1
|
Shi R, Jin M, Jin J, Xu L, Liu Z, Zheng L, Zeng B, Wang K, Li X, Wang S, Li C. Retinoic acid promotes conjunctival epithelium differentiation and goblet cell regeneration: evidence from novel 3D conjunctival organoids and whole-mount PAS staining. Ocul Surf 2025; 37:301-313. [PMID: 40348334 DOI: 10.1016/j.jtos.2025.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 05/02/2025] [Accepted: 05/07/2025] [Indexed: 05/14/2025]
Abstract
PURPOSE To investigate the differentiation effects of retinoic acid on primary conjunctival epithelium using both 2D and 3D models, and to evaluate its in vivo effects on conjunctival epithelium and goblet cells in mice using a novel goblet cell assessment method. METHODS The differentiation effects of retinoic acid were evaluated in vitro using 2D culture and 3D organoid models. Under 2D conditions, differentiation was assessed using qRT-PCR, light microscopy, immunofluorescence staining, and Western blot analysis for goblet cell markers. In the 3D organoid model, differentiation was confirmed using qRT-PCR, immunofluorescence staining, and AB-PAS staining. In vivo, a novel goblet cell assessment method-whole-mount PAS staining-was introduced, along with H&E staining to evaluate the effects of retinoic acid eye drops. RESULTS In the 2D culture model, retinoic acid induced cell fusion, decreased stemness marker expression, and increased goblet cell differentiation markers. In the 3D organoid model, retinoic acid treatment led to elevated expression of goblet cell markers, including Muc5ac, Tff1, and Gcnt3, as confirmed by qRT-PCR, AB-PAS staining, and immunofluorescence. In vivo, retinoic acid eye drops promoted goblet cell generation, as demonstrated by the novel assessment method. CONCLUSIONS Retinoic acid promotes conjunctival epithelial differentiation and goblet cell regeneration both in vitro and in vivo. A novel method for goblet cell detection is proposed, providing a more accurate and reliable approach for evaluating conjunctival goblet cells in future research.
Collapse
Affiliation(s)
- Ruize Shi
- Department of Ophthalmology·Optometry Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130012, China
| | - Mengyi Jin
- Department of Ophthalmology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Janbo Jin
- Eye Institute & Affiliated Xiamen Eye Center & the First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Lina Xu
- Department of Ophthalmology·Optometry Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130012, China
| | - Zeyu Liu
- Eye Institute & Affiliated Xiamen Eye Center & the First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Lan Zheng
- Eye Institute & Affiliated Xiamen Eye Center & the First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Baihui Zeng
- Department of Ophthalmology·Optometry Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130012, China
| | - Kerui Wang
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Xiang Li
- Eye Institute & Affiliated Xiamen Eye Center & the First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Shurong Wang
- Department of Ophthalmology·Optometry Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130012, China.
| | - Cheng Li
- Eye Institute & Affiliated Xiamen Eye Center & the First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China; Huaxia Eye Hospital of Quanzhou, Quanzhou, Fujian, 362000, China; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, Fujian, 361102, China; Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen, Fujian, 361102, China; Department of Ophthalmology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China; Shen Zhen Research Institute of Xiamen University, Shenzhen, 518057, China.
| |
Collapse
|
2
|
Cui C, Wang X, Zheng Y, Wu L, Li L, Wei H, Peng J. Nur77 as a novel regulator of Paneth cell differentiation and function. Mucosal Immunol 2024; 17:752-767. [PMID: 37683828 DOI: 10.1016/j.mucimm.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/11/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023]
Abstract
Serving as a part of intestinal innate immunity, Paneth cells play an important role in intestinal homeostasis maintenance via their multiple functions. However, the regulation of Paneth cells has been proven to be complex and diverse. Here, we identified nuclear receptor Nur77 as a novel regulator of Paneth cell differentiation and function. Nur77 deficiency led to the loss of Paneth cells in murine ileal crypts. Intestinal tissues or organoids with Nur77 deficiency exhibited the impaired intestinal stem cell niche and failed to enhance antimicrobial peptide expression after Paneth cell degranulation. The defects in Paneth cells and antimicrobial peptides in Nur7-/- mice led to intestinal microbiota disorders. Nur77 deficiency rendered postnatal mice susceptible to necrotizing enterocolitis. Mechanistically, Nur77 transcriptionally inhibited Dact1 expression to activate Wnt signaling activity, thus promoting Paneth cell differentiation and function. Taken together, our data suggest the regulatory role of Nur77 in Paneth cell differentiation and function and reveal a novel Dact1-mediated Wnt inhibition mechanism in Paneth cell development.
Collapse
Affiliation(s)
- Chenbin Cui
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China; Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, China
| | - Xinru Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China; Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, China
| | - Yao Zheng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China; Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, China
| | - Lin Wu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China; Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, China
| | - Lindeng Li
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China; Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, China
| | - Hongkui Wei
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China; Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, China
| | - Jian Peng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China; Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.
| |
Collapse
|
3
|
Cabral JV, Smorodinová N, Voukali E, Balogh L, Kučera T, Kolín V, Studený P, Vacík T, Jirsová K. Effect of Cryoprotectants on Long-Term Storage of Oral Mucosal Epithelial Cells: Implications for Stem Cell Preservation and Proliferation Status. Folia Biol (Praha) 2024; 70:209-218. [PMID: 39692575 DOI: 10.14712/fb2024070040209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
In this study, we tested a method for long-term storage of oral mucosal epithelial cells (OMECs) so that the cells could be expanded in vitro after cryopreservation and used for the treatment of bilateral limbal stem cell deficiency. The ability of suspended primary OMECs to proliferate in vitro after cryopreservation was compared to that of OMEC cultures that had undergone the same process. Both were preserved in standard complex medium (COM) with or without cryoprotective agents (CPAs) (gly-cerol at 5 % or 10 % or dimethyl sulphoxide at 10 %). We found that after cryopreservation, primary OMECs could form a confluent cell sheet only in a few samples after 22 ± 2.9 (mean ± SD) days of cultivation with 72.4 % ± 12.9 % overall viability. Instead, all ex vivo OMEC cultures could re-expand after cryopreservation with a comparable viability of 78.6 ± 13.8 %, like primary OMECs, but with significantly faster growth rate (adj. P < 001), forming a confluent cell sheet at 13.7 ± 3.9 days. Gene expression analyses of the ex vivo expansion of OMEC cultures showed that the stemness, proliferation and differentiation-related gene expression was similar before and after cryopreservation, except for KRT13 expres-sion, which significantly decreased after the second passage (adj. P < 0.05). The addition of CPAs had no effect on these outcomes. In conclusion, the optimal strategy for OMEC preservation is to freeze the cells that have been previously cultured, in order to maintain cell viability and the capacity to create a sizable graft even without CPAs.
Collapse
Affiliation(s)
- Joao Victor Cabral
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Natálie Smorodinová
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
- Institute of Histology and Embryology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Eleni Voukali
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Lukáš Balogh
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Tomáš Kučera
- Institute of Histology and Embryology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Vojtěch Kolín
- Department of Pathology, Third Faculty of Medicine, Charles University and University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Pavel Studený
- Department of Ophthalmology, Third Faculty of Medicine, Charles University and University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Tomáš Vacík
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Kateřina Jirsová
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic.
| |
Collapse
|
4
|
Cui C, Wang X, Zheng Y, Li L, Wang F, Wei H, Peng J. Paneth cells protect intestinal stem cell niche to alleviate deoxynivalenol-induced intestinal injury. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115457. [PMID: 37688865 DOI: 10.1016/j.ecoenv.2023.115457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/10/2023] [Accepted: 09/05/2023] [Indexed: 09/11/2023]
Abstract
Deoxynivalenol (DON) is a common toxin in grains and feeds, and DON exposure triggers severe small intestinal injury and inflammation, which harms the health of humans and livestock. DON treatment leads to a decrease in Paneth cells, whereas the role of Paneth cells in DON-induced intestinal injury is poorly understood. We utilized dithizone (40 mg/kg) to keep murine Paneth cell number at a low level. The results showed that dithizone-mediated long-term disruption of Paneth cells aggravated intestinal injury, intestinal stem cell (ISC) loss, and microbiota disorder in DON (2 mg/kg)-treated mice. Unexpectedly, the number of goblet cells and proliferative cells was boosted in mice treated with dithizone and DON. After dithizone and DON treatments, the Firmicutes/Bacteroidetes (F/B) ratio was reduced, and the increased abundance of Dubosiella and the decreased abundance of Lactobacillus were observed in mice. The functional recovery of Paneth cells by lysozyme (200 U/day) supplementation improved intestinal injury and ISC loss in mice after DON challenge. In addition, lysozyme also promoted the growth and ISC activity of intestinal organoids. Taken together, these results demonstrate the protective role of Paneth cells in DON-induced intestinal injury. Our study raises a novel target, Paneth cell, for the treatment of DON exposure.
Collapse
Affiliation(s)
- Chenbin Cui
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xinru Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yao Zheng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lindeng Li
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Fangke Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongkui Wei
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jian Peng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 400700, China.
| |
Collapse
|
5
|
Aizawa S, Yoshida H, Umeshita K, Watanabe S, Takahashi Y, Sakane S, Sakaguchi H, Kataoka S. Development of an oral mucosal irritation test using a three-dimensional human buccal oral mucosal model. Toxicol In Vitro 2023; 87:105519. [PMID: 36403724 DOI: 10.1016/j.tiv.2022.105519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
Abstract
The oral mucosa can become irritated by oral care products and lip cosmetics. Therefore, it is important to determine the irritation potential of their ingredients and products during safety evaluations. We developed a method for oral mucosal irritation test using EpiOral, which is a three-dimensional cultured model. Exposure of sodium lauryl sulphate (SLS) to EpiOral showed a dose-dependent decrease in cell viability. Under 120 min exposure conditions, SLS irritation was detected when 60% cell viability was set as a criterion. Evaluation of the irritancy of SLS and four other raw materials used in oral products at three laboratories under the above conditions confirmed good transferability of the test. Focused on the similarity of the oral and eye mucous, 32 chemicals categorised by the UN-GHS eye-irritation classification were evaluated to ensure the reliability of our criteria at these laboratories. The concordance rate between the UN-GHS classification and our test results was 100% for irritants and 60% for non-irritants. The good intra-laboratory reproducibility of our test was confirmed from the evaluation results of negative and positive controls, and the good inter-laboratory reproducibility was confirmed from the results of 32 chemicals. These findings showed that oral mucosal irritation can be evaluated using EpiOral.
Collapse
Affiliation(s)
- Seiya Aizawa
- Safety Science Research Laboratories, LION Corporation, Kanagawa, Japan.
| | - Hidenori Yoshida
- Safety Science Research Laboratories, Kao Corporation, Tochigi, Japan
| | | | - Shinichi Watanabe
- Safety Science Research Laboratories, LION Corporation, Kanagawa, Japan
| | - Yutaka Takahashi
- Safety Science Research Laboratories, Kao Corporation, Tochigi, Japan
| | - Shinji Sakane
- Safety & Analysis, R&D Support, Sunstar Inc., Osaka, Japan
| | - Hitoshi Sakaguchi
- Safety Science Research Laboratories, Kao Corporation, Tochigi, Japan
| | - Shinsuke Kataoka
- Safety Science Research Laboratories, LION Corporation, Kanagawa, Japan
| |
Collapse
|
6
|
Di Girolamo N, Park M. Cell identity changes in ocular surface Epithelia. Prog Retin Eye Res 2022:101148. [DOI: 10.1016/j.preteyeres.2022.101148] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/13/2022] [Accepted: 11/09/2022] [Indexed: 11/21/2022]
|
7
|
Comparison of cytokine mediators in type 2 inflammatory conditions on the skin and ocular surface. Curr Opin Allergy Clin Immunol 2022; 22:319-327. [DOI: 10.1097/aci.0000000000000842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Trosan P, Cabral JV, Smeringaiova I, Studeny P, Jirsova K. Interleukin-13 increases the stemness of limbal epithelial stem cells cultures. PLoS One 2022; 17:e0272081. [PMID: 35917378 PMCID: PMC9345474 DOI: 10.1371/journal.pone.0272081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 07/12/2022] [Indexed: 11/18/2022] Open
Abstract
This study aimed to determine the effect of interleukin-13 (IL13) on the stemness, differentiation, proliferation, clonogenicity, and morphology of cultured limbal epithelial cells (LECs). Human limbal explants were used to culture LECs up to the second passage (P0-P2) with or without IL13 (IL13+ and IL13-, respectively). Cells were analyzed by qPCR (for the expression of ΔNp63α, BMI-1, keratin (K) 3, K7, K12, K14, K17, mucin 4, and MKI67) and immunofluorescence staining for p63α. The clonogenic ability was determined by colony-forming assay (CFA), and their metabolic activity was measured by WST-1 assay. The results of the CFA showed a significantly increased clonogenic ability in P1 and P2 cultures when LECs were cultured with IL13. In addition, the expression of putative stem cell markers (ΔNp63α, K14, and K17) was significantly higher in all IL13+ cultures compared to IL13-. Similarly, immunofluorescence analysis showed a significantly higher percentage of p63α positive cells in P2 cultures with IL13 than without it. LECs cultures without IL13 lost their cuboidal morphology with a high nucleocytoplasmic ratio after P1. The use of IL13 also led to significantly higher proliferation in P2, which can be reflected by a higher ability to reach confluence in P2 cultures. On the other hand, IL13 had no effect on corneal epithelial cell differentiation (K3 and K12 expression), and the expression of the conjunctival marker K7 significantly increased in all IL13+ cultures compared to the respective cell culture without IL13. This study showed that IL13 enhanced the stemness of LECs by increasing the clonogenicity and the expression of putative stem cell markers of LECs while maintaining their stem cell morphology. We established IL13 as a culture supplement for LESCs, which increases their stemness potential in culture, even after the second passage, and may lead to the greater success of LESCs transplantation in patients with LSCD.
Collapse
Affiliation(s)
- Peter Trosan
- Laboratory of the Biology and Pathology of the Eye, First Faculty of Medicine, Institute of Biology and Medical Genetics, Charles University and General University Hospital in Prague, Prague, Czech Republic
- Department of Ophthalmology, Rostock University Medical Center, Rostock, Germany
- * E-mail:
| | - Joao Victor Cabral
- Laboratory of the Biology and Pathology of the Eye, First Faculty of Medicine, Institute of Biology and Medical Genetics, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Ingrida Smeringaiova
- Laboratory of the Biology and Pathology of the Eye, First Faculty of Medicine, Institute of Biology and Medical Genetics, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Pavel Studeny
- Ophthalmology Department of 3 Medical Faculty and University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Katerina Jirsova
- Laboratory of the Biology and Pathology of the Eye, First Faculty of Medicine, Institute of Biology and Medical Genetics, Charles University and General University Hospital in Prague, Prague, Czech Republic
| |
Collapse
|
9
|
Fang X, Lu F, Wang Y, Guo L, Zhang Y, Bai S, Kwak-Kim J, Wu L. Anti-Ro/SSA and/or anti-La/SSB antibodies are associated with adverse IVF and pregnancy outcomes. J Reprod Immunol 2021; 149:103459. [PMID: 34929496 DOI: 10.1016/j.jri.2021.103459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/26/2021] [Accepted: 11/30/2021] [Indexed: 10/19/2022]
Abstract
Anti-Ro/SSA and/or anti-La/SSB antibodies (anti-SSA/SSB) were reported to increase the risk of recurrent pregnancy loss. However, the effects of anti-SSA/SSB antibodies on in-vitro fertilization (IVF) and pregnancy outcomes were still unclear. The purpose of the study was to determine whether anti-SSA/SSB antibodies were detrimental to IVF and pregnancy outcomes. This study included 55 anti-SSA/SSB antibodies-positive women and 61 anti-SSA/SSB antibodies-negative control women receiving gonadotropin-releasing hormone (GnRH) agonist long protocol (n = 30 and 39, respectively) or GnRH antagonist protocol (n = 25 and 22, respectively) for in-vitro fertilization and embryo transfer (IVF-ET). The impact of anti-SSA/SSB antibodies on immune-related indicators, fertilization, embryo development and pregnancy outcomes were analyzed. With either GnRH agonist or antagonist protocol, women with anti-SSA/SSB had higher levels of peripheral blood cytokines, including TNF-α and IL-17A, lower levels of peripheral blood Th and NK cells, and poor IVF outcomes, including lower number of retrieved oocytes and embryos, lower M II oocytes rate, blastocyst formation rate, and perfect and available embryo rates. Moreover, clinical pregnancy rate, implantation rate, take-home baby rate, and birth weight were significantly lower in the study group as compared with those of the control group. In conclusion, women with anti-SSA/SSB are associated with adverse IVF and pregnancy outcomes. Screening for these antibodies and proper counselling of couples undergoing IVF-ET should be considered. Underlying immunopathology associated with SSA/SSB antibodies and reproduction should be explored further.
Collapse
Affiliation(s)
- Xuhui Fang
- Center for Reproductive Medicine, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Fangting Lu
- Center for Reproductive Medicine, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Yanshi Wang
- Center for Reproductive Medicine, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Lan Guo
- Center for Reproductive Medicine, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Yu Zhang
- Center for Reproductive Medicine, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Shun Bai
- Center for Reproductive Medicine, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Joanne Kwak-Kim
- Reproductive Medicine and Immunology, Obstetrics and Gynecology, Clinical Sciences Department, Chicago Medical School, Rosalind Franklin University of Medicine and Science, Vernon Hills, IL, 60061, USA; Center for Cancer Cell Biology, Immunology and Infection Diseases, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA.
| | - Li Wu
- Center for Reproductive Medicine, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, China.
| |
Collapse
|
10
|
Characterisation of Gel-Forming Mucins Produced In Vivo and In Ex Vivo Conjunctival Explant Cultures. Int J Mol Sci 2021; 22:ijms221910528. [PMID: 34638869 PMCID: PMC8508887 DOI: 10.3390/ijms221910528] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/26/2021] [Accepted: 09/26/2021] [Indexed: 02/07/2023] Open
Abstract
One key element to the health of the ocular surface encompasses the presence of gel-forming mucins in the pre-ocular tear film. Conjunctival goblet cells are specialized epithelial cells that secrete mucins necessary for tear film stability and general homeostasis. Their dysfunction can be linked to a range of ocular surface inflammation disorders and chronic injuries. To obtain new perspectives and angles to tackle mucin deficiency, the need for an accurate evaluation of their presence and corresponding mucin secretion in ex vivo conjunctival cultures has become a requisite. In vitro, goblet cells show a significant decrease in the production and secretion of gel-forming mucins, accompanied by signs of dedifferentiation or transdifferentiation. Explant cultures on laminin-treated CLP-PEG hydrogels can, however, support the production of gel-forming mucins. Together, we challenge the current paradigm to evaluate the presence of cultured goblet cells solely based on their general mucin (MUC) content through imaging analyses, showing the need for additional techniques to assess the functionality of goblet cells. In addition, we broadened the gel-forming mucin profile of in vivo goblet cells with MUC5B and MUC6, while MUC2 and MUC6 is added to the profile of cultured goblet cells.
Collapse
|
11
|
Pokorná Z, Vysloužil J, Hrabal V, Vojtěšek B, Coates PJ. The foggy world(s) of p63 isoform regulation in normal cells and cancer. J Pathol 2021; 254:454-473. [PMID: 33638205 DOI: 10.1002/path.5656] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/10/2021] [Accepted: 02/24/2021] [Indexed: 12/19/2022]
Abstract
The p53 family member p63 exists as two major protein variants (TAp63 and ΔNp63) with distinct expression patterns and functional properties. Whilst downstream target genes of p63 have been studied intensively, how p63 variants are themselves controlled has been relatively neglected. Here, we review advances in understanding ΔNp63 and TAp63 regulation, highlighting their distinct pathways. TAp63 has roles in senescence and metabolism, and in germ cell genome maintenance, where it is activated post-transcriptionally by phosphorylation cascades after DNA damage. The function and regulation of TAp63 in mesenchymal and haematopoietic cells is less clear but may involve epigenetic control through DNA methylation. ΔNp63 functions to maintain stem/progenitor cells in various epithelia and is overexpressed in squamous and certain other cancers. ΔNp63 is transcriptionally regulated through multiple enhancers in concert with chromatin modifying proteins. Many signalling pathways including growth factors, morphogens, inflammation, and the extracellular matrix influence ΔNp63 levels, with inconsistent results reported. There is also evidence for reciprocal regulation, including ΔNp63 activating its own transcription. ΔNp63 is downregulated during cell differentiation through transcriptional regulation, while post-transcriptional events cause proteasomal degradation. Throughout the review, we identify knowledge gaps and highlight discordances, providing potential explanations including cell-context and cell-matrix interactions. Identifying individual p63 variants has roles in differential diagnosis and prognosis, and understanding their regulation suggests clinically approved agents for targeting p63 that may be useful combination therapies for selected cancer patients. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Zuzana Pokorná
- Research Centre of Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Jan Vysloužil
- Research Centre of Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Václav Hrabal
- Research Centre of Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czech Republic.,Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Borˇivoj Vojtěšek
- Research Centre of Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Philip J Coates
- Research Centre of Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czech Republic
| |
Collapse
|
12
|
Smirnov E, Trosan P, Cabral JV, Studeny P, Kereïche S, Jirsova K, Cmarko D. Discontinuous transcription of ribosomal DNA in human cells. PLoS One 2020; 15:e0223030. [PMID: 32119673 PMCID: PMC7051091 DOI: 10.1371/journal.pone.0223030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/24/2020] [Indexed: 11/18/2022] Open
Abstract
Numerous studies show that various genes in all kinds of organisms are transcribed discontinuously, i.e. in short bursts or pulses with periods of inactivity between them. But it remains unclear whether ribosomal DNA (rDNA), represented by multiple copies in every cell, is also expressed in such manner. In this work, we synchronized the pol I activity in the populations of tumour derived as well as normal human cells by cold block and release. Our experiments with 5-fluorouridine (FU) and BrUTP confirmed that the nucleolar transcription can be efficiently and reversibly arrested at +4°C. Then using special software for analysis of the microscopic images, we measured the intensity of transcription signal (incorporated FU) in the nucleoli at different time points after the release. We found that the ribosomal genes in the human cells are transcribed discontinuously with periods ranging from 45 min to 75 min. Our data indicate that the dynamics of rDNA transcription follows the undulating pattern, in which the bursts are alternated by periods of rare transcription events.
Collapse
Affiliation(s)
- Evgeny Smirnov
- Laboratory of Cell Biology, Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
- * E-mail:
| | - Peter Trosan
- Laboratory of the Biology and Pathology of the Eye, Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Joao Victor Cabral
- Laboratory of the Biology and Pathology of the Eye, Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Pavel Studeny
- Ophthalmology Department of 3rd Faculty of Medicine, Charles University and University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Sami Kereïche
- Laboratory of Cell Biology, Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Katerina Jirsova
- Laboratory of the Biology and Pathology of the Eye, Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Dušan Cmarko
- Laboratory of Cell Biology, Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| |
Collapse
|