1
|
Lang HP, Almeer FF, Jenkins MK, Friedenberg SG. Rabies vaccination induces a CD4+ TEM and CD4+CD8+ TEMRA TH1 phenotype in dogs. PLoS One 2025; 20:e0323823. [PMID: 40354406 PMCID: PMC12068608 DOI: 10.1371/journal.pone.0323823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 04/15/2025] [Indexed: 05/14/2025] Open
Abstract
The canine rabies vaccine consists of the whole killed rabies virus and an alum adjuvant. While it is known to provide immunological protection in dogs, its effects on cell-mediated responses remain largely uncharacterized. Here, we analyzed blood and spleen samples from vaccinated dogs to understand adaptive immune responses ex vivo following restimulation with rabies vaccine antigens. Our results showed that recombinant rabies virus glycoprotein (RABV-G) elicited higher antibody titers and IFNγ production compared to recombinant rabies virus nucleoprotein (RABV-N). CD4+ and CD4+CD8+ double-positive (DP) T cells proliferate robustly after five days of RABV-G stimulation, which was inhibited by an anti-canine MHC class II blocking antibody. Both RABV-G-specific CD4+ and DP T cells demonstrated a polarized TH1 phenotype, with minor subsets showing TH1/TH17 hybrid and pathogenic TH1/TH17 hybrid cell features. CD4+ T cells were primarily effector memory T cells (TEM), while DP T cells exhibited a terminally differentiated effector memory phenotype that re-expressed CD45RA (TEMRA). Both RABV-G-specific CD4+ and DP T cells were detectable up to 1,024 days post-vaccination in spleen samples and their proliferative capacities were unaffected by age. Our results provide the first characterization of canine RABV-G-specific T cell phenotypes in the spleen and blood following rabies vaccination.
Collapse
Affiliation(s)
- Haeree P. Lang
- Center for Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Farah F. Almeer
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Marc K. Jenkins
- Center for Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Steven G. Friedenberg
- Center for Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, United States of America
| |
Collapse
|
2
|
Lang HP, Osum KC, Friedenberg SG. A review of CD4 + T cell differentiation and diversity in dogs. Vet Immunol Immunopathol 2024; 275:110816. [PMID: 39173398 PMCID: PMC11421293 DOI: 10.1016/j.vetimm.2024.110816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024]
Abstract
CD4+ T cells are an integral component of the adaptive immune response, carrying out many functions to combat a diverse range of pathogenic challenges. These cells exhibit remarkable plasticity, differentiating into specialized subsets such as T helper type 1 (TH1), TH2, TH9, TH17, TH22, regulatory T cells (Tregs), and follicular T helper (TFH) cells. Each subset is capable of addressing a distinct immunological need ranging from pathogen eradication to regulation of immune homeostasis. As the immune response subsides, CD4+ T cells rest down into long-lived memory phenotypes-including central memory (TCM), effector memory (TEM), resident memory (TRM), and terminally differentiated effector memory cells (TEMRA) that are localized to facilitate a swift and potent response upon antigen re-encounter. This capacity for long-term immunological memory and rapid reactivation upon secondary exposure highlights the role CD4+ T cells play in sustaining both adaptive defense mechanisms and maintenance. Decades of mouse, human, and to a lesser extent, pig T cell research has provided the framework for understanding the role of CD4+ T cells in immune responses, but these model systems do not always mimic each other. Although our understanding of pig immunology is not as extensive as mouse or human research, we have gained valuable insight by studying this model. More akin to pigs, our understanding of CD4+ T cells in dogs is much less complete. This disparity exists in part because canine immunologists depend on paradigms from mouse and human studies to characterize CD4+ T cells in dogs, with a fraction of available lineage-defining antibody markers. Despite this, every major CD4+ T cell subset has been described to some extent in dogs. These subsets have been studied in various contexts, including in vitro stimulation, homeostatic conditions, and across a range of disease states. Canine CD4+ T cells have been categorized according to lineage-defining characteristics, trafficking patterns, and what cytokines they produce upon stimulation. This review addresses our current understanding of canine CD4+ T cells from a comparative perspective by highlighting both the similarities and differences from mouse, human, and pig CD4+ T cell biology. We also discuss knowledge gaps in our current understanding of CD4+ T cells in dogs that could provide direction for future studies in the field.
Collapse
Affiliation(s)
- Haeree P Lang
- Center for Immunology, University of Minnesota, Minneapolis, MN 55414, USA; Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA.
| | - Kevin C Osum
- Center for Immunology, University of Minnesota, Minneapolis, MN 55414, USA.
| | - Steven G Friedenberg
- Center for Immunology, University of Minnesota, Minneapolis, MN 55414, USA; Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA.
| |
Collapse
|
3
|
Chamorro BM, Hameed SA, Claude JB, Piney L, Chapat L, Swaminathan G, Poulet H, De Luca K, Mundt E, Paul S. Canine mesenteric lymph nodes (MLNs) characterization by sc-RNAseq: insights compared to human and mouse MLNs. Sci Rep 2024; 14:20290. [PMID: 39217215 PMCID: PMC11365970 DOI: 10.1038/s41598-024-71310-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024] Open
Abstract
In the human and veterinary fields, oral vaccines generate considerable interest. In dogs, these vaccines are newly developed, and understanding their mechanisms is crucial. Mesenteric lymph nodes (MLNs) and Peyer's patches (PPs) are important sites for gastrointestinal mucosal induction, yet canine MLNs lack sufficient information. To address this, we collected MLN samples from healthy dogs, performed flow cytometry to characterize immune cells, and conducted single-cell RNA sequencing (scRNA-seq) to explore subpopulations, particularly B and T lymphocytes. This effort enabled the characterization of canine MLN's main cell populations and the construction of a predictive atlas, as well as the identification of particularities of this area.
Collapse
Affiliation(s)
- Beatriz Miguelena Chamorro
- CIRI - Centre International de Recherche en Infectiologie, Team GIMAP (Saint-Etienne), Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, UJM, 69007, Lyon, France
- Boehringer Ingelheim, Global Innovation, Saint-Priest, France
| | | | | | - Lauriane Piney
- Boehringer Ingelheim, Global Innovation, Saint-Priest, France
| | - Ludivine Chapat
- Boehringer Ingelheim, Global Innovation, Saint-Priest, France
| | | | - Hervé Poulet
- Boehringer Ingelheim, Global Innovation, Saint-Priest, France
| | - Karelle De Luca
- Boehringer Ingelheim, Global Innovation, Saint-Priest, France
| | - Egbert Mundt
- Boehringer Ingelheim, Global Innovation, Saint-Priest, France
| | - Stéphane Paul
- CIRI - Centre International de Recherche en Infectiologie, Team GIMAP (Saint-Etienne), Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, UJM, 69007, Lyon, France.
- CIC Inserm 1408 Vaccinology, 42023, Saint-Etienne, France.
| |
Collapse
|
4
|
Karwig L, Moore PF, Alber G, Eschke M. Distinct characteristics of unique immunoregulatory canine non-conventional TCRαβ pos CD4 negCD8α neg double-negative T cell subpopulations. Front Immunol 2024; 15:1439213. [PMID: 39185407 PMCID: PMC11341405 DOI: 10.3389/fimmu.2024.1439213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/12/2024] [Indexed: 08/27/2024] Open
Abstract
Conventional CD4pos regulatory T (Treg) cells characterized by expression of the key transcription factor forkhead box P3 (FoxP3) are crucial to control immune responses, thereby maintaining homeostasis and self-tolerance. Within the substantial population of non-conventional T cell receptor (TCR)αβpos CD4negCD8αneg double-negative (dn) T cells of dogs, a novel FoxP3pos Treg-like subset was described that, similar to conventional CD4pos Treg cells, is characterized by high expression of CD25. Noteworthy, human and murine TCRαβpos regulatory dn T cells lack FoxP3. Immunosuppressive capacity of canine dn T cells was hypothesized based on expression of inhibitory molecules (interleukin (IL)-10, cytotoxic T-lymphocyte associated protein 4, CTLA4). Here, to verify their regulatory function, the dnCD25pos (enriched for FoxP3pos Treg-like cells) and the dnCD25neg fraction, were isolated by fluorescence-activated cell sorting from peripheral blood mononuclear cells (PBMC) of Beagle dogs and analyzed in an in vitro suppression assay in comparison to conventional CD4posCD25pos Treg cells (positive control) and CD4posCD25neg T cells (negative control). Canine dnCD25pos T cells suppressed the Concanavalin A-driven proliferation of responder PBMC to a similar extent as conventional CD4posCD25pos Treg cells. Albeit to a lesser extent than FoxP3-enriched dn and CD4posCD25pos populations, even dnCD25neg T cells reduced the proliferation of responder cells. This is remarkable, as dnCD25neg T cells have a FoxP3neg phenotype comparable to non-suppressive CD4posCD25neg T cells. Both, CD25pos and CD25neg dn T cells, can mediate suppression independent of cell-cell contact and do not require additional signals from CD4posCD25neg T cells to secrete inhibitory factors in contrast to CD4posCD25pos T cells. Neutralization of IL-10 completely abrogated the suppression by dnCD25pos and CD4posCD25pos Treg cells in a Transwell™ system, while it only partially reduced suppression by dnCD25neg T cells. Taken together, unique canine non-conventional dnCD25pos FoxP3pos Treg-like cells are potent suppressor cells in vitro. Moreover, inhibition of proliferation of responder T cells by the dnCD25neg fraction indicates suppressive function of a subset of dn T cells even in the absence of FoxP3. The identification of unique immunoregulatory non-conventional dn T cell subpopulations of the dog in vitro is of high relevance, given the immunotherapeutic potential of manipulating regulatory T cell responses in vivo.
Collapse
Affiliation(s)
- Laura Karwig
- Institute of Immunology/Molecular Pathogenesis, Center for Biotechnology and Biomedicine, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Peter F. Moore
- Department of Veterinary Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Gottfried Alber
- Institute of Immunology/Molecular Pathogenesis, Center for Biotechnology and Biomedicine, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Maria Eschke
- Institute of Immunology/Molecular Pathogenesis, Center for Biotechnology and Biomedicine, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| |
Collapse
|
5
|
Protschka M, Di Placido D, Moore PF, Büttner M, Alber G, Eschke M. Canine peripheral non-conventional TCRαβ + CD4 -CD8α - double-negative T cells show T helper 2-like and regulatory properties. Front Immunol 2024; 15:1400550. [PMID: 38835756 PMCID: PMC11148280 DOI: 10.3389/fimmu.2024.1400550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 04/29/2024] [Indexed: 06/06/2024] Open
Abstract
The dog is an important companion animal and also serves as model species for human diseases. Given the central role of T cells in immune responses, a basic understanding of canine conventional T cell receptor (TCR)αβ+ T cells, comprising CD4+ single-positive (sp) T helper (Th) and CD8α+ sp cytotoxic T cell subsets, is available. However, characterization of canine non-conventional TCRαβ+ CD4+CD8α+ double-positive (dp) and TCRαβ+ CD4-CD8α- double-negative (dn) T cells is limited. In this study, we performed a comprehensive analysis of canine dp and dn T cells in comparison with their conventional counterparts. TCRαβ+ T cells from peripheral blood of healthy dogs were sorted according to their CD4/CD8α phenotype into four populations (i.e. CD4+ sp, CD8α+ sp, dp, and dn) and selected surface markers, transcription factors and effector molecules were analyzed ex vivo and after in vitro stimulation by RT-qPCR. Novel characteristics of canine dp T cells were identified, expanding the previously characterized Th1-like phenotype to Th17-like and Th2-like properties. Overall, mRNA expression of various Th cell-associated cytokines (i.e. IFNG, IL17A, IL4, IL13) in dp T cells upon stimulation highlights their versatile immunological potential. Furthermore, we demonstrated that the CD4-CD8α- dn phenotype is stable during in vitro stimulation. Strikingly, dn T cells were found to express highest mRNA levels of type 2 effector cytokines (IL4, IL5, and IL13) upon stimulation. Their strong ability to produce IL-4 was confirmed at the protein level. Upon stimulation, the percentage of IL-4-producing cells was even higher in the non-conventional dn than in the conventional CD4+ sp population. Constitutive transcription of IL1RL1 (encoding IL-33Rα) further supports Th2-like properties within the dn T cell population. These data point to a role of dn T cells in type 2 immunity. In addition, the high potential of dn T cells to transcribe the gene encoding the co-inhibitory receptor CTLA-4 and to produce the inhibitory cytokine IL-10 indicates putative immunosuppressive capacity of this population. In summary, this study reveals important novel aspects of canine non-conventional T cells providing the basis for further studies on their effector and/or regulatory functions to elucidate their role in health and disease.
Collapse
MESH Headings
- Animals
- Dogs
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Th2 Cells/immunology
- CD8 Antigens/metabolism
- CD8 Antigens/immunology
- Cytokines/metabolism
- CD4 Antigens/metabolism
- CD4 Antigens/immunology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Immunophenotyping
- Male
Collapse
Affiliation(s)
- Martina Protschka
- Institute of Immunology, Center for Biotechnology and Biomedicine, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Daniela Di Placido
- Institute of Immunology, Center for Biotechnology and Biomedicine, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Peter F. Moore
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Mathias Büttner
- Institute of Immunology, Center for Biotechnology and Biomedicine, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Gottfried Alber
- Institute of Immunology, Center for Biotechnology and Biomedicine, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Maria Eschke
- Institute of Immunology, Center for Biotechnology and Biomedicine, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| |
Collapse
|
6
|
Miguelena Chamorro B, Hameed SA, Dechelette M, Claude JB, Piney L, Chapat L, Swaminathan G, Poulet H, Longet S, De Luca K, Mundt E, Paul S. Characterization of Canine Peyer's Patches by Multidimensional Analysis: Insights from Immunofluorescence, Flow Cytometry, and Single-Cell RNA Sequencing. Immunohorizons 2023; 7:788-805. [PMID: 38015460 PMCID: PMC10696420 DOI: 10.4049/immunohorizons.2300091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 11/06/2023] [Indexed: 11/29/2023] Open
Abstract
The oral route is effective and convenient for vaccine administration to stimulate a protective immune response. GALT plays a crucial role in mucosal immune responses, with Peyer's patches (PPs) serving as the primary site of induction. A comprehensive understanding of the structures and functions of these structures is crucial for enhancing vaccination strategies and comprehending disease mechanisms; nonetheless, our current knowledge of these structures in dogs remains incomplete. We performed immunofluorescence and flow cytometry studies on canine PPs to identify cell populations and structures. We also performed single-cell RNA sequencing (scRNA-seq) to investigate the immune cell subpopulations present in PPs at steady state in dogs. We generated and validated an Ab specifically targeting canine M cells, which will be a valuable tool for elucidating Ag trafficking into the GALT of dogs. Our findings will pave the way for future studies of canine mucosal immune responses to oral vaccination and enteropathies. Moreover, they add to the growing body of knowledge in canine immunology, further expanding our understanding of the complex immune system of dogs.
Collapse
Affiliation(s)
- Beatriz Miguelena Chamorro
- Centre International de Recherche en Infectiologie, Team GIMAP (Saint-Etienne), Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, UJM, F69007 Lyon, France
- Global Innovation, Boehringer Ingelheim, Saint-Priest, France
| | | | | | | | - Lauriane Piney
- Global Innovation, Boehringer Ingelheim, Saint-Priest, France
| | - Ludivine Chapat
- Global Innovation, Boehringer Ingelheim, Saint-Priest, France
| | | | - Hervé Poulet
- Global Innovation, Boehringer Ingelheim, Saint-Priest, France
| | - Stéphanie Longet
- Centre International de Recherche en Infectiologie, Team GIMAP (Saint-Etienne), Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, UJM, F69007 Lyon, France
| | - Karelle De Luca
- Global Innovation, Boehringer Ingelheim, Saint-Priest, France
| | - Egbert Mundt
- Global Innovation, Boehringer Ingelheim, Saint-Priest, France
| | - Stéphane Paul
- Centre International de Recherche en Infectiologie, Team GIMAP (Saint-Etienne), Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, UJM, F69007 Lyon, France
- International Center for Infectiology Research, INSERM 1408 Vaccinology, Saint-Etienne, France
| |
Collapse
|
7
|
Scorza BM, Mahachi KG, Cox AD, Toepp AJ, Pessoa-Pereira D, Tyrrell P, Buch J, Foltz JA, Lee D, Petersen CA. Role of NK-Like CD8 + T Cells during Asymptomatic Borrelia burgdorferi Infection. Infect Immun 2022; 90:e0055521. [PMID: 35416707 PMCID: PMC9119074 DOI: 10.1128/iai.00555-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 03/25/2022] [Indexed: 11/20/2022] Open
Abstract
Lyme disease (LD) due to Borrelia burgdorferi is the most prevalent vector-borne disease in the United States. There is a poor understanding of how immunity contributes to bacterial control, pathology, or both during LD. Dogs in an area of endemicity were screened for B. burgdorferi and Anaplasma exposure and stratified according to seropositivity, presence of LD symptoms, and doxycycline treatment. Significantly elevated serum interleukin-21 (IL-21) and increased circulating CD3+ CD94+ lymphocytes with an NK-like CD8+ T cell phenotype were predominant in asymptomatic dogs exposed to B. burgdorferi. Both CD94+ T cells and CD3- CD94+ lymphocytes, corresponding to NK cells, from symptomatic dogs expressed gamma interferon (IFN-γ) at a 3-fold-higher frequency upon stimulation with B. burgdorferi than the same subset among endemic controls. Surface expression of activating receptor NKp46 was reduced on CD94+ T cells from LD, compared to cells after doxycycline treatment. A higher frequency of NKp46-expressing CD94+ T cells correlated with significantly increased peripheral blood mononuclear cell (PBMC) cytotoxic activity via calcein release assay. PBMCs from dogs with symptomatic LD showed significantly reduced killing ability compared with endemic control PBMCs. An elevated NK-like CD8+ T cell response was associated with protection against development of clinical LD, while excess IFN-γ was associated with clinical disease.
Collapse
Affiliation(s)
- Breanna M. Scorza
- Department of Epidemiology, University of Iowa, Iowa City, Iowa, USA
| | - Kurayi G. Mahachi
- Department of Epidemiology, University of Iowa, Iowa City, Iowa, USA
| | - Arin D. Cox
- Department of Epidemiology, University of Iowa, Iowa City, Iowa, USA
| | - Angela J. Toepp
- Department of Epidemiology, University of Iowa, Iowa City, Iowa, USA
| | | | | | - Jesse Buch
- IDEXX Laboratories, Inc., Westbrook, Maine, USA
| | - Jennifer A. Foltz
- Division of Hematology and Oncology, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Dean Lee
- Division of Hematology and Oncology, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | | |
Collapse
|
8
|
Agulla B, García-Sancho M, Sainz Á, Rodríguez-Franco F, Díaz-Regañón D, Rodríguez-Bertos A, Villaescusa A. Isolation and immunophenotyping by flow cytometry of canine peripheral blood and intraepithelial and lamina propria duodenal T lymphocytes. Vet Immunol Immunopathol 2021; 239:110305. [PMID: 34352607 DOI: 10.1016/j.vetimm.2021.110305] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 07/22/2021] [Accepted: 07/27/2021] [Indexed: 11/19/2022]
Abstract
The gut associated lymphoid tissue (GALT) effector sites play a crucial role on the pathogenesis of many immune-mediated gastrointestinal diseases. The lymphocytes at these effector sites are principally T cells which present important morphological, phenotypical and functional differences. Flow cytometry (FC) is one of the most commonly used techniques to characterize intestinal lymphocytes in human and animal models. Published studies with a focus on dogs for intraepithelial lymphocytes (IEL) immunophenotyping exist in very limited numbers. Moreover, no lamina propria lymphocytes (LPL) isolation protocols in the canine species have been described for FC evaluation. In addition to immune intestinal dysregulation, imbalances in the peripheral blood immune system have been described in both human and animal gastrointestinal disorders. The aim of this study was to provide a protocol for canine IEL and LPL isolation for FC immunophenotyping of T cells subsets. Specifically, T helper, T cytotoxic, activated Th and Tc lymphocytes, regulatory, double negative, double positive, IFN-γ and IL-4 producing T cells, and to compare their respective populations between these effector sites and with the blood stream compartment in healthy dogs. The potential relationship of these cells distributions with age, sex and breed was also evaluated. This study included sixteen healthy dogs of different sexes and breeds with a mean age of 4.55 ± 2.93 years old. The selected protocols for the three immune compartments showed proper cell yield, purity, viability, and the absence of phenotypic and functional disturbances. Histologically, an adequate separation of the duodenal epithelium from the lamina propria was also observed. All the proposed T cells subsets were identified in the three immune compartments studied, showing some statistically significant differences in their distributions at these locations that highlight the importance of their individual evaluation. This study provides an adequate method for canine small intestine IEL and LPL isolation for FC immunophenotyping and is key for future studies on the gastrointestinal immune system associated with different canine diseases.
Collapse
Affiliation(s)
- Beatriz Agulla
- Department of Animal Medicine and Surgery, College of Veterinary Medicine, Complutense University of Madrid, Avda. Puerta de Hierro s/n, 28040, Madrid, Spain.
| | - Mercedes García-Sancho
- Department of Animal Medicine and Surgery, College of Veterinary Medicine, Complutense University of Madrid, Avda. Puerta de Hierro s/n, 28040, Madrid, Spain
| | - Ángel Sainz
- Department of Animal Medicine and Surgery, College of Veterinary Medicine, Complutense University of Madrid, Avda. Puerta de Hierro s/n, 28040, Madrid, Spain
| | - Fernando Rodríguez-Franco
- Department of Animal Medicine and Surgery, College of Veterinary Medicine, Complutense University of Madrid, Avda. Puerta de Hierro s/n, 28040, Madrid, Spain
| | - David Díaz-Regañón
- Department of Animal Medicine and Surgery, College of Veterinary Medicine, Complutense University of Madrid, Avda. Puerta de Hierro s/n, 28040, Madrid, Spain
| | - Antonio Rodríguez-Bertos
- Department of Animal Medicine and Surgery, College of Veterinary Medicine, Complutense University of Madrid, Avda. Puerta de Hierro s/n, 28040, Madrid, Spain; VISAVET Health Surveillance Centre, Complutense University of Madrid, Avda. Puerta de Hierro s/n, 28040, Madrid, Spain
| | - Alejandra Villaescusa
- Department of Animal Medicine and Surgery, College of Veterinary Medicine, Complutense University of Madrid, Avda. Puerta de Hierro s/n, 28040, Madrid, Spain
| |
Collapse
|
9
|
Santos MF, Alexandre-Pires G, Pereira MA, Gomes L, Rodrigues AV, Basso A, Reisinho A, Meireles J, Santos-Gomes GM, Pereira da Fonseca I. Immunophenotyping of Peripheral Blood, Lymph Node, and Bone Marrow T Lymphocytes During Canine Leishmaniosis and the Impact of Antileishmanial Chemotherapy. Front Vet Sci 2020; 7:375. [PMID: 32760744 PMCID: PMC7373748 DOI: 10.3389/fvets.2020.00375] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/28/2020] [Indexed: 11/30/2022] Open
Abstract
Dogs are a major reservoir of Leishmania infantum, etiological agent of canine leishmaniosis (CanL) a zoonotic visceral disease of worldwide concern. Therapeutic protocols based on antileishmanial drugs are commonly used to treat sick dogs and improve their clinical condition. To better understand the impact of Leishmania infection and antileishmanial drugs on the dog's immune response, this study investigates the profile of CD4+ and CD8+ T cell subsets in peripheral blood, lymph node, and bone marrow of sick dogs and after two different CanL treatments. Two CanL groups of six dogs each were treated with either miltefosine or meglumine antimoniate combined with allopurinol. Another group of 10 clinically healthy dogs was used as control. Upon diagnosis and during the following 3 months of treatment, peripheral blood, popliteal lymph node, and bone marrow mononuclear cells were collected, labeled for surface markers CD45, CD3, CD4, CD8, CD25, and intracellular nuclear factor FoxP3, and T lymphocyte subpopulations were immunophenotyped by flow cytometry. CanL dogs presented an overall increased frequency of CD8+ and CD4+CD8+ double-positive T cells in all tissues and a decreased frequency of CD4+ T cells in the blood. Furthermore, there was a higher frequency of CD8+ T cells expressing CD25+FoxP3+ in the blood and bone marrow. During treatment, these subsets recovered to levels similar to those of healthy dogs. Nevertheless, antileishmanial therapy caused an increase of CD4+CD25+FoxP3+ T cells in all tissues, associated with the decrease of CD8+CD25−FoxP3− T cell percentages. These findings may support previous studies that indicate that L. infantum manipulates the dog's immune system to avoid the development of a protective response, ensuring the parasite's survival and the conditions that allow the completion of Leishmania life cycle. Both treatments used appear to have an effect on the dog's immune response, proving to be effective in promoting the normalization of T cell subsets.
Collapse
Affiliation(s)
- Marcos Ferreira Santos
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisbon, Portugal
| | - Graça Alexandre-Pires
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisbon, Portugal
| | - Maria A Pereira
- GHTM-Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova De Lisbon (UNL), Lisbon, Portugal
| | - Lídia Gomes
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisbon, Portugal
| | - Armanda V Rodrigues
- GHTM-Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova De Lisbon (UNL), Lisbon, Portugal
| | - Alexandra Basso
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisbon, Portugal
| | - Ana Reisinho
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisbon, Portugal
| | - José Meireles
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisbon, Portugal
| | - Gabriela M Santos-Gomes
- GHTM-Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova De Lisbon (UNL), Lisbon, Portugal
| | - Isabel Pereira da Fonseca
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
10
|
Rabiger FV, Rothe K, von Buttlar H, Bismarck D, Büttner M, Moore PF, Eschke M, Alber G. Distinct Features of Canine Non-conventional CD4 -CD8α - Double-Negative TCRαβ + vs. TCRγδ + T Cells. Front Immunol 2019; 10:2748. [PMID: 31824515 PMCID: PMC6883510 DOI: 10.3389/fimmu.2019.02748] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 11/11/2019] [Indexed: 01/01/2023] Open
Abstract
The role of conventional TCRαβ+CD4+ or TCRαβ+CD8α+ single-positive (sp) T lymphocytes in adaptive immunity is well-recognized. However, non-conventional T cells expressing TCRαβ or TCRγδ but lacking CD4 and CD8α expression [i.e., CD4−CD8α− double-negative (dn) T cells] are thought to play a role at the interface between the innate and adaptive immune system. Dn T cells are frequent in swine, cattle or sheep and predominantly express TCRγδ. In contrast, TCRγδ+ T cells are rare in dogs. In this study, we identified a high proportion of canine dn T cells in the TCRαβ+ T cell population of PBMC, lymphatic and non-lymphatic organs. In PBMC, the frequency of this T cell subpopulation made up one third of the frequency of TCRαβ+CD4+ sp, and almost half of the frequency of TCRαβ+CD8α+ sp T cells (i.e., ~15% of all TCRαβ+ T cells). Among TCRαβ+CD4−CD8α− dn T cells of PBMC and tissues, FoxP3+ cells were identified indicating regulatory potential of this T cell subset. 80% of peripheral blood FoxP3+TCRαβ+CD4−CD8α− dn T cells co-expressed CD25, and, interestingly, also the FoxP3-negative TCRαβ+CD4−CD8α− dn T cells comprised ~34% CD25+ cells. Some of the FoxP3-positive TCRαβ+CD4−CD8α− dn T cells co-expressed GATA-3 suggesting stable function of regulatory T cells. The frequency of GATA-3 expression by FoxP3−TCRαβ+CD4−CD8α− dn T cells was even higher as compared with TCRαβ+CD4+ sp T cells (20.6% vs. 11.9%). Albeit lacking FoxP3 and CD25 expression, TCRγδ+CD4−CD8α− dn T cells also expressed substantial proportions of GATA-3. In addition, TCRαβ+CD4−CD8α− dn T cells produced IFN-γ and IL-17A upon stimulation. T-bet and granzyme B were only weakly expressed by both dn T cell subsets. In conclusion, this study identifies two dn T cell subsets in the dog: (i) a large (~7.5% in Peyer's patches, ~15% in lung) population of TCRαβ+CD4−CD8α− dn T cells with subpopulations thereof showing an activated phenotype, high expression of FoxP3 or GATA-3 as well as production of IFN-γ or IL-17A and (ii) a small TCRγδ+CD4−CD8α− dn T cell subset also expressing GATA-3 without production of IFN-γ or IL-17A. It will be exciting to unravel the function of each subset during immune homeostasis and diseases of dogs.
Collapse
Affiliation(s)
- Friederike V Rabiger
- Institute of Immunology/Molecular Pathogenesis, Center for Biotechnology and Biomedicine, College of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Kathrin Rothe
- Institute of Immunology/Molecular Pathogenesis, Center for Biotechnology and Biomedicine, College of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Heiner von Buttlar
- Institute of Immunology/Molecular Pathogenesis, Center for Biotechnology and Biomedicine, College of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Doris Bismarck
- Institute of Immunology/Molecular Pathogenesis, Center for Biotechnology and Biomedicine, College of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Mathias Büttner
- Institute of Immunology/Molecular Pathogenesis, Center for Biotechnology and Biomedicine, College of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Peter F Moore
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Maria Eschke
- Institute of Immunology/Molecular Pathogenesis, Center for Biotechnology and Biomedicine, College of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Gottfried Alber
- Institute of Immunology/Molecular Pathogenesis, Center for Biotechnology and Biomedicine, College of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| |
Collapse
|