1
|
Huang S, Du L, Liu S, Yang Q, Lei C, Wang H, Yang L, Yang X. Development and Validation of RAA-CRISPR/Cas12a-Based Assay for Detecting Porcine Rotavirus. Animals (Basel) 2024; 14:3387. [PMID: 39682353 DOI: 10.3390/ani14233387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/13/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Piglet diarrhea poses significant economic losses to the pig industry, posing a worldwide challenge that urgently needs to be addressed in pig breeding practices. Porcine rotavirus (PoRV) is an important viral diarrhea pathogen in piglets, with a high incidence rate and a tendency to cause growth retardation. To enhance the sensitivity and specificity of PoRV detection, we sequenced the NSP3 gene of G5 and G9 genotypes of rotavirus A (RVA), enabling simultaneous detection of the two serotypes. Subsequently, we developed a rapid PoRV detection method using a combination of recombinase-aided amplification (RAA) and CRISPR/Cas12a. In this method, Cas12a binds to RAA amplification products, guided by CRISPR-derived RNA (crRNA), which activates its cleavage activity and releases fluorescence by cutting FAM-BHQ-labeled single-stranded DNA (ssDNA). In the optimized reaction system, the recombinant plasmid PoRV can achieve a highly sensitive reaction within 30 min at 37 °C, with a detection limit as low as 2.43 copies/μL, which is ten times higher in sensitivity compared to the qPCR method. Results from specificity testing indicate that no cross-reactivity was observed between the RAA-CRISPR/Cas12a analysis of PoRV and other viral pathogens, including PoRV G3, PoRV G4, porcine epidemic diarrhea virus (PEDV), porcine epidemic diarrhea (PDCoV), and porcine reproductive and respiratory syndrome virus (PRRSV). In the clinical sample detection using the RAA-CRISPR/Cas12a method and qPCR, Cohen's Kappa value reached as high as 0.952. Furthermore, this approach eliminates the need for large-scale instrumentation, offering a visual result under an ultraviolet lamp through fluorescence signal output.
Collapse
Affiliation(s)
- Siyu Huang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610064, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610066, China
| | - Longhuan Du
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610066, China
| | - Song Liu
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Qingcheng Yang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Changwei Lei
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Hongning Wang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Liu Yang
- National Center of Technology Innovation for Pigs, Chongqing 402460, China
| | - Xin Yang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610064, China
| |
Collapse
|
2
|
Hakim MS, Gazali FM, Widyaningsih SA, Parvez MK. Driving forces of continuing evolution of rotaviruses. World J Virol 2024; 13:93774. [PMID: 38984077 PMCID: PMC11229848 DOI: 10.5501/wjv.v13.i2.93774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/06/2024] [Accepted: 05/17/2024] [Indexed: 06/24/2024] Open
Abstract
Rotaviruses are non-enveloped double-stranded RNA virus that causes acute diarrheal diseases in children (< 5 years). More than 90% of the global rotavirus infection in humans was caused by Rotavirus group A. Rotavirus infection has caused more than 200000 deaths annually and predominantly occurs in the low-income countries. Rotavirus evolution is indicated by the strain dynamics or the emergence of the unprecedented strain. The major factors that drive the rotavirus evolution include the genetic shift that is caused by the reassortment mechanism, either in the intra- or the inter-genogroup. However, other factors are also known to have an impact on rotavirus evolution. This review discusses the structure and types, epidemiology, and evolution of rotaviruses. This article also reviews other supplemental factors of rotavirus evolution, such as genetic reassortment, mutation rate, glycan specificity, vaccine introduction, the host immune responses, and antiviral drugs.
Collapse
Affiliation(s)
- Mohamad Saifudin Hakim
- Postgraduate School of Molecular Medicine, Erasmus MC-University Medical Center, Rotterdam 3015GD, Netherlands
- Viral Infection Working Group, International Society of Antimicrobial Chemotherapy, London EC4R 9AN, United Kingdom
| | - Faris Muhammad Gazali
- Master Program in Biotechnology, Postgraduate School, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Suci Ardini Widyaningsih
- Master of Medical Sciences in Clinical Investigation, Harvard Medical School, Boston, MA 02115, United States
| | - Mohammad Khalid Parvez
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
3
|
Akari Y, Hatazawa R, Kuroki H, Ito H, Negoro M, Tanaka T, Miwa H, Sugiura K, Umemoto M, Tanaka S, Ogawa M, Ito M, Fukuda S, Murata T, Taniguchi K, Suga S, Kamiya H, Nakano T, Taniguchi K, Komoto S. Full genome-based characterization of an Asian G3P[6] human rotavirus strain found in a diarrheic child in Japan: Evidence for porcine-to-human zoonotic transmission. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 115:105507. [PMID: 37757900 DOI: 10.1016/j.meegid.2023.105507] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 09/29/2023]
Abstract
Human rotavirus strains having the unconventional G3P[6] genotype have been sporadically detected in diarrheic patients in different parts of the world. However, the full genomes of only three human G3P[6] strains from Asian countries (China, Indonesia, and Vietnam) have been sequenced and characterized, and thus the exact origin and evolution of G3P[6] strains in Asia remain to be elucidated. Here, we sequenced and characterized the full genome of a G3P[6] strain (RVA/Human-wt/JPN/SO1199/2020/G3P[6]) found in a stool sample from a 3-month-old infant admitted with acute gastroenteritis in Japan. On full genomic analysis, strain SO1199 was revealed to have a unique Wa-like genogroup configuration: G3-P[6]-I5-R1-C1-M1-A8-N1-T1-E1-H1. VP6 genotype I5 and NSP1 genotype A8 are commonly found in porcine rotavirus strains. Furthermore, phylogenetic analysis demonstrated that all 11 genes of strain SO1199 were closely related to those of porcine and/or porcine-like human rotaviruses and thus appeared to be of porcine origin. Thus, strain SO1199 was shown to possess a porcine-like genomic backbone and thus is likely to be the result of interspecies transmission of a porcine rotavirus strain. Of note is that all 11 genes of strain SO1199 were phylogenetically located in clusters, distinct from those of the previously identified porcine-like human G3P[6] strains from around the world including Asia, suggesting the occurrence of independent porcine-to-human zoonotic transmission events. To our knowledge, this is the first report on full genome-based characterization of a human G3P[6] strain that has emerged in Japan. Our findings revealed the diversity of unconventional human G3P[6] strains in Asia, and provide important insights into the origin and evolution of G3P[6] strains.
Collapse
Affiliation(s)
- Yuki Akari
- Department of Virology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Riona Hatazawa
- Department of Virology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Haruo Kuroki
- Sotobo Children's Clinic, Isumi, Chiba 299-4503, Japan
| | - Hiroaki Ito
- Department of Pediatrics, Kameda Medical Center, Kamogawa, Chiba 296-8602, Japan
| | - Manami Negoro
- Institute for Clinical Research, National Mie Hospital, Tsu, Mie 514-0125, Japan
| | - Takaaki Tanaka
- Department of Pediatrics, Kawasaki Medical School, Okayama, Okayama 700-8505, Japan
| | - Haruna Miwa
- Center for Surveillance, Immunization, and Epidemiologic Research, National Institute of Infectious Diseases, Shinjuku, Tokyo 162-8640, Japan
| | - Katsumi Sugiura
- Department of Pediatrics, National Mie Hospital, Tsu, Mie 514-0125, Japan
| | | | - Shigeki Tanaka
- Department of Pediatrics, Mie Chuo Medical Center, Tsu, Mie 514-1101, Japan
| | - Masahiro Ogawa
- Department of Pediatrics, Mie Chuo Medical Center, Tsu, Mie 514-1101, Japan
| | - Mitsue Ito
- Department of Pediatrics, Japanese Red Cross Ise Hospital, Ise, Mie 516-8512, Japan
| | - Saori Fukuda
- Department of Virology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Takayuki Murata
- Department of Virology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan; Center for Infectious Disease Research, Research Promotion Headquarters, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Kiyosu Taniguchi
- Department of Pediatrics, National Mie Hospital, Tsu, Mie 514-0125, Japan
| | - Shigeru Suga
- Department of Pediatrics, National Mie Hospital, Tsu, Mie 514-0125, Japan
| | - Hajime Kamiya
- Center for Surveillance, Immunization, and Epidemiologic Research, National Institute of Infectious Diseases, Shinjuku, Tokyo 162-8640, Japan
| | - Takashi Nakano
- Department of Pediatrics, Kawasaki Medical School, Okayama, Okayama 700-8505, Japan
| | - Koki Taniguchi
- Department of Virology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Satoshi Komoto
- Department of Virology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan; Center for Infectious Disease Research, Research Promotion Headquarters, Fujita Health University, Toyoake, Aichi 470-1192, Japan; Division of One Health, Research Center for GLOBAL and LOCAL Infectious Diseases (RCGLID), Oita University, Yufu, Oita 879-5593, Japan.
| |
Collapse
|
4
|
Jampanil N, Kumthip K, Maneekarn N, Khamrin P. Genetic Diversity of Rotaviruses Circulating in Pediatric Patients and Domestic Animals in Thailand. Trop Med Infect Dis 2023; 8:347. [PMID: 37505643 PMCID: PMC10383398 DOI: 10.3390/tropicalmed8070347] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023] Open
Abstract
Rotavirus A is a highly contagious virus that causes acute gastroenteritis in humans and a wide variety of animals. In this review, we summarized the information on rotavirus described in the studies in the last decade (2008 to 2021) in Thailand, including the prevalence, seasonality, genetic diversity, and interspecies transmission. The overall prevalence of rotavirus infection in humans ranged from 15-33%. Rotavirus infection was detected throughout the year and most frequently in the dry and cold months, typically in March. The diversity of rotavirus genotypes varied year to year and from region to region. From 2008 to 2016, rotavirus G1P[8] was detected as the most predominant genotype in Thailand. After 2016, G1P[8] decreased significantly and other genotypes including G3P[8], G8P[8], and G9P[8] were increasingly detected from 2016 to 2020. Several uncommon rotavirus strains such as G1P[6], G4P[6], and G3P[10] have also been occasionally detected. In addition, most studies on rotavirus A infection in animals in Thailand from 2011 to 2021 reported the detection of rotavirus A in piglets and canine species. It was reported that rotavirus could cross the host species barrier between humans and animals through interspecies transmission and genetic reassortment mechanisms. The surveillance of rotavirus infection is crucial to identify the trend of rotavirus infection and the emergence of novel rotavirus genotypes in this country. The data provide information on rotavirus infection and the diversity of rotavirus genotypes circulating in the pre-vaccination period, and the data will be useful for the evaluation of the effectiveness of rotavirus vaccine implementation in Thailand.
Collapse
Affiliation(s)
- Nutthawadee Jampanil
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kattareeya Kumthip
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Emerging and Re-Emerging Diarrheal Viruses Cluster, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Niwat Maneekarn
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Emerging and Re-Emerging Diarrheal Viruses Cluster, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pattara Khamrin
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Emerging and Re-Emerging Diarrheal Viruses Cluster, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
5
|
Genetic Diversity of Porcine Group A Rotavirus Strains from Pigs in South Korea. Viruses 2022; 14:v14112522. [PMID: 36423131 PMCID: PMC9695303 DOI: 10.3390/v14112522] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/11/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Porcine group A rotavirus (PoRVA; family, Reovirideae) strains cause acute viral gastroenteritis in piglets (especially suckling and weaned pigs), resulting in significant economic losses. In this study, we analyzed the VP7 and VP4 genes of PoRVA isolated between 2014 and 2018 from domestic pigs in South Korea to investigate the prevalence of predominant circulating genotypes (G and P types). The prevalence of the PoRVA antigen in the diarrheic fecal samples was 14.1% (53/377). Further genetic characterization of the VP7 and VP4 genes of 53 PoRVA isolates identified six different G-genotypes and five different P genotypes. The G4 and G9 genotypes were the most common (each 39.6%) in PoRVA-positive pigs, followed by P[7] and P[6] (33.9% and 30.1%, respectively). Because the G5 and G9 genotype vaccines are currently mainly used in South Korea, this result provides valuable epidemiological information about the genetic characteristics of PoRVA circulating on domestic pig farms. Development of a novel PoRVA vaccine that targets the current strains circulating in South Korea may be required for more effective virus control on pig farms.
Collapse
|
6
|
Prevalence and genomic characterization of rotavirus group A genotypes in piglets from in southern highlands and eastern Tanzania. Heliyon 2022; 8:e11750. [DOI: 10.1016/j.heliyon.2022.e11750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/27/2022] [Accepted: 11/14/2022] [Indexed: 11/24/2022] Open
|
7
|
Kumar D, Shepherd FK, Springer NL, Mwangi W, Marthaler DG. Rotavirus Infection in Swine: Genotypic Diversity, Immune Responses, and Role of Gut Microbiome in Rotavirus Immunity. Pathogens 2022; 11:pathogens11101078. [PMID: 36297136 PMCID: PMC9607047 DOI: 10.3390/pathogens11101078] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/13/2022] [Accepted: 09/17/2022] [Indexed: 11/16/2022] Open
Abstract
Rotaviruses (RVs) are endemic in swine populations, and all swine herds certainly have a history of RV infection and circulation. Rotavirus A (RVA) and C (RVC) are the most common among all RV species reported in swine. RVA was considered most prevalent and pathogenic in swine; however, RVC has been emerging as a significant cause of enteritis in newborn piglets. RV eradication from swine herds is not practically achievable, hence producers’ mainly focus on minimizing the production impact of RV infections by reducing mortality and diarrhea. Since no intra-uterine passage of immunoglobulins occur in swine during gestation, newborn piglets are highly susceptible to RV infection at birth. Boosting lactogenic immunity in gilts by using vaccines and natural planned exposure (NPE) is currently the only way to prevent RV infections in piglets. RVs are highly diverse and multiple RV species have been reported from swine, which also contributes to the difficulties in preventing RV diarrhea in swine herds. Human RV-gut microbiome studies support a link between microbiome composition and oral RV immunogenicity. Such information is completely lacking for RVs in swine. It is not known how RV infection affects the functionality or structure of gut microbiome in swine. In this review, we provide a detailed overview of genotypic diversity of swine RVs, host-ranges, innate and adaptive immune responses to RVs, homotypic and heterotypic immunity to RVs, current methods used for RV management in swine herds, role of maternal immunity in piglet protection, and prospects of investigating swine gut microbiota in providing immunity against rotaviruses.
Collapse
Affiliation(s)
- Deepak Kumar
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
- Correspondence: (D.K.); (W.M.); (D.G.M.); Tel.: +1-804-503-1241 (D.K.)
| | - Frances K Shepherd
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55108, USA
| | - Nora L. Springer
- Clinical Pathology, Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA
| | - Waithaka Mwangi
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
- Correspondence: (D.K.); (W.M.); (D.G.M.); Tel.: +1-804-503-1241 (D.K.)
| | - Douglas G. Marthaler
- Indical Inc., 1317 Edgewater Dr #3722, Orlando, FL 32804, USA
- Correspondence: (D.K.); (W.M.); (D.G.M.); Tel.: +1-804-503-1241 (D.K.)
| |
Collapse
|
8
|
Bandeira RDS, Souto LCDS, de Souza LC, Linhares AC, Mascarenhas JDP. Detection of a novel species A, DS-1-like, G4P[6] rotavirus strain from a Brazilian child with gastroenteritis. J Med Virol 2021; 94:610-615. [PMID: 34427937 DOI: 10.1002/jmv.27283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/11/2021] [Accepted: 08/18/2021] [Indexed: 11/06/2022]
Abstract
Rotaviruses belonging to species A (RVA) remain among the most common causes of severe gastroenteritis in children aged <5 years, leading to substantial morbidity and mortality worldwide. Genome reassortment events between two human strains or human and animal strains represent one of the mechanisms which appear to generate the broad genetic variability of circulating. According to a nucleotide, sequence-based classification system, RVA strains are currently classified into three genotype constellations including Wa-like (genogroup I), DS-1-like (genogroup II), and AU-like (genogroup III). The present study reports the detection of an unusual RVA G4P[6] strain (coded as strain HSE005), which might have originated from a natural reassortment event between human and animal RVA strains. Molecular characterization of this isolate showed that it belonged to genogroup II, genotype G4P[6]. In addition, two genes (VP3 and NSP4) of this strain denoted evidence of reassortment events involving strains of distinct zoonotic evolutionary origins. Therefore, we propose that a new G4P[6] strain was identified, highlighting a possible first zoonotic transmission including a reassortment event that involved the VP3 gene.
Collapse
Affiliation(s)
- Renato da Silva Bandeira
- Brazilian Ministry of Health, Health Surveillance Secretariat, Evandro Chagas Institute, Postgraduate program in virology, Virology Section, Levilândia, Ananindeua-Pará, Brazil
| | - Lizandra Caroline Dos Santos Souto
- Brazilian Ministry of Health, Health Surveillance Secretariat, Evandro Chagas Institute, Scholarship of Graduating Scientific Program, Virology Section, Levilândia, Ananindeua-Pará, Brazil
| | - Layse Costa de Souza
- Brazilian Ministry of Health, Health Surveillance Secretariat, Evandro Chagas Institute, Scholarship of Graduating Scientific Program, Virology Section, Levilândia, Ananindeua-Pará, Brazil
| | - Alexandre C Linhares
- Brazilian Ministry of Health, Health Surveillance Secretariat, Evandro Chagas Institute, Virology section, Levilândia, Ananindeua-Pará, Brazil
| | - Joana D'Arc Pereira Mascarenhas
- Brazilian Ministry of Health, Health Surveillance Secretariat, Evandro Chagas Institute, Virology section, Levilândia, Ananindeua-Pará, Brazil
| |
Collapse
|
9
|
Tacharoenmuang R, Guntapong R, Upachai S, Singchai P, Fukuda S, Ide T, Hatazawa R, Sutthiwarakom K, Kongjorn S, Onvimala N, Luechakham T, Ruchusatsawast K, Kawamura Y, Sriwanthana B, Motomura K, Tatsumi M, Takeda N, Yoshikawa T, Murata T, Uppapong B, Taniguchi K, Komoto S. Full genome-based characterization of G4P[6] rotavirus strains from diarrheic patients in Thailand: Evidence for independent porcine-to-human interspecies transmission events. Virus Genes 2021; 57:338-357. [PMID: 34106412 DOI: 10.1007/s11262-021-01851-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 04/17/2021] [Indexed: 12/18/2022]
Abstract
The exact evolutionary patterns of human G4P[6] rotavirus strains remain to be elucidated. Such strains possess unique and strain-specific genotype constellations, raising the question of whether G4P[6] strains are primarily transmitted via independent interspecies transmission or human-to-human transmission after interspecies transmission. Two G4P[6] rotavirus strains were identified in fecal specimens from hospitalized patients with severe diarrhea in Thailand, namely, DU2014-259 (RVA/Human-wt/THA/DU2014-259/2014/G4P[6]) and PK2015-1-0001 (RVA/Human-wt/THA/PK2015-1-0001/2015/G4P[6]). Here, we analyzed the full genomes of the two human G4P[6] strains, which provided the opportunity to study and confirm their evolutionary origin. On whole genome analysis, both strains exhibited a unique Wa-like genotype constellation of G4-P[6]-I1-R1-C1-M1-A8-N1-T1-E1-H1. The NSP1 genotype A8 is commonly found in porcine rotavirus strains. Furthermore, on phylogenetic analysis, each of the 11 genes of strains DU2014-259 and PK2015-1-0001 appeared to be of porcine origin. On the other hand, the two study strains consistently formed distinct clusters for nine of the 11 gene segments (VP4, VP6, VP1-VP3, and NSP2-NSP5), strongly indicating the occurrence of independent porcine-to-human interspecies transmission events. Our observations provide important insights into the origin of zoonotic G4P[6] strains, and into the dynamic interaction between porcine and human rotavirus strains.
Collapse
Affiliation(s)
- Ratana Tacharoenmuang
- National Institute of Health, Department of Medical Sciences, Nonthaburi, 11000, Thailand
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi, 470-1192, Japan
| | - Ratigorn Guntapong
- National Institute of Health, Department of Medical Sciences, Nonthaburi, 11000, Thailand
| | - Sompong Upachai
- National Institute of Health, Department of Medical Sciences, Nonthaburi, 11000, Thailand
| | - Phakapun Singchai
- National Institute of Health, Department of Medical Sciences, Nonthaburi, 11000, Thailand
| | - Saori Fukuda
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi, 470-1192, Japan
| | - Tomihiko Ide
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi, 470-1192, Japan
| | - Riona Hatazawa
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi, 470-1192, Japan
| | - Karun Sutthiwarakom
- National Institute of Health, Department of Medical Sciences, Nonthaburi, 11000, Thailand
| | - Santip Kongjorn
- National Institute of Health, Department of Medical Sciences, Nonthaburi, 11000, Thailand
| | - Napa Onvimala
- National Institute of Health, Department of Medical Sciences, Nonthaburi, 11000, Thailand
| | - Tipsuda Luechakham
- National Institute of Health, Department of Medical Sciences, Nonthaburi, 11000, Thailand
| | | | - Yoshiki Kawamura
- Department of Pediatrics, Fujita Health University School of Medicine, Toyoake, Aichi, 470-1192, Japan
| | - Busarawan Sriwanthana
- Medical Sciences Technical Office, Department of Medical Sciences, Nonthaburi, 11000, Thailand
| | - Kazushi Motomura
- Thailand-Japan Research Collaboration Center on Emerging and Re-Emerging Infections, Nonthaburi, 11000, Thailand
- Osaka Institute of Public Health, Osaka, 537-0025, Japan
| | - Masashi Tatsumi
- Thailand-Japan Research Collaboration Center on Emerging and Re-Emerging Infections, Nonthaburi, 11000, Thailand
| | - Naokazu Takeda
- Thailand-Japan Research Collaboration Center on Emerging and Re-Emerging Infections, Nonthaburi, 11000, Thailand
| | - Tetsushi Yoshikawa
- Department of Pediatrics, Fujita Health University School of Medicine, Toyoake, Aichi, 470-1192, Japan
| | - Takayuki Murata
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi, 470-1192, Japan
| | - Ballang Uppapong
- National Institute of Health, Department of Medical Sciences, Nonthaburi, 11000, Thailand
| | - Koki Taniguchi
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi, 470-1192, Japan
| | - Satoshi Komoto
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi, 470-1192, Japan.
| |
Collapse
|
10
|
Zhao L, Shi X, Meng D, Guo J, Li Y, Liang L, Guo X, Tao R, Zhang X, Gao R, Gao L, Wang J. Prevalence and genotype distribution of group A rotavirus circulating in Shanxi Province, China during 2015-2019. BMC Infect Dis 2021; 21:94. [PMID: 33478417 PMCID: PMC7818068 DOI: 10.1186/s12879-021-05795-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 01/12/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Group A rotavirus (RVA), despite being a leading cause of gastroenteritis in infants and young children, is less studied in Shanxi Province, China. The current study was conducted to determine the prevalence and genetic characterization of RVA in hospitalized children younger than 10 years of age with the diagnosis of acute gastroenteritis in Shanxi Province, China. METHODS A hospital-based active surveillance of rotavirus gastroenteritis was conducted at Children's Hospital of Shanxi from Jan 1, 2015, through Dec 31, 2019. Rotavirus was detected in stool samples by real-time quantitative reverse transcription PCR (qRT-PCR). G- and P-genotypes were determined by reverse transcription PCR (RT-PCR) and nucleotide sequencing. RESULTS A total of 961 children younger than 10 years of age was enrolled over the study period, of whom 183 (19.0%) were positive for RVA. The highest RVA-infection frequency (23.7%) was found among children aged 12-23 months, and the seasonal peak was in December. G9P[8] was most prevalent (76.0%), followed by G3P[8] (7.1%), G2P[4] (3.3%), G1P[8] (0.5%) and G9P[4] (0.5%). CONCLUSIONS These results report for the first time that RVA was one of the main causes of severe infectious gastroenteritis in children, and a high proportion of G9P[8] strains circulating in most areas of Shanxi Province. While the protective efficacy of the rotavirus vaccines has been demonstrated against G9P[8] strains, our results highlight that the dominant strains have not been effectively controlled in China.
Collapse
Affiliation(s)
- Lifeng Zhao
- Department of Microbiology Test, Taiyuan Center for Disease Control and Prevention, NO. 89 Xinjian South Road, Taiyuan, 030012, Shanxi Province, China
| | - Xiaohong Shi
- Department of Disease Prevention and Public Health, Children's Hospital of Shanxi, Taiyuan, 030001, Shanxi Province, China
| | - Dequan Meng
- Department of Microbiology Test, Taiyuan Center for Disease Control and Prevention, NO. 89 Xinjian South Road, Taiyuan, 030012, Shanxi Province, China
| | - Jiane Guo
- Department of Microbiology Test, Taiyuan Center for Disease Control and Prevention, NO. 89 Xinjian South Road, Taiyuan, 030012, Shanxi Province, China
| | - Yiping Li
- Department of Microbiology Test, Taiyuan Center for Disease Control and Prevention, NO. 89 Xinjian South Road, Taiyuan, 030012, Shanxi Province, China
| | - Lirong Liang
- Department of Microbiology Test, Taiyuan Center for Disease Control and Prevention, NO. 89 Xinjian South Road, Taiyuan, 030012, Shanxi Province, China
| | - Xiaofang Guo
- Department of Microbiology Test, Taiyuan Center for Disease Control and Prevention, NO. 89 Xinjian South Road, Taiyuan, 030012, Shanxi Province, China
| | - Ran Tao
- Department of Tuberculosis Control and Prevention, Taiyuan Center for Disease Control and Prevention, Taiyuan, 030012, Shanxi Province, China
| | - Xiaohua Zhang
- Department of Microbiology Test, Taiyuan Center for Disease Control and Prevention, NO. 89 Xinjian South Road, Taiyuan, 030012, Shanxi Province, China
| | - Ruihong Gao
- Department of Microbiology Test, Taiyuan Center for Disease Control and Prevention, NO. 89 Xinjian South Road, Taiyuan, 030012, Shanxi Province, China
| | - Li Gao
- Department of Microbiology Test, Taiyuan Center for Disease Control and Prevention, NO. 89 Xinjian South Road, Taiyuan, 030012, Shanxi Province, China
| | - Jitao Wang
- Department of Microbiology Test, Taiyuan Center for Disease Control and Prevention, NO. 89 Xinjian South Road, Taiyuan, 030012, Shanxi Province, China.
| |
Collapse
|
11
|
Abass G, Dubal ZB, Rajak KK, Kale BM, Raorane A, Dudhe N, Malla BA, Desai D, Sinha DK, Vinodh Kumar OR, Malik YS. Molecular characterization of porcine rotavirus A from India revealing zooanthroponotic transmission. Anim Biotechnol 2021; 33:1073-1085. [PMID: 33455537 DOI: 10.1080/10495398.2020.1868486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Rotaviruses A (RVA) are leading causes of diarrhea and dehydration in piglets and imply great economic loss to the pig farming community. In this study, the porcine RVA genotypes circulating in western and northern parts of India were determined by screening 214 fecal samples from diarrheic (n = 144) and non-diarrheic (n = 70) pigs. Subsequently, the structural (VP4 and VP7) and nonstructural (NSP3, and NSP4) genes were amplified, sequenced, and genetically characterized. The RVA positivity percentage was 7.94% (17/214) by RNA-PAGE and 10.28% (22/214) by RT-PCR. Higher RVA positivity was observed in samples from Uttar Pradesh (24.07%) followed by Maharashtra (6.77%) and Goa (2.38%). The sequence and automated genotyping software analysis confirmed the circulation of G4P[6] and G9P[13] RVA strains in porcine population. To note, the sequence similarity of the VP7 gene of Porcine/INDIA/RVA/PK-13 IVRI/Maharashtra/G4 and Porcine/INDIA/RVA/P-8/IVRI/U.P./G9 strain showed a relationship of 96.83 and 98.89% at the nucleotide level with human RVA strains indicating inter-species transmission. Additionally, the NSP3 (T1) and NSP4 (E1) genes (genotypes) also showed genetic relatedness with human RVA strains. Overall, the nucleotide sequences of VP7, NSP3, and NSP4 genes of porcine RVA indicate zooanthroponotic transmission. Further, we report the detection of G9P[13] RVA strain in porcine for the first time from India.HIGHLIGHTSRVA positivity was 7.94% (17/214) by RNA-PAGE and 10.28% (22/214) by RT-PCRThe RVA strain G9P[13] reported for the first time in Indian pigletsVP7, NSP3 and NSP4 genes analysis of porcine RVA showed genetic relatedness with human strains indicating evidence of zooanthroponotic transmission.
Collapse
Affiliation(s)
- Gazanfar Abass
- ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, Bareilly, India
| | | | - Kaushal K Rajak
- ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, Bareilly, India
| | - Balasaheb M Kale
- ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, Bareilly, India
| | - Abhay Raorane
- ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, Bareilly, India
| | - Nitin Dudhe
- ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, Bareilly, India
| | - Bilal Ahmad Malla
- ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, Bareilly, India
| | - Dhananjay Desai
- ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, Bareilly, India
| | - Dharmendra K Sinha
- ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, Bareilly, India
| | - Obli R Vinodh Kumar
- ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, Bareilly, India
| | - Yashpal Singh Malik
- ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, Bareilly, India
| |
Collapse
|
12
|
Boene SS, João ED, Strydom A, Munlela B, Chissaque A, Bauhofer AFL, Nabetse E, Latifo D, Cala A, Mapaco L, Chilaúle J, O'Neill HG, de Deus N. Prevalence and genome characterization of porcine rotavirus A in southern Mozambique. INFECTION GENETICS AND EVOLUTION 2020; 87:104637. [PMID: 33232806 DOI: 10.1016/j.meegid.2020.104637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/29/2020] [Accepted: 11/18/2020] [Indexed: 10/22/2022]
Abstract
Rotavirus A (RVA) is an important pathogen causing gastroenteritis in many species, including humans and pigs. The objective of this study was to determine the prevalence of RVA in pigs from smallholdings and commercial farms in southern Mozambique and characterize the complete genomes of selected strains. RVA was detected at a rate of 11.8% (n = 288), of which 7.6% was detected at commercial farms and 4.2% at smallholdings. The whole genomes of eight rotavirus strains were determined using an Illumina MiSeq platform. Seven displayed a G9P[13] and one a G4P[6] genotype combination, all with a typical porcine backbone (I1/5-R1-C1-M1-A1/8-N1-T1/7-E1-H1). Phylogenetic analysis indicated that the seven G9P[13] strains were in fact one strain that circulated on a commercial pig farm. The genome segments of this strain clustered with diverse segments of human and porcine RVA strains from various Asian countries. Analysis of the G4P[6] strain revealed four distinct genome segments (VP2, VP4, VP6 and VP7) and five genome segments closely related to South African porcine rotavirus strains (NSP1, NSP3, NSP4, NSP5 and VP1). These results suggest that both the G4P[6] and the G9P[13] strains possibly emerged through multiple reassortment events. The presence of these strains on the commercial farms and smallholdings calls for a more in-depth surveillance of rotavirus in Mozambique.
Collapse
Affiliation(s)
- Simone S Boene
- Instituto Nacional de Saúde (INS), Maputo, Mozambique; Centro de Biotecnologia, Universidade Eduardo Mondlane, Maputo, Mozambique.
| | - Eva D João
- Instituto Nacional de Saúde (INS), Maputo, Mozambique; Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisboa, Portugal.
| | - Amy Strydom
- Department of Microbial, Biochemical and Food Biotechnology, University of Free State, Bloemfontein, South Africa.
| | - Benilde Munlela
- Instituto Nacional de Saúde (INS), Maputo, Mozambique; Centro de Biotecnologia, Universidade Eduardo Mondlane, Maputo, Mozambique
| | - Assucênio Chissaque
- Instituto Nacional de Saúde (INS), Maputo, Mozambique; Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Adilson Fernando Loforte Bauhofer
- Instituto Nacional de Saúde (INS), Maputo, Mozambique; Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Elvino Nabetse
- Departamento de Pecuária, Ministério de Agricultura e Desenvolvimento Rural, Maputo, Mozambique
| | - Dalilo Latifo
- Departamento de Pecuária, Ministério de Agricultura e Desenvolvimento Rural, Maputo, Mozambique
| | - Aida Cala
- Direcção de Ciências Animais, Agrarian Investigation Institute of Mozambique (DCA-IIAM), Maputo, Mozambique
| | - Lourenço Mapaco
- Direcção de Ciências Animais, Agrarian Investigation Institute of Mozambique (DCA-IIAM), Maputo, Mozambique
| | | | - Hester G O'Neill
- Department of Microbial, Biochemical and Food Biotechnology, University of Free State, Bloemfontein, South Africa.
| | - Nilsa de Deus
- Instituto Nacional de Saúde (INS), Maputo, Mozambique; Departamento de Ciências Biológicas, Universidade Eduardo Mondlane, Maputo, Mozambique
| |
Collapse
|
13
|
Lee SK, Choi S, Kim JS, Lee EJ, Hyun J, Kim HS. Whole-genome analysis of rotavirus G4P[6] strains isolated from Korean neonates: association of Korean neonates and rotavirus P[6] genotypes. Gut Pathog 2019; 11:37. [PMID: 31333764 PMCID: PMC6621965 DOI: 10.1186/s13099-019-0318-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 07/06/2019] [Indexed: 12/20/2022] Open
Abstract
Background Group A rotaviruses are the major causative agents of pediatric gastroenteritis worldwide. Several studies have reported the predominance of G4P[6] rotavirus genotypes in Korean neonates, which is uncommon in other countries. Therefore, the purposes of this study were to determine the genotype constellations of complete genomes of G4P[6] rotavirus strains isolated from Korean neonates using next-generation sequencing, to compare these sequences with other G4P[6] strains in other countries, and to determine the reason for the predominance of G4P[6] genotypes in Korean neonates. Results Twenty rotavirus G4P[6] strains, isolated from January 2013 to January 2016, were selected for whole-genome sequencing. Eleven rotavirus genes were amplified using specific primer sets, and sequencing was carried out using an Ion S5 XL next-generation sequencing platform. Genotypes of each gene were determined, and phylogenetic analyses were performed to investigate genetic distances between genes of rotaviruses in this study and those of other rotavirus G4P[6] strains whose whole-genome sequences were previously published. All 20 rotavirus strains in this study had the same genotype: G4-P[6]-I1-R1-C1-M1-A1-N1-T1-E1-H1, representing the Wa-like genotype constellation. BLAST searches of 20 G4P[6] rotavirus strains revealed that all G4 sequences in this study showed the highest nucleotide identity to G4 sequences of G4P[6] rotavirus strains isolated in Korea in 2008 (GenBank accession number: FJ603447). Additionally, P[6] gene sequences in this study showed the highest nucleotide identity to P[6] sequences of G4P[6] strains detected in Korea in 2002 (AY158093). Phylogenetic and nucleotide sequence analyses showed that G4P[6] strains in this study and previously reported G4P[6] strains in Korea were mostly detected in neonates and had similar G4 and P[6] sequences compared with other G4P[6] strains detected in other countries. Conclusions This study showed that the whole-genome constellation of rotavirus G4P[6] strains from Korean neonates resembled a Wa-like genotype constellation. Additionally, rotavirus genotypes detected in Korean neonates had unique P[6] sequences, which may be the cause of Korean neonatal rotavirus infection. Electronic supplementary material The online version of this article (10.1186/s13099-019-0318-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Su-Kyung Lee
- 1Department of Laboratory Medicine, Hallym University Dongtan Sacred Heart Hospital, College of Medicine, Hallym University, 7, Keunjaebong-gil, Hwaseong-si, Gyeonggi-Do, 18450 South Korea
| | - Seoheui Choi
- 2Department of Pediatrics, Hallym University Dongtan Sacred Heart Hospital, College of Medicine, Hallym University, 7, Keunjaebong-gil, Hwaseong-si, Gyeonggi-Do, 18450 South Korea
| | - Jae-Seok Kim
- 3Department of Laboratory Medicine, Kangdong Sacred Heart Hospital, College of Medicine, Hallym University, 150, Seongan-ro, Gangdong-gu, Seoul, 05355 South Korea
| | - Eun Jin Lee
- 1Department of Laboratory Medicine, Hallym University Dongtan Sacred Heart Hospital, College of Medicine, Hallym University, 7, Keunjaebong-gil, Hwaseong-si, Gyeonggi-Do, 18450 South Korea
| | - Jungwon Hyun
- 1Department of Laboratory Medicine, Hallym University Dongtan Sacred Heart Hospital, College of Medicine, Hallym University, 7, Keunjaebong-gil, Hwaseong-si, Gyeonggi-Do, 18450 South Korea
| | - Hyun Soo Kim
- 1Department of Laboratory Medicine, Hallym University Dongtan Sacred Heart Hospital, College of Medicine, Hallym University, 7, Keunjaebong-gil, Hwaseong-si, Gyeonggi-Do, 18450 South Korea
| |
Collapse
|