1
|
Bendzus-Mendoza H, Rodriguez A, Debnath T, Bailey CD, Luker HA, Hansen IA. Radiation exposure induces genome-wide alternative splicing events in Aedes aegypti mosquitoes. Sci Rep 2025; 15:10057. [PMID: 40128241 PMCID: PMC11933385 DOI: 10.1038/s41598-025-94529-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 03/14/2025] [Indexed: 03/26/2025] Open
Abstract
Sterile insect technique is a method to control insect pest populations by sterilizing males with ionizing radiation. However, radiation sickness lowers the fitness of sterilized males. In this study, we investigate impacts of ionizing radiation on gene transcription, specifically alternative splicing events in irradiated male Aedes aegypti mosquitoes. We compared RNA sequencing data from mosquitoes irradiated with a single standard X-ray dose of 50 Grey and un-irradiated control mosquitoes using the Multivariate Analysis of Transcript Splicing computational tool. We found that radiation exposure caused alternative splicing events in 197 genes that are involved in a variety of biological processes including the Hippo and Notch cell signaling pathways. Our results suggest that radiation damage produced by ionizing radiation can alter the splicing of genes involved in important biological functions in male Ae. aegypti mosquitoes. These findings identify several new leads for new projects aimed at understanding the impact of radiation-induced alternative splicing on mosquito fitness and improving sterile insect technique by the development of radio-resistant mosquito strains.
Collapse
Affiliation(s)
| | - Amanda Rodriguez
- Department of Biology, New Mexico State University, Las Cruces, NM, USA
- Molecular Vector Physiology Laboratory, New Mexico State University, Las Cruces, NM, USA
| | - Tathagata Debnath
- Department of Computer Science, New Mexico State University, Las Cruces, NM, USA
| | - C Donovan Bailey
- Department of Biology, New Mexico State University, Las Cruces, NM, USA
| | - Hailey A Luker
- Department of Biology, New Mexico State University, Las Cruces, NM, USA
- Molecular Vector Physiology Laboratory, New Mexico State University, Las Cruces, NM, USA
| | - Immo A Hansen
- Department of Biology, New Mexico State University, Las Cruces, NM, USA.
- Molecular Vector Physiology Laboratory, New Mexico State University, Las Cruces, NM, USA.
- Institute of Applied Biosciences, New Mexico State University, Las Cruces, NM, USA.
| |
Collapse
|
2
|
Chen C, Qualls WA, Xue RD, Gibson S, Hahn DA. X-rays and gamma rays do not differ in their effectiveness for sterilizing pupae and adults of the mosquito Aedes aegypti (Diptera: Culicidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2025:toaf030. [PMID: 40079487 DOI: 10.1093/jee/toaf030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/02/2025] [Accepted: 02/02/2025] [Indexed: 03/15/2025]
Abstract
The sterile insect technique (SIT) is increasingly used as an alternative or supplemental tool in the integrated mosquito management toolbox to protect human health worldwide. SIT programs targeting mosquitoes such as Aedes aegypti (L.) have generally used high-activity isotopes of 60Cobalt or 137Caesium to sterilize males, however, these gamma irradiators pose substantial security challenges and are becoming more difficult and expensive to obtain and maintain. One practical alternative is using commercially available low-energy X-ray irradiators. In this study, we compared the efficacy of a low-energy X-ray irradiator and a traditional gamma irradiator for achieving male sterility in both male pupae and adults of the mosquito Ae. aegypti Linn. We found that both irradiators performed equivalently with 99% sterility achieved at ~50 Gy when male pupae were irradiated and ~70 Gy when male adults were irradiated. There were no differences in lifespan or male mating competitiveness at the sterilizing dose between the 2 irradiation platforms. Taken together, our results suggest that with careful dosimetry X-ray irradiators can effectively be used as an alternative to gamma irradiators in SIT programs targeting Ae. aegypti.
Collapse
Affiliation(s)
- Chao Chen
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, USA
| | - Whitney A Qualls
- Anastasia Mosquito Control District of St. Johns County, St. Augustine, FL, USA
| | - Rui-de Xue
- Anastasia Mosquito Control District of St. Johns County, St. Augustine, FL, USA
| | - Seth Gibson
- USDA-Agricultural Research Service Center for Medical, Agricultural, and Veterinary Entomology, Gainesville, FL, USA
| | - Daniel A Hahn
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
3
|
da Silva EB, Florêncio SGL, Amaral A, de Melo-Santos MAV. Assessing radiation-induced enzyme activation in Aedes aegypti: Potential challenges for SIT-based vector management. Acta Trop 2025; 261:107518. [PMID: 39743166 DOI: 10.1016/j.actatropica.2024.107518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/14/2024] [Accepted: 12/30/2024] [Indexed: 01/04/2025]
Abstract
This study characterizes the Aedes aegypti population from Fernando de Noronha Island, Pernambuco, Brazil, prior to implementing the Sterile Insect Technique (SIT). The main objective was to assess changes in glutathione S-transferase (GST) enzyme activity, previously linked to cypermethrin resistance in this population, in 2010. GST activity was measured in both male and female mosquitoes, masse produced in lab, after exposure to ionizing radiation. The populational evaluation after six years showed a complete susceptibility to cypermethrin, deltamethrin and lambda-cyhalothrin, although GST activity remained altered, increasing furthermore following irradiation (50 % higher in irradiated males and 31 % higher in irradiated females compared to non-irradiated controls). This stress response to gamma radiation suggesting implications for the effectiveness and viability of sterile males, particularly when SIT is combined with chemical insecticides. These findings enhance our understanding of radiation's impact on metabolic responses of the sterile males and provide valuable insights for refining integrated control strategies in vector management programs.
Collapse
Affiliation(s)
- Edvane Borges da Silva
- Universidade Federal de Pernambuco (UFPE), Centro Acadêmico de Vitória (CAV), Vitoria de Santo Antão, Pernambuco, Brazil; Universidade Federal de Pernambuco (UFPE), Group of Studies in Radioprotection and Radioecology (GERAR), Department of Nuclear Energy (DEN), Recife, Pernambuco, Brazil.
| | - Sloana Giesta Lemos Florêncio
- Universidade Federal de Pernambuco (UFPE), Group of Studies in Radioprotection and Radioecology (GERAR), Department of Nuclear Energy (DEN), Recife, Pernambuco, Brazil
| | - Ademir Amaral
- Universidade Federal de Pernambuco (UFPE), Group of Studies in Radioprotection and Radioecology (GERAR), Department of Nuclear Energy (DEN), Recife, Pernambuco, Brazil
| | | |
Collapse
|
4
|
Ogoyi DO, Njagi J, Tonui W, Dass B, Quemada H, James S. Post-release monitoring pathway for the deployment of gene drive-modified mosquitoes for malaria control in Africa. Malar J 2024; 23:351. [PMID: 39567982 PMCID: PMC11580452 DOI: 10.1186/s12936-024-05179-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 11/07/2024] [Indexed: 11/22/2024] Open
Abstract
BACKGROUND Gene drive-modified mosquitoes (GDMMs) have been promoted as one of the innovative technologies that may control and eliminate malaria and other mosquito-borne diseases. Several products are in early stages of development, targeting either population suppression or population modification of the mosquito vector. However, there is no direct experience of conducting risk assessment for environmental releases and subsequent policies regarding conditions for post-release. This study was carried out to gain additional insights on the possible post-release concerns that may arise, as they may inform future risk assessment and planning for deployment. METHODS This study involved desktop reviews on post release monitoring experiences with previously released biological control products. Stakeholder consultations involving online surveys, and face to face workshop with experts from selected African countries from Eastern, Western, and Southern African regions was then carried out to establish post-release monitoring concerns for GDMMs. RESULTS Review of genetic biocontrol technologies showed only limited lessons from post-release monitoring regimes with a focus largely limited to efficacy. For genetically modified organisms general surveillance and case-specific monitoring is expected in some of the regions. A number of post-release monitoring concerns in relation to the protection goals of human and animal health, biodiversity, and water quality were identified. CONCLUSION Based on established- protection goals, several post-release monitoring concerns have been identified. Subject to a rigorous risk assessment process for future GDMMs products, the concerns may then be prioritized for post-release monitoring.
Collapse
Affiliation(s)
- Dorington O Ogoyi
- Department of Biochemistry and Biotechnology, Technical University of Kenya, P.O BOX 52428, Nairobi, 00200, Kenya.
| | - Julia Njagi
- National Biosafety Authority, P.O. BOX 28251, Nairobi, 00100, Kenya
| | - Willy Tonui
- African Genetic Biocontrol Consortium (AGBC), Nairobi, Kenya
| | - Brinda Dass
- GeneConvene Global Collaborative, Foundation for the National Institutes of Health (FNIH), North Bethesda, MD, USA
| | - Hector Quemada
- GeneConvene Global Collaborative, Foundation for the National Institutes of Health (FNIH), North Bethesda, MD, USA
| | - Stephanie James
- GeneConvene Global Collaborative, Foundation for the National Institutes of Health (FNIH), North Bethesda, MD, USA
| |
Collapse
|
5
|
Birhanie SK, Thieme Castellon J, Macias A, Casas R, Brown MQ. Preparation for targeted sterile insect technique to control invasive Aedes aegypti (Diptera: Culicidae) in southern California: dose-dependent response, survivorship, and competitiveness. JOURNAL OF MEDICAL ENTOMOLOGY 2024; 61:1420-1426. [PMID: 39163869 DOI: 10.1093/jme/tjae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/18/2024] [Accepted: 08/06/2024] [Indexed: 08/22/2024]
Abstract
Aedes aegypti is fast spreading across California, with over 300 cities within 22 central and southern counties being infested since its introduction in 2013. Due to its cryptic breeding habitats, control efforts have not been successful so far. This calls for innovative tools such as sterile insect technique (SIT) to reinforce the existing integrated pest management (IPM). Here, we assessed fitness, survivorship, and dose response of X-ray irradiated male Ae. aegypti in California. Locally acquired Ae. aegypti eggs were hatched and reared in temperature-controlled laboratory setting at the West Valley Mosquito and Vector Control District in Ontario, California. Freshly emerged adult male mosquitoes were manually separated using motor-operated aspirators and treated with X-ray radiation at different dosage (42-60 Gy). Dose response of irradiated males was analyzed and induced sterility determined. Survivorship of males treated with different X-ray doses was compared. Fecundity of females that mated with irradiated males at different X-ray doses was generally comparable. Overall, induced sterility increased with higher X-ray doses. Nulliparous females that mated with male Ae. aegypti treated with 55-60 Gy laid eggs with over 99% sterility. Non-irradiated male mosquitoes had higher survivorship (mean = 0.78; P = 0.0331) than irradiated mosquitoes (mean range = 0.50-0.65). The competitiveness index of irradiated males decreased with increasing X-ray treatment doses, 1.14 at 55 Gy and 0.49 at 60 Gy, and this difference was significant (P < 0.01). Irradiated males showed high survivorship and competitiveness-key for the anticipated SIT application for the control of invasive Ae. aegypti in California.
Collapse
Affiliation(s)
| | | | - Ale Macias
- West Valley Mosquito and Vector Control District, 1295 East Locust St, Ontario, CA, USA
| | - Rubi Casas
- West Valley Mosquito and Vector Control District, 1295 East Locust St, Ontario, CA, USA
| | - Michelle Q Brown
- West Valley Mosquito and Vector Control District, 1295 East Locust St, Ontario, CA, USA
| |
Collapse
|
6
|
Roman A, Koenraadt CJM, Raymond B. Asaia spp. accelerate development of the yellow fever mosquito, Aedes aegypti, via interactions with the vertically transmitted larval microbiome. J Appl Microbiol 2024; 135:lxae261. [PMID: 39419784 DOI: 10.1093/jambio/lxae261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/30/2024] [Accepted: 10/16/2024] [Indexed: 10/19/2024]
Abstract
AIMS A wide range of vector control programmes rely on the efficient production and release of male mosquito. Asaia bacteria are described as potential symbionts of several mosquito species but their relationship with Aedes aegypti has never been rigorously tested. Here, we aimed to quantify the benefits of three Asaia species on host development in Ae. aegypti, and the ability of these bacteria to form a stable symbiotic association with growing larvae. METHODS AND RESULTS In order to disentangle direct and indirect effects of Asaia inoculation on host development, experiments used insects with an intact microbiome and those reared in near-aseptic conditions, while we characterized bacterial communities and Asaia densities with culture dependent and independent methods (16S rRNA amplicon sequencing). Neonate larvae were inoculated with Asaia spp. for 24 h, or left as uninoculated controls, all were reared on sterile food. Aseptic larvae were produced by surface sterilization of eggs. Although all Asaia were transient members of the gut community, two species accelerated larval development relative to controls. The two mutualistic species had lasting impacts on the larval microbiome, largely by altering the relative abundance of dominant bacteria, namely Klebsiella and Pseudomonas. Axenic larvae were dominated by Asaia when inoculated with this species but showed slower development than conventionally reared insects, indicating that Asaia alone could not restore normal development. CONCLUSIONS Our results reveal Asaia as a poor mutualist for Ae. aegypti, but with a species-specific positive effect on improving host performance mediated by interactions with other bacteria.
Collapse
Affiliation(s)
- Alessandro Roman
- Centre for Ecology and Conservation, University of Exeter Cornwall campus, Treliever Road, Penryn, TR10 9FE, United Kingdom
- Laboratory of Entomology, Droevendaalsesteeg 1, Wageningen University and Research, 6708 PB Wageningen, The Netherlands
| | | | - Ben Raymond
- Centre for Ecology and Conservation, University of Exeter Cornwall campus, Treliever Road, Penryn, TR10 9FE, United Kingdom
| |
Collapse
|
7
|
Ravasi D, Topalis P, Puggioli A, Leo C, Flacio E, Papagiannakis G, Balestrino F, Martelli M, Bellini R. Random mutations induced by a sub-sterilizing dose of gamma ray on Aedes albopictus male pupae and transmission to progeny. Acta Trop 2024; 256:107271. [PMID: 38795874 DOI: 10.1016/j.actatropica.2024.107271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 05/28/2024]
Abstract
The application of the Sterile Insect Technique (SIT) to mosquito control is based on the systematic release of large numbers of adult males that have been previously sterilized by irradiation. Ionizing radiation doses inducing full sterility also cause somatic damages that reduce the capacity of the treated males to compete with wild males. The optimal dose inducing high levels of male sterility and minimal impact on competitiveness can be assessed by establishing a dose-response curve. Sub-sterile males are, to a variable degree, still fertile and might be able to transmit to the progeny and following generation(s) sub-lethal random mutations resulting from irradiation. To investigate this, we treated Ae. albopictus male pupae with a sub-sterilizing (2-4 % of egg hatching) dose of gamma rays and explored expressed mutated genes in treated males and their progeny using RNA-seq. Single nucleotide polymorphisms (SNPs) were called using two independent pipelines. Only SNPs common to both pipelines (less than 5 % of the total SNPs predicted) were considered reliable and were annotated to genes. Over 600 genes with mutations likely induced by irradiation were found in the treated Ae. albopictus males. A part of the genes found mutated in irradiated males were also found in (and therefore probably passed on to) males of the F1 and F2 progeny, indicating that genetic variations induced by irradiation may be transmitted along generations. The mutated genes in irradiated males did not seem to significantly affect biological processes, except in one case (i.e., oxidative phosphorylation). Only in four cases (i.e., oxidative phosphorylation, UDP-glucose metabolic process, proton transmembrane transport and riboflavin metabolism) we found biological processes to be significantly affected by mutated genes that were likely transmitted to the male progeny. Our results suggest that random mutations induced by a sub-sterilizing dose of gamma ray in Ae. albopictus male pupae and transmitted to the male progeny of the irradiated mosquitoes do not affect biological processes potentially harmful, from a public-health point of view.
Collapse
Affiliation(s)
- Damiana Ravasi
- Department for Environment Constructions and Design, Vector Ecology Unit, Institute of Microbiology, University of Applied Sciences and Arts of Southern Switzerland, Via Flora Ruchat-Roncati 15, Mendrisio 6850, Switzerland.
| | - Pantelis Topalis
- Foundation for Research and Technology - Hellas, Institute of Molecular Biology and Biotechnology, Nikolaou Plastira 100, Crete, Heraklion GR-70013, Greece
| | - Arianna Puggioli
- Centro Agricoltura Ambiente "G. Nicoli", Via Sant'Agata 835, Crevalcore 40014, Italy
| | - Chiara Leo
- Polo d'Innovazione di Genomica, Genetica e Biologia S.r.l., Strada del Petriccio e Belriguardo 35, Siena 53100, Italy
| | - Eleonora Flacio
- Department for Environment Constructions and Design, Vector Ecology Unit, Institute of Microbiology, University of Applied Sciences and Arts of Southern Switzerland, Via Flora Ruchat-Roncati 15, Mendrisio 6850, Switzerland
| | - George Papagiannakis
- Foundation for Research and Technology - Hellas, Institute of Molecular Biology and Biotechnology, Nikolaou Plastira 100, Crete, Heraklion GR-70013, Greece
| | - Fabrizio Balestrino
- Centro Agricoltura Ambiente "G. Nicoli", Via Sant'Agata 835, Crevalcore 40014, Italy
| | - Margherita Martelli
- Polo d'Innovazione di Genomica, Genetica e Biologia S.r.l., Strada del Petriccio e Belriguardo 35, Siena 53100, Italy
| | - Romeo Bellini
- Centro Agricoltura Ambiente "G. Nicoli", Via Sant'Agata 835, Crevalcore 40014, Italy
| |
Collapse
|
8
|
Sasmita HI, Ernawan B, Ramadhani T, Sunaryo S, Mujiyanto M, Benariva AP, Sasaerila YH. Rhodamine-B for the mark, release, and recapture experiments in gamma-irradiated male Aedes aegypti ( Diptera: Culicidae): Persistence, dispersal, and its effect on survival. Vet World 2024; 17:1872-1879. [PMID: 39328460 PMCID: PMC11422624 DOI: 10.14202/vetworld.2024.1872-1879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/22/2024] [Indexed: 09/28/2024] Open
Abstract
Background and Aim Rhodamine-B (Rh-B) marking shows a great potential for use in mark-release-recapture (MRR) studies for rear-and-release mosquito control strategies, including the radiation-based sterile insect technique. However, its applicability and evaluation in body-stain-irradiated males of Aedes aegypti have received little attention. The present study evaluated the use of Rh-B to mark gamma-irradiated male A. aegypti. Materials and Methods Male A. aegypti were irradiated at the pupal stage at a dose of 70 Gy. After emergence, males were fed 0.1, 0.2, 0.3, or 0.4% Rh-B in 10% glucose solution for 4 days. Groups of unirradiated males that received the same feeding treatments were used as control groups. We evaluated the persistence of Rh-B and the longevity of males after Rh-B feeding. Furthermore, the use of Rh-B in irradiated A. aegypti for MRR experiments was evaluated at an urban site. Results No difference was observed in the Rh-B persistence among all concentrations at the 24-h postmarking period ranging from 91.25 ± 1.61% to 96.25 ± 1.61% and from 90.00 ± 2.28% to 93.13 ± 2.77% for the unirradiated and irradiated groups, respectively. Rh-B persistence significantly decreased over time, and persistence was significantly longer with increased concentrations in both the unirradiated and irradiated groups. Longevity was considerably decreased by Rh-B feeding and irradiation. However, no significant difference in longevity was found among males fed various concentrations of Rh-B. Through MRR experiments, irradiated-Rh-B marked males were mostly detected within a radius of 20 m and 40 m from the center-release point. The mean distance traveled of the released males from the three MRR events was calculated to be 42.6 m. Conclusion This study confirms that Rh-B body marking through sugar feeding is applicable for irradiated male A. aegypti, with only a slight effect on longevity. Furthermore, considering the significant reduction in persistence over time, further study is needed to assess the impact of this reduction on the calculation of field biological parameters resulting from MRR experiments.
Collapse
Affiliation(s)
- Hadian Iman Sasmita
- Research Center for Radiation Process Technology, National Research and Innovation Agency of Indonesia (BRIN), Jakarta 12440, Indonesia
| | - Beni Ernawan
- Research Center for Public Health and Nutrition, National Research and Innovation Agency of Indonesia (BRIN), Cibinong 16915, Indonesia
| | - Tri Ramadhani
- Research Center for Public Health and Nutrition, National Research and Innovation Agency of Indonesia (BRIN), Cibinong 16915, Indonesia
| | - Sunaryo Sunaryo
- Research Center for Public Health and Nutrition, National Research and Innovation Agency of Indonesia (BRIN), Cibinong 16915, Indonesia
| | - Mujiyanto Mujiyanto
- Research Center for Public Health and Nutrition, National Research and Innovation Agency of Indonesia (BRIN), Cibinong 16915, Indonesia
| | - Alfa Putra Benariva
- Department of Biology, Faculty of Science and Technology, Al Azhar Indonesia University, Jakarta 12110, Indonesia
| | - Yorianta Hidayat Sasaerila
- Department of Biology, Faculty of Science and Technology, Al Azhar Indonesia University, Jakarta 12110, Indonesia
| |
Collapse
|
9
|
Hu K, Jia H, Fu B, Li Y, Liu F. Mating behavior and responses to sublethal concentrations of imidacloprid in the predator Cyrtorhinus lividipennis. PEST MANAGEMENT SCIENCE 2024; 80:3451-3458. [PMID: 38415819 DOI: 10.1002/ps.8050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/26/2024] [Accepted: 02/28/2024] [Indexed: 02/29/2024]
Abstract
BACKGROUND Mating is an essential factor that governs the size of insect populations that reproduce sexually. The extensive application of insecticides has both lethal and sublethal effects on the physiology and mating behavior of insect natural enemies. The predatory bug Cyrtorhinus lividipennis is a natural enemy of planthopper and leafhopper populations in the rice ecosystem. Unfortunately, the effects of insecticides on the mating behavior of C. lividipennis are not well-understood. RESULTS The mating behavior of C. livdipennis consisted of mounting, antennal touch and mating attempts, genital insertion, adjustment of posture, and separation of the mating pair. Approximately 82.5% of the C. lividipennis mating pairs displayed their first mating at 12-36 h postemergence. Mating activity occurred throughout a 24-h period, with peak activity at 12:00-14:00 h, and the mean duration of mating was 48.75 min. Sublethal exposure to imidacloprid increased mating latency. Compared with the controls, the duration of courtship, pre-mating and adjusting posture for males treated with imidacloprid were prolonged. The duration of mating for females treated with imidacloprid was prolonged relative to untreated controls. The fecundity and daily spawning capacity of females treated with imidacloprid were higher than the untreated controls. CONCLUSION Our results provide insight into the mating process of C. lividipennis. Imidacloprid prolonged the duration of mating, which may explain the enhanced reproductive output in C. lividipennis females treated with imidacloprid. These findings will be useful in both rearing C. lividipennis and deploying this natural enemy in rice fields. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kui Hu
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Husheng Jia
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Baobao Fu
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Yao Li
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Fang Liu
- College of Plant Protection, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou, China
| |
Collapse
|
10
|
Marquereau L, Yamada H, Damiens D, Leclercq A, Derepas B, Brengues C, Dain BW, Lejarre Q, Proudhon M, Bouyer J, Gouagna LC. Upscaling irradiation protocols of Aedes albopictus pupae within an SIT program in Reunion Island. Sci Rep 2024; 14:12117. [PMID: 38802536 PMCID: PMC11130285 DOI: 10.1038/s41598-024-62642-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 05/20/2024] [Indexed: 05/29/2024] Open
Abstract
The implementation of the sterile insect technique against Aedes albopictus relies on many parameters, in particular on the success of the sterilization of males to be released into the target area in overflooding numbers to mate with wild females. Achieving consistent sterility levels requires efficient and standardized irradiation protocols. Here, we assessed the effects of exposure environment, density of pupae, irradiation dose, quantity of water and location in the canister on the induced sterility of male pupae. We found that the irradiation of 2000 pupae in 130 ml of water and with a dose of 40 Gy was the best combination of factors to reliably sterilize male pupae with the specific irradiator used in our control program, allowing the sterilization of 14000 pupae per exposure cycle. The location in the canister had no effect on induced sterility. The results reported here allowed the standardization and optimization of irradiation protocols for a Sterile Insect Technique program to control Ae. albopictus on Reunion Island, which required the production of more than 300,000 sterile males per week.
Collapse
Affiliation(s)
- Lucie Marquereau
- UMR Mivegec (Maladies Infectieuses et Vecteurs: Écologie, Génétique, Évolution et Contrôle), IRD-CNRS-Univ. Montpellier, Représentation IRD la Réunion - PTU, 97495, Sainte Clotilde Cedex, La Réunion, France.
| | - Hanano Yamada
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, IAEA Vienna, Wagramer Strasse 5, 1400, Vienna, Austria
| | - David Damiens
- UMR Mivegec (Maladies Infectieuses et Vecteurs: Écologie, Génétique, Évolution et Contrôle), IRD-CNRS-Univ. Montpellier, Représentation IRD la Réunion - PTU, 97495, Sainte Clotilde Cedex, La Réunion, France
| | - Antonin Leclercq
- UMR Mivegec (Maladies Infectieuses et Vecteurs: Écologie, Génétique, Évolution et Contrôle), IRD-CNRS-Univ. Montpellier, Représentation IRD la Réunion - PTU, 97495, Sainte Clotilde Cedex, La Réunion, France
| | - Brice Derepas
- UMR Mivegec (Maladies Infectieuses et Vecteurs: Écologie, Génétique, Évolution et Contrôle), IRD-CNRS-Univ. Montpellier, Représentation IRD la Réunion - PTU, 97495, Sainte Clotilde Cedex, La Réunion, France
| | - Cécile Brengues
- UMR Mivegec (Maladies Infectieuses et Vecteurs: Écologie, Génétique, Évolution et Contrôle), IRD-CNRS-Univ. Montpellier, Représentation IRD la Réunion - PTU, 97495, Sainte Clotilde Cedex, La Réunion, France
| | - Brice William Dain
- UMR Mivegec (Maladies Infectieuses et Vecteurs: Écologie, Génétique, Évolution et Contrôle), IRD-CNRS-Univ. Montpellier, Représentation IRD la Réunion - PTU, 97495, Sainte Clotilde Cedex, La Réunion, France
| | - Quentin Lejarre
- UMR Mivegec (Maladies Infectieuses et Vecteurs: Écologie, Génétique, Évolution et Contrôle), IRD-CNRS-Univ. Montpellier, Représentation IRD la Réunion - PTU, 97495, Sainte Clotilde Cedex, La Réunion, France
| | - Mickael Proudhon
- UMR Mivegec (Maladies Infectieuses et Vecteurs: Écologie, Génétique, Évolution et Contrôle), IRD-CNRS-Univ. Montpellier, Représentation IRD la Réunion - PTU, 97495, Sainte Clotilde Cedex, La Réunion, France
| | - Jeremy Bouyer
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, IAEA Vienna, Wagramer Strasse 5, 1400, Vienna, Austria
- ASTRE, CIRAD, INRAE, University of Montpellier, 34398, Montpellier, France
- ASTRE, CIRAD, INRAE, University of Montpellier, Plateforme Technologique CYROI, Sainte-Clotilde, La Réunion, France
| | - Louis Clément Gouagna
- UMR Mivegec (Maladies Infectieuses et Vecteurs: Écologie, Génétique, Évolution et Contrôle), IRD-CNRS-Univ. Montpellier, Représentation IRD la Réunion - PTU, 97495, Sainte Clotilde Cedex, La Réunion, France.
- UMR Mivegec, IRD-Délégation Régionale Occitanie, 34394, Montpellier, France.
| |
Collapse
|
11
|
Barbosa AL, Gois GC, Dos Santos VB, Pinto ATDM, de Castro Andrade BP, de Souza LB, Almeida E Sá FH, Virginio JF, Queiroz MAÁ. Effects of different diets on Aedes aegypti adults: improving rearing techniques for sterile insect technique. BULLETIN OF ENTOMOLOGICAL RESEARCH 2023; 113:748-755. [PMID: 37743777 DOI: 10.1017/s0007485323000408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
The aim was to evaluate the effect of different energy diets available in adulthood on the longevity, dispersal capacity and sexual performance of Aedes aegypti produced under a mass-rearing system. To evaluate the effects of diets in relation to the survival of the adult male insects of Ae. aegypti, six treatments were used: sucrose at a concentration of 10%, as a positive control (sack10); starvation, as a negative control (starvation); sucrose at a concentration of 20% associated with 1 g/l of ascorbic acid (sac20vitC); wild honey in a concentration of 10% (honey10); demerara sugar in a 10% concentration (demerara10); and sucrose at a concentration of 20% associated with 1 g/l of ascorbic acid and 0.5 g/l of amino acid proline (sac20vitCPr). Each treatment had 16 cages containing 50 adult males. For the tests of flight ability and propensity to copulation, five treatments were used (saca10; sac20vitC; mel10; demerara10; and sac20vitCPr), with males each for flight ability and females copulated by a single male for copulation propensity. The diet composed of sucrose at a concentration of 20% associated with ascorbic acid, as an antioxidant, improved the survival, flight ability and propensity to copulate in Ae. aegypti males under mass-rearing conditions, and may be useful to enhance the performance of sterile males, thus improving the success of sterile insect technique programmes.
Collapse
|
12
|
Zhang H, Trueman E, Hou X, Chew DX, Deng L, Liew J, Chia T, Xi Z, Tan CH, Cai Y. Different mechanisms of X-ray irradiation-induced male and female sterility in Aedes aegypti. BMC Biol 2023; 21:274. [PMID: 38012718 PMCID: PMC10683188 DOI: 10.1186/s12915-023-01757-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/02/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND Aedes aegypti (Ae. aegypti) is the major vector that transmits many diseases including dengue, Zika, and filariasis in tropical and subtropical regions. Due to the growing resistance to chemical-based insecticides, biological control methods have become an emerging direction to control mosquito populations. The sterile insect technique (SIT) deploys high doses of ionizing radiation to sterilize male mosquitoes before the release. The Wolbachia-based population suppression method of the incompatible insect technique (IIT) involves the release of Wolbachia-infected males to sterilize uninfected field females. Due to the lack of perfect sex separation tools, a low percentage of female contamination is detected in the male population. To prevent the unintentional release of these Wolbachia-infected females which might result in population replacement, a low dose of X-ray irradiation is deployed to sterilize any female escapees. However, it remains unclear whether these irradiation-induced male and female sterilizations share common mechanisms. RESULTS In this work, we set out to define the minimum dose of X-ray radiation required for complete female sterilization in Ae. aegypti (NEA-EHI strain). Further results showed that this minimum dose of X-ray irradiation for female sterilization significantly reduced male fertility. Similar results have been reported previously in several operational trials. By addressing the underlying causes of the sterility, our results showed that male sterility is likely due to chromosomal damage in the germ cells induced by irradiation. In contrast, female sterility appears to differ and is likely initiated by the elimination of the somatic supporting cells, which results in the blockage of the ovariole maturation. Building upon these findings, we identified the minimum dose of X-ray irradiation on the Wolbachia-infected NEA-EHI (wAlbB-SG) strain, which is currently being used in the IIT-SIT field trial. Compared to the uninfected parental strain, a lower irradiation dose could fully sterilize wAlbB-SG females. This suggests that Wolbachia-carrying mosquitoes are more sensitive to irradiation, consistent with a previous report showing that a lower irradiation dose fully sterilized Wolbachia-infected Ae. aegypti females (Brazil and Mexican strains) compared to those uninfected controls. CONCLUSIONS Our findings thus reveal the distinct mechanisms of ionizing X-ray irradiation-induced male or female sterility in Ae. aegypti mosquitoes, which may help the design of X-ray irradiation-based vector control methods.
Collapse
Affiliation(s)
- Heng Zhang
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, 117604, Singapore
- Present address: Institute of Infectious Disease, Shenzhen Bay Laboratory, Shenzhen, 518000, China
| | - Emma Trueman
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, 117604, Singapore
| | - Xinjun Hou
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, 117604, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - De Xian Chew
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, 117604, Singapore
| | - Lu Deng
- Environmental Health Institute, National Environment Agency, Singapore, 138667, Singapore
| | - Jonathan Liew
- Environmental Health Institute, National Environment Agency, Singapore, 138667, Singapore
| | - Tania Chia
- Environmental Health Institute, National Environment Agency, Singapore, 138667, Singapore
| | - Zhiyong Xi
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA
| | - Cheong Huat Tan
- Environmental Health Institute, National Environment Agency, Singapore, 138667, Singapore.
| | - Yu Cai
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, 117604, Singapore.
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore.
| |
Collapse
|
13
|
Lutrat C, Burckbuchler M, Olmo RP, Beugnon R, Fontaine A, Akbari OS, Argilés-Herrero R, Baldet T, Bouyer J, Marois E. Combining two genetic sexing strains allows sorting of non-transgenic males for Aedes genetic control. Commun Biol 2023; 6:646. [PMID: 37328568 PMCID: PMC10275924 DOI: 10.1038/s42003-023-05030-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/08/2023] [Indexed: 06/18/2023] Open
Abstract
Chemical control of disease vectoring mosquitoes Aedes albopictus and Aedes aegypti is costly, unsustainable, and increasingly ineffective due to the spread of insecticide resistance. The Sterile Insect Technique is a valuable alternative but is limited by slow, error-prone, and wasteful sex-separation methods. Here, we present four Genetic Sexing Strains (two for each Aedes species) based on fluorescence markers linked to the m and M sex loci, allowing for the isolation of transgenic males. Furthermore, we demonstrate how combining these sexing strains enables the production of non-transgenic males. In a mass-rearing facility, 100,000 first instar male larvae could be sorted in under 1.5 h with an estimated 0.01-0.1% female contamination on a single machine. Cost-efficiency analyses revealed that using these strains could result in important savings while setting up and running a mass-rearing facility. Altogether, these Genetic Sexing Strains should enable a major upscaling in control programmes against these important vectors.
Collapse
Affiliation(s)
- Célia Lutrat
- CIRAD, UMR ASTRE, F-34398, Montpellier, France.
- ASTRE, CIRAD, INRA, Univ. Montpellier, Montpellier, France.
- Université de Montpellier, Montpellier, France.
- CNRS UPR9022, INSERM U1257, Université de Strasbourg, Strasbourg, France.
| | | | | | - Rémy Beugnon
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103, Leipzig, Germany
- Institute of Biology, Leipzig University, Puschstrasse 4, 04103, Leipzig, Germany
| | - Albin Fontaine
- Unité Parasitologie et Entomologie, Département Microbiologie et maladies infectieuses, Institut de Recherche Biomédicale des Armées (IRBA), Marseille, France
| | - Omar S Akbari
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, CA, 92093, USA
| | | | - Thierry Baldet
- CIRAD, UMR ASTRE, F-34398, Montpellier, France
- CIRAD, UMR ASTRE, Sainte-Clotilde, F-97490, Reunion, France
| | - Jérémy Bouyer
- CIRAD, UMR ASTRE, F-34398, Montpellier, France
- CIRAD, UMR ASTRE, Saint-Pierre, F-97410, Reunion, France
- Insect Pest Control Sub-Programme, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency (IAEA), Vienna, Austria
| | - Eric Marois
- CNRS UPR9022, INSERM U1257, Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
14
|
Sánchez-Aldana-Sánchez GA, Liedo P, Bond JG, Dor A. Release of sterile Aedes aegypti mosquitoes: chilling effect on mass-reared males survival and escape ability and on irradiated males sexual competitiveness. Sci Rep 2023; 13:3797. [PMID: 36882477 PMCID: PMC9990024 DOI: 10.1038/s41598-023-30722-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/28/2023] [Indexed: 03/09/2023] Open
Abstract
In the sterile insect technique, it is important to measure the impact of mass-rearing and handling of sterile males to allow a successful control of the target wild population. This study evaluates the effect of pre-release chilling on the survival, escape ability, and sexual competitiveness of male Aedes aegypti. To determine survival and escape ability, mosquitoes were chilled at 4 °C using four different treatments of either one exposure (25 min) or two consecutive exposures (25 + 25 min, 25 + 50 min, 25 + 100 min). For sexual competitiveness, two different treatments were evaluated, chilling for 25 min once and twice. Results showed that the longest exposure to chilling caused a significant reduction of survival time, from 67 to 54 days. Escape ability was reduced by the first chilling from 25 to 7% and with the second chilling, it was reduced from 30 to 24% in the control to 4.9, 2.0 and 0.5% for 25, 50 and 100 min, respectively. Sexual competitiveness index was reduced from 1.16 in the control, to 0.32 and - 0.11 for treatments involving one and two chilling periods, respectively. It is recommended to increase the chilling temperature and reduce the exposure time to reduce the harmful effects on sterile males.
Collapse
Affiliation(s)
| | - Pablo Liedo
- El Colegio de la Frontera Sur (ECOSUR), 30700, Tapachula, Chiapas, Mexico
| | - J Guillermo Bond
- Centro Regional de Investigación en Salud Pública, Instituto Nacional de Salud Pública (CRISP, INSP), 30700, Tapachula, Chiapas, Mexico
| | - Ariane Dor
- Consejo Nacional de Ciencia y Tecnología (CONACYT), commissioned to El Colegio de la Frontera Sur (ECOSUR), 30700, Tapachula, Chiapas, Mexico.
| |
Collapse
|
15
|
Chen C, Aldridge RL, Gibson S, Kline J, Aryaprema V, Qualls W, Xue RD, Boardman L, Linthicum KJ, Hahn DA. Developing the radiation-based sterile insect technique (SIT) for controlling Aedes aegypti: identification of a sterilizing dose. PEST MANAGEMENT SCIENCE 2023; 79:1175-1183. [PMID: 36424673 DOI: 10.1002/ps.7303] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/19/2022] [Accepted: 11/25/2022] [Indexed: 05/20/2023]
Abstract
BACKGROUND The sterile insect technique (SIT) is emerging as a tool to supplement traditional pesticide-based control of Aedes aegypti, a prominent mosquito vector of microbes that has increased the global burden of human morbidity and mortality over the past 50 years. SIT relies on rearing, sterilizing and releasing large numbers of male mosquitoes that will mate with fertile wild females, thus reducing production of offspring from the target population. In this study, we investigated the effects of ionizing radiation (gamma) on male and female survival, longevity, mating behavior, and sterility of Ae. aegypti in a dose-response design. This work is a first step towards developing an operational SIT field suppression program against Ae. aegypti in St. Augustine, Florida, USA. RESULTS Exposing late-stage pupae to 50 Gy of radiation yielded 99% male sterility while maintaining similar survival of pupae to adult emergence, adult longevity and male mating competitiveness compared to unirradiated males. Females were completely sterilized at 30 Gy, and when females were dosed with 50 Gy, they had a lower incidence of blood-feeding than unirradiated females. CONCLUSION Our work suggests that an ionizing radiation dose of 50 Gy should be used for future development of operational SIT in our program area because at this dose males are 99% sterile while maintaining mating competitiveness against unirradiated males. Furthermore, females that might be accidentally released with sterile males as a result of errors in sex sorting also are sterile and less likely to blood-feed than unirradiated females at our 50 Gy dose. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chao Chen
- Department of Entomology and Nematology, University of Florida, Gainesville, Florida, USA
| | - Robert L Aldridge
- US Department of Agriculture, Agricultural Research Service Center for Medical, Agricultural, & Veterinary Entomology, Gainesville, Florida, USA
| | - Seth Gibson
- US Department of Agriculture, Agricultural Research Service Center for Medical, Agricultural, & Veterinary Entomology, Gainesville, Florida, USA
| | - Jedidiah Kline
- US Department of Agriculture, Agricultural Research Service Center for Medical, Agricultural, & Veterinary Entomology, Gainesville, Florida, USA
| | | | - Whitney Qualls
- Anastasia Mosquito Control District, St. Augustine, Florida, USA
| | - Rui-de Xue
- Anastasia Mosquito Control District, St. Augustine, Florida, USA
| | - Leigh Boardman
- Department of Entomology and Nematology, University of Florida, Gainesville, Florida, USA
- Department of Biological Sciences & Center for Biodiversity Research, University of Memphis, Memphis, Tennessee, USA
| | - Kenneth J Linthicum
- US Department of Agriculture, Agricultural Research Service Center for Medical, Agricultural, & Veterinary Entomology, Gainesville, Florida, USA
| | - Daniel A Hahn
- Department of Entomology and Nematology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
16
|
da Silva EB, de Mendonça CM, Guedes DRD, Paiva MHS, Mendonça JDA, Dias ESF, Florêncio SGL, Amaral A, Netto AM, Lopes CFJA, de Melo-Santos MAV. Effects of gamma radiation on the vector competence of Aedes aegypti (diptera: Culicidae) to transmit Zika virus. Acta Trop 2023; 239:106831. [PMID: 36640923 DOI: 10.1016/j.actatropica.2023.106831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
One of the limitations of the Sterile Insect Technique (SIT), conventionally performed by ionizing radiation, regards separating males from females, which is not 100% effective. Some irradiated females may be released together with males in the field at SIT. The present study aimed to evaluate the influence of ionizing radiation on the ability of Aedes aegypti mosquitoes to transmit the Zika virus after exposing female pupae to a 40 Gy of gamma radiation. The results suggest that the genetic damage induced by exposure of females to this dose level promotes their total sterility, but it does not influence their vector competence. However, our data point out that ionizing radiation may decrease the proportion of infective mosquitoes.
Collapse
Affiliation(s)
- Edvane Borges da Silva
- Centro Acadêmico de Vitória (CAV), Universidade Federal de Pernambuco (UFPE), Vitoria de Santo Antão, Pernambuco, Brazil; Group of Studies in Radioprotection and Radioecology (GERAR), Department of Nuclear Energy (DEN), Postgraduate Programme in Energy and Nuclear Technologies (PROTEN), Universidade Federal de Pernambuco (UFPE), Recife, Pernambuco, Brazil.
| | - Carlos Messias de Mendonça
- Centro Acadêmico de Vitória (CAV), Universidade Federal de Pernambuco (UFPE), Vitoria de Santo Antão, Pernambuco, Brazil
| | | | - Marcelo Henrique Santos Paiva
- Department of Entomology, Aggeu Magalhães Institute/Oswaldo Cruz Foundation (IAM/Fiocruz), Recife, Pernambuco, Brazil; Centro Acadêmico do Agreste (CAA), Universidade Federal de Pernambuco (UFPE), Caruaru, Pernambuco, Brazil
| | - Jaziela de Arruda Mendonça
- Department of Entomology, Aggeu Magalhães Institute/Oswaldo Cruz Foundation (IAM/Fiocruz), Recife, Pernambuco, Brazil
| | | | - Sloana Giesta Lemos Florêncio
- Group of Studies in Radioprotection and Radioecology (GERAR), Department of Nuclear Energy (DEN), Postgraduate Programme in Energy and Nuclear Technologies (PROTEN), Universidade Federal de Pernambuco (UFPE), Recife, Pernambuco, Brazil
| | - Ademir Amaral
- Group of Studies in Radioprotection and Radioecology (GERAR), Department of Nuclear Energy (DEN), Postgraduate Programme in Energy and Nuclear Technologies (PROTEN), Universidade Federal de Pernambuco (UFPE), Recife, Pernambuco, Brazil
| | - André Maciel Netto
- Group of Studies in Radioprotection and Radioecology (GERAR), Department of Nuclear Energy (DEN), Postgraduate Programme in Energy and Nuclear Technologies (PROTEN), Universidade Federal de Pernambuco (UFPE), Recife, Pernambuco, Brazil
| | | | | |
Collapse
|
17
|
Wang LM, Li N, Ren CP, Peng ZY, Lu HZ, Li D, Wu XY, Zhou ZX, Deng JY, Zheng ZH, Wang RQ, Du YN, Wang DQ, Deng SQ. Sterility of Aedes albopictus by X-ray Irradiation as an Alternative to γ-ray Irradiation for the Sterile Insect Technique. Pathogens 2023; 12:102. [PMID: 36678450 PMCID: PMC9867157 DOI: 10.3390/pathogens12010102] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/21/2022] [Accepted: 01/05/2023] [Indexed: 01/10/2023] Open
Abstract
The mosquito Aedes albopictus can transmit various arboviral diseases, posing a severe threat to human health. As an environmentally friendly method, sterile insect technology (SIT) is considered an alternative to traditional methods such as chemical pesticides to control Ae. albopictus. In SIT, the sterility of male mosquitoes can be achieved by γ-ray or X-ray radiation. Compared with γ-rays, X-rays are easier to obtain, cheaper, and less harmful. However, there is a lack of comparative assessment of these two types of radiation for SIT under the same controlled conditions. Here, we compared the effects of X-ray and γ-ray radiation on the sterility of Ae. albopictus males under laboratory-controlled conditions. Neither type of radiation affected the number of eggs but significantly reduced the survival time and hatch rate. The same dose of γ-rays caused a higher sterility effect on males than X-rays but had a more significant impact on survival. However, X-rays could achieve the same sterility effect as γ-rays by increasing the radiation dose. For example, X-rays of 60 Gy induced 99% sterility, similar to γ-rays of 40 Gy. In the test of male mating competitiveness, the induced sterility and the male mating competitiveness index were also identical at the same release ratio (sterile males/fertile males). At a release ratio of 7:1, nearly 80% of eggs failed to hatch. Sterile males produced by X-ray and γ-ray radiation had similar male competitiveness in competition with field males. In conclusion, a higher dose of X-rays is required to achieve the same sterility effect, compared to γ-rays. When γ-rays are not readily available, high-dose X-rays can be used instead. This study provides data supporting the selection of more suitable radiation for the field release of sterile male mosquitoes.
Collapse
Affiliation(s)
- Lin-Min Wang
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, the Key Laboratory of Zoonoses of High Institutions in Anhui, Department of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Ni Li
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, the Key Laboratory of Zoonoses of High Institutions in Anhui, Department of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Cui-Ping Ren
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, the Key Laboratory of Zoonoses of High Institutions in Anhui, Department of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Zhe-Yu Peng
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, the Key Laboratory of Zoonoses of High Institutions in Anhui, Department of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Hong-Zheng Lu
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, the Key Laboratory of Zoonoses of High Institutions in Anhui, Department of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Dong Li
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, the Key Laboratory of Zoonoses of High Institutions in Anhui, Department of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Xin-Yu Wu
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, the Key Laboratory of Zoonoses of High Institutions in Anhui, Department of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Zi-Xin Zhou
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, the Key Laboratory of Zoonoses of High Institutions in Anhui, Department of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Jian-Yi Deng
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, the Key Laboratory of Zoonoses of High Institutions in Anhui, Department of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Zi-Han Zheng
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, the Key Laboratory of Zoonoses of High Institutions in Anhui, Department of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Ruo-Qing Wang
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, the Key Laboratory of Zoonoses of High Institutions in Anhui, Department of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Yi-Nan Du
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, the Key Laboratory of Zoonoses of High Institutions in Anhui, Department of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Duo-Quan Wang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), National Health Commission Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai 200025, China
| | - Sheng-Qun Deng
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, the Key Laboratory of Zoonoses of High Institutions in Anhui, Department of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
18
|
Spinner SAM, Barnes ZH, Puinean AM, Gray P, Dafa’alla T, Phillips CE, Nascimento de Souza C, Frazon TF, Ercit K, Collado A, Naish N, Sulston E, Ll. Phillips GC, Greene KK, Poletto M, Sperry BD, Warner SA, Rose NR, Frandsen GK, Verza NC, Gorman KJ, Matzen KJ. New self-sexing Aedes aegypti strain eliminates barriers to scalable and sustainable vector control for governments and communities in dengue-prone environments. Front Bioeng Biotechnol 2022; 10:975786. [PMID: 36394032 PMCID: PMC9650594 DOI: 10.3389/fbioe.2022.975786] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/22/2022] [Indexed: 10/20/2023] Open
Abstract
For more than 60 years, efforts to develop mating-based mosquito control technologies have largely failed to produce solutions that are both effective and scalable, keeping them out of reach of most governments and communities in disease-impacted regions globally. High pest suppression levels in trials have yet to fully translate into broad and effective Aedes aegypti control solutions. Two primary challenges to date-the need for complex sex-sorting to prevent female releases, and cumbersome processes for rearing and releasing male adult mosquitoes-present significant barriers for existing methods. As the host range of Aedes aegypti continues to advance into new geographies due to increasing globalisation and climate change, traditional chemical-based approaches are under mounting pressure from both more stringent regulatory processes and the ongoing development of insecticide resistance. It is no exaggeration to state that new tools, which are equal parts effective and scalable, are needed now more than ever. This paper describes the development and field evaluation of a new self-sexing strain of Aedes aegypti that has been designed to combine targeted vector suppression, operational simplicity, and cost-effectiveness for use in disease-prone regions. This conditional, self-limiting trait uses the sex-determination gene doublesex linked to the tetracycline-off genetic switch to cause complete female lethality in early larval development. With no female progeny survival, sex sorting is no longer required, eliminating the need for large-scale mosquito production facilities or physical sex-separation. In deployment operations, this translates to the ability to generate multiple generations of suppression for each mosquito released, while being entirely self-limiting. To evaluate these potential benefits, a field trial was carried out in densely-populated urban, dengue-prone neighbourhoods in Brazil, wherein the strain was able to suppress wild mosquito populations by up to 96%, demonstrating the utility of this self-sexing approach for biological vector control. In doing so, it has shown that such strains offer the critical components necessary to make these tools highly accessible, and thus they harbour the potential to transition mating-based approaches to effective and sustainable vector control tools that are within reach of governments and at-risk communities who may have only limited resources.
Collapse
Affiliation(s)
| | | | | | - Pam Gray
- Oxitec Ltd., Abingdon, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Natalia C. Verza
- Oxitec Ltd., Abingdon, United Kingdom
- Oxitec do Brasil, Campinas, Brazil
| | | | | |
Collapse
|
19
|
Ernawan B, Anggraeni T, Yusmalinar S, Sasmita HI, Fitrianto N, Ahmad I. Assessment of Compaction, Temperature, and Duration Factors for Packaging and Transporting of Sterile Male Aedes aegypti (Diptera: Culicidae) under Laboratory Conditions. INSECTS 2022; 13:847. [PMID: 36135548 PMCID: PMC9501006 DOI: 10.3390/insects13090847] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/01/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
Optimized conditions for the packaging and transportation of sterile males are crucial factors in successful SIT programs against mosquito vector-borne diseases. The factors influencing the quality of sterile males in packages during transportation need to be assessed to develop standard protocols. This study was aimed to investigate the impact of compaction, temperature, and duration factors during packaging and transportation on the quality of gamma-sterilized male Ae. aegypti. Aedes aegypti males were sterilized at a dose of 70 Gy, compacted into Falcon tubes with densities of 40, 80, and 120 males/2 mL; and then exposed to temperatures of 7, 14, 21, and 28 °C. Each temperature setup was held for a duration of 3, 6, 12, 24, and 48 h at a 60 rpm constant vibration to simulate transportation. The parameters of mortality, flight ability, induced sterility, and longevity were investigated. Results showed that increases in density, temperature, and duration significantly increased mortality and reduced flight ability and longevity, but none of the factors significantly affected induced sterility. With a mortality rate of less than 20%, an escaping rate of more than 70%, considerable longevity, and the most negligible effect on induced sterility (approximately 98%), a temperature of 7 °C and a compaction density of 80 males/2 mL were shown to be optimized conditions for short-term transportation (no more than 24 h) with the minimum adverse effects compared with other condition setups.
Collapse
Affiliation(s)
- Beni Ernawan
- Institut Teknologi Bandung (ITB), School of Life Sciences and Technology, Jalan Ganesha No. 10, Bandung 40132, Indonesia
- Research Center for Radiation Process Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency of Indonesia (BRIN), Jalan Lebak Bulus Raya No. 49, Jakarta 12440, Indonesia
| | - Tjandra Anggraeni
- Institut Teknologi Bandung (ITB), School of Life Sciences and Technology, Jalan Ganesha No. 10, Bandung 40132, Indonesia
| | - Sri Yusmalinar
- Institut Teknologi Bandung (ITB), School of Life Sciences and Technology, Jalan Ganesha No. 10, Bandung 40132, Indonesia
| | - Hadian Iman Sasmita
- Research Center for Radiation Process Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency of Indonesia (BRIN), Jalan Lebak Bulus Raya No. 49, Jakarta 12440, Indonesia
| | - Nur Fitrianto
- Research Center for Radiation Process Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency of Indonesia (BRIN), Jalan Lebak Bulus Raya No. 49, Jakarta 12440, Indonesia
| | - Intan Ahmad
- Institut Teknologi Bandung (ITB), School of Life Sciences and Technology, Jalan Ganesha No. 10, Bandung 40132, Indonesia
| |
Collapse
|
20
|
Su S, Zhang X, Zhang J, Huang B, Jian C, Peng X, Vreysen MJB, Chen M. Flight Performance, Fecundity, and Ovary Development of Grapholita molesta (Lepidoptera: Torticidae) at Different Ages. INSECTS 2022; 13:837. [PMID: 36135538 PMCID: PMC9501558 DOI: 10.3390/insects13090837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
Grapholita molesta is one of the most serious pests in fruits orchards. Flight performance of male insects and fecundity of female insects are important quality control parameters when moths are mass-reared for use in environment-friendly control strategies such as the sterile insect technique (SIT). However, information about flight performance, fecundity, and ovary development of G. molesta at different ages is scarce. In this study, we used a flight mill information system to measure the flight ability of female and male adults of G. molesta at different ages, and evaluated fecundity and ovarian development of female adults at different ages. The results demonstrated that the flight parameters (cumulative flight distance, cumulative flight time, maximum flight distance and maximum flight duration) of female and male G. molesta varied with age. Six-day-old female moths and three-day-old male moths were the strongest fliers, whereas the fecundity of one-day and two-day-old female moths was significantly lower than that of three to seven-day-old females. Five-day-old females had the highest fecundity. Their ovaries demonstrated mature eggs in the lateral and middle oviducts as of the third day post-emergence. It is suggested that the optimal age for moths to be released in SIT programs is three days, and moths older three days can be used for mass-rearing in a factory.
Collapse
Affiliation(s)
- Sha Su
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Xianyang 712100, China
| | - Xiaohe Zhang
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Xianyang 712100, China
| | - Jilong Zhang
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Xianyang 712100, China
| | - Baojian Huang
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Xianyang 712100, China
| | - Chengzhi Jian
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Xianyang 712100, China
| | - Xiong Peng
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Xianyang 712100, China
| | - Marc J. B. Vreysen
- Joint FAO/IAEA Programme, Entomology Unit, FAO/IAEA Agriculture & Biotechnology Laboratory, International Atomic Energy Agency, A-2444 Vienna, Austria
| | - Maohua Chen
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Xianyang 712100, China
| |
Collapse
|
21
|
Balestrino F, Bouyer J, Vreysen MJB, Veronesi E. Impact of Irradiation on Vector Competence of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) for Dengue and Chikungunya Viruses. Front Bioeng Biotechnol 2022; 10:876400. [PMID: 35721847 PMCID: PMC9204086 DOI: 10.3389/fbioe.2022.876400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
Effective control strategies against arthropod disease vectors are amongst the most powerful tools to prevent the spread of vector-borne diseases. The sterile insect technique (SIT) is an effective and sustainable autocidal control method that has recently shown effective population suppression against different Aedes vector species worldwide. The SIT approach for mosquito vectors requires the release of radio-sterilized male mosquitoes only, but currently available sex separation techniques cannot ensure the complete elimination of females resulting in short-term risk of increased biting rate and arboviral disease transmission. In this study, we compared for the first time the transmission of dengue and chikungunya viruses in Aedes aegypti and Aedes albopictus females exposed as pupae to an irradiation dose of 40 Gy. Females of both species were fed on blood spiked with either dengue or chikungunya viruses, and body parts were tested for virus presence by real-time RT-PCR at different time points. No differences were observed in the dissemination efficiency of the dengue virus in irradiated and unirradiated Ae. albopictus and Ae. aegypti mosquitoes. The dissemination of the chikungunya virus was higher in Ae. albopictus than in Ae. Aegypti, and irradiation increased the virus load in both species. However, we did not observe differences in the transmission efficiency for chikungunya (100%) and dengue (8–27%) between mosquito species, and irradiation did not impact transmissibility. Further implications of these results on the epidemiology of vector-borne diseases in the field are discussed.
Collapse
Affiliation(s)
- Fabrizio Balestrino
- National Centre for Vector Entomology, Vetsuisse Faculty, Institute of Parasitology, University of Zürich, Zürich, Switzerland
- Centro Agricoltura Ambiente “G. Nicoli”, Sanitary Entomology and Zoology Department, Crevalcore, Italy
- *Correspondence: Fabrizio Balestrino,
| | - Jérémy Bouyer
- CIRAD, UMR ASTRE CIRAD-INRA « Animals, Health, Territories, Risks and Ecosystems », Montpellier, France
- FAO/IAEA Insect Pest Control Laboratory (IPCL), FAO/IAEA Joint Division of Nuclear Techniques in Food and Agriculture (NAFA), FAO/IAEA Agriculture and Biotechnology Laboratories, Vienna, Austria
| | - Marc J. B. Vreysen
- FAO/IAEA Insect Pest Control Laboratory (IPCL), FAO/IAEA Joint Division of Nuclear Techniques in Food and Agriculture (NAFA), FAO/IAEA Agriculture and Biotechnology Laboratories, Vienna, Austria
| | - Eva Veronesi
- National Centre for Vector Entomology, Vetsuisse Faculty, Institute of Parasitology, University of Zürich, Zürich, Switzerland
- Laboratory of Applied Microbiology, Department of Environment, University of Applied Sciences and Arts of Southern Switzerland (SUPSI), Bellinzona, Switzerland
| |
Collapse
|
22
|
Jiménez-Alejo A, Pacheco-Soriano AL, Liedo P, Marina CF, Bond JG, Rodríguez-Ramos JC, Valle J, Dor A. Acceptance of a Sterile Male Releases Pilot Project to Reduce Aedes aegypti (Linnaeus, 1762) (Diptera: Culicidae) Populations and Its Associated Factors: A Community-based Cross-sectional Survey in South Chiapas, Mexico. Acta Trop 2022; 233:106573. [DOI: 10.1016/j.actatropica.2022.106573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/25/2022] [Accepted: 06/25/2022] [Indexed: 12/01/2022]
|
23
|
Soh S, Ho SH, Ong J, Seah A, Dickens BS, Tan KW, Koo JR, Cook AR, Sim S, Tan CH, Ng LC, Lim JT. Strategies to Mitigate Establishment under the Wolbachia Incompatible Insect Technique. Viruses 2022; 14:1132. [PMID: 35746601 PMCID: PMC9229438 DOI: 10.3390/v14061132] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 11/16/2022] Open
Abstract
The Incompatible Insect Technique (IIT) strategy involves the release of male mosquitoes infected with the bacterium Wolbachia. Regular releases of male Wolbachia-infected mosquitoes can lead to the suppression of mosquito populations, thereby reducing the risk of transmission of vector-borne diseases such as dengue. However, due to imperfect sex-sorting under IIT, fertile Wolbachia-infected female mosquitoes may potentially be unintentionally released into the environment, which may result in replacement and failure to suppress the mosquito populations. As such, mitigating Wolbachia establishment requires a combination of IIT with other strategies. We introduced a simple compartmental model to simulate ex-ante mosquito population dynamics subjected to a Wolbachia-IIT programme. In silico, we explored the risk of replacement, and strategies that could mitigate the establishment of the released Wolbachia strain in the mosquito population. Our results suggest that mitigation may be achieved through the application of a sterile insect technique. Our simulations indicate that these interventions do not override the intended wild type suppression of the IIT approach. These findings will inform policy makers of possible ways to mitigate the potential establishment of Wolbachia using the IIT population control strategy.
Collapse
Affiliation(s)
- Stacy Soh
- Environmental Health Institute, National Environment Agency, Singapore 138667, Singapore; (S.S.); (S.H.H.); (J.O.); (A.S.); (S.S.); (C.H.T.); (L.C.N.)
| | - Soon Hoe Ho
- Environmental Health Institute, National Environment Agency, Singapore 138667, Singapore; (S.S.); (S.H.H.); (J.O.); (A.S.); (S.S.); (C.H.T.); (L.C.N.)
| | - Janet Ong
- Environmental Health Institute, National Environment Agency, Singapore 138667, Singapore; (S.S.); (S.H.H.); (J.O.); (A.S.); (S.S.); (C.H.T.); (L.C.N.)
| | - Annabel Seah
- Environmental Health Institute, National Environment Agency, Singapore 138667, Singapore; (S.S.); (S.H.H.); (J.O.); (A.S.); (S.S.); (C.H.T.); (L.C.N.)
| | - Borame Sue Dickens
- Saw Swee Hock School of Public Health, National University of Singapore, National University Health System, Singapore 117549, Singapore; (B.S.D.); (K.W.T.); (J.R.K.); (A.R.C.)
| | - Ken Wei Tan
- Saw Swee Hock School of Public Health, National University of Singapore, National University Health System, Singapore 117549, Singapore; (B.S.D.); (K.W.T.); (J.R.K.); (A.R.C.)
| | - Joel Ruihan Koo
- Saw Swee Hock School of Public Health, National University of Singapore, National University Health System, Singapore 117549, Singapore; (B.S.D.); (K.W.T.); (J.R.K.); (A.R.C.)
| | - Alex R. Cook
- Saw Swee Hock School of Public Health, National University of Singapore, National University Health System, Singapore 117549, Singapore; (B.S.D.); (K.W.T.); (J.R.K.); (A.R.C.)
| | - Shuzhen Sim
- Environmental Health Institute, National Environment Agency, Singapore 138667, Singapore; (S.S.); (S.H.H.); (J.O.); (A.S.); (S.S.); (C.H.T.); (L.C.N.)
| | - Cheong Huat Tan
- Environmental Health Institute, National Environment Agency, Singapore 138667, Singapore; (S.S.); (S.H.H.); (J.O.); (A.S.); (S.S.); (C.H.T.); (L.C.N.)
| | - Lee Ching Ng
- Environmental Health Institute, National Environment Agency, Singapore 138667, Singapore; (S.S.); (S.H.H.); (J.O.); (A.S.); (S.S.); (C.H.T.); (L.C.N.)
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Jue Tao Lim
- Environmental Health Institute, National Environment Agency, Singapore 138667, Singapore; (S.S.); (S.H.H.); (J.O.); (A.S.); (S.S.); (C.H.T.); (L.C.N.)
- Saw Swee Hock School of Public Health, National University of Singapore, National University Health System, Singapore 117549, Singapore; (B.S.D.); (K.W.T.); (J.R.K.); (A.R.C.)
| |
Collapse
|
24
|
Ranathunge T, Harishchandra J, Maiga H, Bouyer J, Gunawardena YINS, Hapugoda M. Development of the Sterile Insect Technique to control the dengue vector Aedes aegypti (Linnaeus) in Sri Lanka. PLoS One 2022; 17:e0265244. [PMID: 35377897 PMCID: PMC8979456 DOI: 10.1371/journal.pone.0265244] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 02/24/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The Sterile Insect Technique (SIT) is presently being tested to control dengue in several countries. SIT aims to cause the decline of the target insect population through the release of a sufficient number of sterilized male insects. This induces sterility in the female population, as females that mate with sterilized males produce no offspring. Male insects are sterilized through the use of ionizing irradiation. This study aimed to evaluate variable parameters that may affect irradiation in mosquito pupae. METHODS An Ae. aegypti colony was maintained under standard laboratory conditions. Male and female Ae. aegypti pupae were separated using a Fay and Morlan glass sorter and exposed to different doses of gamma radiation (40, 50, 60, 70 and 80 Gy) using a Co60 source. The effects of radiation on survival, flight ability and the reproductive capacity of Ae. aegypti were evaluated under laboratory conditions. In addition, mating competitiveness was evaluated for irradiated male Ae. aegypti mosquitoes to be used for future SIT programmes in Sri Lanka. RESULTS Survival of irradiated pupae was reduced by irradiation in a dose-dependent manner but it was invariably greater than 90% in control, 40, 50, 60, 70 Gy in both male and female Ae. aegypti. Irradiation didn't show any significant adverse effects on flight ability of male and female mosquitoes, which consistently exceeded 90%. A similar number of eggs per female was observed between the non-irradiated groups and the irradiated groups for both irradiated males and females. Egg hatch rates were significantly lower when an irradiation dose above 50 Gy was used as compared to 40 Gy in both males and females. Irradiation at higher doses significantly reduced male and female survival when compared to the non-irradiated Ae. aegypti mosquitoes. Competitiveness index (C) scores of sterile and non-sterile males compared with non-irradiated male mosquitoes under laboratory and semi-field conditions were 0.56 and 0.51 respectively at 50 Gy. SIGNIFICATION Based on the results obtained from the current study, a 50 Gy dose was selected as the optimal radiation dose for the production of sterile Ae. aegypti males for future SIT-based dengue control programmes aiming at the suppression of Ae. aegypti populations in Sri Lanka.
Collapse
Affiliation(s)
- Tharaka Ranathunge
- Molecular Medicine Unit, Faculty of Medicine University of Kelaniya, Colombo, Sri Lanka
- Department of Biomedical Sciences, Faculty of Health Sciences, CINEC Campus, Malabe, Sri Lanka
| | - Jeevanie Harishchandra
- Anti-Malaria Campaign (AMC) Public Health Complex, Ministry of Health, Colombo, Sri Lanka
| | - Hamidou Maiga
- Insect Pest Control Subprogramme, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| | - Jeremy Bouyer
- Insect Pest Control Subprogramme, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| | | | - Menaka Hapugoda
- Molecular Medicine Unit, Faculty of Medicine University of Kelaniya, Colombo, Sri Lanka
| |
Collapse
|
25
|
Silva EB, Mendonça CM, Mendonça JDA, Dias ESF, Florêncio SGL, Guedes DRD, Paiva MHS, Amaral A, Netto AM, Melo-Santos MAV. Effects of gamma radiation on the reproductive viability of Aedes aegypti and its descendants (Diptera: Culicidae). Acta Trop 2022; 228:106284. [PMID: 34922909 DOI: 10.1016/j.actatropica.2021.106284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/12/2021] [Accepted: 12/13/2021] [Indexed: 11/16/2022]
Abstract
This work evaluated the genetic damage in descendants of male pupae of Aedes (Stegomyia) aegypti (Diptera: Culicidae) separately exposed to 20, 30, and 40 Gy of gamma radiation in the context of Sterile Insect Technique (SIT). Despite the transmission of the dominant lethal mutation, the employed dose levels did not promote a marked reduction in adult mosquito emergence and fertility. This study emphasized that semi-sterilizing doses < 50 Gy for SIT of Aedes aegypti are not recommended.
Collapse
Affiliation(s)
- Edvane Borges Silva
- Universidade Federal de Pernambuco (UFPE), Centro Acadêmico de Vitória (CAV), Vitoria de Santo Antão, Pernambuco, Brazil; Universidade Federal de Pernambuco (UFPE), Group of Studies in Radioprotection and Radioecology (GERAR), Department of Nuclear Energy (DEN), Recife, Pernambuco, Brazil.
| | - Carlos Messias Mendonça
- Universidade Federal de Pernambuco (UFPE), Centro Acadêmico de Vitória (CAV), Vitoria de Santo Antão, Pernambuco, Brazil
| | - Jaziela de Arruda Mendonça
- Department of Entomology, Aggeu Magalhães Institute/Oswaldo Cruz Foundation (IAM/Fiocruz), Recife, Pernambuco, Brazil
| | | | - Sloana Giesta Lemos Florêncio
- Universidade Federal de Pernambuco (UFPE), Group of Studies in Radioprotection and Radioecology (GERAR), Department of Nuclear Energy (DEN), Recife, Pernambuco, Brazil
| | | | - Marcelo Henrique Santos Paiva
- Department of Entomology, Aggeu Magalhães Institute/Oswaldo Cruz Foundation (IAM/Fiocruz), Recife, Pernambuco, Brazil; Universidade Federal de Pernambuco (UFPE), Centro Acadêmico do Agreste (CAA), Caruaru, Pernambuco, Brazil
| | - Ademir Amaral
- Universidade Federal de Pernambuco (UFPE), Group of Studies in Radioprotection and Radioecology (GERAR), Department of Nuclear Energy (DEN), Recife, Pernambuco, Brazil
| | - André Maciel Netto
- Universidade Federal de Pernambuco (UFPE), Group of Studies in Radioprotection and Radioecology (GERAR), Department of Nuclear Energy (DEN), Recife, Pernambuco, Brazil
| | | |
Collapse
|
26
|
Marina CF, Liedo P, Bond JG, R. Osorio A, Valle J, Angulo-Kladt R, Gómez-Simuta Y, Fernández-Salas I, Dor A, Williams T. Comparison of Ground Release and Drone-Mediated Aerial Release of Aedes aegypti Sterile Males in Southern Mexico: Efficacy and Challenges. INSECTS 2022; 13:insects13040347. [PMID: 35447790 PMCID: PMC9025923 DOI: 10.3390/insects13040347] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/09/2022] [Accepted: 03/29/2022] [Indexed: 01/25/2023]
Abstract
Sterile males of Aedes aegypti were released once a week for 8 weeks to evaluate the dispersal efficiency of ground and aerial drone release methods in a rural village of 26 Ha in southern Mexico. Indoor and outdoor BG-Sentinel traps were placed in 13−16 houses distributed throughout the village. The BG traps were activated 48 h after the release of the sterile males and functioned for a 24 h period following each release. Over the 8-week period of simultaneous ground and aerial releases, an average of 85,117 ± 6457 sterile males/week were released at ground level and 86,724 ± 6474 sterile males/week were released using an aerial drone. The ground release method resulted in higher numbers of captured males (mean = 5.1 ± 1.4, range 1.1−15.7 sterile males/trap) compared with the aerial release method (mean = 2.6 ± 0.8, range 0.5−7.3 sterile males/trap) (p < 0.05). Similarly, the prevalence of traps that captured at least one sterile male was significantly higher for ground release compared to the aerial release method (p < 0.01). The lower numbers of sterile males captured in the aerial release method could be due to mortality or physical injury caused by the chilling process for immobilization, or the compaction of these insects during transport and release. However, aerial releases by a two-person team distributed insects over the entire village in just 20 min, compared to ~90 min of work for a five-person team during the ground release method. Ground release also resulted in higher aggregations of males and some villagers reported feeling discomfort from the presence of large numbers of mosquitoes in and around their houses. We conclude that modifications to the handling and transport of sterile males and the design of containers used to store males are required to avoid injury and to improve the efficiency of aerial releases for area-wide SIT-based population suppression programs targeted at mosquito vectors of human disease.
Collapse
Affiliation(s)
- Carlos F. Marina
- Centro Regional de Investigación en Salud Pública—Instituto Nacional de Salud Pública, Tapachula 30700, Chiapas, Mexico; (J.G.B.); (A.R.O.); (I.F.-S.)
- Correspondence: (C.F.M.); (T.W.)
| | - Pablo Liedo
- El Colegio de la Frontera Sur (ECOSUR), Unidad Tapachula, Tapachula 30700, Chiapas, Mexico; (P.L.); (J.V.); (A.D.)
| | - J. Guillermo Bond
- Centro Regional de Investigación en Salud Pública—Instituto Nacional de Salud Pública, Tapachula 30700, Chiapas, Mexico; (J.G.B.); (A.R.O.); (I.F.-S.)
| | - Adriana R. Osorio
- Centro Regional de Investigación en Salud Pública—Instituto Nacional de Salud Pública, Tapachula 30700, Chiapas, Mexico; (J.G.B.); (A.R.O.); (I.F.-S.)
| | - Javier Valle
- El Colegio de la Frontera Sur (ECOSUR), Unidad Tapachula, Tapachula 30700, Chiapas, Mexico; (P.L.); (J.V.); (A.D.)
| | | | - Yeudiel Gómez-Simuta
- Programa Moscas de la Fruta (SADER-IICA), Metapa de Domínguez 30860, Chiapas, Mexico;
| | - Ildefonso Fernández-Salas
- Centro Regional de Investigación en Salud Pública—Instituto Nacional de Salud Pública, Tapachula 30700, Chiapas, Mexico; (J.G.B.); (A.R.O.); (I.F.-S.)
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León (UANL), San Nicolás de los Garza 66450, Nuevo León, Mexico
| | - Ariane Dor
- El Colegio de la Frontera Sur (ECOSUR), Unidad Tapachula, Tapachula 30700, Chiapas, Mexico; (P.L.); (J.V.); (A.D.)
- Consejo Nacional de Ciencia y Tecnologiá (Investigadora por México CONACYT), El Colegio de la Frontera Sur, Unidad Tapachula, Tapachula 30700, Chiapas, Mexico
| | - Trevor Williams
- Instituto de Ecología AC (INECOL), Xalapa 91073, Veracruz, Mexico
- Correspondence: (C.F.M.); (T.W.)
| |
Collapse
|
27
|
Moretti R, Lampazzi E, Damiani C, Fabbri G, Lombardi G, Pioli C, Desiderio A, Serrao A, Calvitti M. Increased biting rate and decreased Wolbachia density in irradiated Aedes mosquitoes. Parasit Vectors 2022; 15:67. [PMID: 35209944 PMCID: PMC8867665 DOI: 10.1186/s13071-022-05188-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/01/2022] [Indexed: 11/21/2022] Open
Abstract
Background Releasing considerable numbers of radiation-sterilized males is a promising strategy to suppress mosquito vectors. However, releases may also include small percentages of biting females, which translate to non-negligible numbers when releases are large. Currently, the effects of irradiation on host-seeking and host-biting behaviors have not been exhaustively investigated. Information is also lacking regarding the effects of sterilizing treatment on the endosymbiotic bacterium Wolbachia, which is known to affect the vector competence of infected mosquitos. Methods To ascertain the effects of irradiation on females, the pupae of two Aedes albopictus strains, differing in their natural or artificial Wolbachia infection type, and Aedes aegypti—which is not infected by Wolbachia—were treated with various doses of X-rays and monitored for key fitness parameters and biting behavior over a period of 2 weeks. The effect of radiation on Wolbachia was investigated by quantitative polymerase chain reaction (qPCR) and fluorescence in situ hybridization (FISH) analysis. Results Partial Aedes albopictus female sterility was achieved at 28 Gy, but the number of weekly bites more than doubled compared to that of the controls. Radiation doses of 35 and 45 Gy completely inhibited progeny production but did not significantly affect the survival or flight ability of Ae. albopictus females and caused a tripling of the number of bites per female per week (compared to untreated controls). These results were also confirmed in Ae. aegypti after treatment at 50 Gy. Wolbachia density decreased significantly in 45-Gy-irradiated females, with the greatest decreases in the early irradiation group (26 ± 2-h-old pupae). Wolbachia density also decreased as adults aged. This trend was confirmed in ovaries but not in extra-ovarian tissues. FISH analysis showed a strongly reduced Wolbachia-specific fluorescence in the ovaries of 13 ± 1-day-old females. Conclusions These results suggest that, under sterile insect technique (SIT) programs, the vector capacity of a target population could increase with the frequency of the irradiated females co-released with the sterile males due to an increased biting rate. In the context of successful suppression, the related safety issues are expected to be generally negligible, but they should be conservatively evaluated when large-scale programs relying on imperfect sexing and high overflooding release ratios are run for long periods in areas endemic for arboviral diseases. Also, the effects of irradiation on the vector competence deserve further investigation. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05188-9.
Collapse
Affiliation(s)
- Riccardo Moretti
- Biotechnology and Agroindustry Division, ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development), Casaccia Research Center, Rome, Italy.
| | - Elena Lampazzi
- Biotechnology and Agroindustry Division, ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development), Casaccia Research Center, Rome, Italy
| | - Claudia Damiani
- School of Biosciences and Medical Veterinary, University of Camerino, Camerino, MC, Italy.,Biovecblok S.r.L, Camerino, MC, Italy
| | - Giulia Fabbri
- Biotechnology and Agroindustry Division, ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development), Casaccia Research Center, Rome, Italy.,School of Biosciences and Medical Veterinary, University of Camerino, Camerino, MC, Italy
| | - Giulia Lombardi
- Biotechnology and Agroindustry Division, ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development), Casaccia Research Center, Rome, Italy.,School of Biosciences and Medical Veterinary, University of Camerino, Camerino, MC, Italy
| | - Claudio Pioli
- Laboratory of Biomedical Technologies, ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development), Casaccia Research Center, Rome, Italy
| | - Angiola Desiderio
- Biotechnology and Agroindustry Division, ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development), Casaccia Research Center, Rome, Italy
| | - Aurelio Serrao
- School of Biosciences and Medical Veterinary, University of Camerino, Camerino, MC, Italy.,Biovecblok S.r.L, Camerino, MC, Italy
| | - Maurizio Calvitti
- Biotechnology and Agroindustry Division, ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development), Casaccia Research Center, Rome, Italy
| |
Collapse
|
28
|
Adult mosquito predation and potential impact on the sterile insect technique. Sci Rep 2022; 12:2561. [PMID: 35169252 PMCID: PMC8847352 DOI: 10.1038/s41598-022-06565-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 02/01/2022] [Indexed: 11/10/2022] Open
Abstract
The sterile insect technique is a promising environmentally friendly method for mosquito control. This technique involves releasing laboratory-produced sterile males into a target field site, and its effectiveness may be affected by the extent of adult mosquito predation. Sterile males undergo several treatments. Therefore, it is vital to understand which treatments are essential in minimizing risks to predation once released. The present study investigates the predation propensity of four mantis species (Phyllocrania paradoxa, Hymenopus coronatus, Blepharopsis mendica, Deroplatys desiccata) and two gecko species (Phelsuma standingi, P. laticauda) on adult Aedes aegypti, Ae. albopictus and Anopheles arabiensis mosquitoes in a laboratory setting. First, any inherent predation preferences regarding mosquito species and sex were evaluated. Subsequently, the effects of chilling, marking, and irradiation, on predation rates were assessed. The selected predators effectively preyed on all mosquito species regardless of the treatment. Predation propensity varied over days for the same individuals and between predator individuals. Overall, there was no impact of laboratory treatments of sterile males on the relative risk of predation by the test predators, unless purposely exposed to double the required sterilizing irradiation dose. Further investigations on standardized predation trials may lead to additional quality control tools for irradiated mosquitoes.
Collapse
|
29
|
Ernawan B, Anggraeni T, Yusmalinar S, Ahmad I. Investigation of Developmental Stage/Age, Gamma Irradiation Dose, and Temperature in Sterilization of Male Aedes aegypti (Diptera: Culicidae) in a Sterile Insect Technique Program. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:320-327. [PMID: 34595516 DOI: 10.1093/jme/tjab166] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Indexed: 06/13/2023]
Abstract
The sterilization process using gamma irradiation is a crucial component in a program using sterile insect technique (SIT) to control Aedes aegypti. Unfortunately, there is no efficient standard protocol for sterilizing mosquitoes that can produce a high level of sterility while maintaining mating ability and longevity. Therefore, we conducted a study of the critical factors necessary to develop such a standard protocol. In this study, male Ae. aegypti pupae, as well as adults aged 1 d and 3 d, were irradiated using a Gamma-cell 220 irradiator doses of 0, 20, 40, 60, 70, 80, and 100 Gray (Gy). In addition, male Ae. aegypti in the pupal and adult stage aged 1 d were irradiated at a dose of 70 Gy at various temperatures. Changes in emergence rates, longevity, sterility, and mating competitiveness were recorded for each combination of parameters. Results showed that an increase of irradiation dose leads to a rise of induced sterility at all developmental stages, while simultaneously reducing emergence rate, survival, and mating competitiveness. Higher temperatures resulted in increased levels of sterility, reduced longevity, and did not affect the ability to mate. This study found that an irradiation dose of 70 Gy at a temperature between 20.00 and 22.30°C administered in the pupal stage induced a high level of sterility (around 98%), while maintaining mating competitiveness and longevity.
Collapse
Affiliation(s)
- Beni Ernawan
- School of Life Sciences and Technology, Institut Teknologi Bandung (ITB), Jalan Ganesha No. 10, Bandung, Indonesia
- Center for Isotopes and Radiation Application (CIRA), National Nuclear Energy Agency of Indonesia (BATAN), Jalan Lebak Bulus Raya No. 49, Jakarta, Indonesia
| | - Tjandra Anggraeni
- School of Life Sciences and Technology, Institut Teknologi Bandung (ITB), Jalan Ganesha No. 10, Bandung, Indonesia
| | - Sri Yusmalinar
- School of Life Sciences and Technology, Institut Teknologi Bandung (ITB), Jalan Ganesha No. 10, Bandung, Indonesia
| | - Intan Ahmad
- School of Life Sciences and Technology, Institut Teknologi Bandung (ITB), Jalan Ganesha No. 10, Bandung, Indonesia
| |
Collapse
|
30
|
Martínez-García EN, Díaz-González EE, Marina CF, Bond JG, Rodríguez-Rojas JJ, Ponce-García G, Sánchez-Casas RM, Fernández-Salas I. Temporal Viability of Aedes aegypti and Aedes albopictus Eggs Using Two Hygroscopic Substances as Preservatives under a Sterile Insect Technique (SIT) Program in Southern Mexico. INSECTS 2021; 13:insects13010015. [PMID: 35055859 PMCID: PMC8780675 DOI: 10.3390/insects13010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Diseases transmitted by Aedes mosquitoes, such as dengue, Zika, and chikungunya, are a public health problem of growing global concern. There are several strategies for mosquito control. One of them is the Sterile Insect Technique, which is a method of breeding millions of mosquitoes, where radiation is used in males to sterilize them. Then, the males are released into the wild. These sterile males mate with wild females without having offspring, thus decreasing field populations. However, one of the problems is being able to have a large number of viable eggs for these field operations. Therefore, this study evaluates the temporal viability of Aedes mosquito eggs employing two substances, such as hydrolyzed collagen and Hyalurosmooth®. These two moisturizing substances maintained viable Aedes. aegypti eggs for up to eight weeks. Abstract Dengue and other Aedes-borne diseases have dramatically increased over the last decades. The Sterile Insect Technique (SIT) has been successfully used as part of integrated pest strategies to control populations of insect-plant and livestock pests and is currently being tested as a potential method to reduce mosquito populations in an environmentally friendly approach. However, during the mass rearing steps needed to produce millions of mosquitoes, egg storage and preservation are essential for a certain amount of time. Eggs of Aedes aegypti have a chorionic pad that functions as a sticky substance to glue them onto the inner walls of larval breeding sites. The chorionic pad is chemically made of hyaluronic acid, a hygroscopic compound, responsible to protect them from desiccation over time. Two commercial products with hygroscopic properties, hydrolyzed collagen, and Hyalurosmooth®, both were tested to assess their ability to prolong egg life storage for A. aegypti and A. albopictus. Results showed that 85–95% of Ae. aegypti eggs were able to hatch up to week 8 after being treated with both hydrophilic compounds, compared with the control 66.3%. These two substances showed promising effects for keeping Ae. aegypti eggs viable during prolonged storage in mass rearing insect production focused on vector control SIT programs.
Collapse
Affiliation(s)
- Eunice Nayeli Martínez-García
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León (UANL), Av. Universidad s/n, Cd. Universitaria, San Nicolas de los Garza 66455, Nuevo Leon, Mexico; (E.N.M.-G.); (G.P.-G.)
| | - Esteban E. Díaz-González
- Servicios de Salud de Nuevo León, Laboratorio Estatal de Salud Pública, Serafín Peña 2211, Guadalupe 67180, Nuevo Leon, Mexico;
| | - Carlos F. Marina
- Centro Regional de Investigación en Salud Pública (CRISP), Instituto Nacional de Salud Pública (INSP), 4a Av. Norte esquina 19 Calle Poniente s/n, Tapachula 30700, Chiapas, Mexico; (C.F.M.); (J.G.B.)
| | - J. Guillermo Bond
- Centro Regional de Investigación en Salud Pública (CRISP), Instituto Nacional de Salud Pública (INSP), 4a Av. Norte esquina 19 Calle Poniente s/n, Tapachula 30700, Chiapas, Mexico; (C.F.M.); (J.G.B.)
| | - Jorge J. Rodríguez-Rojas
- Unidad de Patógenos y Vectores, Centro de Investigación y Desarrollo en Ciencias de la Salud (CIDICS), Universidad Autónoma de Nuevo León, Dr. Carlos Canseco s/n esquina Dr. J. E. González, Mitras Centro, Monterrey 64460, Nuevo Leon, Mexico; (J.J.R.-R.); (R.M.S.-C.)
| | - Gustavo Ponce-García
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León (UANL), Av. Universidad s/n, Cd. Universitaria, San Nicolas de los Garza 66455, Nuevo Leon, Mexico; (E.N.M.-G.); (G.P.-G.)
| | - Rosa M. Sánchez-Casas
- Unidad de Patógenos y Vectores, Centro de Investigación y Desarrollo en Ciencias de la Salud (CIDICS), Universidad Autónoma de Nuevo León, Dr. Carlos Canseco s/n esquina Dr. J. E. González, Mitras Centro, Monterrey 64460, Nuevo Leon, Mexico; (J.J.R.-R.); (R.M.S.-C.)
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Nuevo León, General Francisco Villa 20, Hacienda del Cañada, General Escobedo 66054, Nuevo Leon, Mexico
| | - Ildefonso Fernández-Salas
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León (UANL), Av. Universidad s/n, Cd. Universitaria, San Nicolas de los Garza 66455, Nuevo Leon, Mexico; (E.N.M.-G.); (G.P.-G.)
- Unidad de Patógenos y Vectores, Centro de Investigación y Desarrollo en Ciencias de la Salud (CIDICS), Universidad Autónoma de Nuevo León, Dr. Carlos Canseco s/n esquina Dr. J. E. González, Mitras Centro, Monterrey 64460, Nuevo Leon, Mexico; (J.J.R.-R.); (R.M.S.-C.)
- Correspondence:
| |
Collapse
|
31
|
de Castro Poncio L, Dos Anjos FA, de Oliveira DA, Rebechi D, de Oliveira RN, Chitolina RF, Fermino ML, Bernardes LG, Guimarães D, Lemos PA, Silva MNE, Silvestre RGM, Bernardes ES, Paldi N. Novel Sterile Insect Technology Program Results in Suppression of a Field Mosquito Population and Subsequently to Reduced Incidence of Dengue. J Infect Dis 2021; 224:1005-1014. [PMID: 33507265 DOI: 10.1093/infdis/jiab049] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/22/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND There is a steady rise in the global incidence of Aedes-borne arbovirus disease. It has become urgent to develop alternative solutions for mosquito vector control. We developed a new method of sterilization of male mosquitoes with the goal to suppress a local Aedes aegypti population and to prevent the spread of dengue. METHODS Sterile male mosquitoes were produced from a locally acquired Ae. aegypti colony by using a treatment that includes double-stranded RNA and thiotepa. A field study was conducted with sterile mosquito releases being performed on a weekly basis in predefined areas. There were 2 intervention periods (INT1 and INT2), with treatment and control areas reversed between INT1 and INT2. RESULTS During INT1, releases in the treated area resulted in up to 91.4% reduction of live progeny of field Ae. aegypti mosquitoes recorded over time, while the control neighborhoods (no releases of sterile male mosquitoes) remained highly infested. The successful implementations of the program during INT1 and INT2 were associated with 15.9-fold and 13.7-fold lower incidences of dengue in the treated area compared to the control areas, respectively. CONCLUSIONS Our data show the success of this new sterile insect technology-based program in preventing the spread of dengue.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Marise Lopes Fermino
- Forrest Brasil Tecnologia Ltda, Araucaria, Brazil.,Faculty of Health Sciences of Barretos Dr Paulo Prata, Barretos, Brazil
| | | | - Danton Guimarães
- Sanitary Surveillance of Jacarezinho Municipal Health Department, Jacarezinho, Brazil
| | - Pedro A Lemos
- Epidemiologic Surveillance of Jacarezinho Municipal Health Department, Jacarezinho, Brazil
| | | | | | - Emerson Soares Bernardes
- Forrest Brasil Tecnologia Ltda, Araucaria, Brazil.,Department of Radiopharmacy, Nuclear Energy Research Institute, Radiopharmacy Center, São Paulo, Brazil
| | | |
Collapse
|
32
|
Segura NA, Muñoz AL, Losada-Barragán M, Torres O, Rodríguez AK, Rangel H, Bello F. Minireview: Epidemiological impact of arboviral diseases in Latin American countries, arbovirus-vector interactions and control strategies. Pathog Dis 2021; 79:6354781. [PMID: 34410378 DOI: 10.1093/femspd/ftab043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 08/17/2021] [Indexed: 11/13/2022] Open
Abstract
Mosquitoes are the most crucial insects in public health due to their vector capacity and competence to transmit pathogens, including arboviruses, bacterias and parasites. Re-emerging and emerging arboviral diseases, such as yellow fever virus (YFV), dengue virus (DENV), zika virus (ZIKV), and chikungunya virus (CHIKV), constitute one of the most critical health public concerns in Latin America. These diseases present a significant incidence within the human settlements increasing morbidity and mortality events. Likewise, among the different genus of mosquito vectors of arboviruses, those of the most significant medical importance corresponds to Aedes and Culex. In Latin America, the mosquito vector species of YFV, DENV, ZIKV, and CHIKV are mainly Aedes aegypti and Ae. Albopictus. Ae. aegypti is recognized as the primary vector in urban environments, whereas Ae. albopictus, recently introduced in the Americas, is more prone to rural settings. This minireview focuses on what is known about the epidemiological impact of mosquito-borne diseases in Latin American countries, with particular emphasis on YFV, DENV, ZIKV and CHIKV, vector mosquitoes, geographic distribution, and vector-arbovirus interactions. Besides, it was analyzed how climate change and social factors have influenced the spread of arboviruses and the control strategies developed against mosquitoes in this continent.
Collapse
Affiliation(s)
- Nidya A Segura
- Faculty of Science, Universidad Pedagógica y Tecnológica de Colombia, Tunja 150003, Colombia
| | - Ana L Muñoz
- PhD Program of Health Science, Universidad Antonio Nariño (UAN), Bogotá 110231, Colombia
| | | | - Orlando Torres
- Faculty of Veterinary, Universidad Antonio Nariño (UAN), Bogotá 110231, Colombia
| | - Anny K Rodríguez
- Faculty of Science, Universidad Antonio Nariño (UAN), Bogotá 110231, Colombia
| | - Héctor Rangel
- Laboratory of Molecular Virology, Instituto Venezolano de Investigaciones Científicas, Caracas 1204, Venezuela
| | - Felio Bello
- Faculty of Agricultural and Livestock Sciences, Program of Veterinary Medicine, Universidad de La Salle, Bogotá 110141, Colombia
| |
Collapse
|
33
|
Vreysen MJB, Abd-Alla AMM, Bourtzis K, Bouyer J, Caceres C, de Beer C, Oliveira Carvalho D, Maiga H, Mamai W, Nikolouli K, Yamada H, Pereira R. The Insect Pest Control Laboratory of the Joint FAO/IAEA Programme: Ten Years (2010-2020) of Research and Development, Achievements and Challenges in Support of the Sterile Insect Technique. INSECTS 2021; 12:346. [PMID: 33924539 PMCID: PMC8070182 DOI: 10.3390/insects12040346] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 02/06/2023]
Abstract
The Joint FAO/IAEA Centre (formerly called Division) of Nuclear Techniques in Food and Agriculture was established in 1964 and its accompanying laboratories in 1961. One of its subprograms deals with insect pest control, and has the mandate to develop and implement the sterile insect technique (SIT) for selected key insect pests, with the goal of reducing the use of insecticides, reducing animal and crop losses, protecting the environment, facilitating international trade in agricultural commodities and improving human health. Since its inception, the Insect Pest Control Laboratory (IPCL) (formerly named Entomology Unit) has been implementing research in relation to the development of the SIT package for insect pests of crops, livestock and human health. This paper provides a review of research carried out between 2010 and 2020 at the IPCL. Research on plant pests has focused on the development of genetic sexing strains, characterizing and assessing the performance of these strains (e.g., Ceratitis capitata), elucidation of the taxonomic status of several members of the Bactrocera dorsalis and Anastrepha fraterculus complexes, the use of microbiota as probiotics, genomics, supplements to improve the performance of the reared insects, and the development of the SIT package for fruit fly species such as Bactrocera oleae and Drosophila suzukii. Research on livestock pests has focused on colony maintenance and establishment, tsetse symbionts and pathogens, sex separation, morphology, sterile male quality, radiation biology, mating behavior and transportation and release systems. Research with human disease vectors has focused on the development of genetic sexing strains (Anopheles arabiensis, Aedes aegypti and Aedes albopictus), the development of a more cost-effective larvae and adult rearing system, assessing various aspects of radiation biology, characterizing symbionts and pathogens, studying mating behavior and the development of quality control procedures, and handling and release methods. During the review period, 13 coordinated research projects (CRPs) were completed and six are still being implemented. At the end of each CRP, the results were published in a special issue of a peer-reviewed journal. The review concludes with an overview of future challenges, such as the need to adhere to a phased conditional approach for the implementation of operational SIT programs, the need to make the SIT more cost effective, to respond with demand driven research to solve the problems faced by the operational SIT programs and the use of the SIT to address a multitude of exotic species that are being introduced, due to globalization, and established in areas where they could not survive before, due to climate change.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Hanano Yamada
- Insect Pest Control Subprogramme, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, A-1400 Vienna, Austria; (M.J.B.V.); (A.M.M.A.-A.); (K.B.); (J.B.); (C.C.); (C.d.B.); (D.O.C.); (H.M.); (W.M.); (K.N.); (R.P.)
| | | |
Collapse
|
34
|
Pérez-Staples D, Díaz-Fleischer F, Montoya P. The Sterile Insect Technique: Success and Perspectives in the Neotropics. NEOTROPICAL ENTOMOLOGY 2021; 50:172-185. [PMID: 33113111 DOI: 10.1007/s13744-020-00817-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/14/2020] [Indexed: 06/11/2023]
Abstract
The sterile insect technique (SIT), an environmentally friendly means of control, is currently used against plant, animal, and human pests under the area-wide integrated pest management. It consists in the mass production, sterilization, and release of insects in an affected area where sterile males mate with wild females leading to no reproduction. Here, we review SIT in the Neotropics and focus on particular recent successful cases of eradication of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann), as well as effective programs used against the Mexican fruit fly Anastrepha ludens (Loew), the New World screwworm fly Cochliomyia hominivorax (Coquerel)), and the Cactus moth Cactoblastis cactorum (Berg). We examine when SIT does not work and innovations that have made SIT more efficient and also highlight complimentary techniques that can be used in conjunction. We address potential candidate species that could be controlled through SIT, for example Philornis downsi Dodge & Aitken. Finally, we consider the impact of climate change in the context of the use of the SIT against these pests. Given the recent dramatic decline in insect biodiversity, investing in environmentally friendly means of pest control should be a priority. We conclude that SIT should be promoted in the region, and leadership and political will is needed for continued success of SIT in the Neotropics.
Collapse
Affiliation(s)
| | | | - P Montoya
- Programa Moscafrut SENASICA-SADER, Metapa de Domínguez, Chiapas, Mexico
| |
Collapse
|
35
|
Tur C, Almenar D, Benlloch-Navarro S, Argilés-Herrero R, Zacarés M, Dalmau V, Pla I. Sterile Insect Technique in an Integrated Vector Management Program against Tiger Mosquito Aedes albopictus in the Valencia Region (Spain): Operating Procedures and Quality Control Parameters. INSECTS 2021; 12:272. [PMID: 33807092 PMCID: PMC8004901 DOI: 10.3390/insects12030272] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/25/2021] [Accepted: 03/16/2021] [Indexed: 12/22/2022]
Abstract
Aedes albopictus and Aedes aegypti are the main vectors of arboviral diseases such as dengue, Zika and chikungunya viruses. About a third of the world population is currently at risk of contracting Aedes-borne epidemics. In recent years, A. albopictus has drastically increased its distribution in many countries. In the absence of efficient mosquito vector control methods, the sterile insect technique (SIT) is presented as a very promising and environment-friendly control tool. The Agriculture Department of the Valencian Region is promoting an ongoing pilot project to evaluate the efficacy of an integrated vector management program (IVM) based on the use of the SIT as the main method of control. The laboratory studies for evaluating the entomological efficacy of SIT through the phased conditional testing process recommended by World Health Organization and the International Atomic Energy Agency (WHO-IAEA) are addressed. This study describes the routine operating procedures and quality control parameters for the medium-scale rearing of sterile male A. albopictus. More than 15 million sterile males have been produced and released in an area of 80 ha between 2018 and 2020. Of the initial L1 larvae, we recovered 17.2% of male pupae after sex sorting to be sterilized and released on the field, while the rest of the pupae remained available to maintain the rearing colony. The residual percentage of females after sex sorting was on average 0.17%. The obtained values in terms of production and quality control as well as the proposed rearing methodology can be useful for designing a medium-scale mosquito-rearing pipeline.
Collapse
Affiliation(s)
- Carlos Tur
- Empresa de Transformación Agraria S.A., S.M.E, M.P. (TRAGSA), Avenida de la Industria 26, 46980 Paterna, Spain; (D.A.); (S.B.-N.); (I.P.)
- Escuela de Doctorado, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain
| | - David Almenar
- Empresa de Transformación Agraria S.A., S.M.E, M.P. (TRAGSA), Avenida de la Industria 26, 46980 Paterna, Spain; (D.A.); (S.B.-N.); (I.P.)
| | - Sandra Benlloch-Navarro
- Empresa de Transformación Agraria S.A., S.M.E, M.P. (TRAGSA), Avenida de la Industria 26, 46980 Paterna, Spain; (D.A.); (S.B.-N.); (I.P.)
| | - Rafael Argilés-Herrero
- Insect Pest Control Section, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Wagramerstrasse 5, P.O. Box 100, A-1400 Vienna, Austria;
| | - Mario Zacarés
- Departamento de Ciencias Básicas y Transversales, Facultad de Veterinaria y Ciencias Experimentales, Universidad Católica de Valencia San Vicente Mártir, C/Guillem de Castro 94, 46001 Valencia, Spain;
| | - Vicente Dalmau
- Conselleria de Agricultura, Desarrollo Rural, Emergencia Climática y Transición Ecológica, Ctra Alicante-Valencia s/n Apdo correos 125, 46460 Silla, Spain;
| | - Ignacio Pla
- Empresa de Transformación Agraria S.A., S.M.E, M.P. (TRAGSA), Avenida de la Industria 26, 46980 Paterna, Spain; (D.A.); (S.B.-N.); (I.P.)
- Escuela de Doctorado, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain
| |
Collapse
|
36
|
Oliva CF, Benedict MQ, Collins CM, Baldet T, Bellini R, Bossin H, Bouyer J, Corbel V, Facchinelli L, Fouque F, Geier M, Michaelakis A, Roiz D, Simard F, Tur C, Gouagna LC. Sterile Insect Technique (SIT) against Aedes Species Mosquitoes: A Roadmap and Good Practice Framework for Designing, Implementing and Evaluating Pilot Field Trials. INSECTS 2021; 12:191. [PMID: 33668374 PMCID: PMC7996155 DOI: 10.3390/insects12030191] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/16/2021] [Accepted: 02/20/2021] [Indexed: 12/20/2022]
Abstract
Aedes albopictus and Aedes aegypti are invasive mosquito species that impose a substantial risk to human health. To control the abundance and spread of these arboviral pathogen vectors, the sterile insect technique (SIT) is emerging as a powerful complement to most commonly-used approaches, in part, because this technique is ecologically benign, specific, and non-persistent in the environment if releases are stopped. Because SIT and other similar vector control strategies are becoming of increasing interest to many countries, we offer here a pragmatic and accessible 'roadmap' for the pre-pilot and pilot phases to guide any interested party. This will support stakeholders, non-specialist scientists, implementers, and decision-makers. Applying these concepts will ensure, given adequate resources, a sound basis for local field trialing and for developing experience with the technique in readiness for potential operational deployment. This synthesis is based on the available literature, in addition to the experience and current knowledge of the expert contributing authors in this field. We describe a typical path to successful pilot testing, with the four concurrent development streams of Laboratory, Field, Stakeholder Relations, and the Business and Compliance Case. We provide a graphic framework with criteria that must be met in order to proceed.
Collapse
Affiliation(s)
- Clélia F. Oliva
- Centre Technique Interprofessionnel des Fruits et Légumes (CTIFL), Centre Opérationnel de Balandran, 751 Chemin de Balandran, 30127 Bellegarde, France;
- Collectif TIS (Technique de l’Insecte Stérile), 751 Chemin de Balandran, 30127 Bellegarde, France
| | | | - C Matilda Collins
- Centre for Environmental Policy, Imperial College London, London SW7 1NE, UK;
| | - Thierry Baldet
- ASTRE (Animal, Santé, Territoires, Risques, Ecosystèmes), Cirad, Univ Montpellier, 34398 Montpellier, France; (T.B.); (J.B.)
| | - Romeo Bellini
- Centro Agricoltura Ambiente “Giorgio Nicoli”, S.r.l. Via Sant’Agata, 835, 40014 Crevalcore, Italy;
| | - Hervé Bossin
- Institut Louis Malardé, Papeete, 98713 Tahiti, French Polynesia;
| | - Jérémy Bouyer
- ASTRE (Animal, Santé, Territoires, Risques, Ecosystèmes), Cirad, Univ Montpellier, 34398 Montpellier, France; (T.B.); (J.B.)
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, IAEA Vienna, Wagramer Strasse 5, 1400 Vienna, Austria
| | - Vincent Corbel
- UMR MIVEGEC (Maladies Infectieuses et Vecteurs: Écologie, Génétique, Évolution et Contrôle), IRD-CNRS-Univ. Montpellier, 34394 Montpellier, France; (V.C.); (D.R.); (F.S.)
| | - Luca Facchinelli
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK;
| | - Florence Fouque
- TDR (Special Programme for Research and Training in Tropical Diseases), WHO, 20 Avenue Appia, 1121 Geneva, Switzerland;
| | - Martin Geier
- Biogents AG, Weissenburgstr. 22, 93055 Regensburg, Germany;
| | - Antonios Michaelakis
- Benaki Phytopathological Institute. 8, S. Delta str., Kifissia, 14561 Athens, Greece;
| | - David Roiz
- UMR MIVEGEC (Maladies Infectieuses et Vecteurs: Écologie, Génétique, Évolution et Contrôle), IRD-CNRS-Univ. Montpellier, 34394 Montpellier, France; (V.C.); (D.R.); (F.S.)
| | - Frédéric Simard
- UMR MIVEGEC (Maladies Infectieuses et Vecteurs: Écologie, Génétique, Évolution et Contrôle), IRD-CNRS-Univ. Montpellier, 34394 Montpellier, France; (V.C.); (D.R.); (F.S.)
| | - Carlos Tur
- Grupo Tragsa–KM. 4,5 Bajo, A28476208-EMPRE, Moncada, 46113 Valencia, Spain;
| | - Louis-Clément Gouagna
- UMR MIVEGEC (Maladies Infectieuses et Vecteurs: Écologie, Génétique, Évolution et Contrôle), IRD-CNRS-Univ. Montpellier, 34394 Montpellier, France; (V.C.); (D.R.); (F.S.)
| |
Collapse
|
37
|
Sexual Competitiveness and Induced Egg Sterility by Aedes aegypti and Aedes albopictus Gamma-Irradiated Males: A Laboratory and Field Study in Mexico. INSECTS 2021; 12:insects12020145. [PMID: 33567551 PMCID: PMC7915704 DOI: 10.3390/insects12020145] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/29/2021] [Accepted: 01/29/2021] [Indexed: 12/31/2022]
Abstract
Simple Summary The sterile insect technique (SIT) involves the release of massive numbers of male insects that have been sterilized by irradiation treatment during their development. Wild females that mate with sterilized males are not able to produce offspring, resulting in rapid decline in the target insect population over a large area. The success of this technique depends on the ratio of wild:sterile males achieved following male releases and the ability of sterile males to mate with wild females, i.e., their sexual competitiveness compared to fertile wild male insects. There is growing interest in applying SIT to the area-wide control of mosquitoes, such as Aedes aegypti and Aedes albopictus, that transmit important human diseases caused by dengue, chikungunya, and Zika viruses. In the present study, the sexual competitiveness of both mosquito species was affected by irradiation treatments but did not vary greatly with different ratios of fertile:sterile males in mating cages. Most importantly, the fertility of eggs was greatly reduced when more sterile males were present in mating cages, resulting in an 88% decrease in the production of fertile eggs by both species of mosquitoes in some experiments. We will use these results to perform small-scale trials in rural villages frequently affected by outbreaks of mosquito-borne diseases in southern Mexico. Abstract The sterile insect technique may prove useful for the suppression of mosquito vectors of medical importance in regions where arboviruses pose a serious public health threat. In the present study, we examined the effects of sterilizing irradiation doses across different ratios of fertile:irradiated males on the mating competitiveness of Ae. aegypti and Ae. albopictus under laboratory and field-cage conditions. For both species, the percentage of females inseminated and the number of eggs laid over two gonotrophic cycles varied significantly in mating treatments involving 1:1, 1:5, and 1:10 fertile:irradiated males compared to controls of entirely fertile or entirely irradiated males but was not generally affected by the irradiation dose. Egg hatching was negatively affected in females exposed to increasing proportions of irradiated males in both laboratory and field cages. Male competitiveness (Fried’s index) values varied from 0.19 to 0.58 in the laboratory and were between 0.09 and 1.0 in field cages, depending on th species. Competitiveness values were negatively affected by th eirradiation dose in both species under field-cage conditions, whereas in the laboratory, Ae. albopictus was sensitive to the dose but Ae. aegypti was not. In general, male competitiveness was similar across all mating regimes. Most importantly, induced egg sterility was positively correlated with the proportion of irradiated males present in the mating treatments, reaching a maximum of 88% under field-cage conditions for both Ae. aegypti and Ae. albopictus males treated with 50 and 40 Gy irradiation, respectively. These results indicate that sterile males produced at our facility are suitable and competitive enough for field pilot SIT projects and provide guidance to decide the optimal sterile:fertile ratios.
Collapse
|
38
|
Moretti R, Calvitti M. Issues with combining incompatible and sterile insect techniques. Nature 2021; 590:E1-E2. [PMID: 33536643 DOI: 10.1038/s41586-020-03164-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/07/2020] [Indexed: 01/02/2023]
Affiliation(s)
- Riccardo Moretti
- Biotechnology and Agroindustry Division, ENEA (Italian National Agency for New Technologies, Energy & Sustainable Economic Development), Rome, Italy.
| | - Maurizio Calvitti
- Biotechnology and Agroindustry Division, ENEA (Italian National Agency for New Technologies, Energy & Sustainable Economic Development), Rome, Italy
| |
Collapse
|
39
|
Hasaballah AI. Impact of paternal transmission of gamma radiation on reproduction, oogenesis, and spermatogenesis of the housefly, Musca domestica L. (Diptera: Muscidae). Int J Radiat Biol 2021; 97:376-385. [PMID: 33320767 DOI: 10.1080/09553002.2021.1864046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
PURPOSE This study aimed to investigate the impact of gamma radiation of Musca domestica males (resulted from irradiated pupae) crossed with unirradiated females on fecundity, egg hatchability, adult emergence, sex ratio, sterility, in addition to reproductive development at the level of oogenesis and spermatogenesis compared to unirradiated group. MATERIAL AND METHODS The housefly, M. domestica pupae were exposed to three sublethal doses of 5, 10, and 15 Gy. RESULTS Fecundity was severely reduced particularly in F2 (11.33 ± 1.528; 7.33 ± 1.115 eggs/♀) and F3 (9.0 ± 1.00; 4.67 ± 1.115 eggs/♀) for doses of 10 and 15 Gy, respectively, compared with (52.0 ± 1.4 eggs/♀) for the control. Data revealed latent dose- and generation-dependent reduction in egg hatchability. Hatchability percentages reduced from 93.59 for the control to 10.07 (F1), 8.09 (F2), and 8.34 (F3) when the highest radiation dose 15 Gy was applied. Irradiation induced paternal deleterious substerility effects. Irradiation with 15 Gy induced substerility that reached about 97.0% in F2 and F3 generations. A significant (P < 0.05) reduction of the mean numbers of adult emergence was remarkably detected in the F1, F2, and F3 generations. Applied gamma doses did not affect the male to female ratio in the Parental or F1 generations. However, the F2 and F3 generations did show changes to the sex ratio with males occurring more frequently than females. This trend became more pronounced as dose increased. Ultrastructural examinations exhibited unusual damage and malformation either for males or female reproductive organs. CONCLUSION The obtained results clearly show that gamma radiation of M. domestica irradiated as pupae induced considerably visible impact on tested biological aspects and reproductive potential.
Collapse
Affiliation(s)
- Ahmed I Hasaballah
- Department of Zoology and Entomology, Faculty of Science, Al-Azhar University, Nasr City, Egypt
| |
Collapse
|
40
|
Augustinos AA, Misbah-Ul-Haq M, Carvalho DO, de la Fuente LD, Koskinioti P, Bourtzis K. Irradiation induced inversions suppress recombination between the M locus and morphological markers in Aedes aegypti. BMC Genet 2020; 21:142. [PMID: 33339503 PMCID: PMC7747368 DOI: 10.1186/s12863-020-00949-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Aedes aegypti is the primary vector of arthropod-borne viruses and one of the most widespread and invasive mosquito species. Due to the lack of efficient specific drugs or vaccination strategies, vector population control methods, such as the sterile insect technique, are receiving renewed interest. However, availability of a reliable genetic sexing strategy is crucial, since there is almost zero tolerance for accidentally released females. Development of genetic sexing strains through classical genetics is hindered by genetic recombination that is not suppressed in males as is the case in many Diptera. Isolation of naturally-occurring or irradiation-induced inversions can enhance the genetic stability of genetic sexing strains developed through genetically linking desirable phenotypes with the male determining region. RESULTS For the induction and isolation of inversions through irradiation, 200 male pupae of the 'BRA' wild type strain were irradiated at 30 Gy and 100 isomale lines were set up by crossing with homozygous 'red-eye' (re) mutant females. Recombination between re and the M locus and the white (w) gene (causing a recessive white eye phenotype when mutated) and the M locus was tested in 45 and 32 lines, respectively. One inversion (Inv35) reduced recombination between both re and the M locus, and wand the M locus, consistent with the presence of a rather extended inversion between the two morphological mutations, that includes the M locus. Another inversion (Inv5) reduced recombination only between w and the M locus. In search of naturally-occurring, recombination-suppressing inversions, homozygous females from the red eye and the white eye strains were crossed with seventeen and fourteen wild type strains collected worldwide, representing either recently colonized or long-established laboratory populations. Despite evidence of varying frequencies of recombination, no combination led to the elimination or substantial reduction of recombination. CONCLUSION Inducing inversions through irradiation is a feasible strategy to isolate recombination suppressors either on the M or the m chromosome for Aedes aegypti. Such inversions can be incorporated in genetic sexing strains developed through classical genetics to enhance their genetic stability and support SIT or other approaches that aim to population suppression through male-delivered sterility.
Collapse
Affiliation(s)
- Antonios A Augustinos
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, A-1400, Vienna, Austria.
- Present address: Department of Plant Protection, Hellenic Agricultural Organization-Demeter, Institute of Industrial and Forage Crops, 26442, Patras, Greece.
| | - Muhammad Misbah-Ul-Haq
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, A-1400, Vienna, Austria
- Present address: Nuclear Institute for Food and Agriculture (NIFA), Peshawar, Pakistan
| | - Danilo O Carvalho
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, A-1400, Vienna, Austria
| | - Lucia Duran de la Fuente
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, A-1400, Vienna, Austria
| | - Panagiota Koskinioti
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, A-1400, Vienna, Austria
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500, Larissa, Greece
| | - Kostas Bourtzis
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, A-1400, Vienna, Austria.
| |
Collapse
|
41
|
O’Leary S, Adelman ZN. CRISPR/Cas9 knockout of female-biased genes AeAct-4 or myo-fem in Ae. aegypti results in a flightless phenotype in female, but not male mosquitoes. PLoS Negl Trop Dis 2020; 14:e0008971. [PMID: 33338046 PMCID: PMC7781531 DOI: 10.1371/journal.pntd.0008971] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 01/04/2021] [Accepted: 11/11/2020] [Indexed: 02/04/2023] Open
Abstract
Aedes aegypti is a vector of dengue, chikungunya, and Zika viruses. Current vector control strategies such as community engagement, source reduction, and insecticides have not been sufficient to prevent viral outbreaks. Thus, interest in novel strategies involving genetic engineering is growing. Female mosquitoes rely on flight to mate with males and obtain a bloodmeal from a host. We hypothesized that knockout of genes specifically expressed in female mosquitoes associated with the indirect flight muscles would result in a flightless female mosquito. Using CRISPR-Cas9 we generated loss-of-function mutations in several genes hypothesized to control flight in mosquitoes, including actin (AeAct-4) and myosin (myo-fem) genes expressed specifically in the female flight muscle. Genetic knockout of these genes resulted in 100% flightless females, with homozygous males able to fly, mate, and produce offspring, albeit at a reduced rate when compared to wild type males. Interestingly, we found that while AeAct-4 was haplosufficient, with most heterozygous individuals capable of flight, this was not the case for myo-fem, where about half of individuals carrying only one intact copy could not fly. These findings lay the groundwork for developing novel mechanisms of controlling Ae. aegypti populations, and our results suggest that this mechanism could be applicable to other vector species of mosquito.
Collapse
Affiliation(s)
- Sarah O’Leary
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, Texas, United States of America
| | - Zach N. Adelman
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
42
|
Senevirathna U, Udayanga L, Ganehiarachchi GASM, Hapugoda M, Ranathunge T, Silva Gunawardene N. Development of an Alternative Low-Cost Larval Diet for Mass Rearing of Aedes aegypti Mosquitoes. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1053818. [PMID: 33294432 PMCID: PMC7718045 DOI: 10.1155/2020/1053818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 12/04/2022]
Abstract
BACKGROUND Aedes aegypti is a major vector of arboviruses that may be controlled on an area-wide basis, using novel approaches such as Sterile Insect Technique (SIT) and Incompatible Insect Technique (IIT). Larval diet is a critical factor to be considered in mass rearing of Aedes mosquitoes for SIT and IIT programs. Therefore, the current study is aimed at evaluating the effects of two novel diets developed from dry fish powder on the growth and development of immature stages and adult fitness-related characteristics of Ae. aegypti in Sri Lanka. METHOD Three batches of the first instar Ae. aegypti larva, each containing 250 larvae, were exposed to three different larval diets as standard dry fish powder (D1), dry fish powder meal and brewer's yeast (D2), and International Atomic Energy Agency- (IAEA-) recommended diet (D3), separately. Morphometric and developmental parameters of the 4th instar larvae, pupae, and adult mosquitoes reared under different dietary treatments were measured. The entire experimental setup was replicated thrice. A General Linear Model (GLM) in the form of two-way ANOVA was used for the statistical analysis. RESULTS Significant diet-based variations were observed in the head length, head width, thoracic length, thoracic width, abdominal length, abdominal width, and total length (F 2,87 > 4.811; P < 0.05) of Ae. aegypti larvae. The highest pupation success and the larval size were observed from the larvae fed the D2 diet, while the lowest was reported from D1. All adult morphometric parameters of adult male and female Ae. aegypti mosquitoes also denoted significant dietary variations, reporting the best-sized adults from the D2 diet (F 2,87 > 3.54; P < 0.05). Further, significantly higher fecundity and male longevity were also shown by the adult Ae. aegypti (F 2,6 > 7.897; P < 0.01) mosquitoes reared under diet D2. CONCLUSION Based on all the growth and developmental parameters, the D2 diet tends to perform similar to the IAEA-recommended diet in mass rearing of Ae. aegypti mosquitoes, while being more inexpensive. Therefore, larval diet D2 could be suggested as the ideal diet for mass rearing of Ae. aegypti for IIT and SIT-based vector control in Sri Lanka.
Collapse
Affiliation(s)
- Umesha Senevirathna
- Department of Zoology and Environmental Management, Faculty of Science, University of Kelaniya, Sri Lanka
| | - Lahiru Udayanga
- Department of Biosystems Engineering, Faculty of Agriculture and Plantation Management, Wayamba University, Sri Lanka
| | - G. A. S. M. Ganehiarachchi
- Department of Zoology and Environmental Management, Faculty of Science, University of Kelaniya, Sri Lanka
| | - Menaka Hapugoda
- Molecular Medicine Unit, Faculty of Medicine, University of Kelaniya, Sri Lanka
| | - Tharaka Ranathunge
- Molecular Medicine Unit, Faculty of Medicine, University of Kelaniya, Sri Lanka
| | | |
Collapse
|
43
|
Aldridge RL, Kline J, Coburn JM, Britch SC, Boardman L, Hahn DA, Chen C, Linthicum KJ. Gamma-Irradiation Reduces Survivorship, Feeding Behavior, and Oviposition of Female Aedes aegypti. JOURNAL OF THE AMERICAN MOSQUITO CONTROL ASSOCIATION 2020; 36:152-160. [PMID: 33600583 DOI: 10.2987/20-6957.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Aedes aegypti is a prominent disease vector that is difficult to control through traditional integrated vector management due to its cryptic peridomestic immature-stage habitat and adult resting behavior, increasing resistance to pesticide formulations approved by the US Environmental Protection Agency, escalating deregistration of approved pesticides, and slow development of new effective chemical control measures. One novel method to control Ae. aegypti is the sterile insect technique (SIT) that leverages the mass release of irradiated (sterilized) males to overwhelm mate choice of natural populations of females. However, one potential liability of SIT is sex sorting errors prior to irradiation, resulting in accidental release of females. Our goal in this study was to test the extent to which irradiation affects female life-history parameters to assess the potential impacts of releasing irradiated females accidentally sorted with males. In this study, we determined that a radiation dose ≥30 Gy-a dose sufficient to sterilize males while preserving their mating competitiveness-may substantially impact longevity, bloodfeeding, oviposition, and egg hatch rate of female Ae. aegypti after being irradiated as pupae. These findings could reduce public concern for accidental release of females alongside irradiated males in an operational Ae. aegypti SIT control program.
Collapse
|
44
|
Dor A, Maggiani-Aguilera AM, Valle-Mora J, Bond JG, Marina CF, Liedo P. Assessment of Aedes aegypti (Diptera: Culicidae) Males Flight Ability for SIT Application: Effect of Device Design, Duration of Test, and Male Age. JOURNAL OF MEDICAL ENTOMOLOGY 2020; 57:824-829. [PMID: 31808821 DOI: 10.1093/jme/tjz226] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Indexed: 06/10/2023]
Abstract
The Sterile Insect Technique (SIT) is a pest control method where large numbers of sterile males are released to induce sterility in wild populations. Since a successful SIT application depends on the released sterile males being competitive with wild males, standard quality control tests are a necessary component of any SIT program. Flight ability (ability to fly out from a device) is a reliable indicator of insect quality. Based on previous studies, we developed four new tubular devices constructed with locally available materials to explore their potential as flight test devices for Aedes aegypti (L.) mass-reared males. Males were allowed to fly upwards through a vertical tube, the ones that flew out were considered successful. The effect of male age (0 to 21 d old), test time interval (30 min to 24 h), and the design of the device (40 and 80 cm height and 2 and 3.5 cm diameter) were evaluated. Our devices determined differences in the flight ability of Ae. aegypti males of different ages. During the first minutes, more old males escaped than young males in three out of four types of devices. However, young males reached higher rates of escape in all cases after 24 h. For standard quality control tests, we recommend testing 2- to 3-d-old sexually mature males in the high and narrow device (80 × 2 cm). Further observations for time intervals between 1 and 5 h might be performed to decide the shortest and more representative interval to use.
Collapse
Affiliation(s)
- Ariane Dor
- Consejo Nacional de Ciencia y Tecnología (Cátedra) commissioned to El Colegio de la Frontera Sur, Carretera Antiguo Aeropuerto, C. P., Tapachula, Chiapas, Mexico
| | - Ana María Maggiani-Aguilera
- Universidad de Guadalajara, Centro Universitario De Ciencias Biológicas Y Agropecuarias, Camino Ramón Padilla Sánchez Nextipac, Zapopan, Jalisco
| | - Javier Valle-Mora
- El Colegio de la Frontera Sur, Carretera Antiguo Aeropuerto, C.P., Tapachula, Chiapas, Mexico
| | - J Guillermo Bond
- Centro Regional de Investigación en Salud Pública (CRISP), Instituto Nacional de Salud Pública-(INSP), 19ª Calle Poniente, esquina 4ª Avenida Norte, Centro, C.P. 30700, Tapachula, Chiapas, Mexico
| | - Carlos F Marina
- Centro Regional de Investigación en Salud Pública (CRISP), Instituto Nacional de Salud Pública-(INSP), 19ª Calle Poniente, esquina 4ª Avenida Norte, Centro, C.P. 30700, Tapachula, Chiapas, Mexico
| | - Pablo Liedo
- El Colegio de la Frontera Sur, Carretera Antiguo Aeropuerto, C.P., Tapachula, Chiapas, Mexico
| |
Collapse
|
45
|
Yamada H, Maiga H, Juarez J, De Oliveira Carvalho D, Mamai W, Ali A, Bimbile-Somda NS, Parker AG, Zhang D, Bouyer J. Identification of critical factors that significantly affect the dose-response in mosquitoes irradiated as pupae. Parasit Vectors 2019; 12:435. [PMID: 31500662 PMCID: PMC6734225 DOI: 10.1186/s13071-019-3698-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 09/03/2019] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The sterile insect technique (SIT) for use against mosquitoes consists of several steps including the production of the target species in large numbers, the separation of males and females, the sterilization of the males, and the packing, transport and release of the sterile males at the target site. The sterility of the males is the basis of the technique; for this, efficient and standardized irradiation methods are needed to ensure that the required level of sterility is reliably and reproducibly achieved. While several reports have found that certain biological factors, handling methods and varying irradiation procedures can alter the level of induced sterility in insects, few studies exist in which the methodologies are adequately described and discussed for the reproductive sterilization of mosquitoes. Numerous irradiation studies on mosquito pupae have resulted in varying levels of sterility. Therefore, we initiated a series of small-scale experiments to first investigate variable parameters that may influence dose-response in mosquito pupae, and secondly, identify those factors that potentially have a significantly large effect and need further attention. METHODS In this study, we compiled the results of a series of experiments investigating variable parameters such as pupal age (Aedes aegypti), pupal size (Ae. aegypti), geographical origin of mosquito strains (Ae. aegypti and Ae. albopictus), exposure methods (in wet versus dry conditions, Ae. albopictus) and subsequently in low versus high oxygen environments [submerged in water (low O2 (< 5 %)] and in air [high O2 (~ 21 %)] on the radiosensitivity of male pupae (Ae. aegypti, Ae. albopictus and Anopheles arabiensis). RESULTS Results indicate that radiosensitvity of Ae. aegypti decreases with increasing pupal age (99% induced sterility in youngest pupae, compared to 93% in oldest pupae), but does not change with differences in pupal size (P = 0.94). Differing geographical origin of the same mosquito species did not result in variations in radiosensitivity in Ae. aegypti pupae [Brazil, Indonesia, France (La Reunion), Thailand] or Ae. albopictus [Italy, France (La Reunion)]. Differences in induced sterility were seen following irradiation of pupae that were in wet versus dry conditions, which led to further tests showing significant radioprotective effects of oxygen depletion during irradiation procedures in three tested mosquito species, as seen in other insects. CONCLUSIONS These findings infer the necessity to further evaluate significant factors and reassess dose-response for mosquitoes with controlled variables to be able to formulate protocols to achieve reliable and reproducible levels of sterility for application in the frame of the SIT.
Collapse
Affiliation(s)
- Hanano Yamada
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100, 1400 Vienna, Austria
- Institute for Insectbiotechnology, Justus-Liebig-University Gießen, Winchester Str. 2, 35394 Gießen, Germany
| | - Hamidou Maiga
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100, 1400 Vienna, Austria
| | - Jose Juarez
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100, 1400 Vienna, Austria
| | - Danilo De Oliveira Carvalho
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100, 1400 Vienna, Austria
| | - Wadaka Mamai
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100, 1400 Vienna, Austria
| | - Adel Ali
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100, 1400 Vienna, Austria
| | - Nanwintoum Severin Bimbile-Somda
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100, 1400 Vienna, Austria
| | - Andrew Gordon Parker
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100, 1400 Vienna, Austria
| | - Dongjing Zhang
- Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-sen University - Michigan State University Joint Center of Vector Control for Tropical Diseases, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080 Guangdong China
| | - Jeremy Bouyer
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100, 1400 Vienna, Austria
| |
Collapse
|