1
|
Kotsifa E, Saffioti F, Mavroeidis VK. Cholangiocarcinoma: The era of liquid biopsy. World J Gastroenterol 2025; 31:104170. [PMID: 40124277 PMCID: PMC11924015 DOI: 10.3748/wjg.v31.i11.104170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/28/2025] [Accepted: 02/14/2025] [Indexed: 03/13/2025] Open
Abstract
Cholangiocarcinoma (CCA) is a highly aggressive and heterogeneous malignancy arising from the epithelial cells of the biliary tract. The limitations of the current methods in the diagnosis of CCA highlight the urgent need for new, accurate tools for early cancer detection, better prognostication and patient monitoring. Liquid biopsy (LB) is a modern and non-invasive technique comprising a diverse group of methodologies aiming to detect tumour biomarkers from body fluids. These biomarkers include circulating tumour cells, cell-free DNA, circulating tumour DNA, RNA and extracellular vesicles. The aim of this review is to explore the current and potential future applications of LB in CCA management, with a focus on diagnosis, prognostication and monitoring. We examine both its significant potential and the inevitable limitations associated with this technology. We conclude that LB holds considerable promise, but further research is necessary to fully integrate it into precision oncology for CCA.
Collapse
Affiliation(s)
- Evgenia Kotsifa
- The Second Propaedeutic Department of Surgery, National and Kapodistrian University of Athens, General Hospital of Athens “Laiko”, Athens 11527, Greece
| | - Francesca Saffioti
- Department of Gastroenterology and Hepatology, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, United Kingdom
- University College London Institute for Liver and Digestive Health and Sheila Sherlock Liver Unit, Royal Free Hospital and University College London, London NW3 2QG, United Kingdom
- Division of Clinical and Molecular Hepatology, Department of Clinical and Experimental Medicine, University Hospital of Messina, Messina 98124, Italy
| | - Vasileios K Mavroeidis
- Department of Transplant Surgery, North Bristol NHS Trust, Southmead Hospital, Bristol BS10 5NB, United Kingdom
- Department of Gastrointestinal Surgery, North Bristol NHS Trust, Southmead Hospital, Bristol BS10 5NB, United Kingdom
- Department of HPB Surgery, Bristol Royal Infirmary, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol BS2 8HW, United Kingdom
| |
Collapse
|
2
|
Yang Y, Razak SRA, Ismail IS, Ma Y, Yunus MA. Molecular mechanisms of miR-192 in cancer: a biomarker and therapeutic target. Cancer Cell Int 2025; 25:94. [PMID: 40087755 PMCID: PMC11908092 DOI: 10.1186/s12935-025-03666-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 01/29/2025] [Indexed: 03/17/2025] Open
Abstract
Cancer remains a major global health challenge due to its rising prevalence and high mortality rates. The field of microRNAs (miRNAs) has made significant progress in the understanding of tumorigenesis and has broadened our knowledge of their targeting, especially in cancer therapy. miRNAs, a class of small non-coding RNAs, participate in post-transcriptional gene regulation by translational inhibition or mRNA degradation. Among these, microRNA-192 (miR-192) is located on human chromosome 11q13.1, and is highly correlated with the occurrence and development of various human cancers. Dysregulation of miR-192 has been extensively studied in various pathological processes, including tumorigenesis, making it a valuable biomarker for cancer diagnosis and prognosis. The functional role of miR-192 varies across cancer types, acting as either a tumor suppressor or as an oncogene through the modulation of multiple gene expressions and downstream signaling pathways. However, the roles of miR-192 in cancer appear inconsistent across types, with current research often focused on specific genes or pathways, limiting insight into its broader impact on cellular signaling networks. Therefore, this review aims to provide a comprehensive overview of miR-192 research. The paper reviews differences in miR-192 expression in cancer and systematically summarizes the role of miR-192 in cancers. The review further explores the complex roles of miR-192 in various pathological processes, emphasizing its regulatory pathways, interaction networks, and association with tumor progression. This review also illustrates the clinical application of miR-192 as a diagnostic and prognostic biomarker for non-invasive cancer detection, as it is consistently present in both serum and exosomes. A comprehensive summary and analysis of the relationship between miR-192 and various cancers may provide valuable insights, potentially guiding novel approaches in clinical diagnosis, therapeutic strategies, and foundational cancer research.
Collapse
Affiliation(s)
- Yang Yang
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas, Pulau Pinang, Malaysia
- School of Medical Technology, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Siti Razila Abdul Razak
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas, Pulau Pinang, Malaysia
| | - Ida Shazrina Ismail
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas, Pulau Pinang, Malaysia
| | - Yanxia Ma
- School of Medical Technology, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China.
| | - Muhammad Amir Yunus
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas, Pulau Pinang, Malaysia.
| |
Collapse
|
3
|
Abreo Medina ADP, Shi M, Wang Y, Wang Z, Huang K, Liu Y. Exploring Extracellular Vesicles: A Novel Approach in Nonalcoholic Fatty Liver Disease. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:2717-2731. [PMID: 39846785 DOI: 10.1021/acs.jafc.4c09209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Nonalcoholic fatty liver disease (NAFLD) represents an increasing public health concern. The underlying pathophysiological mechanisms of NAFLD remains unclear, and as a result, there is currently no specific therapy for this condition. However, recent studies focus on extracellular vesicles (EVs) as a novelty in their role in cellular communication. An imbalance in the gut microbiota composition may contribute to the progression of NAFLD, making the gut-liver axis a promising target for therapeutic strategies. This review aims to provide a comprehensive overview of EVs in NAFLD. Additionally, exosome-like nanovesicles derived from plants (PELNs) and probiotics-derived extracellular vesicles (postbiotics) have demonstrated the potential to re-establish intestinal equilibrium and modulate gut microbiota, thus offering the potential to alleviate NAFLD via the gut-liver axis. Further research is needed using multiple omics approaches to comprehensively characterize the cargo including protein, metabolites, genetic material packaged, and biological activities of extracellular vesicles derived from diverse microbes and plants.
Collapse
Affiliation(s)
- Andrea Del Pilar Abreo Medina
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Institute of Animal Nutrition Health, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research, Nanjing Agricultural University, Nanjing 210095, China
| | - Mengdie Shi
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Institute of Animal Nutrition Health, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanyan Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Institute of Animal Nutrition Health, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhongyu Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Institute of Animal Nutrition Health, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research, Nanjing Agricultural University, Nanjing 210095, China
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Institute of Animal Nutrition Health, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research, Nanjing Agricultural University, Nanjing 210095, China
| | - Yunhuan Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Institute of Animal Nutrition Health, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
4
|
Al Ageeli E. Dual Roles of microRNA-122 in Hepatocellular Carcinoma and Breast Cancer Progression and Metastasis: A Comprehensive Review. Curr Issues Mol Biol 2024; 46:11975-11992. [PMID: 39590305 PMCID: PMC11592835 DOI: 10.3390/cimb46110711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024] Open
Abstract
microRNA-122 (miR-122) plays crucial yet contrasting roles in hepatocellular carcinoma (HCC) and breast cancer (BC), two prevalent and aggressive malignancies. This review synthesizes current research on miR-122's functions in these cancers, focusing on its potential as a diagnostic, prognostic, and therapeutic target. A comprehensive literature search was conducted using PubMed, Web of Science, and Scopus databases. In HCC, miR-122 is downregulated in most cases, suppressing oncogenic pathways and reducing tumor growth and metastasis. Restoring miR-122 levels has shown promising therapeutic potential, increasing sensitivity to treatments like sorafenib. In contrast, in BC, miR-122 plays a pro-metastatic role, especially in triple-negative breast cancer (TNBC) and metastatic lesions. miR-122's ability to influence key pathways, such as the Wnt/β-catenin and NF-κB pathways in HCC, and its role in enhancing the Warburg effect in BC underline its significance in cancer biology. miR-122, a key factor in breast cancer radioresistance, suppresses tumors in radiosensitive cells. Inhibiting miR-122 could reverse resistance and potentially overcome radiotherapy resistance. Given its context-dependent functions, miR-122 could serve as a potential therapeutic target, where restoring or inhibiting its expression may help in treating HCC and BC, respectively. The dual roles of miR-122 underscore its significance in cancer biology and its potential in precision medicine.
Collapse
Affiliation(s)
- Essam Al Ageeli
- Department of Basic Medical Sciences (Medical Genetics), Faculty of Medicine, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
5
|
Hayashi Y, Millen JC, Ramos RI, Linehan JA, Wilson TG, Hoon DSB, Bustos MA. Cell-free and extracellular vesicle microRNAs with clinical utility for solid tumors. Mol Oncol 2024. [PMID: 39129372 DOI: 10.1002/1878-0261.13709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/28/2024] [Accepted: 07/23/2024] [Indexed: 08/13/2024] Open
Abstract
As cutting-edge technologies applied for the study of body fluid molecular biomarkers are continuously evolving, clinical applications of these biomarkers improve. Diverse forms of circulating molecular biomarkers have been described, including cell-free DNA (cfDNA), circulating tumor cells (CTCs), and cell-free microRNAs (cfmiRs), although unresolved issues remain in their applicability, specificity, sensitivity, and reproducibility. Translational studies demonstrating the clinical utility and importance of cfmiRs in multiple cancers have significantly increased. This review aims to summarize the last 5 years of translational cancer research in the field of cfmiRs and their potential clinical applications to diagnosis, prognosis, and monitoring disease recurrence or treatment responses with a focus on solid tumors. PubMed was utilized for the literature search, following rigorous exclusion criteria for studies based on tumor types, patient sample size, and clinical applications. A total of 136 studies on cfmiRs in different solid tumors were identified and divided based on tumor types, organ sites, number of cfmiRs found, methodology, and types of biofluids analyzed. This comprehensive review emphasizes clinical applications of cfmiRs and summarizes underserved areas where more research and validations are needed.
Collapse
Affiliation(s)
- Yoshinori Hayashi
- Department of Translational Molecular Medicine, Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Janelle-Cheri Millen
- Department of Surgical Oncology, Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Romela Irene Ramos
- Department of Translational Molecular Medicine, Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Jennifer A Linehan
- Department of Urology and Urologic Oncology, Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Timothy G Wilson
- Department of Urology and Urologic Oncology, Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Dave S B Hoon
- Department of Translational Molecular Medicine, Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, USA
- Department of Genome Sequencing Center, Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Matias A Bustos
- Department of Translational Molecular Medicine, Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, USA
| |
Collapse
|
6
|
Umezu T, Tanaka S, Kubo S, Enomoto M, Tamori A, Ochiya T, Taguchi Y, Kuroda M, Murakami Y. Characterization of circulating miRNAs in the treatment of primary liver tumors. Cancer Rep (Hoboken) 2024; 7:e1964. [PMID: 38146079 PMCID: PMC10849994 DOI: 10.1002/cnr2.1964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/13/2023] [Accepted: 12/06/2023] [Indexed: 12/27/2023] Open
Abstract
BACKGROUND AND AIM Circulating micro RNAs (miRNAs) indicate clinical pathologies such as inflammation and carcinogenesis. In this study, we aimed to investigate whether miRNA expression level patterns in could be used to diagnose hepatocellular carcinoma (HCC) and biliary tract cancer (BTC), and the relationship miRNA expression patterns and cancer etiology. METHODS Patients with HCC and BTC with indications for surgery were selected for the study. Total RNA was extracted from the extracellular vesicle (EV)-rich fraction of the serum and analyzed using Toray miRNA microarray. Samples were divided into two cohorts in order of collection, the first 85 HCC were analyzed using a microarray based on miRBase ver.2.0 (hereafter v20 cohort), and the second 177 HCC and 43 BTC were analyzed using a microarray based on miRBase ver.21 (hereafter v21 cohort). RESULTS Using miRNA expression patterns, we found that HCC and BTC could be identified with an area under curve (AUC) 0.754 (v21 cohort). Patients with anti-hepatitis C virus (HCV) treatment (SVR-HCC) and without antiviral treatment (HCV-HCC) could be distinguished by an AUC 0.811 (v20 cohort) and AUC 0.798 (v21 cohort), respectively. CONCLUSIONS In this study, we could diagnose primary hepatic malignant tumor using miRNA expression patterns. Moreover, the difference of miRNA expression in SVR-HCC and HCV-HCC can be important information for enclosing cases that are prone to carcinogenesis after being cured with antiviral agents, but also for uncovering the mechanism for some carcinogenic potential remains even after persistent virus infection has disappeared.
Collapse
Affiliation(s)
- Tomohiro Umezu
- Department of Molecular PathologyTokyo Medical UniversityTokyoJapan
| | - Shogo Tanaka
- Department of Hepato‐Biliary‐Pancreatic SurgeryOsaka Metropolitan University, Graduate School of MedicineOsakaJapan
| | - Shoji Kubo
- Department of Hepato‐Biliary‐Pancreatic SurgeryOsaka Metropolitan University, Graduate School of MedicineOsakaJapan
| | - Masaru Enomoto
- Department of Hepatology, Graduate School of MedicineOsaka Metropolitan University, Graduate School of MedicineOsakaJapan
| | - Akihiro Tamori
- Department of Hepatology, Graduate School of MedicineOsaka Metropolitan University, Graduate School of MedicineOsakaJapan
| | - Takahiro Ochiya
- Department of Molecular and Cellular Medicine, Institute of Medical ScienceTokyo Medical UniversityTokyoJapan
| | | | - Masahiko Kuroda
- Department of Molecular PathologyTokyo Medical UniversityTokyoJapan
| | - Yoshiki Murakami
- Department of Molecular PathologyTokyo Medical UniversityTokyoJapan
- Department of DentistryAsahi UniversityGifuJapan
| |
Collapse
|
7
|
Zou S, Chen F, Zhang L, Liu C, Chen H. The Diagnostic Value of Circulating miR-29 Family for Digestive System Malignancies: A Meta-Analysis. Lab Med 2024; 55:1-7. [PMID: 37172311 DOI: 10.1093/labmed/lmad030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023] Open
Abstract
OBJECTIVE To evaluate the diagnostic value of circulating microRNA-29 (miR-29) in digestive system malignant neoplasms by meta-analysis. METHODS We searched the PubMed, Embase, Cochrane Library, and Web of Science to collect studies, published through September 2022, on the diagnostic value of miR-29 in digestive system tumors. RESULTS We included 7 studies in this meta-analysis, including colorectal cancer, esophageal squamous cell carcinomas, and cholangiocarcinoma. The pooled sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, and diagnostic odds ratio were 0.64 (95% CI, 0.53-0.74), 0.83 (0.60-0.94), 3.75 (1.42-9.91), 0.44 (0.31-0.61), and 8.63 (2.54-29.26), respectively. The area under the summary receiver operating characteristic curve was 0.75. The sensitivity of miR-29 derived from serum was higher than that of miR-29 derived from plasma for malignant digestive system tumors (0.71 vs 0.54; P = .04). CONCLUSION This meta-analysis suggests that the circulating miR-29 family has good diagnostic performance for digestive system malignant tumors, with moderate sensitivity and good specificity.
Collapse
Affiliation(s)
- Shuhui Zou
- Department of Clinical Laboratory, Ganzhou People's Hospital
| | - Fei Chen
- Department of Nuclear Medicine, Ganzhou Tumour Hospital, Ganzhou, China
| | - Liqin Zhang
- Department of Clinical Laboratory, Ganzhou People's Hospital
| | - Cong Liu
- Department of Clinical Laboratory, Ganzhou People's Hospital
| | - Huamin Chen
- Department of Gastrointestinal-Cancer Surgery, Second Affiliated Hospital of Hainan Medical College, Haikou, China
| |
Collapse
|
8
|
Dolbnya AD, Popov IA, Pekov SI. Molecular Biomarkers in Cholangiocarcinoma: Focus on Bile. Curr Top Med Chem 2024; 24:722-736. [PMID: 38303538 DOI: 10.2174/0115680266290367240130054142] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 02/03/2024]
Abstract
Hepatobiliary system cancers have demonstrated an increasing incidence rate in the past years. Without the presence of early symptoms, the majority of such cancers manifest with a set of similar symptoms, such as cholestasis resulting in posthepatic icterus. Differential diagnosis of hepatobiliary cancers is required for the therapy selection, however, the similarity of the symptoms complicates diagnostics. Thus, the search for molecular markers is of high interest for such patients. Cholangiocarcinoma (CCA) is characterized by a poor prognosis due to a low resectability rate, which occurs because this disease is frequently beyond the limits of surgical therapy at the time of diagnosis. The CCA is diagnosed by the combination of clinical/biochemical features, radiological methods, and non-specific serum tumor biomarkers, although invasive examination is still needed. The main disadvantage is limited specificity and sensitivity, which complicates early diagnostics. Therefore, prognostic and predictive biomarkers are still lacking and urgently needed for early diagnosis. In contrast to serum, bile is more accessible to identify biliary disease due to its simpler composition. Moreover, bile can contain higher concentrations of tumor biomarkers due to its direct contact with the tumor. It is known that the composition of the main bile component - bile acids, may vary during different diseases of the biliary tract. This review summarizes the recent developments in the current research on the diagnostic biomarkers for CCA in serum and bile and provides an overview of the methods of bile acids analysis.
Collapse
Affiliation(s)
- Andrey D Dolbnya
- Siberian State Medical University, Tomsk, 634050, Russian Federation
| | - Igor A Popov
- Siberian State Medical University, Tomsk, 634050, Russian Federation
- Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Russian Federation
| | - Stanislav I Pekov
- Siberian State Medical University, Tomsk, 634050, Russian Federation
- Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Russian Federation
- Skolkovo Institute of Science and Technology, Moscow, 121205, Russian Federation
| |
Collapse
|
9
|
Catanzaro E, Gringeri E, Burra P, Gambato M. Primary Sclerosing Cholangitis-Associated Cholangiocarcinoma: From Pathogenesis to Diagnostic and Surveillance Strategies. Cancers (Basel) 2023; 15:4947. [PMID: 37894314 PMCID: PMC10604939 DOI: 10.3390/cancers15204947] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Cholangiocarcinoma (CCA) is the most common malignancy in patients with primary sclerosing cholangitis (PSC), accounting for 2-8% of cases and being the leading cause of death in these patients. The majority of PSC-associated CCAs (PSC-CCA) develop within the first few years after PSC diagnosis. Older age and male sex, as well as concomitant inflammatory bowel disease (IBD) or high-grade biliary stenosis, are some of the most relevant risk factors. A complex combination of molecular mechanisms involving inflammatory pathways, direct cytopathic damage, and epigenetic and genetic alterations are involved in cholangiocytes carcinogenesis. The insidious clinical presentation makes early detection difficult, and the integration of biochemical, radiological, and histological features does not always lead to a definitive diagnosis of PSC-CCA. Surveillance is mandatory, but current guideline strategies failed to improve early detection and consequently a higher patient survival rate. MicroRNAs (miRNAs), gene methylation, proteomic and metabolomic profile, and extracellular vesicle components are some of the novel biomarkers recently applied in PSC-CCA detection with promising results. The integration of these new molecular approaches in PSC diagnosis and monitoring could contribute to new diagnostic and surveillance strategies.
Collapse
Affiliation(s)
- Elisa Catanzaro
- Gastroenterology, Department of Surgery, Oncology, and Gastroenterology, Padova University Hospital, 35128 Padova, Italy
- Multivisceral Transplant Unit, Department of Surgery, Oncology, and Gastroenterology, Padova University Hospital, 35128 Padova, Italy
| | - Enrico Gringeri
- Hepatobiliary Surgery and Liver Transplantation Center, Department of Surgery, Oncology, and Gastroenterology, Padova University Hospital, 35128 Padova, Italy
| | - Patrizia Burra
- Gastroenterology, Department of Surgery, Oncology, and Gastroenterology, Padova University Hospital, 35128 Padova, Italy
- Multivisceral Transplant Unit, Department of Surgery, Oncology, and Gastroenterology, Padova University Hospital, 35128 Padova, Italy
| | - Martina Gambato
- Gastroenterology, Department of Surgery, Oncology, and Gastroenterology, Padova University Hospital, 35128 Padova, Italy
- Multivisceral Transplant Unit, Department of Surgery, Oncology, and Gastroenterology, Padova University Hospital, 35128 Padova, Italy
| |
Collapse
|
10
|
Al-Gazally ME, Khan R, Imran M, Ramírez-Coronel AA, Alshahrani SH, Altalbawy FMA, Turki Jalil A, Romero-Parra RM, Zabibah RS, Shahid Iqbal M, Karampoor S, Mirzaei R. The role and mechanism of action of microRNA-122 in cancer: Focusing on the liver. Int Immunopharmacol 2023; 123:110713. [PMID: 37523968 DOI: 10.1016/j.intimp.2023.110713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 07/08/2023] [Accepted: 07/24/2023] [Indexed: 08/02/2023]
Abstract
microRNA-122 (miR-122) is a highly conserved microRNA that is predominantly expressed in the liver and plays a critical role in the regulation of liver metabolism. Recent studies have shown that miR-122 is involved in the pathogenesis of various types of cancer, particularly liver cancer. In this sense, The current findings highlighted the potential role of miR-122 in regulating many vital processes in cancer pathophysiology, including apoptosis, signaling pathway, cell metabolism, immune system response, migration, and invasion. These results imply that miR-122, which has been extensively studied for its biological functions and potential therapeutic applications, acts as a tumor suppressor or oncogene in cancer development. We first provide an overview and summary of the physiological function and mode of action of miR-122 in liver cancer. We will examine the various signaling pathways and molecular mechanisms through which miR-122 exerts its effects on cancer cells, including the regulation of oncogenic and tumor suppressor genes, the modulation of cell proliferation and apoptosis, and the regulation of metastasis. Most importantly, we will also discuss the potential diagnostic and therapeutic applications of miR-122 in cancer, including the development of miRNA-based biomarkers for cancer diagnosis and prognosis, and the potential use of miR-122 as a therapeutic target for cancer treatment.
Collapse
Affiliation(s)
| | - Ramsha Khan
- MBBS, Nawaz Sharif Medical College, Gujrat, Pakistan
| | - Muhammad Imran
- MBBS, Multan Medical and Dental College, Multan, Pakistan
| | | | | | - Farag M A Altalbawy
- National Institute of Laser Enhanced Sciences (NILES), University of Cairo, Giza 12613, Egypt; Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla 51001, Iraq
| | | | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Muhammad Shahid Iqbal
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam bin Abdulaziz University, 11942 Alkharj, Saudi Arabia
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
11
|
Lucarini V, Nardozi D, Angiolini V, Benvenuto M, Focaccetti C, Carrano R, Besharat ZM, Bei R, Masuelli L. Tumor Microenvironment Remodeling in Gastrointestinal Cancer: Role of miRNAs as Biomarkers of Tumor Invasion. Biomedicines 2023; 11:1761. [PMID: 37371856 DOI: 10.3390/biomedicines11061761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Gastrointestinal (GI) cancers are the most frequent neoplasm, responsible for half of all cancer-related deaths. Metastasis is the leading cause of death from GI cancer; thus, studying the processes that regulate cancer cell migration is of paramount importance for the development of new therapeutic strategies. In this review, we summarize the mechanisms adopted by cancer cells to promote cell migration and the subsequent metastasis formation by highlighting the key role that tumor microenvironment components play in deregulating cellular pathways involved in these processes. We, therefore, provide an overview of the role of different microRNAs in promoting tumor metastasis and their role as potential biomarkers for the prognosis, monitoring, and diagnosis of GI cancer patients. Finally, we relate the possible use of nutraceuticals as a new strategy for targeting numerous microRNAs and different pathways involved in GI tumor invasiveness.
Collapse
Affiliation(s)
- Valeria Lucarini
- Department of Experimental Medicine, University of Rome "Sapienza", Viale Regina Elena 324, 00161 Rome, Italy
| | - Daniela Nardozi
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Valentina Angiolini
- Department of Experimental Medicine, University of Rome "Sapienza", Viale Regina Elena 324, 00161 Rome, Italy
| | - Monica Benvenuto
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
- Departmental Faculty of Medicine and Surgery, Saint Camillus International University of Health and Medical Sciences, via di Sant'Alessandro 8, 00131 Rome, Italy
| | - Chiara Focaccetti
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Raffaele Carrano
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Zein Mersini Besharat
- Department of Experimental Medicine, University of Rome "Sapienza", Viale Regina Elena 324, 00161 Rome, Italy
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Laura Masuelli
- Department of Experimental Medicine, University of Rome "Sapienza", Viale Regina Elena 324, 00161 Rome, Italy
| |
Collapse
|
12
|
Saengboonmee C, Obchoei S, Sawanyawisuth K, Wongkham S. Revision of potential prognostic markers of cholangiocarcinoma for clinical practice. Expert Rev Anticancer Ther 2023; 23:517-530. [PMID: 37052887 DOI: 10.1080/14737140.2023.2203386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 04/12/2023] [Indexed: 04/14/2023]
Abstract
INTRODUCTION Cholangiocarcinoma (CCA) is an aggressive cancer arising from any part of the biliary system. Effective treatment of CCA remains limited, resulting in the poor overall prognosis of patients. The effective prognostic biomarkers for CCA remain lacking, and most are at the research level. AREAS COVERED The incidences of CCAs, classification, genetic and molecular characteristics, and distinct clinical outcomes in each subtype are introduced. The prognostic markers currently used in clinical practice are reviewed. Studies of biomarkers in defining the aggressiveness of CCA, identifying patients with a potential tumor recurrence, and predicting the survival time, are reviewed. Emerging biomarkers discovered from advanced high throughput technology over the past 5 years are updated and summarized. Finally, in-depth and critical revision on the prognostic biomarkers for CCA reported from various sources of specimens, e.g. tissues, blood, bile, etc. are discussed. Conclusion: Many prognostic biomarkers for CCA have been proposed and hold promising clinical value. However, these markers are rarely used in the real clinical world due to several factors. Understanding the roles and importance of these prognostic markers may fundamentally impact the therapeutic management of CCA, and hopefully, improve the development of custom and patient-directed therapies for CCA.
Collapse
Affiliation(s)
- Charupong Saengboonmee
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Sumalee Obchoei
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| | - Kanlayanee Sawanyawisuth
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Sopit Wongkham
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
13
|
Zaki MB, Abulsoud AI, Elshaer SS, Fathi D, Abdelmaksoud NM, El-Mahdy HA, Ismail A, Elsakka EG, Sallam AAM, Doghish AS. The interplay of signaling pathways with miRNAs in cholangiocarcinoma pathogenicity and targeted therapy. Pathol Res Pract 2023; 245:154437. [PMID: 37030167 DOI: 10.1016/j.prp.2023.154437] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 03/31/2023] [Accepted: 04/02/2023] [Indexed: 04/08/2023]
Abstract
Cholangiocarcinoma (CCA), the second most frequent liver cancer after hepatocellular carcinoma, has been rising worldwide in recent epidemiological research. This neoplasia's pathogenesis is poorly understood. Yet, recent advances have illuminated the molecular processes of cholangiocyte malignancy and growth. Late diagnosis, ineffective therapy, and resistance to standard treatments contribute to this malignancy's poor prognosis. So, to develop efficient preventative and therapy methods, the molecular pathways that cause this cancer must be better understood. MicroRNAs (miRNAs) are non-coding ribonucleic acids (ncRNAs) that influence gene expression. Biliary carcinogenesis involves abnormally expressed miRNAs that act as oncogenes or tumor suppressors (TSs). The miRNAs regulate multiple gene networks and are involved in cancer hallmarks like reprogramming of cellular metabolism, sustained proliferative signaling, evasion of growth suppressors, replicative immortality, induction/access to the vasculature, activation of invasion and metastasis, and avoidance of immune destruction. In addition, numerous ongoing clinical trials are demonstrating the efficacy of therapeutic strategies based on miRNAs as powerful anticancer agents. Here, we will update the research on CCA-related miRNAs and explain their regulation involved in the molecular pathophysiology of this malignancy. Eventually, we will disclose their potential as clinical biomarkers and therapeutic tools in CCA.
Collapse
|
14
|
MicroRNA-122 in human cancers: from mechanistic to clinical perspectives. Cancer Cell Int 2023; 23:29. [PMID: 36803831 PMCID: PMC9940444 DOI: 10.1186/s12935-023-02868-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/09/2023] [Indexed: 02/22/2023] Open
Abstract
MicroRNAs (miRNAs) are endogenous short non-coding RNAs that can regulate the expression of target genes post-transcriptionally and interact with mRNA-coding genes. MiRNAs play vital roles in many biological functions, and abnormal miRNA expression has been linked to various illnesses, including cancer. Among the miRNAs, miR-122, miR-206, miR-21, miR-210, miR-223, and miR-424 have been extensively studied in various cancers. Although research in miRNAs has grown considerably over the last decade, much is yet to be discovered, especially regarding their role in cancer therapies. Several kinds of cancer have been linked to dysregulation and abnormal expression of miR-122, indicating that miR-122 may serve as a diagnostic and/or prognostic biomarker for human cancer. Consequently, in this review literature, miR-122 has been analyzed in numerous cancer types to sort out the function of cancer cells miR-122 and enhance patient response to standard therapy.
Collapse
|
15
|
Circulating miR-122-5p, miR-92a-3p, and miR-18a-5p as Potential Biomarkers in Human Liver Transplantation Follow-Up. Int J Mol Sci 2023; 24:ijms24043457. [PMID: 36834868 PMCID: PMC9962619 DOI: 10.3390/ijms24043457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
The requirement of blood-circulating sensitive biomarkers for monitoring liver transplant (LT) is currently a necessary step aiming at the reduction of standard invasive protocols, such as liver biopsy. In this respect, the main objective of this study is to assess circulating microRNA (c-miR) changes in recipients' blood before and after LT and to correlate their blood levels with gold standard biomarkers and with outcomes such as rejection or complications after graft. An miR profile was initially performed; then, the most deregulated miRs were validated by RT-qPCR in 14 recipients pre- and post-LT and compared to a control group of 24 nontransplanted healthy subjects. MiR-122-5p, miR-92a-3p, miR-18a-5p, and miR-30c-5p, identified in the validation phase, were also analyzed considering an additional 19 serum samples collected from LT recipients and focusing on different follow-up (FU) times. The results showed significant, FU-related changes in c-miRs. In particular, miR-122-5p, miR-92a-3p, and miR-18a-5p revealed the same trend after transplantation and an increase in their level was found in patients with complications, independently from FU times. Conversely, the variations in the standard haemato-biochemical parameters for liver function assessment were not significant in the same FU period, confirming the importance of c-miRs as potential noninvasive biomarkers for monitoring patients' outcomes.
Collapse
|
16
|
Ohaegbulam KC, Koethe Y, Fung A, Mayo SC, Grossberg AJ, Chen EY, Sharzehi K, Kardosh A, Farsad K, Rocha FG, Thomas CR, Nabavizadeh N. The multidisciplinary management of cholangiocarcinoma. Cancer 2023; 129:184-214. [PMID: 36382577 DOI: 10.1002/cncr.34541] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 11/17/2022]
Abstract
Cholangiocarcinoma is a lethal malignancy of the biliary epithelium that can arise anywhere along the biliary tract. Surgical resection confers the greatest likelihood of long-term survivability. However, its insidious onset, difficult diagnostics, and resultant advanced presentation render the majority of patients unresectable, highlighting the importance of early detection with novel biomarkers. Developing liver-directed therapies and emerging targeted therapeutics may offer improved survivability for patients with unresectable or advanced disease. In this article, the authors review the current multidisciplinary standards of care in resectable and unresectable cholangiocarcinoma, with an emphasis on novel biomarkers for early detection and nonsurgical locoregional therapy options.
Collapse
Affiliation(s)
- Kim C Ohaegbulam
- Department of Radiation Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Yilun Koethe
- Department of Interventional Radiology, Oregon Health & Science University, Portland, Oregon, USA
| | - Alice Fung
- Department of Diagnostic Radiology, Oregon Health & Science University, Portland, Oregon, USA
| | - Skye C Mayo
- Department of Surgical Oncology, Oregon Health & Science University, Portland, Oregon, USA
| | - Aaron J Grossberg
- Department of Radiation Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Emerson Y Chen
- Division of Hematology/Medical Oncology, Oregon Health & Science University, Portland, Oregon, USA
| | - Kaveh Sharzehi
- Division of Gastroenterology and Hepatology, Oregon Health & Science University, Portland, Oregon, USA
| | - Adel Kardosh
- Division of Hematology/Medical Oncology, Oregon Health & Science University, Portland, Oregon, USA
| | - Khashayar Farsad
- Department of Interventional Radiology, Oregon Health & Science University, Portland, Oregon, USA
| | - Flavio G Rocha
- Department of Surgical Oncology, Oregon Health & Science University, Portland, Oregon, USA
| | - Charles R Thomas
- Department of Radiation Medicine, Oregon Health & Science University, Portland, Oregon, USA.,Department of Radiation Oncology, Dartmouth School of Medicine, Hanover, New Hampshire, USA
| | - Nima Nabavizadeh
- Department of Radiation Medicine, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
17
|
Ghafouri-Fard S, Safarzadeh A, Hussen BM, Taheri M, Samsami M. A review on the role of ncRNAs in the pathogenesis of cholangiocarcinoma. Int J Biol Macromol 2023; 225:809-821. [PMID: 36400211 DOI: 10.1016/j.ijbiomac.2022.11.144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/14/2022] [Indexed: 11/17/2022]
Abstract
Cholangiocarcinoma is a rare tumor but a challenging cancer in terms of pathological changes, clinical manifestations and therapeutic options. Recent studies have provided evidence for participation of non-coding RNAs in the carcinogenic process of cholangiocarcinoma. We demonstrate the role of long non-coding RNAs, microRNAs and circular RNAs in the pathogenesis of cholangiocarcinoma and highlight their significant position as therapeutic targets and biomarkers for this type of cancer. We also list a number of molecular axes comprising these non-coding RNAs that represent potential targets for therapeutic options in cholangiocarcinoma, based on their significant roles in the regulation of cell proliferation, differentiation and apoptosis of these cells.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arash Safarzadeh
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq; Center of Research and Strategic Studies, Lebanese French University, Erbil, Kurdistan Region, Iraq
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany; Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Majid Samsami
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
18
|
Hamza E, Cosandey J, Gerber V, Koch C, Unger L. The potential of three whole blood microRNAs to predict outcome and monitor treatment response in sarcoid-bearing equids. Vet Res Commun 2023; 47:87-98. [PMID: 35484337 PMCID: PMC9873782 DOI: 10.1007/s11259-022-09930-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/19/2022] [Indexed: 01/28/2023]
Abstract
MicroRNAs (miRNAs) have been proposed as biomarkers for equine sarcoid (ES) disease. In this study, the suitability of three whole blood miRNAs to diagnose ES and to predict and monitor the outcome of therapy was explored. Using reverse transcription-quantitative polymerase chain reaction (RT-qPCR), expression levels of eca-miR-127, eca-miR-379, and eca-miR-432 in whole blood of ES-affected equids before and at least one year after therapy were compared to those of unaffected control equids. Associations of age, sex, species, diagnosis, and therapy outcome with miRNA expression levels were examined using general linear models. In total, 48 ES-affected equids and 47 control equids were recruited. From the affected animals, 31 responded favorably to treatment, and 17 demonstrated a failure of therapy. None of the tested miRNAs were influenced by age. Male equids showed increased expression of eca-miR-127 compared to females and horses showed higher expression levels of eca-miR-379 and eca-miR-432 than donkeys. Eca-miR-127 was confirmed as a diagnostic discriminator between ES-affected and control equids. No difference in miRNA profiles before therapy was found when comparing ES-affected equids with success vs. failure of therapy. Eca-miR-379 and eca-miR-432 decreased over time in horses where therapy was successful, but not in those cases where it failed. Biological variables influence equine whole blood miRNA expression, which may complicate biomarker validation. While none of the tested miRNAs could predict the response to therapy in ES-affected equids and eca-miR-127 showed poor diagnostic accuracy for ES, eca-miR-379 and eca-miR-432 miRNAs might allow refinement of monitoring of success of ES therapy.
Collapse
Affiliation(s)
- E. Hamza
- Swiss Institute of Equine Medicine, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, Bern, Switzerland ,Departement of Zoonoses, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - J. Cosandey
- Swiss Institute of Equine Medicine, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - V. Gerber
- Swiss Institute of Equine Medicine, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - C. Koch
- Swiss Institute of Equine Medicine, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - L. Unger
- Swiss Institute of Equine Medicine, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
19
|
Su F, Gao Z, Liu Y, Zhou G, Gao W, Deng C, Liu Y, Zhang Y, Ma X, Wang Y, Guan L, Zhang Y, Liu B. Prioritizing key synergistic circulating microRNAs for the early diagnosis of biliary tract cancer. Front Oncol 2022; 12:968412. [PMID: 36276146 PMCID: PMC9582275 DOI: 10.3389/fonc.2022.968412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Biliary tract cancer (BTC) is a highly aggressive malignant tumor. Serum microRNAs (ser-miRNAs) serve as noninvasive biomarkers to identify high risk individuals, thereby facilitating the design of precision therapies. The study is to prioritize key synergistic ser-miRNAs for the diagnosis of early BTC. Sampling technology, significant analysis of microarrays, Pearson Correlation Coefficients, t-test, decision tree, and entropy weight were integrated to develop a global optimization algorithm of decision forest. The source code is available at https://github.com/SuFei-lab/GOADF.git. Four key synergistic ser-miRNAs were prioritized and the synergistic classification performance was better than the single miRNA’ s. In the internal feature evaluation dataset, the area under the receiver operating characteristic curve (AUC) for each single miRNA was 0.8413 (hsa-let-7c-5p), 0.7143 (hsa-miR-16-5p), 0.8571 (hsa-miR-17-5p), and 0.9365 (hsa-miR-26a-5p), respectively, whereas the synergistic AUC value increased to 1.0000. In the internal test dataset, the single AUC was 0.6500, 0.5125, 0.6750, and 0.7500, whereas the synergistic AUC increased to 0.8375. In the independent test dataset, the single AUC was 0.7280, 0.8313, 0.8957, and 0.8303, and the synergistic AUC was 0.9110 for discriminating between BTC patients and healthy controls. The AUC for discriminating BTC from pancreatic cancer was 0.9000. Hsa-miR-26a-5p was a predictor of prognosis, patients with high expression had shorter survival than those with low expression. In conclusion, hsa-let-7c-5p, hsa-miR-16-5p, hsa-miR-17-5p, and hsa-miR-26a-5p may act as key synergistic biomarkers and provide important molecular mechanisms that contribute to pathogenesis of BTC.
Collapse
Affiliation(s)
- Fei Su
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Ziyu Gao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
- Department of Anatomy, Harbin Medical University, Harbin, China
| | - Yueyang Liu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Guiqin Zhou
- Department of Immunology, Harbin Medical University, Harbin, China
| | - Wei Gao
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Chao Deng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
- Department of Anatomy, Harbin Medical University, Harbin, China
| | - Yuyu Liu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
- Department of Anatomy, Harbin Medical University, Harbin, China
| | - Yihao Zhang
- Department of Anatomy, Harbin Medical University, Harbin, China
| | - Xiaoyan Ma
- Department of Anatomy, Harbin Medical University, Harbin, China
| | - Yongxia Wang
- Department of Anatomy, Harbin Medical University, Harbin, China
| | - Lili Guan
- Department of Information Management, Shanghai Lixin University of Accounting and Finance, Shanghai, China
- *Correspondence: Baoquan Liu, ; Yafang Zhang, ; Lili Guan,
| | - Yafang Zhang
- Department of Anatomy, Harbin Medical University, Harbin, China
- *Correspondence: Baoquan Liu, ; Yafang Zhang, ; Lili Guan,
| | - Baoquan Liu
- Department of Anatomy, Harbin Medical University, Harbin, China
- Department of Modern Medicine and Pharmacy, University of Tibetan Medicine, Lhasa, China
- *Correspondence: Baoquan Liu, ; Yafang Zhang, ; Lili Guan,
| |
Collapse
|
20
|
Brown ZJ, Patwardhan S, Bean J, Pawlik TM. Molecular diagnostics and biomarkers in cholangiocarcinoma. Surg Oncol 2022; 44:101851. [PMID: 36126350 DOI: 10.1016/j.suronc.2022.101851] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/26/2022] [Accepted: 09/09/2022] [Indexed: 10/14/2022]
Abstract
Regardless of anatomic origin, cholangiocarcinoma is generally an aggressive malignancy with a relatively high case fatality. Surgical resection with curative intent remains the best opportunity to achieve meaningful long-term survival. Most patients present, however, with advanced disease and less than 20% of patients are candidates for surgical resection. Unfortunately, even patients who undergo resection have a 5-year survival that ranges from 20 to 40%. Biomarkers are indicators of normal, pathologic, or biologic responses to an intervention and can range from a characteristic (i.e., blood pressure reading which can detect hypertension) to specific genetic mutations or proteins (i.e., carcinoembryonic antigen level). Novel biomarkers and improved molecular diagnostics represent an attractive opportunity to improve detection as well as to identify novel therapeutic targets for patients with cholangiocarcinoma. We herein review the latest advances in molecular diagnostics and biomarkers related to the early detection and treatment of patients with cholangiocarcinoma.
Collapse
Affiliation(s)
- Zachary J Brown
- Department of Surgery, The State Wexner Medical Center, Columbus, OH, USA.
| | - Satyajit Patwardhan
- Dept of HPB Surgery and Liver Transplantation, Global Hospital, Mumbai, India
| | - Joal Bean
- Department of Surgery, The State Wexner Medical Center, Columbus, OH, USA
| | - Timothy M Pawlik
- Department of Surgery, The State Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
21
|
Mir-29b in Breast Cancer: A Promising Target for Therapeutic Approaches. Diagnostics (Basel) 2022; 12:diagnostics12092139. [PMID: 36140539 PMCID: PMC9497770 DOI: 10.3390/diagnostics12092139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 11/22/2022] Open
Abstract
The miR-29 family comprises miR-29a, miR-29b, and miR-29c, and these molecules play crucial and partially overlapped functions in solid tumors, in which the different isoforms are variously de-regulated and mainly correlated with tumor suppression. miR-29b is the most expressed family member in cancer, in which it is involved in regulating gene expression at both transcriptional and post-transcriptional levels. This review focuses on the role of miR-29b in breast cancer, in which it plays a controversial role as tumor suppressor or onco-miRNA. Here we have highlighted the dual effect of miR-29b on breast tumor features, which depend on the prevailing function of this miRNA, on the mature miR-29b evaluated, and on the breast tumor characteristics. Remarkably, the analyzed miR-29b form emerged as a crucial element in the results obtained by various research groups, as the most abundant miR-29b-3p and the less expressed miR-29b1-5p seem to play distinct roles in breast tumors with different phenotypes. Of particular interest are the data showing that miR-29b1-5p counteracts cell proliferation and migration and reduces stemness in breast tumor cells with a triple negative phenotype. Even if further studies are required to define exactly the role of each miR-29b, our review highlights its possible implication in phenotype-specific management of breast tumors.
Collapse
|
22
|
Liver transplantation and intrahepatic cholangiocarcinoma: time to go forward again? Curr Opin Organ Transplant 2022; 27:320-328. [PMID: 36354258 DOI: 10.1097/mot.0000000000000983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE OF REVIEW Liver transplantation for intrahepatic cholangiocarcinoma (iCCA) has been mired in controversy. High rates of recurrence posttransplant combined with donor organ scarcity resulted in most transplant centers treating iCCA as a contraindication for liver transplantation. RECENT FINDINGS Recent studies have shown that carefully selected patients with unresectable iCCA can have good outcomes after liver transplantation. Better outcomes have been seen in patients with smaller tumors and favorable tumor biology. SUMMARY Because many patients are diagnosed with iCCA at later stages, tumor biology and genetics are useful tools to identify patients who will have excellent overall and recurrence-free survival after liver transplantation. Further larger multicenter prospective studies are needed to identify patients who would benefit from liver transplantation with good outcomes. Additional advances will come through early diagnosis and utilizing a combination of chemotherapy and locoregional modalities as a bridge to transplant. There is also a need to recognize and develop additional neo- and adjuvant therapies for patients whose tumor biology currently precludes their inclusion on the liver transplantation waitlist.
Collapse
|
23
|
Mukherji R, Yin C, Hameed R, Alqahtani AZ, Kulasekaran M, He AR, Weinberg BA, Marshall JL, Hartley ML, Noel MS. The current state of molecular profiling in gastrointestinal malignancies. Biol Direct 2022; 17:15. [PMID: 35668531 PMCID: PMC9172079 DOI: 10.1186/s13062-022-00322-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/19/2022] [Indexed: 11/10/2022] Open
Abstract
This is a review of the current state of molecular profiling in gastrointestinal (GI) cancers and what to expect from this evolving field in the future. Individualized medicine is moving from broad panel testing of numerous genes or gene products in tumor biopsy samples, identifying biomarkers of prognosis and treatment response, to relatively noninvasive liquid biopsy assays, building on what we have learned in our tumor analysis and growing into its own evolving predictive and prognostic subspecialty. Hence, the field of GI precision oncology is exploding, and this review endeavors to summarize where we are now in preparation for the journey ahead.
Collapse
Affiliation(s)
- Reetu Mukherji
- The Ruesch Center for the Cure of GI Cancers, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, 3800 Reservoir Rd. NW, Washington, DC, 20007, USA
- MedStar Georgetown University Hospital, 3800 Reservoir Rd. NW, Washington, DC, 20007, USA
| | - Chao Yin
- The Ruesch Center for the Cure of GI Cancers, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, 3800 Reservoir Rd. NW, Washington, DC, 20007, USA
- MedStar Georgetown University Hospital, 3800 Reservoir Rd. NW, Washington, DC, 20007, USA
| | - Rumaisa Hameed
- The Ruesch Center for the Cure of GI Cancers, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, 3800 Reservoir Rd. NW, Washington, DC, 20007, USA
- MedStar Georgetown University Hospital, 3800 Reservoir Rd. NW, Washington, DC, 20007, USA
| | - Ali Z Alqahtani
- The Ruesch Center for the Cure of GI Cancers, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, 3800 Reservoir Rd. NW, Washington, DC, 20007, USA
- MedStar Georgetown University Hospital, 3800 Reservoir Rd. NW, Washington, DC, 20007, USA
| | - Monika Kulasekaran
- The Ruesch Center for the Cure of GI Cancers, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, 3800 Reservoir Rd. NW, Washington, DC, 20007, USA
- MedStar Georgetown University Hospital, 3800 Reservoir Rd. NW, Washington, DC, 20007, USA
| | - Aiwu R He
- The Ruesch Center for the Cure of GI Cancers, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, 3800 Reservoir Rd. NW, Washington, DC, 20007, USA
- MedStar Georgetown University Hospital, 3800 Reservoir Rd. NW, Washington, DC, 20007, USA
| | - Benjamin A Weinberg
- The Ruesch Center for the Cure of GI Cancers, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, 3800 Reservoir Rd. NW, Washington, DC, 20007, USA
- MedStar Georgetown University Hospital, 3800 Reservoir Rd. NW, Washington, DC, 20007, USA
| | - John L Marshall
- The Ruesch Center for the Cure of GI Cancers, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, 3800 Reservoir Rd. NW, Washington, DC, 20007, USA
- MedStar Georgetown University Hospital, 3800 Reservoir Rd. NW, Washington, DC, 20007, USA
| | - Marion L Hartley
- The Ruesch Center for the Cure of GI Cancers, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, 3800 Reservoir Rd. NW, Washington, DC, 20007, USA
| | - Marcus S Noel
- The Ruesch Center for the Cure of GI Cancers, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, 3800 Reservoir Rd. NW, Washington, DC, 20007, USA.
- MedStar Georgetown University Hospital, 3800 Reservoir Rd. NW, Washington, DC, 20007, USA.
| |
Collapse
|
24
|
Ohtsubo K, Miyake K, Arai S, Fukuda K, Suzuki C, Kotani H, Tanimoto A, Nishiyama A, Nanjo S, Yamashita K, Takeuchi S, Yano S. Methylation of Tumor Suppressive miRNAs in Plasma from Patients With Pancreaticobiliary Diseases. CANCER DIAGNOSIS & PROGNOSIS 2022; 2:378-383. [PMID: 35530650 PMCID: PMC9066530 DOI: 10.21873/cdp.10120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND/AIM We previously reported the usefulness of aberrant methylation of tumor suppressive miRNAs in bile to discriminate pancreaticobiliary cancers (PBCs) from benign pancreaticobiliary diseases (BD). Here we performed a methylation analysis of plasma miRNAs to identify miRNAs specific for PBCs. PATIENTS AND METHODS Plasma was collected from 80 patients with pancreatic cancer (PC); 18 with biliary tract cancer (BTC) and 28 with BD. Sequences encoding 3 tumor suppressive miRNAs (miR-200a, -200b, and -1247) were PCR amplified and sequenced, and their methylation rates were determined. RESULTS The methylation rate of miR-1247 was significantly higher in patients with BTC than in those with BD, and tended to be higher in patients with PC than in those with BD. Furthermore, it was significantly higher in three patients with stages I/II BTC than in those with BD. CONCLUSION Methylation of miR-1247 in plasma may be useful to distinguish BTC from BD.
Collapse
Affiliation(s)
- Koushiro Ohtsubo
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Kunio Miyake
- Department of Health Sciences, School of Medicine, University of Yamanashi, Chuo, Japan
| | - Sachiko Arai
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Koji Fukuda
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Chiaki Suzuki
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Hiroshi Kotani
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Azusa Tanimoto
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Akihiro Nishiyama
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Shigeki Nanjo
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Kaname Yamashita
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Shinji Takeuchi
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Seiji Yano
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
25
|
Cholangiopathies and the noncoding revolution. Curr Opin Gastroenterol 2022; 38:128-135. [PMID: 35098934 DOI: 10.1097/mog.0000000000000806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
PURPOSE OF REVIEW Noncoding RNAs (ncRNAs), including microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) among others, have attracted a great deal of attention for their potential role as master regulators of gene expression and as therapeutic targets. This review focuses on recent advances on the role of ncRNAs in the pathogenesis, diagnosis and treatment of diseases of the cholangiocytes (i.e. cholangiopathies). RECENT FINDINGS In the recent years, there has been an exponential growth in the knowledge on ncRNAs and their role in cholangiopathies, particularly cholangiocarcinoma. SUMMARY Although several studies focused on miRNAs as noninvasive biomarkers for diagnosis and staging, several studies also highlighted their functions and provided new insights into disease mechanisms.
Collapse
|
26
|
Pavicevic S, Reichelt S, Uluk D, Lurje I, Engelmann C, Modest DP, Pelzer U, Krenzien F, Raschzok N, Benzing C, Sauer IM, Stintzing S, Tacke F, Schöning W, Schmelzle M, Pratschke J, Lurje G. Prognostic and Predictive Molecular Markers in Cholangiocarcinoma. Cancers (Basel) 2022; 14:1026. [PMID: 35205774 PMCID: PMC8870611 DOI: 10.3390/cancers14041026] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/09/2022] [Accepted: 02/09/2022] [Indexed: 02/05/2023] Open
Abstract
Cholangiocarcinoma (CCA) is the second most common primary liver cancer and subsumes a heterogeneous group of malignant tumors arising from the intra- or extrahepatic biliary tract epithelium. A rising mortality from CCA has been reported worldwide during the last decade, despite significant improvement of surgical and palliative treatment. Over 50% of CCAs originate from proximal extrahepatic bile ducts and constitute the most common CCA entity in the Western world. Clinicopathological characteristics such as lymph node status and poor differentiation remain the best-studied, but imperfect prognostic factors. The identification of prognostic molecular markers as an adjunct to traditional staging systems may not only facilitate the selection of patients who would benefit the most from surgical, adjuvant or palliative treatment strategies, but may also be helpful in defining the aggressiveness of the disease and identifying patients at high-risk for tumor recurrence. The purpose of this review is to provide an overview of currently known molecular prognostic and predictive markers and their role in CCA.
Collapse
Affiliation(s)
- Sandra Pavicevic
- Department of Surgery, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (S.P.); (S.R.); (D.U.); (F.K.); (N.R.); (C.B.); (I.M.S.); (W.S.); (M.S.); (J.P.)
| | - Sophie Reichelt
- Department of Surgery, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (S.P.); (S.R.); (D.U.); (F.K.); (N.R.); (C.B.); (I.M.S.); (W.S.); (M.S.); (J.P.)
| | - Deniz Uluk
- Department of Surgery, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (S.P.); (S.R.); (D.U.); (F.K.); (N.R.); (C.B.); (I.M.S.); (W.S.); (M.S.); (J.P.)
| | - Isabella Lurje
- Department of Gastroenterology and Hepatology, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (I.L.); (C.E.); (F.T.)
| | - Cornelius Engelmann
- Department of Gastroenterology and Hepatology, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (I.L.); (C.E.); (F.T.)
| | - Dominik P. Modest
- Department of Hematology, Oncology and Cancer Immunology, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (D.P.M.); (U.P.); (S.S.)
| | - Uwe Pelzer
- Department of Hematology, Oncology and Cancer Immunology, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (D.P.M.); (U.P.); (S.S.)
| | - Felix Krenzien
- Department of Surgery, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (S.P.); (S.R.); (D.U.); (F.K.); (N.R.); (C.B.); (I.M.S.); (W.S.); (M.S.); (J.P.)
| | - Nathanael Raschzok
- Department of Surgery, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (S.P.); (S.R.); (D.U.); (F.K.); (N.R.); (C.B.); (I.M.S.); (W.S.); (M.S.); (J.P.)
| | - Christian Benzing
- Department of Surgery, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (S.P.); (S.R.); (D.U.); (F.K.); (N.R.); (C.B.); (I.M.S.); (W.S.); (M.S.); (J.P.)
| | - Igor M. Sauer
- Department of Surgery, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (S.P.); (S.R.); (D.U.); (F.K.); (N.R.); (C.B.); (I.M.S.); (W.S.); (M.S.); (J.P.)
| | - Sebastian Stintzing
- Department of Hematology, Oncology and Cancer Immunology, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (D.P.M.); (U.P.); (S.S.)
| | - Frank Tacke
- Department of Gastroenterology and Hepatology, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (I.L.); (C.E.); (F.T.)
| | - Wenzel Schöning
- Department of Surgery, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (S.P.); (S.R.); (D.U.); (F.K.); (N.R.); (C.B.); (I.M.S.); (W.S.); (M.S.); (J.P.)
| | - Moritz Schmelzle
- Department of Surgery, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (S.P.); (S.R.); (D.U.); (F.K.); (N.R.); (C.B.); (I.M.S.); (W.S.); (M.S.); (J.P.)
| | - Johann Pratschke
- Department of Surgery, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (S.P.); (S.R.); (D.U.); (F.K.); (N.R.); (C.B.); (I.M.S.); (W.S.); (M.S.); (J.P.)
| | - Georg Lurje
- Department of Surgery, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (S.P.); (S.R.); (D.U.); (F.K.); (N.R.); (C.B.); (I.M.S.); (W.S.); (M.S.); (J.P.)
| |
Collapse
|
27
|
Sarantis P, Tzanetatou ED, Ioakeimidou E, Vallilas C, Androutsakos T, Damaskos C, Garmpis N, Garmpi A, Papavassiliou AG, Karamouzis MV. Cholangiocarcinoma: the role of genetic and epigenetic factors; current and prospective treatment with checkpoint inhibitors and immunotherapy. Am J Transl Res 2021; 13:13246-13260. [PMID: 35035673 PMCID: PMC8748131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 11/09/2021] [Indexed: 06/14/2023]
Abstract
Cholangiocarcinoma (CCA) represents 3% of all gastrointestinal cancers worldwide and is the second most common primary liver tumor after hepatocellular carcinoma. CCA is an aggressive tumor that involves the intrahepatic, perihilar and distal biliary tree, with a poor prognosis and an increasing incidence worldwide. Various genetic and epigenetic factors have been implicated in CCA development. Gene mutations involving apoptosis control and cell cycle evolution, histone modifications, methylation dysregulation and abnormal expression of non-coding RNA are the most important of these factors. Regarding treatment, surgical resection, cisplatin and gemcitabine have long been the most common treatment options, but 5-year survival (7-20%) is disappointing. For that reason, inhibitors and small molecules related to specific mutations and molecular pathways have been introduced. Among them, immunotherapy seems to be a promising treatment in CCA, with multiple regimens being under clinical trial studies. The combinatorial therapy of traditional CCA treatment with tyrosine kinase inhibitors and/or immunotherapy seem to be the future, depending on the molecular profile of each patient's tumor.
Collapse
Affiliation(s)
- Panagiotis Sarantis
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens11527 Athens, Greece
| | - Eleftheria Dikoglou Tzanetatou
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens11527 Athens, Greece
| | - Evangelia Ioakeimidou
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens11527 Athens, Greece
| | - Christos Vallilas
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens11527 Athens, Greece
| | - Theodoros Androutsakos
- Pathophysiology Department, Medical School, National and Kapodistrian University of Athens11527 Athens, Greece
| | - Christos Damaskos
- N.S. Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens11527 Athens, Greece
- Renal Transplantation Unit, Laiko General Hospital11527 Athens, Greece
| | - Nikolaos Garmpis
- N.S. Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens11527 Athens, Greece
- Second Department of Propedeutic Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens11527 Athens, Greece
| | - Anna Garmpi
- First Department of Propedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens11527 Athens, Greece
| | - Athanasios G Papavassiliou
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens11527 Athens, Greece
| | - Michalis V Karamouzis
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens11527 Athens, Greece
| |
Collapse
|
28
|
Manne A, Woods E, Tsung A, Mittra A. Biliary Tract Cancers: Treatment Updates and Future Directions in the Era of Precision Medicine and Immuno-Oncology. Front Oncol 2021; 11:768009. [PMID: 34868996 PMCID: PMC8634105 DOI: 10.3389/fonc.2021.768009] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/13/2021] [Indexed: 12/12/2022] Open
Abstract
The effective management of biliary tract cancers (BTCs) has been hampered by limited options for systemic therapy. In recent years, the focus on precision medicine has made technologies such as next-generation sequencing (NGS) accessible to clinicians to identify targetable mutations in BTCs in tumor tissue (primarily) as well as blood, and to treat them with targeted therapies when possible. It has also expanded our understanding of functional pathways associated with genetic alterations and opened doors for identifying novel targets for treatment. Recent advances in the precision medicine approach allowed us to identify new molecular markers in BTCs, such as epigenetic changes (methylation and histone modification) and non-DNA markers such as messenger RNA, microRNA, and long non-coding RNA. It also made detecting these markers from non-traditional sources such as blood, urine, bile, and cytology (from fine-needle aspiration and biliary brushings) possible. As these tests become more accessible, we can see the integration of different molecular markers from all available sources to aid physicians in diagnosing, assessing prognosis, predicting tumor response, and screening BTCs. Currently, there are a handful of approved targeted therapies and only one class of immunotherapy agents (immune checkpoint inhibitors or ICIs) to treat BTCs. Early success with new targets, vascular endothelial growth factor receptor (VEGFR), HER2, protein kinase receptor, and Dickkopf-1 (DKK1); new drugs for known targets, fibroblast growth factor receptors (FGFRs) such as futabatinib, derazantinib, and erdafitinib; and ICIs such as durvalumab and tremelimumab is encouraging. Novel immunotherapy agents such as bispecific antibodies (bintrafusp alfa), arginase inhibitors, vaccines, and cellular therapy (chimeric antigen receptor-T cell or CAR-T, natural killer cells, tumor-infiltrating lymphocytes) have the potential to improve outcomes of BTCs in the coming years.
Collapse
Affiliation(s)
- Ashish Manne
- Department of Internal Medicine, Division of Medical Oncology at the Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - Edward Woods
- Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Allan Tsung
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center and James Cancer Hospital and Solove Research Institute, Columbus, OH, United States
| | - Arjun Mittra
- Department of Internal Medicine, Division of Medical Oncology at the Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| |
Collapse
|
29
|
Next-Generation Biomarkers for Cholangiocarcinoma. Cancers (Basel) 2021; 13:cancers13133222. [PMID: 34203269 PMCID: PMC8269024 DOI: 10.3390/cancers13133222] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/16/2021] [Accepted: 06/22/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Early and non-invasive diagnosis of cholangiocarcinoma (CCA) is still challenging, thus largely contributing to the increased mortality rates observed worldwide. Consequently, several efforts have been made in order to report novel biomarkers for CCA, that would aid on diagnosis and also to predict prognosis and therapy response. We herein aim to provide an in-depth and critical revision on the next-generation biomarkers for CCA that have been recently proposed. Abstract The increasing mortality rates of cholangiocarcinoma (CCA) registered during the last decades are, at least in part, a result of the lack of accurate non-invasive biomarkers for early disease diagnosis, making the identification of patients who might benefit from potentially curative approaches (i.e., surgery) extremely challenging. The obscure CCA pathogenesis and associated etiological factors, as well as the lack of symptoms in patients with early tumor stages, highly compromises CCA identification and to predict tumor development in at-risk populations. Currently, CCA diagnosis is accomplished by the combination of clinical/biochemical features, radiological imaging and non-specific serum tumor biomarkers, although a tumor biopsy is still needed to confirm disease diagnosis. Furthermore, prognostic and predictive biomarkers are still lacking and urgently needed. During the recent years, high-throughput omics-based approaches have identified novel circulating biomarkers (diagnostic and prognostic) that might be included in large, international validation studies in the near future. In this review, we summarize and discuss the most recent advances in the field of biomarker discovery in CCA, providing new insights and future research directions.
Collapse
|
30
|
Molecular Pathogenesis and Regulation of the miR-29-3p-Family: Involvement of ITGA6 and ITGB1 in Intra-Hepatic Cholangiocarcinoma. Cancers (Basel) 2021; 13:cancers13112804. [PMID: 34199886 PMCID: PMC8200054 DOI: 10.3390/cancers13112804] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/27/2021] [Accepted: 05/31/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Even today, there are no effective targeted therapies for intrahepatic cholangiocarcinoma (ICC) patients. Clarifying the molecular pathogenesis of ICC will contribute to the development of treatment strategies for this disease. In this study, we searched for the role of the miR-29-3p-family and its association with oncogenic pathway. Interestingly, aberrant expression of ITGA6 and ITGB1 was directly regulated by the miR-29-3p-family which are involved in multiple oncogenic pathways in ICC, and enhanced malignant transformation of ICC cells. Furthermore, SP1 which is a transcriptional activator of ITGA6/ITGB1, is regulated by the miR-29-3p-family. These molecules may be novel therapeutic targets for ICC. Abstract The aggressive nature of intrahepatic cholangiocarcinoma (ICC) renders it a particularly lethal solid tumor. Searching for therapeutic targets for ICC is an essential challenge in the development of an effective treatment strategy. Our previous studies showed that the miR-29-3p-family members (miR-29a-3p, miR-29b-3p and miR-29c-3p) are key tumor-suppressive microRNAs that control many oncogenic genes/pathways in several cancers. In this study, we searched for therapeutic targets for ICC using the miR-29-3p-family as a starting point. Our functional studies of cell proliferation, migration and invasion confirmed that the miR-29-3p-family act as tumor-suppressors in ICC cells. Moreover, in silico analysis revealed that “focal adhesion”, “ECM-receptor”, “endocytosis”, “PI3K-Akt signaling” and “Hippo signaling” were involved in oncogenic pathways in ICC cells. Our analysis focused on the genes for integrin-α6 (ITGA6) and integrin-β1 (ITGB1), which are involved in multiple pathways. Overexpression of ITGA6 and ITGB1 enhanced malignant transformation of ICC cells. Both ITGA6 and ITGB1 were directly regulated by the miR-29-3p-family in ICC cells. Interestingly, expression of ITGA6/ITGB1 was positively controlled by the transcription factor SP1, and SP1 was negatively controlled by the miR-29-3p-family. Downregulation of the miR-29-3p-family enhanced SP1-mediated ITGA6/ITGB1 expression in ICC cells. MicroRNA-based exploration is an attractive strategy for identifying therapeutic targets for ICC.
Collapse
|
31
|
Rompianesi G, Di Martino M, Gordon-Weeks A, Montalti R, Troisi R. Liquid biopsy in cholangiocarcinoma: Current status and future perspectives. World J Gastrointest Oncol 2021; 13:332-350. [PMID: 34040697 PMCID: PMC8131901 DOI: 10.4251/wjgo.v13.i5.332] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/02/2021] [Accepted: 03/31/2021] [Indexed: 02/06/2023] Open
Abstract
Cholangiocarcinoma (CCA) are a heterogeneous group of tumors in terms of aetiology, natural history, morphological subtypes, molecular alterations and management, but all sharing complex diagnosis, management, and poor prognosis. Several mutated genes and epigenetic changes have been detected in CCA, with the potential to identify diagnostic and prognostic biomarkers and therapeutic targets. Accessing tumoral components and genetic material is therefore crucial for the diagnosis, management and selection of targeted therapies; but sampling tumor tissue, when possible, is often risky and difficult to be repeated at different time points. Liquid biopsy (LB) represents a way to overcome these issues and comprises a diverse group of methodologies centering around detection of tumor biomarkers from fluid samples. Compared to the traditional tissue sampling methods LB is less invasive and can be serially repeated, allowing a real-time monitoring of the tumor genetic profile or the response to therapy. In this review, we analysis the current evidence on the possible roles of LB (circulating DNA, circulating RNA, exosomes, cytokines) in the diagnosis and management of patients affected by CCA.
Collapse
Affiliation(s)
- Gianluca Rompianesi
- Hepato-Bilio-Pancreatic, Minimally Invasive and Robotic Surgery Unit, Department of Clinical Medicine and Surgery, Federico II University Hospital, Napoli 80131, Italy
| | - Marcello Di Martino
- Hepato-Bilio-Pancreatic Surgery Unit, Department of General and Digestive Surgery, Hospital Universitario La Princesa, Madrid 28006, Spain
| | - Alex Gordon-Weeks
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Roberto Montalti
- Hepato-Bilio-Pancreatic, Minimally Invasive and Robotic Surgery Unit, Department of Clinical Medicine and Surgery, Federico II University Hospital, Napoli 80131, Italy
| | - Roberto Troisi
- Hepato-Bilio-Pancreatic, Minimally Invasive and Robotic Surgery Unit, Department of Clinical Medicine and Surgery, Federico II University Hospital, Napoli 80131, Italy
| |
Collapse
|
32
|
Lang SA, Bednarsch J, Joechle K, Amygdalos I, Czigany Z, Heij L, Ulmer TF, Neumann UP. Prognostic biomarkers for cholangiocarcinoma (CCA): state of the art. Expert Rev Gastroenterol Hepatol 2021; 15:497-510. [PMID: 33970740 DOI: 10.1080/17474124.2021.1912591] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction:Although advances in understanding the molecular basis of cholangiocarcinoma (CCA) have been made, surgery is the only curative therapy option and the overall prognosis of patients suffering from the disease remains poor. Therefore, estimation of prognosis based on known and novel biomarkers is essential for therapy guidance of CCA in both, curative and palliative settings.Areas covered:An extensive literature search on biomarkers for CCA with special emphasis on prognosis was performed. Based on this, prognostic biomarkers from serum, tumor tissue and other compartments that are currently in use or under evaluation for CCA were summarized in this review. Furthermore, an overview of new biomarkers was provided including those determined from extracellular vesicles (EVs), metabolites and nucleic acids. Finally, prognostic markers associated with potential new therapy options for the treatment of CCA were summed up.Expert opinion:So far, an optimal prognostic biomarker for CCA has not been described. However, based on the increasing knowledge about the molecular basis of CCA but also due to novel, innovative technologies, a plethora of novel prognostic biomarkers is currently under evaluation and will be available for CCA in future.
Collapse
Affiliation(s)
- Sven A Lang
- Department of Surgery and Transplantation, University Hospital RWTH Aachen, Aachen, Germany
| | - Jan Bednarsch
- Department of Surgery and Transplantation, University Hospital RWTH Aachen, Aachen, Germany
| | - Katharina Joechle
- Department of Surgery and Transplantation, University Hospital RWTH Aachen, Aachen, Germany
| | - Iakovos Amygdalos
- Department of Surgery and Transplantation, University Hospital RWTH Aachen, Aachen, Germany
| | - Zoltan Czigany
- Department of Surgery and Transplantation, University Hospital RWTH Aachen, Aachen, Germany
| | - Lara Heij
- Department of Surgery and Transplantation, University Hospital RWTH Aachen, Aachen, Germany
| | - Tom F Ulmer
- Department of Surgery and Transplantation, University Hospital RWTH Aachen, Aachen, Germany
| | - Ulf P Neumann
- Department of Surgery and Transplantation, University Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|
33
|
A High-Accuracy Model Based on Plasma miRNAs Diagnoses Intrahepatic Cholangiocarcinoma: A Single Center with 1001 Samples. Diagnostics (Basel) 2021; 11:diagnostics11040610. [PMID: 33805513 PMCID: PMC8066692 DOI: 10.3390/diagnostics11040610] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/20/2021] [Accepted: 03/26/2021] [Indexed: 12/13/2022] Open
Abstract
Objectives: Intrahepatic cholangiocarcinoma (iCCA) is a highly malignant cancer. More than 70% of patients are diagnosed at an advanced stage. The aim of this study was to evaluate the diagnostic value of plasma miR-21, miR-122, and CA19-9, hoping to establish a novel model to improve the accuracy for diagnosing iCCA. Materials and methods: Plasma miR-21 and miR-122 were detected in 359 iCCA patients and 642 controls (healthy, benign liver lesions, other malignant liver tumors). All 1001 samples were allocated to training cohort (n = 668) and validation cohort (n = 333) in a chronological order. A logistic regression model was applied to combine these markers. Area under the receiver operating characteristic curve (AUC) was used as an accuracy index to evaluate the diagnostic performance. Results: Plasma miR-21 and miR-122 were significantly higher in iCCA patients than those in controls. Higher plasma miR-21 level was significantly correlated with larger tumor size (p = 0.030). A three-marker model was constructed by using miR-21, miR-122 and CA19-9, which showed an AUC of 0.853 (95% CI: 0.824–0.879; sensitivity: 73.0%, specificity: 87.4%) to differentiate iCCA from controls. These results were subsequently confirmed in the validation cohort with an AUC of 0.866 (0.825–0.901). The results were similar for diagnosing early (stages 0–I) iCCA patients (AUC: 0.848) and CA19-9negative iCCA patients (AUC: 0.795). Conclusions: We established a novel three-marker model with a high accuracy based on a large number of participants to differentiate iCCA from controls. This model showed a great clinical value especially for the diagnosis of early iCCA and CA19-9negative iCCA.
Collapse
|
34
|
Wang J, Wang CY. Integrated miRNA and mRNA omics reveal the anti-cancerous mechanism of Licochalcone B on Human Hepatoma Cell HepG2. Food Chem Toxicol 2021; 150:112096. [PMID: 33647349 DOI: 10.1016/j.fct.2021.112096] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 12/24/2022]
Abstract
To unravel the potential of Licochalcone B as an anti-tumour phytochemical agent and evaluate its underlying mechanisms, we analyzed the mRNAs and miRNAs expression profiles of HepG2 cells in response to Licochalcone B (120 μM). mRNA and miRNA expression libraries were conducted and functional analysis for differential expression mRNAs was carried out utilizing Clue GO. We found 763 Licochalcone B -responsive differently expressed genes, among them, 572 mRNAs were up-regulated and 191 mRNAs were down-regulated, many of which were related to the MAPK signaling pathway. A protein-protein interaction network was constructed to discover the hub genes, and IL6, FOS, JUN, NOTCH1, UBC, UBB, CXCL8, CDKN1A, IL1B, ATF3, and GATA3 genes were screened out. Additionally, miRNAs engaged in Licochalcone B -mediated regulation on HepG2 cells were also studied. 85 differential expression miRNAs were identified, including 39 up-regulated miRNAs and 46 down-regulated miRNAs. Co-expression of miRNA-mRNA network was created and two key miRNAs (hsa-miR-29b-3p and hsa-miR-96-5p) were identified. These recognized key genes, miRNA, and the miRNA-mRNA regulatory network may provide clues to understand the molecular mechanism of Licochalcone B as an apoptotic inducer which may offer hint for its application as a functional food component.
Collapse
Affiliation(s)
- Jun Wang
- School of Biological Food and Environment, Hefei University, Hefei, 230601, China.
| | - Chu-Yan Wang
- School of Biological Food and Environment, Hefei University, Hefei, 230601, China.
| |
Collapse
|
35
|
Diagnostic and Prognostic Role of miR-192 in Different Cancers: A Systematic Review and Meta-Analysis. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8851035. [PMID: 33614788 PMCID: PMC7878092 DOI: 10.1155/2021/8851035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/17/2020] [Accepted: 01/15/2021] [Indexed: 12/18/2022]
Abstract
Introduction It has been shown that miR-192 is abnormally expressed in a variety of cancer types and participates in different kinds of signaling pathways. The role of miR-192 in the diagnosis and prognosis of cancer has not been verified. This article is aimed at exploring the diagnostic and prognostic value of miR-192 through a systematic review and meta-analysis. Methods A systematic search was performed through PubMed, Embase, Web of Science, and Cochrane Library databases up to June 16, 2020. A total of 16 studies were enrolled in the meta-analyses, of which 11 articles were used for diagnostic meta-analysis and 5 articles were used for prognostic meta-analysis. The values of sensitivity and specificity using miR-192 expression as a diagnostic tool were pooled in the diagnostic meta-analysis. The hazard ratios (HRs) of overall survival (OS) with 95 confidence intervals (CIs) were extracted from the studies, and pooled HRs were evaluated in the prognostic meta-analysis. Eleven studies including 667 cancer patients and 514 controls met the eligibility criteria for the diagnostic meta-analysis. Five studies including 166 patients with high miR-192 expression and 236 patients with low miR-192 expression met the eligibility criteria for the prognostic meta-analysis. Results The overall diagnostic accuracy was as follows: sensitivity 0.79 (95%CI = 0.75-0.82), specificity 0.74 (95%CI = 0.64-0.82), positive likelihood ratio 3.03 (95%CI = 2.11-4.34), negative likelihood ratio 0.29 (95%CI = 0.23-0.37), diagnostic odds ratio 10.50 (95%CI = 5.89-18.73), and area under the curve ratio (AUC) 0.82 (95%CI = 0.78-0.85). The overall prognostic analysis showed that high expression of miR-192 in patients was associated with positive survival (HR = 0.62, 95%CI : 0.41-0.93, p = 0.020). Conclusion Our results revealed that miR-192 was a potential biomarker with good sensitivity and specificity in cancers. Moreover, highly expressed miR-192 predicted a good prognosis for patients.
Collapse
|
36
|
Tang C, Yuan P, Wang J, Zhang Y, Chang X, Jin D, Lei P, Lu Z, Chen B. MiR-192-5p regulates the proliferation and apoptosis of cholangiocarcinoma cells by activating MEK/ERK pathway. 3 Biotech 2021; 11:99. [PMID: 33552829 DOI: 10.1007/s13205-021-02650-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/09/2021] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE Cholangiocarcinoma (CCA) is the second most common liver cancer, characterized by late diagnosis and fatal outcome. Although miR-192-5p has been shown to have a vital role in various cancers, its role in CCA is unknown. Here, we investigated the role of miR-192-5p in CCA cell proliferation and apoptosis, and elucidated its potential mechanism of action. METHODS The miR-192-5p expression in CCA tissues and cell lines was detected by real-time quantitative reverse transcription-polymerase chain reaction. Cell proliferation was analyzed using the cell counting Kit-8 and 5-bromodeoxyuridine staining assays, while apoptosis was examined by flow cytometry and the terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick-end labeling assay. Western blot analysis was used to measure the expression of cell proliferation and apoptosis-related proteins, as well as MEK/ERK signaling pathway-related proteins. RESULTS MiR-192-5p was highly expressed in CCA tissues and cell lines. Overexpression of miR-192-5p significantly promoted CCA proliferation, and inhibited apoptosis. The MEK inhibitor, PD98059, reversed these miR-192-5p-induced effects on MEK/ERK signaling-associated protein expression, proliferation promotion, and apoptosis inhibition in TFK-1 cells. CONCLUSION MiR-192-5p promotes proliferation and suppressed apoptosis of CCA cells via the MEK/ERK pathway, which may be a potential therapeutic strategy for CCA treatment.
Collapse
|
37
|
Profiling circulating microRNAs in patients with cirrhosis and acute-on-chronic liver failure. JHEP Rep 2021; 3:100233. [PMID: 33665588 PMCID: PMC7902550 DOI: 10.1016/j.jhepr.2021.100233] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 12/02/2020] [Accepted: 12/25/2020] [Indexed: 12/13/2022] Open
Abstract
Background & Aims MicroRNAs (miRNAs) circulate in several body fluids and can be useful biomarkers. The aim of this study was to identify blood-circulating miRNAs associated with cirrhosis progression and acute-on-chronic liver failure (ACLF). Methods Using high-throughput screening of 754 miRNAs, serum samples from 45 patients with compensated cirrhosis, decompensated cirrhosis, or ACLF were compared with those from healthy individuals (n = 15). miRNA levels were correlated with clinical parameters, organ failure, and disease progression and outcome. Dysregulated miRNAs were evaluated in portal and hepatic vein samples (n = 33), liver tissues (n = 17), and peripheral blood mononuclear cells (PBMCs) (n = 16). Results miRNA screening analysis revealed that circulating miRNAs are dysregulated in cirrhosis progression, with 51 miRNAs being differentially expressed among all groups of patients. Unsupervised clustering and principal component analysis indicated that the main differences in miRNA expression occurred at decompensation, showing similar levels in patients with decompensated cirrhosis and those with ACLF. Of 43 selected miRNAs examined for differences among groups, 10 were differentially expressed according to disease progression. Moreover, 20 circulating miRNAs were correlated with model for end-stage liver disease and Child-Pugh scores. Notably, 11 dysregulated miRNAs were associated with kidney or liver failure, encephalopathy, bacterial infection, and poor outcomes. The most severely dysregulated miRNAs (i.e. miR-146a-5p, miR-26a-5p, and miR-191-5p) were further evaluated in portal and hepatic vein blood and liver tissue, but showed no differences. However, PBMCs from patients with cirrhosis showed significant downregulation of miR-26 and miR-146a, suggesting a extrahepatic origin of some circulating miRNAs. Conclusions This study is a repository of circulating miRNA data following cirrhosis progression and ACLF. Circulating miRNAs were profoundly dysregulated during the progression of chronic liver disease, were associated with failure of several organs and could have prognostic utility. Lay summary Circulating miRNAs are small molecules in the blood that can be used to identify or predict a clinical condition. Our study aimed to identify miRNAs for use as biomarkers in patients with cirrhosis or acute-on-chronic liver failure. Several miRNAs were found to be dysregulated during the progression of disease, and some were also related to organ failure and disease-related outcomes. Circulating miRNAs are dysregulated with cirrhosis progression and in patients with ACLF. Patient decompensation is associated with important changes in the levels of circulating miRNAs. A total of 11 circulating miRNAs were identified as associated with organ failure and 7 with poor outcome. The miRNAs most dysregulated during cirrhosis progression were miR-146a, miR-26a, and miR-191. miR-146a was dysregulated in PBMCs of patients with decompensated cirrhosis vs. compensated cirrhosis.
Collapse
Key Words
- ACLF, acute-on-chronic liver failure
- ALT, alanine aminotransferase
- AST, aspartate aminotransferase
- Biomarkers
- CXCL10, C-X-C motif chemokine ligand 10
- Chronic liver disease
- EF CLIF, European Foundation for the Study of Chronic Liver Failure
- FoxO, forkhead box O
- INR, International Normalised Ratio
- LDH, lactate dehydrogenase
- Liver decompensation
- MAPK, mitogen-activated protein kinase
- MELD, model for end-stage liver disease
- NASH, non-alcoholic steatohepatitis
- Non-coding RNAs
- PBMCs, peripheral blood mononuclear cells
- PCA, principal component analysis
- TGF, transforming growth factor
- TIPS, transjugular intrahepatic portosystemic shunt
- qPCR, quantitative PCR
Collapse
|
38
|
Song J, Li Y, Bowlus CL, Yang G, Leung PSC, Gershwin ME. Cholangiocarcinoma in Patients with Primary Sclerosing Cholangitis (PSC): a Comprehensive Review. Clin Rev Allergy Immunol 2020; 58:134-149. [PMID: 31463807 DOI: 10.1007/s12016-019-08764-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cholangiocarcinoma (CCA) is the most common malignancy in patients with primary sclerosing cholangitis (PSC) and carries a high rate of mortality. Although the pathogenesis of CCA in PSC is largely unknown, inflammation-driven carcinogenesis concomitant with various genetic and epigenetic abnormalities are underlying factors. The majority of CCA cases develop from a dominant stricture (DS), which is defined as a stricture with a diameter < 1.5 mm in the common bile duct or < 1.0 mm in the hepatic duct. In PSC patients presenting with an abrupt aggravation of jaundice, pain, fatigue, pruritus, weight loss, or worsening liver biochemistries, CCA should be suspected and evaluated utilizing a variety of diagnostic modalities. However, early recognition of CCA in PSC remains a major challenge. Importantly, 30-50% of CCA in PSC patients are observed within the first year following the diagnosis of PSC followed by an annual incidence ranging from 0.5 to 1.5 per 100 persons, which is nearly 10 to 1000 times higher than that in the general population. Cumulative 5-year, 10-year, and lifetime incidences are 7%, 8-11%, and 9-20%, respectively. When PSC-associated CCA is diagnosed, most tumors are unresectable, and no effective medications are available. Given the poor therapeutic outcome, the surveillance and management of PSC patients who are at an increased risk of developing CCA are of importance. Such patients include older males with large-duct PSC and possibly concurrent ulcerative colitis. Thus, more attention should be paid to patients with these clinical features, in particular within the first year after PSC diagnosis. In contrast, CCA is less frequently observed in pediatric or female PSC patients or in those with small-duct PSC or concurrent Crohn's disease. Recently, new biomarkers such as antibodies to glycoprotein 2 have been found to be associated with an increased risk of developing CCA in PSC. Herein, we review the literature on the pathogenesis, incidence, clinical features, and risk factors, with a focus on various diagnostic modalities of PSC-associated CCA.
Collapse
Affiliation(s)
- Junmin Song
- Department of Gastroenterology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, People's Republic of China.,Division of Rheumatology, Allergy and Clinical Immunology, University of California, 451 Health Science Drive, Suite 6510, Davis, CA, 95616, USA
| | - Yang Li
- Department of Intensive Care Unit (ICU), Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, Liaoning, 110004, People's Republic of China
| | - Christopher L Bowlus
- Division of Gastroenterology and Hepatology, University of California, 451 Health Sciences Drive, Suite 6510, Davis, CA, 95616, USA
| | - GuoXiang Yang
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, 451 Health Science Drive, Suite 6510, Davis, CA, 95616, USA
| | - Patrick S C Leung
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, 451 Health Science Drive, Suite 6510, Davis, CA, 95616, USA.
| | - M Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, 451 Health Science Drive, Suite 6510, Davis, CA, 95616, USA.
| |
Collapse
|
39
|
Analysis of miR-29 Serum Levels in Patients with Neuroendocrine Tumors-Results from an Exploratory Study. J Clin Med 2020; 9:jcm9092881. [PMID: 32899973 PMCID: PMC7565987 DOI: 10.3390/jcm9092881] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/30/2020] [Accepted: 09/03/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND AIMS Due to its involvement in tumor biology as well as tumor-associated stroma cell responses, recent data suggested a potential role of miR-29 as a biomarker for different malignancies. However, its role in neuroendocrine tumors (NETs) is only poorly understood. METHODS We measured circulating levels of miR-29b in 45 patients with NET and compared them to 19 healthy controls. Results were correlated with clinical records. RESULTS In our cohort of NET patients treated between 2010 and 2019 at our department, miR-29b serum levels were significantly downregulated when compared to healthy control samples. Further, a significant correlation between chromogranin A (CgA) and relative miR-29b levels was noted. However, serum levels of miR-29b were independent of tumor-related factors such as proliferation activity according to Ki-67 index, tumor grading, the TMN stage of malignant tumors, somatostatin receptor expression or clinical features such as functional or non-functional disease and presence of tumor relapse. Finally, in contrast to previous results from other malignancies, miR-29b serum levels were not a significant predictor of overall survival in NET patients. CONCLUSION Our data suggest a role for miR-29b serum levels as a previously unrecognized biomarker for diagnosis of NET. However, miR-29 does not allow for predicting tumor stage or patients' outcome.
Collapse
|
40
|
Rahat B, Ali T, Sapehia D, Mahajan A, Kaur J. Circulating Cell-Free Nucleic Acids as Epigenetic Biomarkers in Precision Medicine. Front Genet 2020; 11:844. [PMID: 32849827 PMCID: PMC7431953 DOI: 10.3389/fgene.2020.00844] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/13/2020] [Indexed: 12/20/2022] Open
Abstract
The circulating cell-free nucleic acids (ccfNAs) are a mixture of single- or double-stranded nucleic acids, released into the blood plasma/serum by different tissues via apoptosis, necrosis, and secretions. Under healthy conditions, ccfNAs originate from the hematopoietic system, whereas under various clinical scenarios, the concomitant tissues release ccfNAs into the bloodstream. These ccfNAs include DNA, RNA, microRNA (miRNA), long non-coding RNA (lncRNA), fetal DNA/RNA, and mitochondrial DNA/RNA, and act as potential biomarkers in various clinical conditions. These are associated with different epigenetic modifications, which show disease-related variations and so finding their role as epigenetic biomarkers in clinical settings. This field has recently emerged as the latest advance in precision medicine because of its clinical relevance in diagnostic, prognostic, and predictive values. DNA methylation detected in ccfDNA has been widely used in personalized clinical diagnosis; furthermore, there is also the emerging role of ccfRNAs like miRNA and lncRNA as epigenetic biomarkers. This review focuses on the novel approaches for exploring ccfNAs as epigenetic biomarkers in personalized clinical diagnosis and prognosis, their potential as therapeutic targets and disease progression monitors, and reveals the tremendous potential that epigenetic biomarkers present to improve precision medicine. We explore the latest techniques for both quantitative and qualitative detection of epigenetic modifications in ccfNAs. The data on epigenetic modifications on ccfNAs are complex and often milieu-specific posing challenges for its understanding. Artificial intelligence and deep networks are the novel approaches for decoding complex data and providing insight into the decision-making in precision medicine.
Collapse
Affiliation(s)
- Beenish Rahat
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Taqveema Ali
- Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Divika Sapehia
- Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Aatish Mahajan
- Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Jyotdeep Kaur
- Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
41
|
Rzeszutek I, Singh A. Small RNAs, Big Diseases. Int J Mol Sci 2020; 21:E5699. [PMID: 32784829 PMCID: PMC7460979 DOI: 10.3390/ijms21165699] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/06/2020] [Accepted: 08/08/2020] [Indexed: 02/06/2023] Open
Abstract
The past two decades have seen extensive research done to pinpoint the role of microRNAs (miRNAs) that have led to discovering thousands of miRNAs in humans. It is not, therefore, surprising to see many of them implicated in a number of common as well as rare human diseases. In this review article, we summarize the progress in our understanding of miRNA-related research in conjunction with different types of cancers and neurodegenerative diseases, as well as their potential in generating more reliable diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Iwona Rzeszutek
- Institute of Biology and Biotechnology, Department of Biotechnology, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland
| | - Aditi Singh
- Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany
| |
Collapse
|
42
|
Mishan MA, Tabari MAK, Parnian J, Fallahi J, Mahrooz A, Bagheri A. Functional mechanisms of miR-192 family in cancer. Genes Chromosomes Cancer 2020; 59:722-735. [PMID: 32706406 DOI: 10.1002/gcc.22889] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 07/14/2020] [Accepted: 07/21/2020] [Indexed: 12/11/2022] Open
Abstract
By growing research on the mechanisms and functions of microRNAs (miRNAs, miRs), the role of these noncoding RNAs gained more attention in healthcare. Due to the remarkable regulatory role of miRNAs, any dysregulation in their expression causes cellular functional impairment. In recent years, it has become increasingly apparent that these small molecules contribute to development, cell differentiation, proliferation, apoptosis, and tumor growth. In many studies, the miR-192 family has been suggested as a potential prognostic and diagnostic biomarker and even as a possible therapeutic target for several cancers. However, the mechanistic effects of the miR-192 family on cancer cells are still controversial. Here, we have reviewed each family member of the miR-192 including miR-192, miR-194, and miR-215, and discussed their mechanistic roles in various cancers.
Collapse
Affiliation(s)
- Mohammad Amir Mishan
- Ocular Tissue Engineering Research Center, Research Institute for Ophthalmology and Vision Science, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Khazeei Tabari
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
- USERN Office, Mazandaran University of Medical Sciences, Sari, Iran
| | - Javad Parnian
- Department of Biotechnology, Iranian Research Organization for Science and Technology, Tehran, Iran
| | - Jafar Fallahi
- Molecular Medicine Department, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abdolkarim Mahrooz
- Department of Clinical Biochemistry and Medical Genetics, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abouzar Bagheri
- Department of Clinical Biochemistry and Medical Genetics, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
43
|
Vedeld HM, Folseraas T, Lind GE. Detecting cholangiocarcinoma in patients with primary sclerosing cholangitis - The promise of DNA methylation and molecular biomarkers. JHEP Rep 2020; 2:100143. [PMID: 32939446 PMCID: PMC7479288 DOI: 10.1016/j.jhepr.2020.100143] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/25/2020] [Accepted: 06/30/2020] [Indexed: 02/07/2023] Open
Abstract
Cholangiocarcinoma (CCA) is a highly fatal malignancy of the bile ducts that arises in up to 20% of patients with primary sclerosing cholangitis (PSC). Current detection methods for CCA display suboptimal sensitivity and/or specificity, and there is no evidence-based screening strategy for CCA in patients with PSC. Consequently, CCA is often detected too late for surgical resection, contributing to the high mortality associated with this malignancy. Recently, biomarkers have emerged with potential to complement current detection methods, and/or be used for cancer surveillance in high-risk patient groups, including patients with PSC. Aberrant DNA methylation patterns represent promising biomarkers with great potential for CCA detection. Such aberrations are frequent in CCA, often occur early, and can be detected in liquid biopsies, including blood, bile and urine. This review summarises and highlights the most promising DNA methylation biomarkers identified for CCA detection so far, focusing on patients with PSC. Other promising molecular biomarkers for detection of PSC-associated CCA in liquid biopsies will also be briefly covered.
Collapse
Affiliation(s)
- Hege Marie Vedeld
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital - Norwegian Radium Hospital, Oslo, Norway.,K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway
| | - Trine Folseraas
- Norwegian PSC Research Center, Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway.,Section of Gastroenterology, Department of Transplantation Medicine, Division of Surgery, Inflammatory Medicine and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Guro Elisabeth Lind
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital - Norwegian Radium Hospital, Oslo, Norway.,K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
44
|
Kugler N, Klein K, Zanger UM. MiR-155 and other microRNAs downregulate drug metabolizing cytochromes P450 in inflammation. Biochem Pharmacol 2019; 171:113725. [PMID: 31758923 DOI: 10.1016/j.bcp.2019.113725] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 11/12/2019] [Indexed: 12/13/2022]
Abstract
In conditions of acute and chronic inflammation hepatic detoxification capacity is severely impaired due to coordinated downregulation of drug metabolizing enzymes and transporters. Using global transcriptome analysis of liver tissue from donors with pathologically elevated C-reactive protein (CRP), we observed comparable extent of positive and negative acute phase response, where the top upregulated gene sets included immune response and defense pathways while downregulation occurred mostly in metabolic and catabolic pathways including many important drug metabolizing enzymes and transporters. We hypothesized that microRNAs (miRNA), which usually act as negative regulators of gene expression, contribute to this process. Microarray and quantitative real-time PCR analyses identified differentially expressed miRNAs in liver tissues from donors with elevated CRP, cholestasis, steatosis, or non-alcoholic steatohepatitis. Using luciferase reporter constructs harboring native and mutated 3'-untranslated gene regions, several predicted miRNA binding sites on RXRα (miR-130b-3p), CYP2C8 (miR-452-5p), CYP2C9 (miR-155-5p), CYP2C19 (miR-155-5p, miR-6807-5p), and CYP3A4 (miR-224-5p) were validated. HepaRG cells transfected with miRNA mimics showed coordinate reductions in mRNA levels and several cytochrome P450 enzyme activities particularly for miR-155-5p, miR-452-5p, and miR-6807-5p, the only miRNA that was deregulated in all four pathological conditions. Furthermore we observed strong negative correlations between liver tissue miRNA levels and hepatic CYP phenotypes. Since miR-155 is well known for its multifunctional roles in immunity, inflammation, and cancer, our data suggest that this and other miRNAs contribute to coordinated downregulation of drug metabolizing enzymes and transporters in inflammatory conditions.
Collapse
Affiliation(s)
- Nicole Kugler
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany; Eberhard Karls University, Tuebingen, Germany
| | - Kathrin Klein
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany; Eberhard Karls University, Tuebingen, Germany
| | - Ulrich M Zanger
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany; Eberhard Karls University, Tuebingen, Germany.
| |
Collapse
|
45
|
Pardini B, Sabo AA, Birolo G, Calin GA. Noncoding RNAs in Extracellular Fluids as Cancer Biomarkers: The New Frontier of Liquid Biopsies. Cancers (Basel) 2019; 11:E1170. [PMID: 31416190 PMCID: PMC6721601 DOI: 10.3390/cancers11081170] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/04/2019] [Accepted: 08/10/2019] [Indexed: 02/06/2023] Open
Abstract
The last two decades of cancer research have been devoted in two directions: (1) understanding the mechanism of carcinogenesis for an effective treatment, and (2) improving cancer prevention and screening for early detection of the disease. This last aspect has been developed, especially for certain types of cancers, thanks also to the introduction of new concepts such as liquid biopsies and precision medicine. In this context, there is a growing interest in the application of alternative and noninvasive methodologies to search for cancer biomarkers. The new frontiers of the research lead to a search for RNA molecules circulating in body fluids. Searching for biomarkers in extracellular body fluids represents a better option for patients because they are easier to access, less painful, and potentially more economical. Moreover, the possibility for these types of samples to be taken repeatedly, allows a better monitoring of the disease progression or treatment efficacy for a better intervention and dynamic treatment of the patient, which is the fundamental basis of personalized medicine. RNA molecules, freely circulating in body fluids or packed in microvesicles, have all the characteristics of the ideal biomarkers owing to their high stability under storage and handling conditions and being able to be sampled several times for monitoring. Moreover, as demonstrated for many cancers, their plasma/serum levels mirror those in the primary tumor. There are a large variety of RNA species noncoding for proteins that could be used as cancer biomarkers in liquid biopsies. Among them, the most studied are microRNAs, but recently the attention of the researcher has been also directed towards Piwi-interacting RNAs, circular RNAs, and other small noncoding RNAs. Another class of RNA species, the long noncoding RNAs, is larger than microRNAs and represents a very versatile and promising group of molecules which, apart from their use as biomarkers, have also a possible therapeutic role. In this review, we will give an overview of the most common noncoding RNA species detectable in extracellular fluids and will provide an update concerning the situation of the research on these molecules as cancer biomarkers.
Collapse
Affiliation(s)
- Barbara Pardini
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
- Department of Medical Sciences, University of Turin, 10124 Turin, Italy.
- Unit of Molecular Epidemiology and Exposome, Italian Institute for Genomic Medicine (IIGM), 10126 Turin, Italy.
| | - Alexandru Anton Sabo
- Department of Pediatrics, Marie Curie Emergency Clinical Hospital for Children, 077120 Bucharest, Romania
| | - Giovanni Birolo
- Department of Medical Sciences, University of Turin, 10124 Turin, Italy
- Unit of Molecular Epidemiology and Exposome, Italian Institute for Genomic Medicine (IIGM), 10126 Turin, Italy
| | - George Adrian Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
46
|
LncRNA LINC01061 sponges miR-612 to regulate the oncogenic role of SEMA4D in cholangiocarcinoma. Biochem Biophys Res Commun 2019; 513:465-471. [PMID: 30967271 DOI: 10.1016/j.bbrc.2019.03.125] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 03/19/2019] [Indexed: 12/21/2022]
Abstract
Cholangiocarcinoma (CCA) is the most usual malignancy of biliary tract, possessing a relatively low overall survival rate due to limited treatment options. Recently, long non-coding RNAs (lncRNAs) have been testified to have marked regulatory impacts on human cancers. The purpose of this paper is to explore the potent regulation mechanism of LINC01061 involved in CCA. Firstly, it was observed that LINC01061 expression was heightened in CCA cell lines, whose knockdown suppressed cell proliferation, induced cell apoptosis and restrained cell migration. Besides, LINC01061 existing in the cytoplasm of CCA cells interacted with miR-612. Moreover, subsequent experiments affirmed that LINC01061 regulated SEMA4D expression by acting as a competing endogenous RNA (ceRNA) of miR-612. At last, rescue assays validated that SEMA4D overexpression restored the repression caused by LINC01061 silence on the biological activities of CCA containing cell proliferation, apoptosis and migration. To sum up, our present exploration demonstrated that LINC01061 sponges miR-612 so as to upregulate SEMA4D expression for the progression of CCA, suggesting an optional promising and effective target for the therapy of patients with CCA.
Collapse
|