-Huertas M, Moraleda-Prados J, Joly S, Ribas L. Immune genes, IL1β and Casp9, show sexual dimorphic methylation patterns in zebrafish gonads. FISH & SHELLFISH IMMUNOLOGY 2020; 97:648-655. [PMID: 31830572 DOI: 10.1016/j.fsi.2019.12.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/04/2019] [Accepted: 12/08/2019] [Indexed: 06/10/2023]
Abstract
There is crosstalk between the immune and reproductive systems in which sexual dimorphism is a common pattern in vertebrates. In recent years, epigenetics has emerged as a way to study the molecular mechanisms involved in gonadal development, those responsible for integrating environmental information that contribute to assigning a specific sexual phenotype (either an ovary or a testis). The knowledge of epigenetic mechanisms in certain molecular processes allows the development of epigenetic markers. In fish gonads, the existence of reproduction-immune system interactions is known, although the epigenetic mechanisms involved are far from clear. Here, we used the zebrafish (Danio rerio) as a model to study the DNA methylation patterns in gonads of two well-known innate immune genes: IL1β and Casp9. DNA methylation levels were studied by a candidate gene approach at single nucleotide resolution and gene expression analyses were also carried out. Results showed that there was clear sexual dimorphism in the DNA methylation levels of the two immune genes studied, being significantly higher in the testes when compared to the ovaries. In summary, and although further research is needed, this paper presents sexual dimorphic methylation patterns of two immune-related genes, thus sex-biased differences in methylation profiles should considered when analyzing immune responses in fish. Data showed here can help to develop epimarkers with forthcoming applications in livestock and fish farming production, for example, in immune fish diseases or sexual control programs as epigenetic molecular tools to predict environmental pressure in the gonads.
Collapse
Affiliation(s)
- M Caballero-Huertas
- Institute of Marine Sciences, Spanish National Research Council (ICM-CSIC), Passeig Marítim de la Barceloneta, 37-49, 08003, Barcelona, Spain
| | - J Moraleda-Prados
- Institute of Marine Sciences, Spanish National Research Council (ICM-CSIC), Passeig Marítim de la Barceloneta, 37-49, 08003, Barcelona, Spain
| | - S Joly
- Institute of Marine Sciences, Spanish National Research Council (ICM-CSIC), Passeig Marítim de la Barceloneta, 37-49, 08003, Barcelona, Spain
| | - L Ribas
- Institute of Marine Sciences, Spanish National Research Council (ICM-CSIC), Passeig Marítim de la Barceloneta, 37-49, 08003, Barcelona, Spain.
| |
Collapse
|
34
|
Cáceres G, López ME, Cádiz MI, Yoshida GM, Jedlicki A, Palma-Véjares R, Travisany D, Díaz-Domínguez D, Maass A, Lhorente JP, Soto J, Salas D, Yáñez JM. Fine Mapping Using Whole-Genome Sequencing Confirms Anti-Müllerian Hormone as a Major Gene for Sex Determination in Farmed Nile Tilapia ( Oreochromis niloticus L.). G3 (BETHESDA, MD.) 2019; 9:3213-3223. [PMID: 31416805 PMCID: PMC6778786 DOI: 10.1534/g3.119.400297] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 07/27/2019] [Indexed: 02/06/2023]
Abstract
Nile tilapia (Oreochromis niloticus) is one of the most cultivated and economically important species in world aquaculture. Intensive production promotes the use of monosex animals, due to an important dimorphism that favors male growth. Currently, the main mechanism to obtain all-male populations is the use of hormones in feeding during larval and fry phases. Identifying genomic regions associated with sex determination in Nile tilapia is a research topic of great interest. The objective of this study was to identify genomic variants associated with sex determination in three commercial populations of Nile tilapia. Whole-genome sequencing of 326 individuals was performed, and a total of 2.4 million high-quality bi-allelic single nucleotide polymorphisms (SNPs) were identified after quality control. A genome-wide association study (GWAS) was conducted to identify markers associated with the binary sex trait (males = 1; females = 0). A mixed logistic regression GWAS model was fitted and a genome-wide significant signal comprising 36 SNPs, spanning a genomic region of 536 kb in chromosome 23 was identified. Ten out of these 36 genetic variants intercept the anti-Müllerian (Amh) hormone gene. Other significant SNPs were located in the neighboring Amh gene region. This gene has been strongly associated with sex determination in several vertebrate species, playing an essential role in the differentiation of male and female reproductive tissue in early stages of development. This finding provides useful information to better understand the genetic mechanisms underlying sex determination in Nile tilapia.
Collapse
Affiliation(s)
- Giovanna Cáceres
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
- Programa de Doctorado en Ciencias Silvoagropecuarias y Veterinarias, Campus Sur, Universidad de Chile, Santa Rosa 11315, La Pintana, Santiago, Chile
| | - María E López
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - María I Cádiz
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
- Programa de Doctorado en Ciencias Silvoagropecuarias y Veterinarias, Campus Sur, Universidad de Chile, Santa Rosa 11315, La Pintana, Santiago, Chile
| | - Grazyella M Yoshida
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
- Benchmark Genetics Chile, Puerto Montt, Chile
| | - Ana Jedlicki
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Ricardo Palma-Véjares
- Centro para la Regulación del Genoma, and
- Centro de Modelamiento Matemático UMI CNRS 2807, Universidad de Chile, Santiago, Chile
| | - Dante Travisany
- Centro para la Regulación del Genoma, and
- Centro de Modelamiento Matemático UMI CNRS 2807, Universidad de Chile, Santiago, Chile
| | - Diego Díaz-Domínguez
- Centro para la Regulación del Genoma, and
- Centro de Modelamiento Matemático UMI CNRS 2807, Universidad de Chile, Santiago, Chile
| | - Alejandro Maass
- Centro para la Regulación del Genoma, and
- Centro de Modelamiento Matemático UMI CNRS 2807, Universidad de Chile, Santiago, Chile
| | | | - Jose Soto
- Grupo Acuacorporación Internacional (GACI), Cañas, Costa Rica, and
| | - Diego Salas
- Grupo Acuacorporación Internacional (GACI), Cañas, Costa Rica, and
| | - José M Yáñez
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile,
- Núcleo Milenio INVASAL, Concepción, Chile
| |
Collapse
|
35
|
Piferrer F, Anastasiadi D, Valdivieso A, Sánchez-Baizán N, Moraleda-Prados J, Ribas L. The Model of the Conserved Epigenetic Regulation of Sex. Front Genet 2019; 10:857. [PMID: 31616469 PMCID: PMC6775248 DOI: 10.3389/fgene.2019.00857] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 08/16/2019] [Indexed: 12/18/2022] Open
Abstract
Epigenetics integrates genomic and environmental information to produce a given phenotype. Here, the model of Conserved Epigenetic Regulation of Sex (CERS) is discussed. This model is based on our knowledge on genes involved in sexual development and on epigenetic regulation of gene expression activation and silencing. This model was recently postulated to be applied to the sexual development of fish, and it states that epigenetic and gene expression patterns are more associated with the development of a particular gonadal phenotype, e.g., testis differentiation, rather than with the intrinsic or extrinsic causes that lead to the development of this phenotype. This requires the existence of genes with different epigenetic modifications, for example, changes in DNA methylation levels associated with the development of a particular sex. Focusing on DNA methylation, the identification of CpGs, the methylation of which is linked to sex, constitutes the basis for the identification of Essential Epigenetic Marks (EEM). EEMs are defined as the number and identity of informative epigenetic marks that are strictly necessary, albeit perhaps not sufficient, to bring about a specific, measurable, phenotype of interest. Here, we provide a summary of the genes where DNA methylation has been investigated so far, focusing on fish. We found that cyp19a1a and dmrt1, two key genes for ovary and testis development, respectively, consistently show an inverse relationship between their DNA methylation and expression levels, thus following CERS predictions. However, in foxl2a, a pro-female gene, and amh, a pro-male gene, such relationship is not clear. The available data of other genes related to sexual development such as sox9, gsdf, and amhr2 are also discussed. Next, we discuss the use of CERS to make testable predictions of how sex is epigenetically regulated and to better understand sexual development, as well as the use of EEMs as tools for the diagnosis and prognosis of sex. We argue that CERS can aid in focusing research on the epigenetic regulation of sexual development not only in fish but also in vertebrates in general, particularly in reptiles with temperature sex-determination, and can be the basis for possible practical applications including sex control in aquaculture and also in conservation biology.
Collapse
Affiliation(s)
- Francesc Piferrer
- Institut de Ciències del Mar (ICM), Spanish National Research Council (CSIC), Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
36
|
Ortega-Recalde O, Goikoetxea A, Hore TA, Todd EV, Gemmell NJ. The Genetics and Epigenetics of Sex Change in Fish. Annu Rev Anim Biosci 2019; 8:47-69. [PMID: 31525067 DOI: 10.1146/annurev-animal-021419-083634] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Fish show extraordinary sexual plasticity, changing sex naturally as part of their life cycle or reversing sex because of environmental stressors. This plasticity shows that sexual fate is not an irreversible process but the result of an ongoing tug-of-war for supremacy between male and female signaling networks. The behavioral, gonadal, and morphological changes involved in this process are well described, yet the molecular events that underpin those changes remain poorly understood. Epigenetic modifications emerge as a critical link between environmental stimuli, the onset of sex change, and subsequent maintenance of sexual phenotype. Here we synthesize current knowledge of sex change, focusing on the genetic and epigenetic processes that are likely involved in the initiation and regulation of sex change. We anticipate that better understanding of sex change in fish will shed new light on sex determination and development in vertebrates and on how environmental perturbations affect sexual fate.
Collapse
|