1
|
Gaynor KM, Abrahms B, Manlove KR, Oestreich WK, Smith JA. Anthropogenic impacts at the interface of animal spatial and social behaviour. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220527. [PMID: 39230457 PMCID: PMC11449167 DOI: 10.1098/rstb.2022.0527] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/15/2024] [Accepted: 04/25/2024] [Indexed: 09/05/2024] Open
Abstract
Human disturbance is contributing to widespread, global changes in the distributions and densities of wild animals. These anthropogenic impacts on wildlife arise from multiple bottom-up and top-down pathways, including habitat loss, resource provisioning, climate change, pollution, infrastructure development, hunting and our direct presence. Animal behaviour is an important mechanism linking these disturbances to population outcomes, although these behavioural pathways are often complex and can remain obscured when different aspects of behaviour are studied in isolation from one another. The spatial-social interface provides a lens for understanding how an animal's spatial and social environments interact to determine its spatial and social phenotype (i.e. measurable characteristics of an individual), and how these phenotypes interact and feed back to reshape environments. Here, we review studies of animal behaviour at the spatial-social interface to understand and predict how human disturbance affects animal movement, distribution and intraspecific interactions, with consequences for the conservation of populations and ecosystems. By understanding the spatial-social mechanisms linking human disturbance to conservation outcomes, we can better design management interventions to mitigate undesired consequences of disturbance.This article is part of the theme issue 'The spatial-social interface: a theoretical and empirical integration'.
Collapse
Affiliation(s)
- Kaitlyn M Gaynor
- Departments of Zoology and Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Briana Abrahms
- Center for Ecosystem Sentinels, Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Kezia R Manlove
- Department of Wildland Resources, Utah State University, Logan, UT 84322, USA
| | | | - Justine A Smith
- Department of Wildlife Fish, and Conservation Biology, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
2
|
Humphries JE, Lanctôt CM, McCallum HI, Newell DA, Grogan LF. Chytridiomycosis causes high amphibian mortality prior to the completion of metamorphosis. ENVIRONMENTAL RESEARCH 2024; 247:118249. [PMID: 38244972 DOI: 10.1016/j.envres.2024.118249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/09/2024] [Accepted: 01/17/2024] [Indexed: 01/22/2024]
Abstract
Amphibian populations are undergoing extensive declines globally. The fungal disease chytridiomycosis, caused by the pathogenic fungus Batrachochytrium dendrobatidis (Bd), is a primary contributor to these declines. The amphibian metamorphic stages (Gosner stages 42-46) are particularly vulnerable to a range of stressors, including Bd. Despite this, studies that explicitly examine host response to chytridiomycosis throughout the metamorphic stages are lacking. We aimed to determine how Bd exposure during the larval stages impacts metamorphic development and infection progression in the endangered Fleay's barred frog (Mixophyes fleayi). We exposed M. fleayi to Bd during pro-metamorphosis (Gosner stages 35-38) and monitored infection dynamics throughout metamorphosis. We took weekly morphological measurements (weight, total body length, snout-vent-length and Gosner stage) and quantified Bd load using qPCR. While we observed minimal impact of Bd infection on animal growth and development, Bd load varied throughout ontogeny, with an infection load plateau during the tadpole stages (Gosner stages 35-41) and temporary infection clearance at Gosner stage 42. Bd load increased exponentially between Gosner stages 42 and 45, with most exposed animals becoming moribund at Gosner stage 45, prior to the completion of metamorphosis. There was variability in infection outcome of exposed individuals, with a subgroup of animals (n = 5/29) apparently clearing their infection while the majority (n = 21/29) became moribund with high infection burdens. This study demonstrates the role that metamorphic restructuring plays in shaping Bd infection dynamics and raises the concern that substantial Bd-associated mortality could be overlooked in the field due to the often cryptic nature of these latter metamorphic stages. We recommend future studies that directly examine the host immune response to Bd infection throughout metamorphosis, incorporating histological and molecular methods to elucidate the mechanisms responsible for the observed trends.
Collapse
Affiliation(s)
- Josephine E Humphries
- School of Environment and Science, Griffith University, Southport, Queensland 4222, Australia; Centre for Planetary Health and Food Security, Griffith University, Southport, Queensland 4222, Australia.
| | - Chantal M Lanctôt
- School of Environment and Science, Griffith University, Southport, Queensland 4222, Australia; Australian Rivers Institute, Griffith University, Southport, Queensland 4222, Australia
| | - Hamish I McCallum
- Centre for Planetary Health and Food Security, Griffith University, Southport, Queensland 4222, Australia
| | - David A Newell
- Faculty of Science and Engineering, Southern Cross University, Lismore, New South Wales 2480, Australia
| | - Laura F Grogan
- School of Environment and Science, Griffith University, Southport, Queensland 4222, Australia; Centre for Planetary Health and Food Security, Griffith University, Southport, Queensland 4222, Australia
| |
Collapse
|
3
|
Torralba CAV, Gamalinda EF, Estaño LA. Parasitic helminths of alien invasive anurans in Butuan City, Northeastern Mindanao, Philippines. Helminthologia 2023; 60:385-392. [PMID: 38222484 PMCID: PMC10787635 DOI: 10.2478/helm-2023-0040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/22/2023] [Indexed: 01/16/2024] Open
Abstract
This study aimed to identify the helminth parasites of invasive anuran species in selected barangays in Butuan City, Philippines. In urbanized areas, invasive species dominate anuran diversity, and one of the primary threats they pose to native wildlife is the transmission of diseases and parasites. Out of the 91 collected individuals of invasive anuran species, Rhinella marina was the most abundant (88 %), followed by Hoplobatrachus rugulosus (12 %) and Kaloula pulchra (3 %). The study identified five species of parasites, with Spirometra sp. being the most prevalent (17.58 %), followed by Echinostoma sp. (16.5 %), Rhabdias bufonis (14.3 %), Cosmocerca sp. (6.6 %), and Strongyloides stercoralis (3.30 %), respectively. Spirometra sp. also had the highest intensity (7.67), followed by Cosmocerca sp. (5), Strongyloides stercoralis (3.33), Rhabdias bufonis (3.30), and Echinostoma sp. (2.73). This parasitological survey revealed that H. rugulosus had the highest prevalence and infection of parasites, and residential areas had the highest parasite prevalence among the habitat types. Adult hosts were found to harbor a higher prevalence and intensity, and male hosts had a higher prevalence. The results highlight the high risk of parasite transmission from anurans to other animals and emphasize the need for the community to control the population of invasive anuran species for the safety of native anurans and to prevent zoonotic transmission to other animals and humans.
Collapse
Affiliation(s)
- CA. V. Torralba
- Department of Biology, College of Mathematics and Natural Sciences, Caraga State University, Ampayon, Butuan City, Agusan del Norte, Philippines, 8600
| | - E. F. Gamalinda
- Department of Biology, College of Mathematics and Natural Sciences, Caraga State University, Ampayon, Butuan City, Agusan del Norte, Philippines, 8600
| | - L. A. Estaño
- Department of Biological Sciences, College of Science and Mathematics, Mindanao State University – Iligan Institute of Technology, Iligan City, Lanao del Norte, Philippines, 9200
| |
Collapse
|
4
|
McMahon TA, Nordheim CL, Detmering SE, Johnson PTJ, Rohr JR, Civitello DJ. Pseudacris regilla metamorphs acquire resistance to Batrachochytrium dendrobatidis after exposure to the killed fungus. DISEASES OF AQUATIC ORGANISMS 2023; 155:193-198. [PMID: 37767886 DOI: 10.3354/dao03753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
The pathogenic fungus Batrachochytrium dendrobatidis (Bd) is associated with drastic global amphibian declines. Prophylactic exposure to killed zoospores and the soluble chemicals they produce (Bd metabolites) can induce acquired resistance to Bd in adult Cuban treefrogs Osteopilus septentrionalis. Here, we exposed metamorphic frogs of a second species, the Pacific chorus frog Pseudacris regilla, to one of 2 prophylactic treatments prior to live Bd exposures: killed Bd zoospores with metabolites, killed zoospores alone, or a water control. Prior exposure to killed Bd zoospores with metabolites reduced Bd infection intensity in metamorphic Pacific chorus frogs by 60.4% compared to control frogs. Interestingly, Bd intensity in metamorphs previously exposed to killed zoospores alone did not differ in magnitude relative to the control metamorphs, nor to those treated with killed zoospores plus metabolites. Previous work indicated that Bd metabolites alone can induce acquired resistance in tadpoles, and so these findings together indicate that it is possible that the soluble Bd metabolites may contain immunomodulatory components that drive this resistance phenotype. Our results expand the generality of this prophylaxis work by identifying a second amphibian species (Pacific chorus frog) and an additional amphibian life stage (metamorphic frog) that can acquire resistance to Bd after metabolite exposure. This work increases hopes that a Bd-metabolite prophylaxis might be widely effective across amphibian species and life stages.
Collapse
Affiliation(s)
- Taegan A McMahon
- Connecticut College, Department of Biology, New London, Connecticut 06320, USA
| | | | | | | | | | | |
Collapse
|
5
|
Hollanders M, Grogan LF, McCallum HI, Brannelly LA, Newell DA. Limited impact of chytridiomycosis on juvenile frogs in a recovered species. Oecologia 2023:10.1007/s00442-023-05406-w. [PMID: 37349661 DOI: 10.1007/s00442-023-05406-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 06/12/2023] [Indexed: 06/24/2023]
Abstract
The amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd) has caused catastrophic frog declines on several continents, but disease outcome is mediated by a number of factors. Host life stage is an important consideration and many studies have highlighted the vulnerability of recently metamorphosed or juvenile frogs compared to adults. The majority of these studies have taken place in a laboratory setting, and there is a general paucity of longitudinal field studies investigating the influence of life stage on disease outcome. In this study, we assessed the effect of endemic Bd on juvenile Mixophyes fleayi (Fleay's barred frog) in subtropical eastern Australian rainforest. Using photographic mark-recapture, we made 386 captures of 116 individuals and investigated the effect of Bd infection intensity on the apparent mortality rates of frogs using a multievent model correcting for infection state misclassification. We found that neither Bd infection status nor infection intensity predicted mortality in juvenile frogs, counter to the expectation that early life stages are more vulnerable to disease, despite average high infection prevalence (0.35, 95% HDPI [0.14, 0.52]). Additionally, we found that observed infection prevalence and intensity were somewhat lower for juveniles than adults. Our results indicate that in this Bd-recovered species, the realized impacts of chytridiomycosis on juveniles were apparently low, likely resulting in high recruitment contributing to population stability. We highlight the importance of investigating factors relating to disease outcome in a field setting and make recommendations for future studies.
Collapse
Affiliation(s)
- Matthijs Hollanders
- Faculty of Science and Engineering, Southern Cross University, Lismore, NSW, Australia.
| | - Laura F Grogan
- Centre for Planetary Health and Food Security, and School of Environment and Science, Griffith University, Southport, QLD, Australia
| | - Hamish I McCallum
- Centre for Planetary Health and Food Security, and School of Environment and Science, Griffith University, Southport, QLD, Australia
| | - Laura A Brannelly
- Veterinary BioSciences, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, VIC, Australia
| | - David A Newell
- Faculty of Science and Engineering, Southern Cross University, Lismore, NSW, Australia
| |
Collapse
|
6
|
Melero I, González R, Elena SF. Host developmental stages shape the evolution of a plant RNA virus. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220005. [PMID: 36744567 PMCID: PMC9979778 DOI: 10.1098/rstb.2022.0005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Viruses are obligate pathogens that entirely rely on their hosts to complete their infectious cycle. The outcome of viral infections depends on the status of the host. Host developmental stage is an important but sometimes overlooked factor impacting host-virus interactions. This impact is especially relevant in a context where climate change and human activities are altering plant development. To better understand how different host developmental stages shape virus evolution, we experimentally evolved turnip mosaic virus (TuMV) on Arabidopsis thaliana at three different developmental stages: vegetative (juvenile), bolting (transition) and reproductive (mature). After infecting plants with an Arabidopsis-naive or an Arabidopsis-well-adapted TuMV isolate, we observed that hosts in later developmental stages were prone to faster and more severe infections. This observation was extended to viruses belonging to different genera. Thereafter, we experimentally evolved lineages of the naive and the well-adapted TuMV isolates in plants from each of the three developmental stages. All evolved viruses enhanced their infection traits, but this increase was more intense in viruses evolved in younger hosts. The genomic changes of the evolved viral lineages revealed mutation patterns that strongly depended on the founder viral isolate as well as on the developmental stage of the host wherein the lineages were evolved. This article is part of the theme issue 'Infectious disease ecology and evolution in a changing world'.
Collapse
Affiliation(s)
- Izan Melero
- Instituto de Biología Integrativa de Sistemas (CSIC - Universitat de València), Paterna, 46182 València, Spain
| | - Rubén González
- Instituto de Biología Integrativa de Sistemas (CSIC - Universitat de València), Paterna, 46182 València, Spain
| | - Santiago F. Elena
- Instituto de Biología Integrativa de Sistemas (CSIC - Universitat de València), Paterna, 46182 València, Spain,The Santa Fe Institute, Santa Fe 87501, NM, USA
| |
Collapse
|
7
|
Wu NC. Pathogen load predicts host functional disruption: A meta‐analysis of an amphibian fungal panzootic. Funct Ecol 2023. [DOI: 10.1111/1365-2435.14245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Nicholas C. Wu
- Hawkesbury Institute for the Environment Western Sydney University Richmond New South Wales Australia
| |
Collapse
|
8
|
Humphries JE, Lanctôt CM, Robert J, McCallum HI, Newell DA, Grogan LF. Do immune system changes at metamorphosis predict vulnerability to chytridiomycosis? An update. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 136:104510. [PMID: 35985564 DOI: 10.1016/j.dci.2022.104510] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/20/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Amphibians are among the vertebrate groups suffering great losses of biodiversity due to a variety of causes including diseases, such as chytridiomycosis (caused by the fungal pathogens Batrachochytrium dendrobatidis and B. salamandrivorans). The amphibian metamorphic period has been identified as being particularly vulnerable to chytridiomycosis, with dramatic physiological and immunological reorganisation likely contributing to this vulnerability. Here, we overview the processes behind these changes at metamorphosis and then perform a systematic literature review to capture the breadth of empirical research performed over the last two decades on the metamorphic immune response. We found that few studies focused specifically on the immune response during the peri-metamorphic stages of amphibian development and fewer still on the implications of their findings with respect to chytridiomycosis. We recommend future studies consider components of the immune system that are currently under-represented in the literature on amphibian metamorphosis, particularly pathogen recognition pathways. Although logistically challenging, we suggest varying the timing of exposure to Bd across metamorphosis to examine the relative importance of pathogen evasion, suppression or dysregulation of the immune system. We also suggest elucidating the underlying mechanisms of the increased susceptibility to chytridiomycosis at metamorphosis and the associated implications for population persistence. For species that overlap a distribution where Bd/Bsal are now endemic, we recommend a greater focus on management strategies that consider the important peri-metamorphic period.
Collapse
Affiliation(s)
- Josephine E Humphries
- School of Environment and Science, Griffith University, Southport, Queensland, 4222, Australia; Centre for Planetary Health and Food Security, Griffith University, Southport, Queensland, 4222, Australia; Faculty of Science and Engineering, Southern Cross University, Lismore, New South Wales, 2480, Australia.
| | - Chantal M Lanctôt
- School of Environment and Science, Griffith University, Southport, Queensland, 4222, Australia; Australian Rivers Institute, Griffith University, Southport, Queensland, 4222, Australia
| | - Jacques Robert
- Department of Microbiology and Immunology, University of Rochester Medical Center, 14642, Rochester, NY, United States
| | - Hamish I McCallum
- School of Environment and Science, Griffith University, Southport, Queensland, 4222, Australia; Centre for Planetary Health and Food Security, Griffith University, Southport, Queensland, 4222, Australia
| | - David A Newell
- Faculty of Science and Engineering, Southern Cross University, Lismore, New South Wales, 2480, Australia
| | - Laura F Grogan
- School of Environment and Science, Griffith University, Southport, Queensland, 4222, Australia; Centre for Planetary Health and Food Security, Griffith University, Southport, Queensland, 4222, Australia
| |
Collapse
|
9
|
Kaiser SW, Greenlees MJ, Shine R. Wildfires modify the parasite loads of invasive cane toads. Biol Lett 2021; 17:20210470. [PMID: 34932921 PMCID: PMC8692031 DOI: 10.1098/rsbl.2021.0470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/30/2021] [Indexed: 11/21/2022] Open
Abstract
The frequency and severity of wildfires are increasing due to anthropogenic modifications to habitats and to climate. Post-fire landscapes may advantage invasive species via multiple mechanisms, including changes to host-parasite interactions. We surveyed the incidence of endoparasitic lungworms (Rhabdias pseudosphaerocephala) in invasive cane toads (Rhinella marina) in near-coastal sites of eastern Australia, a year after extensive fires in this region. Both the prevalence of infection and number of worms in infected toads increased with toad body size in unburned areas. By contrast, parasite load decreased with toad body size in burned areas. By killing moisture-dependent free-living lungworm larvae, the intense fires may have liberated adult cane toads from a parasite that can substantially reduce the viability of its host. Smaller toads, which are restricted to moist environments, did not receive this benefit from fires.
Collapse
Affiliation(s)
- Shannon W. Kaiser
- Department of Biological Sciences, Macquarie University, NSW 2109, Australia
| | | | - Richard Shine
- Department of Biological Sciences, Macquarie University, NSW 2109, Australia
| |
Collapse
|
10
|
Villamizar-Gomez A, Wang HH, Peterson MR, Grant WE, Forstner MRJ. Environmental determinants of Batrachochytrium dendrobatidis and the likelihood of further dispersion in the face of climate change in Texas, USA. DISEASES OF AQUATIC ORGANISMS 2021; 146:29-39. [PMID: 34498608 DOI: 10.3354/dao03613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
One of the major drivers of amphibian population declines is Batrachochytrium dendrobatidis (Bd). We sought to identify the major environmental drivers of Bd prevalence in Texas, USA, by drawing results from museum specimens. We sampled one of the largest museum collections in Texas, the Biodiversity Research and Teaching Collections at Texas A&M University. Our sampling focused on the 9 amphibian species with the widest geographical distribution within the state, where we sub-sampled 30% of each species per decade from 1930 to present via skin swabs, totaling 1501 independent sampling events, and used quantitative real-time PCR (qPCR) to detect pathogen presence. We analyzed several geo-referenced variables describing climatic conditions to identify potential factors influencing the likelihood of presence of Bd using boosted regression trees. Our final model suggests the most influential variables are mean temperature of driest quarter, annual mean temperature, temperature annual range, and mean diurnal range. The most likely suitable range for Bd is currently found in the Blackland Prairie and Cross Timbers ecoregions. Results of our future (to the year 2040) projections suggest that Bd could expand its current distribution. Our model could play an important role when developing an integrated conservation plan through (1) focusing future field work on locations with a high likelihood of presence, (2) assisting in the choice of locations for restoration, and (3) developing future research plans including those necessary for projecting reactions to climate change. Our model also could integrate new presence data of Bd when they become available to enhance prediction precision.
Collapse
|
11
|
Scheele BC, Hollanders M, Hoffmann EP, Newell DA, Lindenmayer DB, McFadden M, Gilbert DJ, Grogan LF. Conservation translocations for amphibian species threatened by chytrid fungus: A review, conceptual framework, and recommendations. CONSERVATION SCIENCE AND PRACTICE 2021. [DOI: 10.1111/csp2.524] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Ben C. Scheele
- Fenner School of Environment and Society Australian National University Canberra Australian Capital Territory Australia
| | - Matthijs Hollanders
- Faculty of Science and Engineering Southern Cross University Lismore New South Wales Australia
| | - Emily P. Hoffmann
- Fenner School of Environment and Society Australian National University Canberra Australian Capital Territory Australia
- School of Biological Sciences The University of Western Australia Crawley Western Australia Australia
| | - David A. Newell
- Faculty of Science and Engineering Southern Cross University Lismore New South Wales Australia
| | - David B. Lindenmayer
- Fenner School of Environment and Society Australian National University Canberra Australian Capital Territory Australia
| | - Michael McFadden
- Taronga Conservation Society Australia Mosman New South Wales Australia
| | - Deon J. Gilbert
- Wildlife Conservation and Science Zoos Victoria Parkville Victoria Australia
| | - Laura F. Grogan
- Centre for Planetary Health and Food Security, School of Environment and Science Griffith University Southport Queensland Australia
| |
Collapse
|
12
|
Bailey C, Strepparava N, Ros A, Wahli T, Schmidt-Posthaus H, Segner H, Tafalla C. It's a hard knock life for some: Heterogeneity in infection life history of salmonids influences parasite disease outcomes. J Anim Ecol 2021; 90:2573-2593. [PMID: 34165799 PMCID: PMC8597015 DOI: 10.1111/1365-2656.13562] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/19/2021] [Indexed: 11/27/2022]
Abstract
Heterogeneity in immunity occurs across numerous disease systems with individuals from the same population having diverse disease outcomes. Proliferative kidney disease (PKD) caused by Tetracapsuloides bryosalmonae, is a persistent parasitic disease negatively impacting both wild and farmed salmonids. Little is known of how PKD is spread or maintained within wild susceptible populations. We investigated an aspect of fish disease that has been largely overlooked, that is, the role of the host phenotypic heterogeneity in disease outcome. We examined how host susceptibility to T. bryosalmonae infection, and the disease PKD, varied across different infection life-history stages and how it differs between naïve, re-infected and persistently infected hosts. We investigated the response to parasite exposure in host phenotypes with (a) different ages and (b) heterogeneous infection life histories. Among (a) the age phenotypes were young-of-the-year (YOY) fish and juvenile 1+ fish (fish older than one) and, for (b) juvenile 1+ infection survivors were either re-exposed or not re- exposed to the parasite and response phenotypes were assigned post-hoc dependant on infection status. In fish not re-exposed this included fish that cleared infection (CI) or had a persistent infection (PI). In fish re-exposed these included fish that were re-infected (RI), or re-exposed and uninfected (RCI). We assessed both parasite-centric (infection prevalence, parasite burden, malacospore transmission) and host-centric parameters (growth rates, disease severity, infection tolerance and the immune response). In (a), YOY fish, parasite success and disease severity were greater and differences in the immune response occurred, demonstrating an ontogenetic decline of susceptibility in older fish. In (b), in PI and RI fish, parasite success and disease severity were comparable. However, expression of several adaptive immunity markers was greater in RI fish, indicating concomitant immunity, as re-exposure did not intensify infection. We demonstrate the relevance of heterogeneity in infection life history on disease outcome and describe several distinctive features of immune ontogeny and protective immunity in this model not previously reported. The relevance of such themes on a population level requires greater research in many aquatic disease systems to generate clearer framework for understanding the spread and maintenance of aquatic pathogens.
Collapse
Affiliation(s)
- Christyn Bailey
- Fish Immunology and Pathology Group, Animal Health Research Centre (CISA-INIA), Madrid, Spain
| | - Nicole Strepparava
- Centre for Fish and Wildlife Health, University of Bern, Bern, Switzerland
| | - Albert Ros
- LAZBW, Fischereiforschungsstelle, Langenargen, Germany
| | - Thomas Wahli
- Centre for Fish and Wildlife Health, University of Bern, Bern, Switzerland
| | | | - Helmut Segner
- Centre for Fish and Wildlife Health, University of Bern, Bern, Switzerland
| | - Carolina Tafalla
- Fish Immunology and Pathology Group, Animal Health Research Centre (CISA-INIA), Madrid, Spain
| |
Collapse
|
13
|
Russell RE, DiRenzo GV, Szymanski JA, Alger KE, Grant EHC. Principles and Mechanisms of Wildlife Population Persistence in the Face of Disease. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.569016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|