1
|
González-Carrera S, Escudero A, Fernández-Fuentes A, Martínez-Ortega M, Mediavilla S. Variations in Acorn Characteristics Between Two Mediterranean Quercus Species and Their Hybrids Through Contrasting Environmental Gradients in Spain. PLANTS (BASEL, SWITZERLAND) 2025; 14:718. [PMID: 40094678 PMCID: PMC11902106 DOI: 10.3390/plants14050718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 02/22/2025] [Accepted: 02/22/2025] [Indexed: 03/19/2025]
Abstract
Oaks are characterized by high plasticity and intense interspecific gene flow due to natural hybridization. This generates a wide phenotypic spectrum, which creates taxonomic confusion within the genus. We compared the acorn traits across a temperature gradient in two types of Mediterranean Quercus (Quercus faginea Lam. and Q. pyrenaica Willd.) and their hybrids. Genetic groups were identified using amplified fragment length polymorphism (AFLPs) analysis. Acorns sampled from each of the three genetic groups were used for comparative purposes by means of 15 morphological characteristics. Eight of the traits showed discriminant value among the three groups. The acorn height tended to decrease with decreasing temperatures across the gradient, whereas the acorn width exhibited the opposite response. However, fruit traits allowed discrimination between the three groups, and the differences were consistent in the different zones. Both the number of acorns produced and the individual acorn size were larger for Q. pyrenaica. Hybrids showed intermediate traits between both parent species. Traditionally, the persistence of parental species in the absence of reproductive barriers has been explained by the lower fitness of the hybrids. Our results, however, do not reveal the presence of transgressive characteristics in the hybrids that could justify a lower competitive capacity.
Collapse
Affiliation(s)
- Santiago González-Carrera
- Department of Ecology, Faculty of Biology, University of Salamanca, 37071 Salamanca, Spain; (S.G.-C.); (A.E.); (A.F.-F.)
| | - Alfonso Escudero
- Department of Ecology, Faculty of Biology, University of Salamanca, 37071 Salamanca, Spain; (S.G.-C.); (A.E.); (A.F.-F.)
| | - Alejandro Fernández-Fuentes
- Department of Ecology, Faculty of Biology, University of Salamanca, 37071 Salamanca, Spain; (S.G.-C.); (A.E.); (A.F.-F.)
| | - Montserrat Martínez-Ortega
- Department of Botany and Plant Physiology, Faculty of Biology, University of Salamanca, 37071 Salamanca, Spain;
- Herbarium and Plant DNA Biobank, University of Salamanca, 37071 Salamanca, Spain
| | - Sonia Mediavilla
- Department of Ecology, Faculty of Biology, University of Salamanca, 37071 Salamanca, Spain; (S.G.-C.); (A.E.); (A.F.-F.)
| |
Collapse
|
2
|
Méndez-Vigo B, Arteaga N, Murillo-Sánchez A, Alba S, Alonso-Blanco C. The bHLH transcription factor gene EGL3 accounts for the natural diversity in Arabidopsis fruit trichome pattern and morphology. PLANT PHYSIOLOGY 2024; 197:kiae673. [PMID: 39709618 PMCID: PMC11773808 DOI: 10.1093/plphys/kiae673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 12/24/2024]
Abstract
The number and distribution of trichomes, i.e. the trichome pattern, in different plant organs show a conspicuous inter- and intraspecific diversity across Angiosperms that is presumably involved in adaptation to numerous environmental factors. The genetic and molecular mechanisms accounting for the evolution of trichome patterns have just begun to be elucidated. In this study, we aimed to identify and characterize MALAMBRUNO 1 (MAU1), a locus affecting trichome number in the fruits of Arabidopsis (Arabidopsis thaliana) natural populations. To this end, we developed introgression lines (ILs) from the hairy fruit accession Doñana (Don-0) in the genetic background of the Ler strain with glabrous fruits. Genetic analyses of ILs showed that MAU1 affects fruit trichome patterns through synergistic epistasis with the MYB genes TRICHOMELESS1 (TCL1), GLABRA1 (GL1), and TRIPTYCHON (TRY). In addition, fine mapping and characterization of transgenic lines demonstrated that MAU1 is the bHLH transcription factor gene EGL3, for which Don-0 carries a gain-of-function semidominant allele. Gene expression analyses did not detect differences between EGL3 alleles, thus supporting that a structural missense mutation is the causal nucleotide polymorphism of Don-0. Further phylogenetic analyses of EGL3 showed that most Arabidopsis populations with hairy fruits belong to 3 haplogroups, suggesting that additional EGL3 natural alleles account for fruit trichome development. Finally, the characterization of EGL3 pleiotropy indicates that Don-0 hyperfunction also increases stem trichome branching. We conclude that EGL3 interactions in the core gene regulatory network of trichome development explain the Arabidopsis natural diversity for fruit trichome pattern and morphology.
Collapse
Affiliation(s)
- Belén Méndez-Vigo
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid 28049, Spain
| | - Noelia Arteaga
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid 28049, Spain
| | - Alba Murillo-Sánchez
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid 28049, Spain
| | - Sonia Alba
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid 28049, Spain
| | - Carlos Alonso-Blanco
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid 28049, Spain
| |
Collapse
|
3
|
Fuster-Pons A, Murillo-Sánchez A, Méndez-Vigo B, Marcer A, Pieper B, Torres-Pérez R, Oliveros JC, Tsiantis M, Picó FX, Alonso-Blanco C. The trichome pattern diversity of Cardamine shares genetic mechanisms with Arabidopsis but differs in environmental drivers. PLANT PHYSIOLOGY 2024; 196:2730-2748. [PMID: 38606947 PMCID: PMC11637488 DOI: 10.1093/plphys/kiae213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/29/2024] [Accepted: 03/29/2024] [Indexed: 04/13/2024]
Abstract
Natural variation in trichome pattern (amount and distribution) is prominent among populations of many angiosperms. However, the degree of parallelism in the genetic mechanisms underlying this diversity and its environmental drivers in different species remain unclear. To address these questions, we analyzed the genomic and environmental bases of leaf trichome pattern diversity in Cardamine hirsuta, a relative of Arabidopsis (Arabidopsis thaliana). We characterized 123 wild accessions for their genomic diversity, leaf trichome patterns at different temperatures, and environmental adjustments. Nucleotide diversities and biogeographical distribution models identified two major genetic lineages with distinct demographic and adaptive histories. Additionally, C. hirsuta showed substantial variation in trichome pattern and plasticity to temperature. Trichome amount in C. hirsuta correlated positively with spring precipitation but negatively with temperature, which is opposite to climatic patterns in A. thaliana. Contrastingly, genetic analysis of C. hirsuta glabrous accessions indicated that, like for A. thaliana, glabrousness is caused by null mutations in ChGLABRA1 (ChGL1). Phenotypic genome-wide association studies (GWAS) further identified a ChGL1 haplogroup associated with low trichome density and ChGL1 expression. Therefore, a ChGL1 series of null and partial loss-of-function alleles accounts for the parallel evolution of leaf trichome pattern in C. hirsuta and A. thaliana. Finally, GWAS also detected other candidate genes (e.g. ChETC3, ChCLE17) that might affect trichome pattern. Accordingly, the evolution of this trait in C. hirsuta and A. thaliana shows partially conserved genetic mechanisms but is likely involved in adaptation to different environments.
Collapse
Affiliation(s)
- Alberto Fuster-Pons
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid 28049, Spain
| | - Alba Murillo-Sánchez
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid 28049, Spain
| | - Belén Méndez-Vigo
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid 28049, Spain
| | - Arnald Marcer
- CREAF, Cerdanyola del Vallès 08193, Spain
- Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| | - Bjorn Pieper
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany
| | - Rafael Torres-Pérez
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid 28049, Spain
| | - Juan Carlos Oliveros
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid 28049, Spain
| | - Miltos Tsiantis
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany
| | - F Xavier Picó
- Departamento de Biología evolutiva, Estación Biológica de Doñana (EBD), Consejo Superior de Investigaciones Científicas (CSIC), Sevilla 41092, Spain
| | - Carlos Alonso-Blanco
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid 28049, Spain
| |
Collapse
|
4
|
Laoué J, Gea-Izquierdo G, Dupouyet S, Conde M, Fernandez C, Ormeño E. Leaf morpho-anatomical adjustments in a Quercus pubescens forest after 10 years of partial rain exclusion in the field. TREE PHYSIOLOGY 2024; 44:tpae047. [PMID: 38676920 DOI: 10.1093/treephys/tpae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/11/2024] [Accepted: 04/23/2024] [Indexed: 04/29/2024]
Abstract
In the Mediterranean region, a reduction of annual precipitation and a longer and drier summer season are expected with climate change by the end of the century, eventually endangering forest survival. To cope with such rapid changes, trees may modulate their morpho-anatomical and physiological traits. In the present study, we focused on the variation in leaf gas exchange and different leaf morpho-anatomical functional traits of Quercus pubescens Willd. in summer using a long-term drought experiment in natura consisting of a dynamic rainfall exclusion system where trees have been submitted to amplified drought (AD) (~-30% of annual precipitation) since April 2012 and compared them with trees under natural drought (ND) in a Mediterranean forest. During the study, we analyzed net CO2 assimilation (An), stomatal conductance (gs), transpiration (E), water-use efficiency (WUE), stomatal size and density, density of glandular trichomes and non-glandular trichomes, thickness of the different leaf tissues, specific leaf area and leaf surface. Under AD, tree functioning was slightly impacted, since only An exhibited a 49% drop, while gs, E and WUE remained stable. The decrease in An under AD was regulated by concomitant lower stomatal density and reduced leaf thickness. Trees under AD also featured leaves with a higher non-glandular trichome density and a lower glandular trichome density compared with ND, which simultaneously limits transpiration and production costs. This study points out that Q. pubescens exhibits adjustments of leaf morpho-anatomical traits which can help trees to acclimate to AD scenarios as those expected in the future in the Mediterranean region.
Collapse
Affiliation(s)
- Justine Laoué
- CNRS, Aix Marseille Univ, Univ Avignon, IRD, IMBE, University Campus Saint-Jérôme 13013 Marseille, France
| | | | - Sylvie Dupouyet
- CNRS, Aix Marseille Univ, Univ Avignon, IRD, IMBE, University Campus Saint-Jérôme 13013 Marseille, France
| | - María Conde
- CIFOR-INIA, CSIC, Centro de Investigación Forestal Moncloa - Aravaca 28040 Madrid, Spain
| | - Catherine Fernandez
- CNRS, Aix Marseille Univ, Univ Avignon, IRD, IMBE, University Campus Saint-Jérôme 13013 Marseille, France
| | - Elena Ormeño
- CNRS, Aix Marseille Univ, Univ Avignon, IRD, IMBE, University Campus Saint-Jérôme 13013 Marseille, France
| |
Collapse
|
5
|
Baird AS, Medeiros CD, Caringella MA, Bowers J, Hii M, Liang J, Matsuda J, Pisipati K, Pohl C, Simon B, Tagaryan S, Buckley TN, Sack L. How and why do species break a developmental trade-off? Elucidating the association of trichomes and stomata across species. AMERICAN JOURNAL OF BOTANY 2024; 111:e16328. [PMID: 38727415 DOI: 10.1002/ajb2.16328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/07/2024] [Accepted: 03/14/2024] [Indexed: 05/29/2024]
Abstract
PREMISE Previous studies have suggested a trade-off between trichome density (Dt) and stomatal density (Ds) due to shared cell precursors. We clarified how, when, and why this developmental trade-off may be overcome across species. METHODS We derived equations to determine the developmental basis for Dt and Ds in trichome and stomatal indices (it and is) and the sizes of epidermal pavement cells (e), trichome bases (t), and stomata (s) and quantified the importance of these determinants of Dt and Ds for 78 California species. We compiled 17 previous studies of Dt-Ds relationships to determine the commonness of Dt-Ds associations. We modeled the consequences of different Dt-Ds associations for plant carbon balance. RESULTS Our analyses showed that higher Dt was determined by higher it and lower e, and higher Ds by higher is and lower e. Across California species, positive Dt-Ds coordination arose due to it-is coordination and impacts of the variation in e. A Dt-Ds trade-off was found in only 30% of studies. Heuristic modeling showed that species sets would have the highest carbon balance with a positive or negative relationship or decoupling of Dt and Ds, depending on environmental conditions. CONCLUSIONS Shared precursor cells of trichomes and stomata do not limit higher numbers of both cell types or drive a general Dt-Ds trade-off across species. This developmental flexibility across diverse species enables different Dt-Ds associations according to environmental pressures. Developmental trait analysis can clarify how contrasting trait associations would arise within and across species.
Collapse
Affiliation(s)
- Alec S Baird
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, 621 Charles E. Young Drive South, Los Angeles, 90095, CA, USA
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, Bern, 3013, Switzerland
| | - Camila D Medeiros
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, 621 Charles E. Young Drive South, Los Angeles, 90095, CA, USA
| | - Marissa A Caringella
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, 621 Charles E. Young Drive South, Los Angeles, 90095, CA, USA
| | - Julia Bowers
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, 621 Charles E. Young Drive South, Los Angeles, 90095, CA, USA
| | - Michelle Hii
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, 621 Charles E. Young Drive South, Los Angeles, 90095, CA, USA
| | - John Liang
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, 621 Charles E. Young Drive South, Los Angeles, 90095, CA, USA
| | - Joshua Matsuda
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, 621 Charles E. Young Drive South, Los Angeles, 90095, CA, USA
| | - Kirthana Pisipati
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, 621 Charles E. Young Drive South, Los Angeles, 90095, CA, USA
| | - Caroline Pohl
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, 621 Charles E. Young Drive South, Los Angeles, 90095, CA, USA
| | - Benjamin Simon
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, 621 Charles E. Young Drive South, Los Angeles, 90095, CA, USA
| | - Silvard Tagaryan
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, 621 Charles E. Young Drive South, Los Angeles, 90095, CA, USA
| | - Thomas N Buckley
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, 95616, CA, USA
| | - Lawren Sack
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, 621 Charles E. Young Drive South, Los Angeles, 90095, CA, USA
| |
Collapse
|
6
|
Wang Q, Wu Y, Wu W, Lyu L, Li W. A review of changes at the phenotypic, physiological, biochemical, and molecular levels of plants due to high temperatures. PLANTA 2024; 259:57. [PMID: 38307982 DOI: 10.1007/s00425-023-04320-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 12/23/2023] [Indexed: 02/04/2024]
Abstract
MAIN CONCLUSION This review summarizes the physiological, biochemical, and molecular regulatory network changes in plants in response to high temperature. With the continuous rise in temperature, high temperature has become an important issue limiting global plant growth and development, affecting the phenotype and physiological and biochemical processes of plants and seriously restricting crop yield and tree growth speed. As sessile organisms, plants inevitably encounter high temperatures and improve their heat tolerance by activating molecular networks related to heat stress, such as signal transduction, synthesis of metabolites, and gene expression. Heat tolerance is a polygenic trait regulated by a variety of genes, transcription factors, proteins, and metabolites. Therefore, this review summarizes the changes in physiological, biochemical and molecular regulatory networks in plants under high-temperature conditions to lay a foundation for an in-depth understanding of the mechanisms involved in plant heat tolerance responses.
Collapse
Affiliation(s)
- Que Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, China
| | - Yaqiong Wu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Qian Hu Hou Cun No. 1, Nanjing, 210014, China.
| | - Wenlong Wu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Qian Hu Hou Cun No. 1, Nanjing, 210014, China
| | - Lianfei Lyu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Qian Hu Hou Cun No. 1, Nanjing, 210014, China
| | - Weilin Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, China.
| |
Collapse
|
7
|
Mediavilla S, Escudero A. Photosynthetic performance under adaxial and abaxial illumination in three Mediterranean Quercus species differing in branch architecture and individual leaf area. PHOTOSYNTHESIS RESEARCH 2023; 158:181-194. [PMID: 37651028 DOI: 10.1007/s11120-023-01045-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/14/2023] [Indexed: 09/01/2023]
Abstract
Light availability effects on canopy-level carbon balance constitute an especially difficult issue to address, owing to the strong spatial and temporal changes of the light environment within the canopy. One of the least explored aspects in relation to light environment is the interaction between leaf angle and leaf anatomy. The inclination of the leaf may affect the distribution of light between the adaxial and abaxial surface. The purpose of this study is determining the proportions of the leaf area receiving light from the abaxial side in branches of isolated trees in three Mediterranean oaks, as well as the photosynthetic responses to light under adaxial and abaxial illumination. The proportions of the leaf area illuminated from below were low for sun incidence angles near 0° with respect to the main axis of the branch. However, for sun incidence angles about 45°, the proportion of leaves receiving abaxial illumination was considerable. PPFD levels on the sunlit part of the abaxial surface were always lower than those in the upper leaf side, as a consequence of the lower projection efficiency for the leaves facing the sun by the lower side. Light absorptance was also lower on the abaxial side. The differences between both sides of the leaf tended to be stronger for thicker, longer-living leaves. We conclude that mean C assimilation of the canopy is significantly decreased by the presence of leaves facing the sun by the lower side and that this decrease is stronger in evergreen species with thicker leaves.
Collapse
Affiliation(s)
- Sonia Mediavilla
- Área de Ecología, Facultad de Biología, Universidad de Salamanca, Campus Unamuno s/n, 37071, Salamanca, Spain
| | - Alfonso Escudero
- Área de Ecología, Facultad de Biología, Universidad de Salamanca, Campus Unamuno s/n, 37071, Salamanca, Spain.
| |
Collapse
|
8
|
Castro Sánchez-Bermejo P, Davrinche A, Matesanz S, Harpole WS, Haider S. Within-individual leaf trait variation increases with phenotypic integration in a subtropical tree diversity experiment. THE NEW PHYTOLOGIST 2023; 240:1390-1404. [PMID: 37710419 DOI: 10.1111/nph.19250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/10/2023] [Indexed: 09/16/2023]
Abstract
Covariation of plant functional traits, that is, phenotypic integration, might constrain their variability. This was observed for inter- and intraspecific variation, but there is no evidence of a relationship between phenotypic integration and the functional variation within single plants (within-individual trait variation; WTV), which could be key to understand the extent of WTV in contexts like plant-plant interactions. We studied the relationship between WTV and phenotypic integration in c. 500 trees of 21 species in planted forest patches varying in species richness in subtropical China. Using visible and near-infrared spectroscopy (Vis-NIRS), we measured nine leaf morphological and chemical traits. For each tree, we assessed metrics of single and multitrait variation to assess WTV, and we used plant trait network properties based on trait correlations to quantify phenotypic integration. Against expectations, strong phenotypic integration within a tree led to greater variation across leaves. Not only this was true for single traits, but also the dispersion in a tree's multitrait hypervolume was positively associated with tree's phenotypic integration. Surprisingly, we only detected weak influence of the surrounding tree-species diversity on these relationships. Our study suggests that integrated phenotypes allow the variability of leaf phenotypes within the organism and supports that phenotypic integration prevents maladaptive variation.
Collapse
Affiliation(s)
- Pablo Castro Sánchez-Bermejo
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle (Saale), 06108, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, Leipzig, 04103, Germany
| | - Andréa Davrinche
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle (Saale), 06108, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, Leipzig, 04103, Germany
- Research Centre for Ecological Change (REC), Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, 00014, Finland
| | - Silvia Matesanz
- Área de Biodiversidad y Conservación, Departamento de Biología, Geología, Física y Química inorgánica, ESCET, Universidad Rey Juan Carlos, Móstoles, 28933, Spain
| | - W Stanley Harpole
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle (Saale), 06108, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, Leipzig, 04103, Germany
- Department of Physiological Diversity, Helmholtz Centre for Environmental Research - UFZ, Leipzig, 04103, Germany
| | - Sylvia Haider
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle (Saale), 06108, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, Leipzig, 04103, Germany
- Leuphana University of Lüneburg, Institute of Ecology, Lüneburg, 21335, Germany
| |
Collapse
|
9
|
Mediavilla S, Escudero A. Branch architecture in relation to canopy positions in three Mediterranean oaks. Oecologia 2023; 201:915-927. [PMID: 36932216 DOI: 10.1007/s00442-023-05358-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 03/07/2023] [Indexed: 03/19/2023]
Abstract
Branch architecture is a key determinant of plant performance owing to its role in a light interception by photosynthetic tissues. However, under stressed conditions, excess light may be harmful to the photosynthetic apparatus, and plants often present structural mechanisms to avoid photoinhibition. Three-dimensional models were constructed of the aerial parts in different locations within the crown of three co-occurring tree species (Quercus ilex, Q. suber and Q. faginea) growing in a Mediterranean environment. We hypothesized that the species with the shorter leaf life span would exhibit higher leaf display efficiency (silhouette to total leaf area, STAR), maximizing light interception and photosynthesis in the short term. In addition, more exposed positions within a canopy should develop more structural avoidance mechanisms to minimize excessive radiation. Significant differences were detected in architectural traits at both the intra- and interspecific level. Architectural traits promoting greater self-shading were more frequent in the species with longer leaf longevity and in the canopy locations experiencing higher temperatures at the times of maximum sunlight. However, these trends were in part counteracted by the changes in individual leaf area, which tended to be larger in the species with shorter leaf longevity and in the less exposed canopy locations. We conclude that the variation in architectural traits occurs mainly as a means to avoid the excessive self-shading of branches with the largest leaf size.
Collapse
Affiliation(s)
- Sonia Mediavilla
- Facultad de Biología, Universidad de Salamanca, Área de Ecología, Campus Unamuno s/n 37071., Salamanca, Spain
| | - Alfonso Escudero
- Facultad de Biología, Universidad de Salamanca, Área de Ecología, Campus Unamuno s/n 37071., Salamanca, Spain.
| |
Collapse
|
10
|
Vinod N, Slot M, McGregor IR, Ordway EM, Smith MN, Taylor TC, Sack L, Buckley TN, Anderson-Teixeira KJ. Thermal sensitivity across forest vertical profiles: patterns, mechanisms, and ecological implications. THE NEW PHYTOLOGIST 2023; 237:22-47. [PMID: 36239086 DOI: 10.1111/nph.18539] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 07/31/2022] [Indexed: 06/16/2023]
Abstract
Rising temperatures are influencing forests on many scales, with potentially strong variation vertically across forest strata. Using published research and new analyses, we evaluate how microclimate and leaf temperatures, traits, and gas exchange vary vertically in forests, shaping tree, and ecosystem ecology. In closed-canopy forests, upper canopy leaves are exposed to the highest solar radiation and evaporative demand, which can elevate leaf temperature (Tleaf ), particularly when transpirational cooling is curtailed by limited stomatal conductance. However, foliar traits also vary across height or light gradients, partially mitigating and protecting against the elevation of upper canopy Tleaf . Leaf metabolism generally increases with height across the vertical gradient, yet differences in thermal sensitivity across the gradient appear modest. Scaling from leaves to trees, canopy trees have higher absolute metabolic capacity and growth, yet are more vulnerable to drought and damaging Tleaf than their smaller counterparts, particularly under climate change. By contrast, understory trees experience fewer extreme high Tleaf 's but have fewer cooling mechanisms and thus may be strongly impacted by warming under some conditions, particularly when exposed to a harsher microenvironment through canopy disturbance. As the climate changes, integrating the patterns and mechanisms reviewed here into models will be critical to forecasting forest-climate feedback.
Collapse
Affiliation(s)
- Nidhi Vinod
- Conservation Ecology Center, Smithsonian's National Zoo & Conservation Biology Institute, Front Royal, VA, 22630, USA
- Department of Ecology and Evolutionary Biology, UCLA, Los Angeles, CA, 90039, USA
| | - Martijn Slot
- Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Panama City, Panama
| | - Ian R McGregor
- Center for Geospatial Analytics, North Carolina State University, Raleigh, NC, 27607, USA
| | - Elsa M Ordway
- Department of Ecology and Evolutionary Biology, UCLA, Los Angeles, CA, 90039, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Marielle N Smith
- Department of Forestry, Michigan State University, East Lansing, MI, 48824, USA
- School of Natural Sciences, College of Environmental Sciences and Engineering, Bangor University, Bangor, LL57 2DG, UK
| | - Tyeen C Taylor
- Department of Civil & Environmental Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Lawren Sack
- Department of Ecology and Evolutionary Biology, UCLA, Los Angeles, CA, 90039, USA
| | - Thomas N Buckley
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Kristina J Anderson-Teixeira
- Conservation Ecology Center, Smithsonian's National Zoo & Conservation Biology Institute, Front Royal, VA, 22630, USA
- Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Panama City, Panama
| |
Collapse
|
11
|
Arteaga N, Méndez‐Vigo B, Fuster‐Pons A, Savic M, Murillo‐Sánchez A, Picó FX, Alonso‐Blanco C. Differential environmental and genomic architectures shape the natural diversity for trichome patterning and morphology in different Arabidopsis organs. PLANT, CELL & ENVIRONMENT 2022; 45:3018-3035. [PMID: 35289421 PMCID: PMC9541492 DOI: 10.1111/pce.14308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/21/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
Despite the adaptive and taxonomic relevance of the natural diversity for trichome patterning and morphology, the molecular and evolutionary mechanisms underlying these traits remain mostly unknown, particularly in organs other than leaves. In this study, we address the ecological, genetic and molecular bases of the natural variation for trichome patterning and branching in multiple organs of Arabidopsis (Arabidopsis thaliana). To this end, we characterized a collection of 191 accessions and carried out environmental and genome-wide association (GWA) analyses. Trichome amount in different organs correlated negatively with precipitation in distinct seasons, thus suggesting a precise fit between trichome patterning and climate throughout the Arabidopsis life cycle. In addition, GWA analyses showed small overlapping between the genes associated with different organs, indicating partly independent genetic bases for vegetative and reproductive phases. These analyses identified a complex locus on chromosome 2, where two adjacent MYB genes (ETC2 and TCL1) displayed differential effects on trichome patterning in several organs. Furthermore, analyses of transgenic lines carrying different natural alleles demonstrated that TCL1 accounts for the variation for trichome patterning in all organs, and for stem trichome branching. By contrast, two other MYB genes (TRY and GL1), mainly showed effects on trichome patterning or branching, respectively.
Collapse
Affiliation(s)
- Noelia Arteaga
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB)Consejo Superior de Investigaciones Científicas (CSIC)MadridSpain
| | - Belén Méndez‐Vigo
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB)Consejo Superior de Investigaciones Científicas (CSIC)MadridSpain
| | - Alberto Fuster‐Pons
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB)Consejo Superior de Investigaciones Científicas (CSIC)MadridSpain
| | - Marija Savic
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB)Consejo Superior de Investigaciones Científicas (CSIC)MadridSpain
| | - Alba Murillo‐Sánchez
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB)Consejo Superior de Investigaciones Científicas (CSIC)MadridSpain
| | - F. Xavier Picó
- Departamento de Ecología Integrativa, Estación Biológica de Doñana (EBD)Consejo Superior de Investigaciones Científicas (CSIC)SevillaSpain
| | - Carlos Alonso‐Blanco
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB)Consejo Superior de Investigaciones Científicas (CSIC)MadridSpain
| |
Collapse
|
12
|
Effect of Seasonal Variation on Leaf Cuticular Waxes’ Composition in the Mediterranean Cork Oak (Quercus suber L.). FORESTS 2022. [DOI: 10.3390/f13081236] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Quercus suber L. (cork oak) leaves were analyzed along one annual cycle for cuticular wax content and chemical composition. This species, well adapted to the long dry summer conditions prevailing in the Mediterranean, has a leaf life span of about one year. The cuticular wax revealed a seasonal variation with a coverage increase from the newly expanded leaves (115.7 µg/cm2 in spring) to a maximum value in fully expanded leaves (235.6 µg/cm2 after summer). Triterpenoids dominated the wax composition throughout the leaf life cycle, corresponding in young leaves to 26 µg/cm2 (22.6% of the total wax) and 116.0 µg/cm2 (49% of the total wax) in mature leaves, with lupeol constituting about 70% of this fraction. The total aliphatic compounds increased from 39 µg/cm2 (young leaves) to 71 µg/cm2 (mature leaves) and then decreased to 22 µg/cm2 and slightly increased during the remaining period. The major aliphatic compounds were fatty acids, mostly with C16 (hexadecanoic acid) and C28 (octacosanoic acid) chain lengths. Since pentacyclic triterpenoids are located almost exclusively within the cutin matrix (intracuticular wax), the increase in the cyclic-to-acyclic component ratio after summer shows an extensive deposition of intracuticular waxes in association with the establishment of mechanical and thermal stability and of water barrier properties in the mature leaf cuticle.
Collapse
|
13
|
Hernandez JO, Park BB. The Leaf Trichome, Venation, and Mesophyll Structural Traits Play Important Roles in the Physiological Responses of Oak Seedlings to Water-Deficit Stress. Int J Mol Sci 2022; 23:ijms23158640. [PMID: 35955770 PMCID: PMC9369340 DOI: 10.3390/ijms23158640] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 02/04/2023] Open
Abstract
In this study, we investigated the effects of water-deficit stress on the leaf anatomical traits, physiological traits, and stem starch content in Quercus acutissima Carruth and Quercus serrata Murray by subjecting their seedlings to well-watered (WW) and water-deficit stress (WS) treatments. The water stress-induced changes in trichome density, trichome-to-stomata ratio, mesophyll thickness, vein density, vein distance, vein loopiness, vessel diameter, transpiration (E), stomatal conductance (gs), water use efficiency (WUE), and starch content were analyzed between two time points. While trichome density did not vary between treatments in Q. acutissima, it dramatically increased in Q. serrata (62.63–98.96 trichomes mm−2) at the final week. The WS-treated seedlings had a thicker palisade mesophyll (162.85–169.56 µm) than the WW-treated samples (118.56–132.25 µm) in both species. The vein density and loopiness increased significantly in the WS-treated Q. serrata seedlings. Small-sized vessels (10–50 µm) were more frequent in the WS than the WW in Q. serrata. The E, gs, WUE, and starch content declined significantly in the WS-treated seedlings compared with WW-treated samples in both species. Further, principal component analysis revealed significant relationships between anatomical and physiological traits, particularly in the WS-treated seedlings of Q. serrata. The coordinated changes in leaf anatomical traits, physiological traits, and stem starch content indicate an important role in the survival of Q. acutissima and Q. serrata seedlings in water-deficit stress environments, although Q. serrata may show higher survivability under prolonged water stress than Q. acutissima.
Collapse
Affiliation(s)
- Jonathan O. Hernandez
- Department of Forest Biological Sciences, College of Forestry and Natural Resources, University of the Philippines Los Baños, Laguna 4031, Philippines;
- Department of Environment and Forest Resources, College of Agriculture and Life Science, Chungnam National University, Daejeon 34134, Korea
| | - Byung Bae Park
- Department of Environment and Forest Resources, College of Agriculture and Life Science, Chungnam National University, Daejeon 34134, Korea
- Correspondence:
| |
Collapse
|
14
|
Leaf and Branch Hydraulic Plasticity of Two Light-Demanding Broadleaved Tree Species Differing in Water-Use Strategy. FORESTS 2022. [DOI: 10.3390/f13040594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Global climate change creates new environmental scenarios and selective pressures; thus, a better understanding of the plasticity of plant functional traits is needed to predict how plant species will respond to shifts in climate. Among the important functional traits for plants are their hydraulic properties which ultimately determine their photosynthetic capacity, growth rate, and survival in a changing environment. In this study, the light sensitivity of leaf (KL) and branch hydraulic conductance (KB) to fast changes in irradiance, and hydraulic plasticity (PIh) was studied in two broadleaved tree species differing in water-use strategy—silver birch (Betula pendula) and hybrid aspen (Populus × wettsteinii). The KL increased by a factor of 3.5 and 1.5 from minimal values recorded in darkness to maximal values in high light conditions for birch and aspen, respectively, indicating a significantly higher PIh for birch (0.72) than for aspen leaves (0.35). KB increased 1.5-fold from dark to light conditions for both species. The high light sensitivity of KL and KB provides a regulatory mechanism to maintain a balance between transpirational demand and hydraulic supply. The plasticity of these traits increases the ability of plants to cope with a rapidly changing environment and to adapt to global climate change.
Collapse
|
15
|
Herrera CM, Bazaga P, Pérez R, Alonso C. Lifetime genealogical divergence within plants leads to epigenetic mosaicism in the shrub Lavandula latifolia (Lamiaceae). THE NEW PHYTOLOGIST 2021; 231:2065-2076. [PMID: 33634863 DOI: 10.1111/nph.17257] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
Epigenetic mosaicism is a possible source of within-plant phenotypic heterogeneity, yet its frequency and developmental origin remain unexplored. This study examines whether extant epigenetic heterogeneity within Lavandula latifolia (Lamiaceae) shrubs reflects recent epigenetic modifications experienced independently by different plant parts or, alternatively, it is the cumulative outcome of a steady lifetime process. Leaf samples from different architectural modules (branch tips) were collected from three L. latifolia plants and characterized epigenetically by global DNA cytosine methylation and methylation state of methylation-sensitive amplified fragment-length polymorphism (MS-AFLP) markers. Epigenetic characteristics of modules were then assembled with information on the branching history of plants. Methods borrowed from phylogenetic research were used to assess genealogical signal of extant epigenetic variation and reconstruct within-plant genealogical trajectory of epigenetic traits. Plants were epigenetically heterogeneous, as shown by differences among modules in global DNA methylation and variation in the methylation states of 6 to 8% of MS-AFLP markers. All epigenetic features exhibited significant genealogical signal within plants. Events of epigenetic divergence occurred throughout the lifespan of individuals and were subsequently propagated by branch divisions. Internal epigenetic diversification of L. latifolia individuals took place steadily during their development, a process which eventually led to persistent epigenetic mosaicism.
Collapse
Affiliation(s)
- Carlos M Herrera
- Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (CSIC), Avda. Américo Vespucio 26, Sevilla, E-41092, Spain
| | - Pilar Bazaga
- Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (CSIC), Avda. Américo Vespucio 26, Sevilla, E-41092, Spain
| | - Ricardo Pérez
- Instituto de Investigaciones Químicas, Centro de Investigaciones Científicas Isla de La Cartuja, CSIC-US, Avda. Américo Vespucio 49, Sevilla, E-41092, Spain
| | - Conchita Alonso
- Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (CSIC), Avda. Américo Vespucio 26, Sevilla, E-41092, Spain
| |
Collapse
|
16
|
Simões R, Rodrigues A, Ferreira-Dias S, Miranda I, Pereira H. Chemical Composition of Cuticular Waxes and Pigments and Morphology of Leaves of Quercus suber Trees of Different Provenance. PLANTS (BASEL, SWITZERLAND) 2020; 9:plants9091165. [PMID: 32916803 PMCID: PMC7570358 DOI: 10.3390/plants9091165] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/27/2020] [Accepted: 09/03/2020] [Indexed: 06/11/2023]
Abstract
The chemical composition of cuticular waxes and pigments and the morphological features of cork oak (Quercus suber) leaves were determined for six samples with seeds of different geographical origins covering the natural distribution of the species. The leaves of all samples exhibited a hard texture and oval shape with a dark green colour on the hairless adaxial surface, while the abaxial surface was lighter, with numerous stomata and densely covered with trichomes in the form of stellate multicellular hairs. The results suggest an adaptive role of leaf features among samples of different provenance and the potential role of such variability in dealing with varying temperatures and rainfall regimes through local adaptation and phenotypic plasticity, as was seen in the trial site, since no significant differences in leaf traits among the various specimens were found, for example, specific leaf area 55.6-67.8 cm2/g, leaf size 4.6-6.8 cm2 and photosynthetic pigment (total chlorophyll, 31.8-40.4 µg/cm2). The leaves showed a substantial cuticular wax layer (154.3-235.1 µg/cm2) composed predominantly of triterpenes and aliphatic compounds (61-72% and 17-23% of the identified compounds, respectively) that contributed to forming a nearly impermeable membrane that helps the plant cope with drought conditions. These characteristics are related to the species and did not differ among trees of different seed origin. The major identified compound was lupeol, indicating that cork oak leaves may be considered as a potential source of this bioactive compound.
Collapse
Affiliation(s)
- Rita Simões
- Centro de Estudos Florestais (CEF), Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; (R.S.); (A.R.); (H.P.)
| | - Ana Rodrigues
- Centro de Estudos Florestais (CEF), Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; (R.S.); (A.R.); (H.P.)
| | - Suzana Ferreira-Dias
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal;
| | - Isabel Miranda
- Centro de Estudos Florestais (CEF), Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; (R.S.); (A.R.); (H.P.)
| | - Helena Pereira
- Centro de Estudos Florestais (CEF), Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; (R.S.); (A.R.); (H.P.)
| |
Collapse
|