1
|
Lawson GM, Young JL, Aanderud ZT, Jones EF, Bratsman S, Daniels J, Malmfeldt MP, Baker MA, Abbott BW, Daly S, Paerl HW, Carling G, Brown B, Lee R, Wood RL. Nutrient limitation and seasonality associated with phytoplankton communities and cyanotoxin production in a large, hypereutrophic lake. HARMFUL ALGAE 2025; 143:102809. [PMID: 40032438 DOI: 10.1016/j.hal.2025.102809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 02/03/2025] [Accepted: 02/05/2025] [Indexed: 03/05/2025]
Abstract
Though freshwater harmful algal blooms have been described and studied for decades, several important dynamics remain uncertain, including the relationships among nutrient concentrations, phytoplankton growth, and cyanotoxin production. To identify when and where nutrients limit phytoplankton, cyanobacteria, and cyanotoxins, we conducted in situ bioassay studies. We added nitrogen (N), phosphorus (P), or N + P across various seasons in water collected from three locations across Utah Lake, one of the largest freshwater lakes in the western U.S. This shallow, hypereutrophic lake provides a powerful testbed for quantifying nutrient-growth-toxin interactions. We assessed a range of parameters over time, including photopigment concentrations, phytoplankton abundance (cell counts), cyanotoxins, and nutrient concentrations. Despite high background nutrient concentrations in lake water, phytoplankton abundance and composition were strongly affected by nutrient addition. Phosphorus limitation was more common in the spring, with N limitation and N + P limitation becoming more common in the fall. Nutrient additions were positively associated with cyanobacteria (Microcystis, Aphanocapsa, Dolichospermum, Merismopedia, Aphanizomenon spp.), eukaryotes (Aulacoseira, Desmodesmus spp.), and two taxonomical categories of phytoplankton (i.e., unicellular and colonial green algae). When detected, anatoxin-a was positively associated with Aphanizomenon and negatively associated with Microcystis spp. However, overall cyanotoxin concentrations were not associated with cyanobacterial cell density but varied seasonally. These findings highlight the importance of considering seasonal nutrient availability dynamics and provide insights into specific nutrient targets, species, and cyanotoxins that play a significant role in the health and management of similar eutrophic lake environments around the world.
Collapse
Affiliation(s)
- Gabriella M Lawson
- Brigham Young University, Department of Plant and Wildlife Sciences, Provo, UT, USA
| | - Jakob L Young
- Brigham Young University, Department of Biology, Provo, UT, USA
| | - Zachary T Aanderud
- Brigham Young University, Department of Plant and Wildlife Sciences, Provo, UT, USA
| | - Erin F Jones
- Brigham Young University, Department of Plant and Wildlife Sciences, Provo, UT, USA
| | - Samuel Bratsman
- Brigham Young University, Department of Plant and Wildlife Sciences, Provo, UT, USA
| | - Jonathan Daniels
- Brigham Young University, Department of Plant and Wildlife Sciences, Provo, UT, USA
| | | | - Michelle A Baker
- Utah State University, Department of Biology and the Ecology Center, Logan, UT, USA
| | - Benjamin W Abbott
- Brigham Young University, Department of Plant and Wildlife Sciences, Provo, UT, USA
| | - Scott Daly
- Utah Division of Water Quality, Utah Department of Environmental Quality, Salt Lake, UT, USA
| | - Hans W Paerl
- University of North Carolina at Chapel Hill, Institute of Marine Sciences Morehead City, NC, USA
| | - Greg Carling
- Brigham Young University, Department of Geological Sciences, Provo, UT, USA
| | - Brian Brown
- Brigham Young University, Department of Plant and Wildlife Sciences, Provo, UT, USA
| | - Raymond Lee
- University of Wisconsin-Superior, Department of Natural Sciences, Superior, WI, USA
| | - Rachel L Wood
- Brigham Young University, Department of Biology, Provo, UT, USA.
| |
Collapse
|
2
|
Bhattarai B, Bhattacharjee AS, Coutinho FH, Li H, Chadalavada S, Goel R. Bacteriophages carry auxiliary metabolic genes related to energy, sulfur and phosphorus metabolism during a harmful algal bloom in a freshwater lake. CHEMOSPHERE 2025; 370:143819. [PMID: 39622454 DOI: 10.1016/j.chemosphere.2024.143819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 11/23/2024] [Accepted: 11/25/2024] [Indexed: 12/13/2024]
Abstract
Cyanophages play an important role in nutrient cycling in lakes since they can modulate the metabolism of cyanobacteria. A proper understanding of the impact of cyanophage infection on the metabolism and ecology of cyanobacteria is critical during a complete cycle of harmful algal bloom (HAB). The ecology of cyanophages in marine environments has been well-delineated, but cyanophages in freshwater lakes remain less studied. Here, we studied the diversity of cyanophages and their impact on host ecology and metabolism through the succession of HAB in Utah Lake, which is a shallow eutrophic freshwater lake, in 2019. We collected water samples at three different periods from two locations in freshwater Utah Lake. The three sampling periods represented the pre-bloom, peak-bloom, and post-bloom events. We observed that the Utah Lake virome was dominated by families Myoviridae, Siphoviridae, and Podoviridae under the order Caudovirales. We detected photosystem-related genes, sulfur assimilation genes, and pho regulon (phosphorus metabolism) genes in genomes of predicted cyanophages. We were able to capture the changes in relative abundance and expression of functional genes in genomes of cyanophage at different stages of the bloom. We observed higher relative abundance and expression of cyanophage-encoded pho-regulon genes in the "pre-bloom" period. The higher expression of pho-regulon genes in P-limited ecosystem of Utah Lake indicated the possible contribution of cyanophage to enhance the fitness of the host cyanobacteria. Our study provides some insightful findings on the role of cyanophages in controlling the ecology and relative abundance of host cyanobacteria in freshwater lakes.
Collapse
Affiliation(s)
- Bishav Bhattarai
- The University of Utah, Department of Civil and Environmental Engineering, 110 S Central Campus Drive, Salt Lake City, UT, 84112, United States
| | - Ananda Shankar Bhattacharjee
- Department of Environmental Sciences, The University of California, Riverside, Riverside, CA, United States; USDA-ARS, United States Salinity Laboratory, Riverside, CA, United States
| | - Felipe H Coutinho
- Department of Marine Biology and Oceanography, Institute of Marine Sciences, Consejo Superior de Investigaciones Científicas (ICM-CISC), Barcelona, Spain
| | - Hanyan Li
- Institute of Environmental Genomics, University of Oklahoma, Norman, OK, 73019, United States
| | - Sreeni Chadalavada
- School of Engineering, University of Southern Queensland, Sprinfield, Queensland, 4350, Australia
| | - Ramesh Goel
- The University of Utah, Department of Civil and Environmental Engineering, 110 S Central Campus Drive, Salt Lake City, UT, 84112, United States.
| |
Collapse
|
3
|
de Toledo MB, Baulch HM. A landscape limnology approach to assessing controls on soluble reactive phosphorus in sediment porewater and internal loading risk. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176012. [PMID: 39236817 DOI: 10.1016/j.scitotenv.2024.176012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 09/01/2024] [Accepted: 09/01/2024] [Indexed: 09/07/2024]
Abstract
Sediment nutrients can be mobilized to overlying water via internal loading, which can be important to aquatic productivity. Using data from 143 Canadian lakes, we show high (~2400-fold) variation of soluble reactive phosphorus (SRP) concentrations in surficial sediment porewater, with results suggesting internal phosphorus loading (IPL) is also likely to vary widely. Consistent with past work at smaller scales, we show that lake depth, pH, trophic status, and bulk sediment Al:P and Fe:P influence porewater SRP, and IPL. Median porewater SRP concentration in lakes with high Al:P (molar ratios >10) were 4.8-fold smaller than in lakes with lower Al:P. In lakes where bulk sedimentary Fe:P molar ratios were >10 porewater SRP was 3.9-fold lower than in lakes with lower Fe:P. High pH (>7.8), along with hyper-eutrophic lakes were associated with higher porewater SRP. Finally, shallow lakes (<4 m depth) had median porewater SRP concentration 6-fold higher than deep lakes (>9 m depth). Important regional differences emerged, linked to regional variation in pH, soils, lake depth and trophic status, and paralleling areas of poor water quality. For example, median porewater SRP in lakes from the Boreal Plains and Prairies ecozones (dominated by Chernozems/Mollisols) was 64-fold and 44-fold higher than in the Boreal Shield (dominated by Podzols/Spodosols) (respectively), although we note that IPL risk is likely important across many ecozones. Using national data, we found in-lake measurements (particularly pH, and salinity) showed strong capacity in predicting porewater SRP (explaining 60-72 % of the variance in the data). Importantly, watershed predictors showed good predictive power, explaining ~50 % of variance in porewater SRP using variables including soil types, and % agriculture. Porewater SRP can be predicted with reasonable accuracy using easily measured variables, as can estimates of internal phosphorus loading, suggesting that landscape limnology holds strong potential in helping to inform lake management by informing understanding of in-lake nutrient sources.
Collapse
Affiliation(s)
- Mauro B de Toledo
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK, Canada; Global Institute for Water Security, University of Saskatchewan, 11 Innovation Blvd, Saskatoon, SK S7N 3H5, Canada.
| | - Helen M Baulch
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK, Canada; Global Institute for Water Security, University of Saskatchewan, 11 Innovation Blvd, Saskatoon, SK S7N 3H5, Canada.
| |
Collapse
|
4
|
Pruitt AN, Wahwahsuck K, Thomas SG, Burgin AJ. Spatial heterogeneity in sediment phosphorus pools and phosphatase activity in a eutrophic reservoir. JOURNAL OF ENVIRONMENTAL QUALITY 2024; 53:1140-1151. [PMID: 39210567 DOI: 10.1002/jeq2.20621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/12/2024] [Indexed: 09/04/2024]
Abstract
Agriculture is necessary for food production, but agricultural inputs of phosphorus (P) to waterways can lead to harmful algal blooms in downstream reservoirs. Some of the P that enters these water bodies can be stored in reservoir sediments and later contribute to internal P loading, supplementing external P loads carried in from rivers. Increased P can lead to harmful algal blooms. However, how P is cycling in the sediment of these water bodies varies spatially and temporally has been relatively unstudied. Our objective was to understand how P concentration and form vary spatiotemporally, as well as how P is processed in the sediment of the reservoir. We sampled 30 locations in both August and October 2018 around Milford Reservoir (Kansas), a man-made eutrophic reservoir with frequent harmful algal blooms. We collected water chemistry samples, field measurements of temperature, dissolved oxygen, and pH, and sediment samples to analyze for P chemical speciation and phosphatase enzyme activity. We show that P release by phosphatase activity was higher under anaerobic and basic conditions, which subsequently affects spatiotemporal variation in sediment P pools. We found that low oxygen positively influenced phosphatase activity and sediment P pools, and may drive high internal P loading and harmful algal blooms in the summer months. This research increased our understanding of P cycling in a reservoir highly impacted by agricultural inputs and contributed to a small but growing body of research on internal P loading in midwestern reservoirs.
Collapse
Affiliation(s)
- Abagael N Pruitt
- Kansas Biological Survey-Center for Ecological Research, University of Kansas, Lawrence, Kansas, USA
| | - Kynser Wahwahsuck
- Kansas Biological Survey-Center for Ecological Research, University of Kansas, Lawrence, Kansas, USA
| | - Samantha G Thomas
- Kansas Biological Survey-Center for Ecological Research, University of Kansas, Lawrence, Kansas, USA
| | - Amy J Burgin
- Kansas Biological Survey-Center for Ecological Research, University of Kansas, Lawrence, Kansas, USA
| |
Collapse
|
5
|
Magri M, Bondavalli C, Bartoli M, Benelli S, Žilius M, Petkuviene J, Vybernaite-Lubiene I, Vaičiūtė D, Grinienė E, Zemlys P, Morkūnė R, Daunys D, Solovjova S, Bučas M, Gasiūnaitė ZR, Baziukas-Razinkovas A, Bodini A. Temporal and spatial differences in nitrogen and phosphorus biogeochemistry and ecosystem functioning of a hypertrophic lagoon (Curonian Lagoon, SE Baltic Sea) revealed via Ecological Network Analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171070. [PMID: 38382608 DOI: 10.1016/j.scitotenv.2024.171070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/05/2024] [Accepted: 02/16/2024] [Indexed: 02/23/2024]
Abstract
In coastal lagoons, eutrophication and hydrology are interacting factors that produce distortions in biogeochemical nitrogen (N) and phosphorus (P) cycles. Such distortions affect nutrient relative availability and produce cascade consequences on primary producer's community and ecosystem functioning. In this study, the seasonal functioning of a coastal lagoon was investigated with a multielement approach, via the construction and analysis of network models. Spring and summer networks, both for N and P flows, have been simultaneously compiled for the northern transitional and southern confined area of the hypertrophic Curonian Lagoon (SE Baltic Sea). Ecological Network Analysis was applied to address the combined effect of hydrology and seasonality on biogeochemical processes. Results suggest that the ecosystem is more active and presents higher N and P fluxes in summer compared to spring, regardless of the area. Furthermore, larger internal recycling characterizes the confined compared to the transitional area, regardless of the season. The two areas differed in the fate of available nutrients. The transitional area received large riverine inputs that were mainly transferred to the sea without the conversion into primary producers' biomass. The confined area had fewer inputs but proportionally larger conversion into phytoplankton biomass. In summer, particularly in the confined area, primary production was inefficiently consumed by herbivores. Most phytoplanktonic N and P, in the confined area more than in the transitional area, were conveyed to the detritus pathway where P, more than N, was recycled, contributing to the unbalance in N:P stoichiometry and favouring N-fixing cyanobacteria over other phytoplankton groups. The findings of this study provide a comprehensive understanding of N and P circulation patterns in lagoon areas characterized by different hydrology. They also support the importance of a stoichiometric approach to trace relative differences in N and P recycling and abundance, that promote blooms, drive algal communities and whole ecosystem functioning.
Collapse
Affiliation(s)
- Monia Magri
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 33/A, 43124 Parma, Italy; Marine Research Institute, University of Klaipeda, Universiteto al. 17, 92294, Klaipeda, Lithuania.
| | - Cristina Bondavalli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 33/A, 43124 Parma, Italy
| | - Marco Bartoli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 33/A, 43124 Parma, Italy; Marine Research Institute, University of Klaipeda, Universiteto al. 17, 92294, Klaipeda, Lithuania; Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn - National Institute of Marine Biology, Ecology and Biotechnology, Genoa Marine Center, Genoa, Italy.
| | - Sara Benelli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 33/A, 43124 Parma, Italy.
| | - Mindaugas Žilius
- Marine Research Institute, University of Klaipeda, Universiteto al. 17, 92294, Klaipeda, Lithuania.
| | - Jolita Petkuviene
- Marine Research Institute, University of Klaipeda, Universiteto al. 17, 92294, Klaipeda, Lithuania.
| | - Irma Vybernaite-Lubiene
- Marine Research Institute, University of Klaipeda, Universiteto al. 17, 92294, Klaipeda, Lithuania.
| | - Diana Vaičiūtė
- Marine Research Institute, University of Klaipeda, Universiteto al. 17, 92294, Klaipeda, Lithuania.
| | - Evelina Grinienė
- Marine Research Institute, University of Klaipeda, Universiteto al. 17, 92294, Klaipeda, Lithuania.
| | - Petras Zemlys
- Marine Research Institute, University of Klaipeda, Universiteto al. 17, 92294, Klaipeda, Lithuania.
| | - Rasa Morkūnė
- Marine Research Institute, University of Klaipeda, Universiteto al. 17, 92294, Klaipeda, Lithuania.
| | - Darius Daunys
- Marine Research Institute, University of Klaipeda, Universiteto al. 17, 92294, Klaipeda, Lithuania.
| | - Sabina Solovjova
- Marine Research Institute, University of Klaipeda, Universiteto al. 17, 92294, Klaipeda, Lithuania
| | - Martynas Bučas
- Marine Research Institute, University of Klaipeda, Universiteto al. 17, 92294, Klaipeda, Lithuania.
| | - Zita Rasuole Gasiūnaitė
- Marine Research Institute, University of Klaipeda, Universiteto al. 17, 92294, Klaipeda, Lithuania.
| | | | - Antonio Bodini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 33/A, 43124 Parma, Italy.
| |
Collapse
|
6
|
Wei H, Liu C, Cui X, Shen Z, Wang J. Distribution characteristics of microorganisms in sediments of Dagu River and their biological indicator function for evaluating eco-environmental quality of rural river. ENVIRONMENTAL RESEARCH 2024; 245:118032. [PMID: 38159669 DOI: 10.1016/j.envres.2023.118032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
The microorganisms in sediments play a crucial role in biogeochemical cycle processes, and numerous studies have shown that microbial community is closely related to environmental factors. However, the usability of sediment microorganisms to evaluate the eco-environment quality of rural rivers has not been adequately explored. This study investigated the distribution characteristics and response of sediment microorganisms to environmental parameters and benthic organisms. Based on the environmental parameters and benthic community indices, the 12 stations were divided into high-polluted group A, moderate-polluted group B and low-polluted group C. Station DG01 and DG02 in group A had the highest level of As and Ni pollution and nutrient concentration, and DG09 in group A had the lowest benthic diversity. Correspondingly, group A had the lowest abundance of Proteobacteria, which has a higher requirement for the environment than Planctomycetes. Group B had the highest sulfide level (97.45 mg/kg), and bacteria (Thiobacillus, Sulfurisoma and Sulfuritalea) with genes involved in sulfur cycling were more enriched in this group. Group C had the lowest level of total nitrogen (243.36 mg/kg), and Rhodanobacteraceae in Xanthomonadales might be a key bioindicator for low nitrogen. In addition, Chlorophyta was found to be more susceptible to heavy metals, and moreover co-occurrence networks showed that microeukaryotes were more sensitive to heavy metal pollution compared to benthic animals and prokaryotes. Therefore, this study suggested that benthic microorganisms especially microeukaryotes could be used as good indicators for evaluating the eco-environmental quality of rural rivers.
Collapse
Affiliation(s)
- Hongqing Wei
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Cong Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Xumeng Cui
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Zhonghua Shen
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China; Shandong Bureau Test Center of China General Administration of Metallurgical Geology, Jinan, 250013, China.
| | - Jun Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
7
|
Cravotta CA, Tasker TL, Smyntek PM, Blomquist JD, Clune JW, Zhang Q, Schmadel NM, Schmer NK. Legacy sediment as a potential source of orthophosphate: Preliminary conceptual and geochemical models for the Susquehanna River, Chesapeake Bay watershed, USA. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169361. [PMID: 38104826 DOI: 10.1016/j.scitotenv.2023.169361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/28/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Nutrient pollution from agriculture and urban areas plus acid mine drainage (AMD) from legacy coal mines are primary causes of water-quality impairment in the Susquehanna River, which is the predominant source of freshwater and nutrients entering the Chesapeake Bay. Recent increases in the delivery of dissolved orthophosphate (PO4) from the river to the bay may be linked to long-term increases in pH, decreased acidity of precipitation, and decreased acidity, iron, and aluminum loading from widespread AMD. Since the 1950s, baseline pH increased from ~6.5 to ~8 in the West Branch and "North Branch" of the Susquehanna River, which drain bituminous and anthracite coalfields of Pennsylvania. A current baseline pH of ~8 and daily maxima exceeding 9 have been documented along the lower Susquehanna River. In response to improved river quality, bioavailable PO4 now may be released into solution from legacy sediment that has filled major impoundments in lower reaches of the river. At typical pH (5-8) of natural water, aqueous PO4 species tend to be adsorbed by hydrous iron, aluminum, and manganese oxides that coat soil and sediment particles; however, PO4 may be substantially desorbed at pH >8. We created a geochemical model that simulates equilibrium aqueous/solid distributions of PO4 as pH and other solution characteristics change. Considering current conditions in the lower Susquehanna River, the model demonstrates potential for extensive release of adsorbed PO4 at pH >8. Empirical data from laboratory experiments corroborate model results. The transfer of PO4 into the water column may increase algae growth, which removes CO2 and drives pH to higher values, facilitating additional PO4 release and exacerbating the potential for harmful algal blooms. Thus, legacy sediment is a currently unquantified source of PO4 that warrants consideration by resource managers and programs collaborating to reduce phosphorus loads to the bay and similar settings worldwide.
Collapse
Affiliation(s)
- Charles A Cravotta
- U.S. Geological Survey, Pennsylvania Water Science Center, New Cumberland, PA, United States of America.
| | - Travis L Tasker
- Saint Francis University, Loretto, PA, United States of America
| | - Peter M Smyntek
- Saint Vincent College, Latrobe, PA, United States of America
| | - Joel D Blomquist
- U.S. Geological Survey, Maryland-Delaware-District of Columbia Water Science Center, Catonsville, MD, United States of America
| | - John W Clune
- U.S. Geological Survey, Pennsylvania Water Science Center, Williamsport, PA, United States of America
| | - Qian Zhang
- University of Maryland Center for Environmental Science, USEPA Chesapeake Bay Program, Annapolis, MD, United States of America
| | - Noah M Schmadel
- U.S. Geological Survey, Oregon Water Science Center, Portland, OR, United States of America
| | - Natalie K Schmer
- U.S. Geological Survey, Pennsylvania Water Science Center, Bridgeville, PA, United States of America
| |
Collapse
|
8
|
Yu B, Zhang Y, Wu H, Yan W, Meng Y, Hu C, Liu Z, Ding J, Zhang H. Advanced oxidation processes for synchronizing harmful microcystis blooms control with algal metabolites removal: From the laboratory to practical applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167650. [PMID: 37806585 DOI: 10.1016/j.scitotenv.2023.167650] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/05/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
Harmful algal blooms (HABs) in freshwater systems have become a global epidemic, leading to a series of problems related to cyanobacterial outbreaks and toxicity. Studies are needed to improve the technology used for the simultaneous removal of harmful cyanobacteria and algal metabolites. In this review, widely reported advanced oxidation processes (AOPs) strategies for removing major species Microcystis aeruginosa (M. aeruginosa) and microcystins (MCs) were screened through bibliometrics, such as photocatalysis, activated persulfate, H2O2, Ozone oxidation, ultrasonic oxidation, and electrochemical oxidation, etc. AOPs generate kinds of reactive oxygen species (ROS) to inactivate cyanobacteria and degrade cyanotoxins. A series of responses occurs in algal cells to resist the damaging effects of ROS generated by AOPs. Specifically, we reviewed laboratory research, mechanisms, practical applications, and challenges of HABs treatments in AOPs. Problems common to these technologies include the impact of algal response and metabolites, and environmental factors. This information provides guidance for future research on the removal of harmful cyanobacteria and treatment of algal metabolites using AOPs.
Collapse
Affiliation(s)
- Bingzhi Yu
- School of Life and Environmental Sciences, Hangzhou Normal University, 311121 Hangzhou, Zhejiang, China
| | - Yinan Zhang
- School of Life and Environmental Sciences, Hangzhou Normal University, 311121 Hangzhou, Zhejiang, China
| | - Huazhen Wu
- Hangzhou Huanke Environmental Consulting Co. LTD, 310010 Hangzhou, Zhejiang, China
| | - Wen Yan
- School of Life and Environmental Sciences, Hangzhou Normal University, 311121 Hangzhou, Zhejiang, China
| | - Yunjuan Meng
- School of Life and Environmental Sciences, Hangzhou Normal University, 311121 Hangzhou, Zhejiang, China
| | - Chao Hu
- School of Life and Environmental Sciences, Hangzhou Normal University, 311121 Hangzhou, Zhejiang, China
| | - Zhiquan Liu
- School of Engineering, Hangzhou Normal University, 310018 Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Urban Wetlands and Regional Change, 311121 Hangzhou, Zhejiang, China
| | - Jiafeng Ding
- School of Engineering, Hangzhou Normal University, 310018 Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Urban Wetlands and Regional Change, 311121 Hangzhou, Zhejiang, China.
| | - Hangjun Zhang
- School of Engineering, Hangzhou Normal University, 310018 Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Urban Wetlands and Regional Change, 311121 Hangzhou, Zhejiang, China
| |
Collapse
|
9
|
Cao Y, Zhu J, Gao Z, Li S, Zhu Q, Wang H, Huang Q. Spatial dynamics and risk assessment of phosphorus in the river sediment continuum (Qinhuai River basin, China). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:2198-2213. [PMID: 38055174 DOI: 10.1007/s11356-023-31241-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/21/2023] [Indexed: 12/07/2023]
Abstract
This study investigated the concentration and fractionation of phosphorus (P) using sequential P extraction and their influencing factors by introducing the PLS-SEM model (partial least squares structural equation model) along this continuum from the Qinhuai River. The results showed that the average concentrations of inorganic P (IP) occurred in the following order: urban sediment (1499.1 mg/kg) > suburban sediment (846.1-911.9 mg/kg) > rural sediment (661.1 mg/kg) > natural sediment (179.9 mg/kg), and makes up to 53.9-87.1% of total P (TP). The same as the pattern of IP, OP nearly increased dramatically with increasing the urbanization gradient. This spatial heterogenicity of P along a river was attributed mainly to land use patterns and environmental factors (relative contribution affecting the P fractions: sediment nutrients > metals > grain size). In addition, the highest values of TP (2876.5 mg/kg), BAP (biologically active P, avg, 675.7 mg/kg), and PPI (P pollution index, ≥ 2.0) were found in urban sediments among four regions, indicating a higher environmental risk of P release, which may increase the risk of eutrophication in overlying water bodies. Collectively, this work improves the understanding of the spatial dynamics of P in the natural-rural-urban river sediment continuum, highlights the need to control P pollution in urban sediments, and provides a scientific basis for the future usage and disposal of P in sediments.
Collapse
Affiliation(s)
- Yanyan Cao
- Key Laboratory of Integrated Regulation and Resource Development On Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Jianzhong Zhu
- Key Laboratory of Integrated Regulation and Resource Development On Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
| | - Zhimin Gao
- Key Laboratory of Integrated Regulation and Resource Development On Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Sanjun Li
- Key Laboratory of Integrated Regulation and Resource Development On Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Qiuzi Zhu
- Key Laboratory of Integrated Regulation and Resource Development On Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Hailong Wang
- Key Laboratory of Integrated Regulation and Resource Development On Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Qi Huang
- College of Life Science, Taizhou University, Taizhou, 318000, Zhejiang, China
| |
Collapse
|
10
|
Dresti C, Rogora M, Buzzi F, Beghi A, Magni D, Canziani A, Fenocchi A. A modelling approach to evaluate the present and future effectiveness of hypolimnetic withdrawal for the restoration of eutrophic Lake Varese (Northern Italy). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119042. [PMID: 37774663 DOI: 10.1016/j.jenvman.2023.119042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 09/12/2023] [Accepted: 09/17/2023] [Indexed: 10/01/2023]
Abstract
Hypolimnetic withdrawal has been applied as a restoration measure in lakes subject to eutrophication together with external load reduction, to decrease internal load by removing limiting nutrient phosphorus (P) from anoxic deep waters and contributing to the unloading of bottom sediments from previously deposited nutrients and organic matter. The aim of this study is to evaluate the effect of hypolimnetic withdrawal on Lake Varese, a 24 m-deep and 14.8 km2-large subalpine lake in North-Western Italy. The lake suffered from extended eutrophication in the second half of the 20th century due to uncontrolled delivery of untreated urban sewage. Several restoration measures have been implemented during the years, including hypolimnetic withdrawal. In 2019, a cooperative programme for the protection and management of the lake and its surroundings was launched, establishing a systematic annual hypolimnetic withdrawal in the stratified season since 2020. In this research, we calibrated a one-dimensional (1D) coupled ecological-hydrodynamic model (General Lake Model/Aquatic EcoDynamics - GLM/AED2) of Lake Varese with data surveyed in the lake in 2019-2021. Model simulations of the period 2020-2021 with and without the performed withdrawal proved the effectiveness of this measure on hypolimnetic P concentration reduction. Then, future simulations of 2023-2085 were carried out to predict the future efficiency of hypolimnetic withdrawal and of reductions in external nutrient loads under climate change scenarios. Results show that the prescribed withdrawal increases hypolimnetic temperatures. This effect, coupled with thermocline deepening due to global warming, will possibly lead to decreasing water mass stability in autumn and shorter stratification in the moderately deep Lake Varese, with an eventual decrease of P concentrations in the water column. The future effectiveness of hypolimnetic withdrawal is further discussed considering the possible role of dry periods.
Collapse
Affiliation(s)
- Claudia Dresti
- National Research Council, Water Research Institute (CNR-IRSA), Largo Tonolli 50, 28922, Verbania, Italy.
| | - Michela Rogora
- National Research Council, Water Research Institute (CNR-IRSA), Largo Tonolli 50, 28922, Verbania, Italy.
| | - Fabio Buzzi
- Agenzia Regionale per La Protezione Dell'Ambiente Della Lombardia (ARPA Lombardia), Via Ippolito Rosellini 17, 20124, Milano, Italy.
| | - Andrea Beghi
- Agenzia Regionale per La Protezione Dell'Ambiente Della Lombardia (ARPA Lombardia), Via Ippolito Rosellini 17, 20124, Milano, Italy.
| | - Daniele Magni
- Direzione Generale Ambiente e Clima, Regione Lombardia, Piazza Città di Lombardia 1, 20124, Milano, Italy.
| | | | - Andrea Fenocchi
- National Research Council, Water Research Institute (CNR-IRSA), Largo Tonolli 50, 28922, Verbania, Italy; Department of Civil Engineering and Architecture, University of Pavia, Via Ferrata 3, 27100, Pavia, Italy.
| |
Collapse
|
11
|
Wang W, Xue J, You J, Han H, Qi H, Wang X. Effect of composite amendments on physicochemical properties of copper tailings repaired by herbaceous plants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:19790-19802. [PMID: 36241833 DOI: 10.1007/s11356-022-23606-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
Phytoremediation is considered to be the most environmentally friendly green restoration technology for dealing with mine waste. Adding amendments can improve the substrate environment for plant growth and enhance remediation efficiency. Herbaceous plants have become the preferred species for vegetation restoration in abandoned mines because of their fast greening and simple management. After 8 weeks of pot experiments in the early stage, it was shown that the plant height and fresh weight of the plants treated with 5% conditioner and 0.5% straw (C2S2) were significantly higher than those of other treatments. Considering that, in this paper, to explore the effect of composite amendments on physicochemical properties of copper tailings repaired by herbaceous plants, the untreated copper tailings were employed as the control group, whereas copper tailings repaired by ryegrass (Lolium perenne L.), vetiver grass (Chrysopogon zizanioides L.), and tall fescue (Festuca arundinacea) with or without conditioners and straw combination into the compound amendments were taken separately as the test group. After 6 months of planting, the pH, electrical conductivity, water content, available potassium, organic matter, total nitrogen, and available phosphorus in the main physical and chemical properties of copper tailings in each experimental area were analyzed. The results showed that the electrical conductivity, organic matter, and total nitrogen content of copper tailings were improved to a certain extent by planting plants without treatment. Meanwhile, compared with the control group, all indexes of planting plants showed an upward trend after adding composite amendments. Among them, pH, water content, and available potassium content of copper tailings were enhanced more obviously. Furthermore, as discovered from the gray correlation analysis results, vetiver grass planted with composite amendments has the best comprehensive effect of improving the physicochemical properties of copper tailings, followed by tall fescue and ryegrass.
Collapse
Affiliation(s)
- Weiwei Wang
- School of Energy and Mechanical Engineering, Jiangxi University of Science and Technology, Nanchang, 330013, Jiangxi, China
| | - Jinchun Xue
- School of Energy and Mechanical Engineering, Jiangxi University of Science and Technology, Nanchang, 330013, Jiangxi, China.
| | - Jiajia You
- School of Energy and Mechanical Engineering, Jiangxi University of Science and Technology, Nanchang, 330013, Jiangxi, China
| | - Huaqin Han
- School of Energy and Mechanical Engineering, Jiangxi University of Science and Technology, Nanchang, 330013, Jiangxi, China
| | - Hui Qi
- School of Energy and Mechanical Engineering, Jiangxi University of Science and Technology, Nanchang, 330013, Jiangxi, China
| | - Xiaojuan Wang
- School of Energy and Mechanical Engineering, Jiangxi University of Science and Technology, Nanchang, 330013, Jiangxi, China
| |
Collapse
|
12
|
Neweshy W, Planas D, Tellier E, Demers M, Marsac R, Couture RM. Response of sediment phosphorus partitioning to lanthanum-modified clay amendment and porewater chemistry in a small eutrophic lake. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:1494-1507. [PMID: 35635543 DOI: 10.1039/d1em00544h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Sustained eutrophication of the aquatic environment by the remobilization of legacy phosphorus (P) stored in soils and sediments is a prevailing issue worldwide. Fluxes of P from the sediments to the water column, referred to as internal P loading, often delays the recovery of water quality following a reduction in external P loads. Here, we report on the vertical distribution and geochemistry of P, lanthanum (La), iron (Fe) and carbon (C) in the culturally eutrophied Lake Bromont. This lake underwent remediation treatment using La modified bentonite (LMB) commercially available as Phoslock™. We investigated the effectiveness of LMB in decreasing soluble reactive phosphorus (SRP) availability in sediments and in reducing dissolved fluxes of P across the sediment-water interface. Sediment cores were retrieved before and after LMB treatment at three sites representing bottom sediment, sediment influenced by lakeside housing and finally littoral sediment influenced by the lake inflow. Sequential extractions were used to assess changes in P speciation. Depth profiles of dissolved porewater concentrations were obtained after LMB treatment at each site. Results indicate that SRP extracted from the sediments decreased at all sites, while total extracted P (PTOT) bound to redox-sensitive metal oxides increased. 31P NMR data on P extract reveals that 20-43% of total solid-phase P is in the form of organic P (Porg) susceptible to be released via microbial degradation. Geochemical modelling of porewater data provides evidence that LaPO4(s) mineral phases, such as rhabdophane and/or monazite, are likely forming. However, results also suggest that La3+ binding by dissolved organic carbon (DOC) hinders La-phosphate precipitation. We rely on thermodynamic modelling to suggest that high Fe2+ would bind to DOC instead of La3+, therefore promoting P sequestrations by LMB under anoxic conditions.
Collapse
Affiliation(s)
- Wessam Neweshy
- Department of Chemistry, Université Laval, Québec Canada and GRIL (Interuniversity Research Group in Limnology), Canada.
| | - Dolors Planas
- Département de Sciences Biologiques, Université de Québec à Montréal, Canada and GRIL (Interuniversity Research Group in Limnology), Montréal, Canada
| | - Elisabeth Tellier
- Action Conservation du Bassin Versant du Lac Bromont, Bromont, Québec, Canada
| | - Marie Demers
- Department of Chemistry, Université Laval, Québec Canada and GRIL (Interuniversity Research Group in Limnology), Canada.
| | - Remi Marsac
- Univ Rennes, CNRS, Géosciences Rennes-UMR 6118, F-35000 Rennes, France
| | - Raoul-Marie Couture
- Department of Chemistry, Université Laval, Québec Canada and GRIL (Interuniversity Research Group in Limnology), Canada.
| |
Collapse
|
13
|
Li H, Miller T, Lu J, Goel R. Nitrogen fixation contribution to nitrogen cycling during cyanobacterial blooms in Utah Lake. CHEMOSPHERE 2022; 302:134784. [PMID: 35504465 PMCID: PMC10149033 DOI: 10.1016/j.chemosphere.2022.134784] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 04/23/2022] [Accepted: 04/27/2022] [Indexed: 05/03/2023]
Abstract
Nitrogen (N) cycling is an essential process in lake systems and N-fixation is an important component of it. Recent studies have also found that nitrate reduction through heterotrophic denitrification in lake systems did not prevent harmful cyanobacterial blooms, but instead, may have favored the dominance of N2-fixing cyanobacteria. The overall objective of this study was to estimate nitrogen fixation rates and the expressions of associated nitrogenase (nif gene) functional gene at several sites at different occasions in freshwater Utah Lake. For comparison purposes, one time sampling was also conducted in the brackish Farmington Bay of Great Salt Lake (GSL). The microbial ecology of the top 20-cm of surface water was investigated to assess the dominant cyanobacterial communities and N-related metabolisms. Our study revealed that Dolichospermum and Nodularia were potential N2-fixers for Utah Lake and brackish Farmington Bay, respectively. The in situ N2-fixation rates were 0-0.73 nmol N hr-1L-1 for Utah Lake and 0-0.85 nmol N hr-1L-1 for Farmington Bay, and these rates positively correlated with the abundance and expressions of the nif gene. In addition, nitrate reduction was measured in sediment (0.002-0.094 mg N VSS-1 hr-1). Significantly positive correlations were found among amoA, nirS and nirK abundance (R = 0.56-0.87, p < 0.05, Spearman) in both lakes. An exception was the lower nirK gene abundance detected at one site in Farmington Bay where high ammonium retentions were also detected. Based on a mass balance approach, we concluded that the amount of inorganic N loss through denitrification still exceeded the N input by N2-fixation, much like in most lakes, rivers, and marine ecosystems. This indicates that N cycling processes such as denitrification mediated by heterotrophic bacteria contributes to N-export from the lakes resulting in N limitations.
Collapse
Affiliation(s)
- Hanyan Li
- Department of Civil and Environmental Engineering, The University of Utah, 110 S Central Campus Drive, Salt Lake City, UT, 84112, USA
| | - Theron Miller
- Wasatch Front Water Quality Council, Salt Lake City, UT, USA
| | - Jingrang Lu
- United States Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, USA.
| | - Ramesh Goel
- Department of Civil and Environmental Engineering, The University of Utah, 110 S Central Campus Drive, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
14
|
A Spatial Long-Term Trend Analysis of Estimated Chlorophyll-a Concentrations in Utah Lake Using Earth Observation Data. REMOTE SENSING 2022. [DOI: 10.3390/rs14153664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
We analyzed chlorophyll-a (chl-a) concentrations in shallow, turbid Utah Lake using Landsat data from 1984 to 2021. Utah Lake is ~40 km by 21 km, has a surface area of ~390 km2, an average depth of ~3 m, and loses ~50% of inflow to evaporation. This limits spatial mixing, allowing us to evaluate impacts on smaller lake regions. We evaluated long-term trends at the pixel level and for areas related to boundary conditions. We created 17 study areas based on differences in shoreline development and nutrient inflows. We expected impacted areas to exhibit increasing chl-a trends, as population growth and development in the Utah Lake watershed have been significant. We used the non-parametric Mann–Kendall test to evaluate trends. The majority of the lake exhibited decreasing trends, with a few pixels in Provo and Goshen Bays exhibiting slight increasing or no trends. We estimated trend magnitudes using Sen’s slope and fitted linear regression models. Trend magnitudes in all pixels (and regions), both decreasing and increasing, were small; with the largest decreasing and increasing trends being about −0.05 and −0.005 µg/L/year, and about 0.1 and 0.005 µg/L/year for the Sen’s slope and linear regression slope, respectively. Over the ~40 year-period, this would result in average decreases of 2 to 0.2 µg/L or increases of 4 and 0.2 µg/L. All the areas exhibited decreasing trends, but the monthly trends in some areas exhibited no trends rather than decreasing trends. Monthly trends for some areas showed some indications that algal blooms are occurring earlier, though evidence is inconclusive. We found essentially no change in algal concentrations in Utah Lake at either the pixel level or for the analysis regions since the 1980′s; despite significant population expansion; increased nutrient inflows; and land-use changes. This result matches prior research and supports the hypothesis that algal growth in Utah Lake is not limited by direct nutrient inflows but limited by other factors.
Collapse
|
15
|
Effects of Weather Extremes on the Nutrient Dynamics of a Shallow Eutrophic Lake as Observed during a Three-Year Monitoring Study. WATER 2022. [DOI: 10.3390/w14132032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The formation of algal and cyanobacterial blooms caused by the eutrophication of water bodies is a growing global concern. To examine the impact of extreme weather events on blooms, eutrophication-related parameters (e.g., water temperature, nitrate, ammonium, nitrite, and soluble reactive phosphate (SRP)) were quantitatively assessed monthly over three years (2017–2019) at Lake Seeburg (Central Germany), a shallow eutrophic lake with regular cyanobacterial blooms. In addition, SRP concentrations in sediment pore water were assessed monthly for one year (2018). The monitoring period included a three-day extremely heavy rain event in 2017 as well as a severe drought in summer 2018. No such extreme weather conditions occurred in 2019. After the heavy rain event in 2017, anoxic water containing high levels of ammonium and SRP entered the lake from flooded upstream wetlands. This external nutrient spike resulted in a heavy but short (3 weeks) and monospecific cyanobacterial bloom. A different situation occurred during the exceptionally hot and dry summer of 2018. Especially favored by high water temperatures, SRP concentrations in sediment pore waters gradually increased to extreme levels (34.4 mg/L). This resulted in a strong and sustained internal SRP delivery into the water column (69 mg/m2·d−1), which supported the longest-lasting cyanobacterial bloom (3 months) within the three-year monitoring period. Subsequent biomass decay led to oxygen-depleted conditions in the bottom waters, elevated ammonium, and, later, nitrate concentrations. Our observations demonstrate the particular effects of extreme weather events on nutrient dynamics and the phytoplankton composition in the lake. As the frequency and intensity of such events will likely increase due to climate change, their impacts need to be increasingly considered, e.g., in future remediation strategies.
Collapse
|
16
|
A Rahman ARA, Sinang SC, Nayan N. Response of algal biomass and macrophyte communities to internal or external nutrient loading. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:491. [PMID: 35678919 DOI: 10.1007/s10661-022-10116-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
Nutrient input from internal and external sources could regulate the variability and abundance of algal and macrophytes in freshwater lakes. This study explores the response of algal and macrophyte growth in relation to internal and external nutrient loading. This study was conducted over a 12-month period in a eutrophic shallow urban lake known as Slim River Lake, which located in Perak state, Malaysia. The internal nutrient loading was calculated during five identified dry periods. Meanwhile, external nutrient loading was measured from stormwater runoff after storm events. Algal biomass was measured twice a month, while total macrophyte abundance was measured once in a month. In this lake, internal nutrient loading could contribute up to 7538.33 kg total phosphorus and 42.23 kg total nitrogen during dry periods. Meanwhile, external nutrient loading quantified from the stormwater runoff contributed up to 401,500 kg total phosphorus and 4611.67 kg total nitrogen. The highest monthly mean for algal biomass and total macrophyte abundance was recorded as 60,343.75 cells/mL and 821.50, respectively. Based on the Pearson correlation analysis, algal biomass was significantly correlated with the internal total phosphorus loading (r = 0.54, p < 0.05). In addition, algal biomass also shows an inverse relationship with the external total phosphorus loading (r = - 0.44, p < 0.05). In contrast, total macrophyte abundance was significantly correlated with the external total phosphorus loading (r = 0.50, p < 0.05) and external total nitrogen loading (r = 0.44, p < 0.05). These results suggest that variation of nutrient sources triggers a different response by algal and macrophytes in the study lake. In implications, these findings show that a combination approach in reducing nutrients from sediment and anthropogenic sources is required for potential lake restoration.
Collapse
Affiliation(s)
- Amy Rose Aeriyanie A Rahman
- Biology Department, Faculty of Science and Mathematics, Sultan Idris Education University, 35900 Tanjong Malim, Perak, Malaysia
| | - Som Cit Sinang
- Biology Department, Faculty of Science and Mathematics, Sultan Idris Education University, 35900 Tanjong Malim, Perak, Malaysia.
| | - Nasir Nayan
- Geography Department, Faculty of Human Sciences, Sultan Idris Education University, 35900 Tanjong Malim, Perak, Malaysia
| |
Collapse
|
17
|
Saha A, Jesna PK, Ramya VL, Mol SS, Panikkar P, Vijaykumar ME, Sarkar UK, Das BK. Phosphorus fractions in the sediment of a tropical reservoir, India: Implications for pollution source identification and eutrophication. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:749-769. [PMID: 34050847 DOI: 10.1007/s10653-021-00985-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 05/19/2021] [Indexed: 06/12/2023]
Abstract
Eutrophication level in lakes and reservoirs depends on both internal and external phosphorus (P) load. Characterization of sediment P fractionation and identifying the P pollution sources are important for assessing the bio-availability of P and the dominant P source, for effectively controlling the water pollution. For determining the availability and sources of sediment P and eutrophication status, spatio-temporal variation in different P fractionation of sediment of hyper-eutrophic Krishnagiri reservoir, Tamil Nadu, India, was investigated. Sediment average total P (TP) content ranged from 4.62 to 5.64 g/kg. Main phosphorus form was the inorganic P (IP), and it makes up to 73.4-87.7% of TP. Among the different P fraction, viz. calcium bound (Ca-P), iron bound (Fe-P), aluminium bound (Al-P), exchangeable (Ex-P) and Organic-P (Org-P), Ca-P was the dominating fraction in both IP and TP. Trend of IP fraction was as follows: Ca-P > Fe-P > Al-P > Ex-P in pre-monsoon season, Fe-P > Ca-P > Al-P > Ex-P in monsoon and Ca-P > Al-P > Fe-P > Ex-P in post-monsoon. Overall the trend was as follows Ca-P > Fe-P > Al-P > Org-P > Ex-P. Bio-available-P (BAP) fractions ranged from 35.2 to 64.0% of TP, indicating its comparative higher value. Pearson's correlation matrix revealed that there was strong correlation among the different P fractions. Factor analysis indicates that different fractions of P were the dominating factor than the other sediment parameters. The observed variation in sediment P fractionation indicate the differences in source and characterization of P which is very helpful for implementation of effective management practices in controlling pollution that arises due to phosphorus in this hyper-eutrophic reservoir.
Collapse
Affiliation(s)
- Ajoy Saha
- Regional Centre of ICAR-Central Inland Fisheries Research Institute, Bangalore, 560089, Karnataka, India.
| | - P K Jesna
- Regional Centre of ICAR-Central Inland Fisheries Research Institute, Bangalore, 560089, Karnataka, India
| | - V L Ramya
- Regional Centre of ICAR-Central Inland Fisheries Research Institute, Bangalore, 560089, Karnataka, India
| | - S Sibina Mol
- Regional Centre of ICAR-Central Inland Fisheries Research Institute, Bangalore, 560089, Karnataka, India
| | - Preetha Panikkar
- Regional Centre of ICAR-Central Inland Fisheries Research Institute, Bangalore, 560089, Karnataka, India
| | - M E Vijaykumar
- Regional Centre of ICAR-Central Inland Fisheries Research Institute, Bangalore, 560089, Karnataka, India
| | - U K Sarkar
- ICAR - Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700120, West Bengal, India
| | - B K Das
- ICAR - Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700120, West Bengal, India
| |
Collapse
|
18
|
Trends and Causes of Raw Water Quality Indicators in the Five Most Famous Lakes of Jiangsu Province, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19031580. [PMID: 35162601 PMCID: PMC8834795 DOI: 10.3390/ijerph19031580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/20/2022] [Accepted: 01/22/2022] [Indexed: 11/30/2022]
Abstract
Due to pollutants from industrial and agricultural activities, the lakes in China are faced with ecological and environmental problems. The five most famous lakes of Jiangsu Province, Taihu Lake, Gehu Lake, Gaobaoshaobo Lake, Hongze Lake, and Luoma Lake, have long-term fixed monitoring points for water body-related indicators. Over a five-year period, the monitoring showed that Gehu Lake had the highest average total nitrogen (TN) and total phosphorus (TP) concentrations among all lakes which were close to the Grade V critical value of the China’s Environmental Quality Standards for Surface Water (CEQSW). The NH3-N concentrations in all lakes were Grade IV according to the China’s Water Quality Standard for Drinking Water Sources (CWQSDWS) and Grade II according to the CEQSW. In addition, although TP concentrations in Taihu Lake did not exceed Grade V in the CEQSW, TP removal was the main factor controlling eutrophication. It was also found that the petroleum concentrations in all lakes were lower than the Grade I according to the CEQSW. Despite this relatively low petroleum pollution, the concentration of petroleum was negatively correlated with the phytoplankton densities in all lakes. This indicated that phytoplankton density was very sensitive to petroleum concentration. For heavy metals, the concentrations of Pb, Cu, As, and Cd in all lakes were significantly lower than Grade I (CEQSW) from 2013 to 2017. However, the accumulated heavy metals in sediments will remain an important pollution source affecting water quality and aquatic products in the future. The comprehensive pollution index analysis showed that the five lakes were often moderately polluted, indicating that the protection of lake resources in China should not be relaxed for a long time in the future.
Collapse
|
19
|
Vermaat JE, Biberdžić V, Braho V, Gjoreska BB, Cara M, Dana Z, Đurašković P, Eriksen TE, Hjermann D, Imeri A, Jovanović K, Krizmanić J, Kupe L, Loshkoska T, Kemp JL, Marković A, Patceva S, Rakočević J, Stojanović K, Talevska M, Trajanovska S, Trajanovski S, Veljanoska-Sarafiloska E, Vidaković D, Zdraveski K, Živić I, Schneider SC. Relating environmental pressures to littoral biological water quality indicators in Western Balkan lakes: Can we fill the largest gaps? THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:150160. [PMID: 34798729 DOI: 10.1016/j.scitotenv.2021.150160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
Along six transects in each of six lakes across the Western Balkans, we collected data for three groups of littoral biological water quality indicators: epilithic diatoms, macrophytes, and benthic invertebrates. We assessed the relationships between them and three environmental pressures: nutrient load (eutrophication), hydro-morphological alteration of the shoreline, and water level variation, separating the effect of individual lakes and continuous explanatory variables. Lake water total phosphorus concentration (TP) showed substantial variation but was not related to any of the tested biological indicators, nor to any of the tested pressures. We suggest that this may be due to feedback processes such as P removal in the lake littoral zone. Instead, we found that a gradient in surrounding land-use towards increasing urbanization, and a land-use-based estimate of P run-off, served as a better descriptor of eutrophication. Overall, eutrophication and water level fluctuation were most important for explaining variation in the assessed indicators, whereas shoreline hydro-morphological alteration was less important. Diatom indicators were most responsive to all three pressures, whereas macrophyte biomass and species number responded only to water level fluctuation. The Trophic Diatom Index for Lakes (TDIL) was negatively related to urbanization and wave exposure. This indicates that it is a suitable indicator for pressures related to urbanization, although a confounding effect of wave exposure is possible. Invertebrate abundance responded strongly to eutrophication, but the indicator based on taxonomic composition (Average Score Per Taxon) did not. Our results suggest that our metrics can be applied in Western Balkan lakes, despite the high number of endemic species present in some of these lakes. We argue that local water management should focus on abating the causes of eutrophication and water level fluctuation, whilst preserving sufficient lengths of undeveloped shoreline to ensure good water quality in the long run.
Collapse
Affiliation(s)
- Jan E Vermaat
- Faculty of Environmental Sciences and Nature Conservation, Norwegian University of Life Sciences, P.O.Box 5003, 1430 Ås, Norway.
| | - Vera Biberdžić
- Natural History Museum of Montenegro, Bećir bega Osmanagića 16, 81000 Podgorica, Montenegro
| | - Vjola Braho
- Agricultural University of Tirana, Faculty of Agriculture and Environment, Paisi Vodica, Kodër-Kamza, Tirana, Albania
| | | | - Magdalena Cara
- Agricultural University of Tirana, Faculty of Agriculture and Environment, Paisi Vodica, Kodër-Kamza, Tirana, Albania
| | - Zamira Dana
- Agricultural University of Tirana, Faculty of Agriculture and Environment, Paisi Vodica, Kodër-Kamza, Tirana, Albania
| | - Pavle Đurašković
- Institute of Hydrometeorology and Seismology, 4th Proleterske brigade 19, 81000 Podgorica, Montenegro
| | - Tor Erik Eriksen
- Norwegian Institute for Water Research, Gaustadalleen 21, 0349 Oslo, Norway
| | - Dag Hjermann
- Norwegian Institute for Water Research, Gaustadalleen 21, 0349 Oslo, Norway
| | - Alma Imeri
- Agricultural University of Tirana, Faculty of Agriculture and Environment, Paisi Vodica, Kodër-Kamza, Tirana, Albania
| | - Katarina Jovanović
- Institute of Public Health of Serbia Dr Milan Jovanović Batut, dr Subotića starijeg 5, 11000 Belgrade, Serbia
| | - Jelena Krizmanić
- University of Belgrade, Faculty of Biology, Institute of Botany and Botanical Garden "Jevremovac", 43 Takovska, Belgrade 11000, Serbia
| | - Lirika Kupe
- Agricultural University of Tirana, Faculty of Agriculture and Environment, Paisi Vodica, Kodër-Kamza, Tirana, Albania
| | | | - Joanna Lynn Kemp
- Norwegian Institute for Water Research, Gaustadalleen 21, 0349 Oslo, Norway
| | - Aleksandra Marković
- University of Belgrade, Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, Njegoševa 12, Belgrade 11000, Serbia
| | - Suzana Patceva
- Hydrobiological Institute Ohrid, Naum Ohridski 50, 6000 Ohrid, Macedonia
| | - Jelena Rakočević
- University of Montenegro, Faculty of Natural Sciences and Mathematics, Biology Department, 81000 Podgorica, Montenegro
| | - Katarina Stojanović
- University of Belgrade, Faculty of Biology, Studentski trg 16, 11 000 Belgrade, Serbia
| | - Marina Talevska
- Hydrobiological Institute Ohrid, Naum Ohridski 50, 6000 Ohrid, Macedonia
| | - Sonja Trajanovska
- Hydrobiological Institute Ohrid, Naum Ohridski 50, 6000 Ohrid, Macedonia
| | - Sasho Trajanovski
- Hydrobiological Institute Ohrid, Naum Ohridski 50, 6000 Ohrid, Macedonia
| | | | - Danijela Vidaković
- University of Belgrade, Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, Njegoševa 12, Belgrade 11000, Serbia
| | - Konstantin Zdraveski
- Public Institution Galicica National Park, Department of Alternative Activities and Environmental Education, Velestovski pat b.b., 6000 Ohrid, Macedonia
| | - Ivana Živić
- University of Belgrade, Faculty of Biology, Studentski trg 16, 11 000 Belgrade, Serbia
| | | |
Collapse
|
20
|
Das TK, Scott Q, Bezbaruah AN. Montmorillonite-iron crosslinked alginate beads for aqueous phosphate removal. CHEMOSPHERE 2021; 281:130837. [PMID: 34015650 DOI: 10.1016/j.chemosphere.2021.130837] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 06/12/2023]
Abstract
Phosphate runoff from agriculture fields leads to eutrophication of the water bodies with devastating effects on the aquatic ecosystem. In this study, naturally occurring montmorillonite clay-incorporated iron crosslinked alginate biopolymer (MtIA) beads were synthesized and evaluated for aqueous phosphate removal. Batch experiment data showed an efficient phosphate removal (>99%) by the MtIA beads from solutions with different initial phosphate concentrations (1 and 5 mg PO43--P/L, and 100 μg PO43--P/L). The kinetic data fitted well into the pseudo-second-order kinetic model indicating chemisorption played an important role in phosphate removal. Based on analyses of results from the Elovich and intra-particulate diffusion models, phosphate removal by the MtIA beads was found to be chemisorption where both film diffusion and intra-particulate diffusion participated. The isotherm studies indicate that MtIA surfaces were heterogeneous, and the adsorption capacity of the beads calculated from Langmuir model was 48.7 mg PO43--P/g of dry beads which is ~2.3 times higher than values reported for other clay-metal-alginate beads. Electron microscopy (SEM-EDS) data from the beads showed a rough-textured surface which helped the beads achieve better contact with the phosphate ions. Fourier-transform infrared spectroscopy (FTIR) indicated that both iron and montmorillonite clay participated in crosslinking with the alginate chain. The MtIA beads worked effectively (>98% phosphate removal) over a wide pH range of 2-10 making it a robust adsorbent. The beads can potentially be used for phosphate recovery from eutrophic lakes, agricultural run-off, and municipal wastewater.
Collapse
Affiliation(s)
- Tonoy K Das
- Nanoenvirology Research Group, Department of Civil and Environmental Engineering North Dakota State University, Fargo, ND, 58105, USA
| | - Quentin Scott
- Nanoenvirology Research Group, Department of Civil and Environmental Engineering North Dakota State University, Fargo, ND, 58105, USA
| | - Achintya N Bezbaruah
- Nanoenvirology Research Group, Department of Civil and Environmental Engineering North Dakota State University, Fargo, ND, 58105, USA.
| |
Collapse
|
21
|
Crandall T, Jones E, Greenhalgh M, Frei RJ, Griffin N, Severe E, Maxwell J, Patch L, St. Clair SI, Bratsman S, Merritt M, Norris AJ, Carling GT, Hansen N, St. Clair SB, Abbott BW. Megafire affects stream sediment flux and dissolved organic matter reactivity, but land use dominates nutrient dynamics in semiarid watersheds. PLoS One 2021; 16:e0257733. [PMID: 34555099 PMCID: PMC8460006 DOI: 10.1371/journal.pone.0257733] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 09/08/2021] [Indexed: 01/05/2023] Open
Abstract
Climate change is causing larger wildfires and more extreme precipitation events in many regions. As these ecological disturbances increasingly coincide, they alter lateral fluxes of sediment, organic matter, and nutrients. Here, we report the stream chemistry response of watersheds in a semiarid region of Utah (USA) that were affected by a megafire followed by an extreme precipitation event in October 2018. We analyzed daily to hourly water samples at 10 stream locations from before the storm event until three weeks after its conclusion for suspended sediment, solute and nutrient concentrations, water isotopes, and dissolved organic matter concentration, optical properties, and reactivity. The megafire caused a ~2,000-fold increase in sediment flux and a ~6,000-fold increase in particulate carbon and nitrogen flux over the course of the storm. Unexpectedly, dissolved organic carbon (DOC) concentration was 2.1-fold higher in burned watersheds, despite the decreased organic matter from the fire. DOC from burned watersheds was 1.3-fold more biodegradable and 2.0-fold more photodegradable than in unburned watersheds based on 28-day dark and light incubations. Regardless of burn status, nutrient concentrations were higher in watersheds with greater urban and agricultural land use. Likewise, human land use had a greater effect than megafire on apparent hydrological residence time, with rapid stormwater signals in urban and agricultural areas but a gradual stormwater pulse in areas without direct human influence. These findings highlight how megafires and intense rainfall increase short-term particulate flux and alter organic matter concentration and characteristics. However, in contrast with previous research, which has largely focused on burned-unburned comparisons in pristine watersheds, we found that direct human influence exerted a primary control on nutrient status. Reducing anthropogenic nutrient sources could therefore increase socioecological resilience of surface water networks to changing wildfire regimes.
Collapse
Affiliation(s)
- Trevor Crandall
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America
- Cimarron Valley Research Station, Oklahoma State University, Perkins, Oklahoma, United States of America
| | - Erin Jones
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Mitchell Greenhalgh
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Rebecca J. Frei
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
| | - Natasha Griffin
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Emilee Severe
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Jordan Maxwell
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Leika Patch
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America
| | - S. Isaac St. Clair
- Department of Statistics, Brigham Young University, Provo, Utah, United States of America
| | - Sam Bratsman
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Marina Merritt
- Department of Chemical Engineering, Brigham Young University, Provo, Utah, United States of America
| | - Adam J. Norris
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Gregory T. Carling
- Department of Geological Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Neil Hansen
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Samuel B. St. Clair
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Benjamin W. Abbott
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America
| |
Collapse
|
22
|
Jones EF, Frei RJ, Lee RM, Maxwell JD, Shoemaker R, Follett AP, Lawson GM, Malmfeldt M, Watts R, Aanderud ZT, Allred C, Asay AT, Buhman M, Burbidge H, Call A, Crandall T, Errigo I, Griffin NA, Hansen NC, Howe JC, Meadows EL, Kujanpaa E, Lange L, Nelson ML, Norris AJ, Ostlund E, Suiter NJ, Tanner K, Tolworthy J, Vargas MC, Abbott BW. Citizen science reveals unexpected solute patterns in semiarid river networks. PLoS One 2021; 16:e0255411. [PMID: 34411107 PMCID: PMC8376020 DOI: 10.1371/journal.pone.0255411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 07/15/2021] [Indexed: 11/18/2022] Open
Abstract
Human modification of water and nutrient flows has resulted in widespread degradation of aquatic ecosystems. The resulting global water crisis causes millions of deaths and trillions of USD in economic damages annually. Semiarid regions have been disproportionately affected because of high relative water demand and pollution. Many proven water management strategies are not fully implemented, partially because of a lack of public engagement with freshwater ecosystems. In this context, we organized a large citizen science initiative to quantify nutrient status and cultivate connection in the semiarid watershed of Utah Lake (USA). Working with community members, we collected samples from ~200 locations throughout the 7,640 km2 watershed on a single day in the spring, summer, and fall of 2018. We calculated ecohydrological metrics for nutrients, major ions, and carbon. For most solutes, concentration and leverage (influence on flux) were highest in lowland reaches draining directly to the lake, coincident with urban and agricultural sources. Solute sources were relatively persistent through time for most parameters despite substantial hydrological variation. Carbon, nitrogen, and phosphorus species showed critical source area behavior, with 10-17% of the sites accounting for most of the flux. Unlike temperate watersheds, where spatial variability often decreases with watershed size, longitudinal variability showed an hourglass shape: high variability among headwaters, low variability in mid-order reaches, and high variability in tailwaters. This unexpected pattern was attributable to the distribution of human activity and hydrological complexity associated with return flows, losing river reaches, and diversions in the tailwaters. We conclude that participatory science has great potential to reveal ecohydrological patterns and rehabilitate individual and community relationships with local ecosystems. In this way, such projects represent an opportunity to both understand and improve water quality in diverse socioecological contexts.
Collapse
Affiliation(s)
- Erin Fleming Jones
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Rebecca J. Frei
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Raymond M. Lee
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Jordan D. Maxwell
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Rhetta Shoemaker
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Andrew P. Follett
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Gabriella M. Lawson
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Madeleine Malmfeldt
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Rachel Watts
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Zachary T. Aanderud
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Carter Allred
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Allison Tuttle Asay
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Madeline Buhman
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Hunter Burbidge
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Amber Call
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Trevor Crandall
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Isabella Errigo
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Natasha A. Griffin
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Neil C. Hansen
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Jansen C. Howe
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Emily L. Meadows
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Elizabeth Kujanpaa
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Leslie Lange
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Monterey L. Nelson
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Adam J. Norris
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Elysse Ostlund
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Nicholas J. Suiter
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Kaylee Tanner
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Joseph Tolworthy
- Department of Geology, Brigham Young University, Provo, Utah, United States of America
| | - Maria Camila Vargas
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Benjamin W. Abbott
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America
| |
Collapse
|
23
|
Nutrient Atmospheric Deposition on Utah Lake: A Comparison of Sampling and Analytical Methods. HYDROLOGY 2021. [DOI: 10.3390/hydrology8030123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We describe modified sampling and analysis methods to quantify nutrient atmospheric deposition (AD) and estimate Utah Lake nutrient loading. We address criticisms of previous published collection methods, specifically collection table height, screened buckets, and assumptions of AD spatial patterns. We generally follow National Atmospheric Deposition Program (NADP) recommendations but deviate to measure lake AD, which includes deposition from both local and long-range sources. The NADP guidelines are designed to eliminate local contributions to the extent possible, while lake AD loads should include local contributions. We collected side-by-side data with tables at 1 m (previous results) and 2 m (NADP guidelines) above the ground at two separate locations. We found no statistically significant difference between data collected at the different heights. Previous published work assumed AD rates would decrease rapidly from the shore. We collected data from the lake interior and show that AD rates do not significantly decline away from the shore. This demonstrates that AD loads should be estimated by using the available data and geostatistical methods even if all data are from shoreline stations. We evaluated screening collection buckets. Standard unscreened AD samples had up to 3-fold higher nutrient concentrations than screened AD collections. It is not clear which samples best represent lake AD rates, but we recommend the use of screens and placed screens on all sample buckets for the majority of the 2020 data to exclude insects and other larger objects such as leaves. We updated AD load estimates for Utah Lake. Previous published estimates computed total AD loads of 350 and 153 tons of total phosphorous (TP) and 460 and 505 tons of dissolve inorganic nitrogen (DIN) for 2017 and 2018, respectively. Using updated collection methods, we estimated 262 and 133 tons of TP and 1052 and 482 tons of DIN for 2019 and 2020, respectively. The 2020 results used screened samplers with lower AD rates, which resulted in significantly lower totals than 2019. We present these modified methods and use data and analysis to support the updated methods and assumptions to help guide other studies of nutrient AD on lakes and reservoirs. We show that AD nutrient loads can be a significant amount of the total load and should be included in load studies.
Collapse
|
24
|
Sediment Nutrient Flux Rates in a Shallow, Turbid Lake Are More Dependent on Water Quality Than Lake Depth. WATER 2021. [DOI: 10.3390/w13101344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The bottom sediments of shallow lakes are an important nutrient sink; however, turbidity may alter the influence of water depth on sediment nutrient uptake by reducing light and associated oxic processes, or altering nutrient availability. This study assessed the relative influence of water quality vs. water depth on sediment nutrient uptake rates in a shallow agricultural lake during spring, when sediment and nutrient loading are highest. Nitrate and soluble reactive phosphorus (SRP) flux rates were measured from sediment cores collected across a depth and spatial gradient, and correlated to water quality. Overlying water depth and distance to shore did not influence rates. Both nitrate and SRP sediment uptake rates increased with greater Secchi depth and higher water temperature, and nitrate and SRP rates increased with lower water total N and total P, respectively. The importance of water temperature on N and P cycling was confirmed in an additional experiment; however, different patterns of nitrate reduction and denitrification suggest that alternative N2 production pathways may be important. These results suggest that water quality and temperature can be key drivers of sediment nutrient flux in a shallow, eutrophic, turbid lake, and water depth manipulation may be less important for maximizing spring runoff nutrient retention than altering water quality entering the lake.
Collapse
|
25
|
Sulfur Development in the Water-Sediment System of the Algae Accumulation Embay Area in Lake Taihu. WATER 2019. [DOI: 10.3390/w11091817] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Sulfur development in water-sediment systems is closely related to eutrophication and harmful algae blooms (HABs). However, the development of sulfur in water-sediment systems during heavy algae accumulation still remains unclear, especially in hyper-eutrophic shallow lakes. In this study, a quarterly field investigation was carried out for a year in the algae accumulated embay area of Lake Taihu, accompanied by a short-term laboratory experiment on algae accumulation. The results show that hydrogen sulfide and methanethiol dominated the volatile sulfur compounds (VSCs) in the water during non-accumulation seasons, whereas the concentrations of dimethyl sulfides increased during heavy algae accumulation, both in the field and the laboratory. An increase in the acid volatile sulfide (AVS) in the surface sediments was also discovered together with the increase in dimethyl sulfides. The depletion of oxygen in the overlying water and sediment–water interface during the heavy algae accumulation and decomposition was found to be closely related to both the increase in VSCs in the overlying water and increase in AVS in the sediment. The increased concentrations of these reductive sulfocompounds might aggravate the eutrophication and HABs and should be given more consideration in future eutrophication control plans for lakes.
Collapse
|