1
|
Larkin AA, Brock ML, Fagan AJ, Moreno AR, Gerace SD, Lees LE, Suarez SA, Eloe-Fadrosh EA, Martiny AC. Climate-driven succession in marine microbiome biodiversity and biogeochemical function. Nat Commun 2025; 16:3926. [PMID: 40280934 PMCID: PMC12032349 DOI: 10.1038/s41467-025-59382-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 04/21/2025] [Indexed: 04/29/2025] Open
Abstract
Seasonal and El Niño-Southern Oscillation (ENSO) warming result in similar ocean changes as predicted with climate change. Climate-driven environmental cycles have strong impacts on microbiome diversity, but impacts on microbiome function are poorly understood. Here we quantify changes in microbial genomic diversity and functioning over 11 years covering seasonal and ENSO cycles at a coastal site in the southern California Current. We observe seasonal oscillations between large-genome lineages during cold, nutrient rich conditions in winter and spring versus small-genome lineages, including Prochlorococcus and Pelagibacter, in summer and fall. Parallel interannual changes separate communities depending on ENSO condition. Biodiversity shifts translate into clear oscillations in microbiome functional potential. Ocean warming induced an ecosystem with less iron but more macronutrient stress genes, depressed organic carbon degradation potential and biomass, and elevated carbon-to-nutrient biomass ratios. The consistent microbial response observed across time-scales points towards large climate-driven changes in marine ecosystems and biogeochemical cycles.
Collapse
Affiliation(s)
- Alyse A Larkin
- Department of Earth System Science, University of California, Irvine, CA, USA
| | - Melissa L Brock
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, USA
| | - Adam J Fagan
- Department of Earth System Science, University of California, Irvine, CA, USA
| | - Allison R Moreno
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, USA
- Ocean Sciences Department, University of California, Santa Cruz, CA, USA
| | - Skylar D Gerace
- Department of Earth System Science, University of California, Irvine, CA, USA
| | - Lauren E Lees
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, USA
| | - Stacy A Suarez
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, USA
| | - Emiley A Eloe-Fadrosh
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Adam C Martiny
- Department of Earth System Science, University of California, Irvine, CA, USA.
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, USA.
| |
Collapse
|
2
|
Brock ML, Tavares-Reager JF, Dong J, Larkin AA, Lam T, Pineda N, Olivares CI, Mackey KRM, Martiny AC. Bacterial response to the 2021 Orange County, California, oil spill was episodic but subtle relative to natural fluctuations. Microbiol Spectr 2025; 13:e0226724. [PMID: 40084855 PMCID: PMC12053904 DOI: 10.1128/spectrum.02267-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 02/14/2025] [Indexed: 03/16/2025] Open
Abstract
An oil spill began in October 2021 off the coast of Orange County, California, releasing 24,696 gallons of crude oil into coastal environments. Although oil spills, such as this one, are recurrent accidents along the California coast, no prior studies have been performed to examine the severity of the local bacterial response. A coastal 10-year time series of short-read metagenomes located within the impacted area allowed us to quantify the magnitude and duration of the disturbance relative to natural fluctuations. We found that the largest change in bacterial beta-diversity occurred at the end of October. The change in taxonomic beta-diversity corresponded with an increase in the sulfur-oxidizing clade Candidatus Thioglobus, an increase in the total relative abundance of potential hydrocarbon-degrading bacteria, and an anomalous decline in the picocyanobacteria Synechococcus. Similarly, changes in function were related to anomalous declines in photosynthetic pathways and anomalous increases in sulfur metabolism pathways as well as aromatic degradation pathways. There was a lagged response in taxonomy and function to peaks in total PAHs. One week after peaks in total PAH concentrations, the largest shifts in taxonomy were observed, and 1 week after the taxonomy shifts were observed, unique functional changes were seen. This response pattern was observed twice during our sampling period, corresponding with the combined effect of resuspended PAHs and increased nutrient concentrations due to physical transport events. Thus, the impact of the spill on bacterial communities was temporally extended and demonstrates the need for continued monitoring for longer than 3 months after initial oil exposure.IMPORTANCEOil spills are common occurrences in waterways, releasing contaminants into the aquatic environment that persist for long periods of time. Bacterial communities are rapid responders to environmental disturbances, such as oil spills. Within bacterial communities, some members will be susceptible to the disturbance caused by crude oil components and will decline in abundance, whereas others will be opportunistic and will be able to use crude oil components for their metabolism. In many cases, when an oil spill occurs, it is difficult to assess the oil spill's impact because no samples were collected prior to the accident. Here, we examined the bacterial response to the 2021 Orange County oil spill using a 10-year time series that lies within the impacted area. The results presented here are significant because (i) susceptible and opportunistic taxa to oil spills within the coastal California environment are identified and (ii) the magnitude and duration of the in situ bacterial response is quantified for the first time.
Collapse
Affiliation(s)
- Melissa L. Brock
- Department of Ecology and Evolutionary Biology, University of California at Irvine, Irvine, California, USA
| | - Joana F. Tavares-Reager
- Department of Earth System Science, University of California at Irvine, Irvine, California, USA
| | - Jialin Dong
- Department of Civil and Environmental Engineering, University of California at Irvine, Irvine, California, USA
| | - Alyse A. Larkin
- Department of Earth System Science, University of California at Irvine, Irvine, California, USA
| | - Toan Lam
- School of Biological Sciences, University of California at Irvine, Irvine, California, USA
| | - Nataly Pineda
- Department of Earth System Science, University of California at Irvine, Irvine, California, USA
| | - Christopher I. Olivares
- Department of Civil and Environmental Engineering, University of California at Irvine, Irvine, California, USA
| | - Katherine R. M. Mackey
- Department of Ecology and Evolutionary Biology, University of California at Irvine, Irvine, California, USA
- Department of Earth System Science, University of California at Irvine, Irvine, California, USA
| | - Adam C. Martiny
- Department of Ecology and Evolutionary Biology, University of California at Irvine, Irvine, California, USA
- Department of Earth System Science, University of California at Irvine, Irvine, California, USA
| |
Collapse
|
3
|
Harding KJ, Nagarkar M, Wang M, Ramsing K, Anidjar N, Giddings S, Brahamsha B, Palenik B. Temporal and Spatial Dynamics of Synechococcus Clade II and Other Microbes in the Eutrophic Subtropical San Diego Bay. Environ Microbiol 2025; 27:e70043. [PMID: 39900485 PMCID: PMC11790421 DOI: 10.1111/1462-2920.70043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/02/2024] [Accepted: 10/25/2024] [Indexed: 02/05/2025]
Abstract
The diversity of the marine cyanobacterium Synechococcus can be broadly separated into clades, with clade II typically present in warm oligotrophic water, and clades I and IV found in cooler coastal water. We found amplicon sequence variants (ASVs) belonging to clade II in the nutrient-replete waters of San Diego Bay (SDB). Using the 16S rRNA gene, 18S rRNA gene and internal transcribed spacer region sequencing, we analysed multiple locations in SDB monthly for over a year, with additional samples dating back to 2015. Synechococcus community composition differed from the nearby coast into SDB in terms of dominant clade and ASVs. Specific clade II ASVs became relatively more abundant towards the back of the bay and showed seasonality, with higher relative abundance in the warm months. Select ASVs group phylogenetically and show similar seasonal and spatial distribution patterns, indicating these ASVs have adapted to SDB. Isolates matching clade II ASVs from SDB show pigment composition that is better adapted to the green light available in SDB, further supporting our findings. Other microbial taxa also show SDB enrichment, providing evidence that SDB is a chemostat-like environment where circulation, temperature, light and other environmental conditions create a zone for microbial evolution and diversification.
Collapse
Affiliation(s)
- Katie J. Harding
- Scripps Institution of OceanographyUniversity of CaliforniaSan DiegoCaliforniaUSA
| | - Maitreyi Nagarkar
- Scripps Institution of OceanographyUniversity of CaliforniaSan DiegoCaliforniaUSA
| | - Maggie Wang
- Scripps Institution of OceanographyUniversity of CaliforniaSan DiegoCaliforniaUSA
| | - Kailey Ramsing
- Scripps Institution of OceanographyUniversity of CaliforniaSan DiegoCaliforniaUSA
| | - Niv Anidjar
- Scripps Institution of OceanographyUniversity of CaliforniaSan DiegoCaliforniaUSA
| | - Sarah Giddings
- Scripps Institution of OceanographyUniversity of CaliforniaSan DiegoCaliforniaUSA
| | - Bianca Brahamsha
- Scripps Institution of OceanographyUniversity of CaliforniaSan DiegoCaliforniaUSA
| | - Brian Palenik
- Scripps Institution of OceanographyUniversity of CaliforniaSan DiegoCaliforniaUSA
| |
Collapse
|
4
|
Larkin AA, Brock ML, Fagan AJ, Moreno AR, Gerace SD, Lees LE, Suarez SA, Eloe-Fadrosh EA, Martiny A. Climate-driven succession in marine microbiome biodiversity and biogeochemical function. RESEARCH SQUARE 2024:rs.3.rs-4682733. [PMID: 39184082 PMCID: PMC11343179 DOI: 10.21203/rs.3.rs-4682733/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Seasonal and El Niño-Southern Oscillation (ENSO) warming result in similar ocean changes as predicted with climate change. Climate-driven environmental cycles have strong impacts on microbiome diversity, but impacts on microbiome function are poorly understood. We quantified changes in microbial genomic diversity and functioning over 11 years covering seasonal and ENSO cycles at a coastal site in the southern California Current. We observed seasonal oscillations between large genome lineages during cold, nutrient rich conditions in winter and spring versus small genome lineages, including Prochlorococcus and Pelagibacter , in summer and fall. Parallel interannual changes separated communities depending on ENSO condition. Biodiversity shifts translated into clear oscillations in microbiome functional potential. Ocean warming induced an ecosystem with less iron but more macronutrient stress genes, depressed organic carbon degradation potential and biomass, and elevated carbon-to-nutrient biomass ratios. The consistent microbial response observed across time-scales points towards large climate-driven changes in marine ecosystems and biogeochemical cycles.
Collapse
|
5
|
Dart E, Fuhrman JA, Ahlgren NA. Diverse Marine T4-like Cyanophage Communities Are Primarily Comprised of Low-Abundance Species Including Species with Distinct Seasonal, Persistent, Occasional, or Sporadic Dynamics. Viruses 2023; 15:v15020581. [PMID: 36851794 PMCID: PMC9960396 DOI: 10.3390/v15020581] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Cyanophages exert important top-down controls on their cyanobacteria hosts; however, concurrent analysis of both phage and host populations is needed to better assess phage-host interaction models. We analyzed picocyanobacteria Prochlorococcus and Synechococcus and T4-like cyanophage communities in Pacific Ocean surface waters using five years of monthly viral and cellular fraction metagenomes. Cyanophage communities contained thousands of mostly low-abundance (<2% relative abundance) species with varying temporal dynamics, categorized as seasonally recurring or non-seasonal and occurring persistently, occasionally, or sporadically (detected in ≥85%, 15-85%, or <15% of samples, respectively). Viromes contained mostly seasonal and persistent phages (~40% each), while cellular fraction metagenomes had mostly sporadic species (~50%), reflecting that these sample sets capture different steps of the infection cycle-virions from prior infections or within currently infected cells, respectively. Two groups of seasonal phages correlated to Synechococcus or Prochlorococcus were abundant in spring/summer or fall/winter, respectively. Cyanophages likely have a strong influence on the host community structure, as their communities explained up to 32% of host community variation. These results support how both seasonally recurrent and apparent stochastic processes, likely determined by host availability and different host-range strategies among phages, are critical to phage-host interactions and dynamics, consistent with both the Kill-the-Winner and the Bank models.
Collapse
Affiliation(s)
- Emily Dart
- Department of Biology, Clark University, Worcester, MA 01610, USA
| | - Jed A. Fuhrman
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Nathan A. Ahlgren
- Department of Biology, Clark University, Worcester, MA 01610, USA
- Correspondence: ; Tel.: +1-(508)-793-7107
| |
Collapse
|
6
|
Effects of phytoplankton, viral communities, and warming on free-living and particle-associated marine prokaryotic community structure. Nat Commun 2022; 13:7905. [PMID: 36550140 PMCID: PMC9780322 DOI: 10.1038/s41467-022-35551-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
Free-living and particle-associated marine prokaryotes have physiological, genomic, and phylogenetic differences, yet factors influencing their temporal dynamics remain poorly constrained. In this study, we quantify the entire microbial community composition monthly over several years, including viruses, prokaryotes, phytoplankton, and total protists, from the San-Pedro Ocean Time-series using ribosomal RNA sequencing and viral metagenomics. Canonical analyses show that in addition to physicochemical factors, the double-stranded DNA viral community is the strongest factor predicting free-living prokaryotes, explaining 28% of variability, whereas the phytoplankton (via chloroplast 16S rRNA) community is strongest with particle-associated prokaryotes, explaining 31% of variability. Unexpectedly, protist community explains little variability. Our findings suggest that biotic interactions are significant determinants of the temporal dynamics of prokaryotes, and the relative importance of specific interactions varies depending on lifestyles. Also, warming influenced the prokaryotic community, which largely remained oligotrophic summer-like throughout 2014-15, with cyanobacterial populations shifting from cold-water ecotypes to warm-water ecotypes.
Collapse
|
7
|
Abstract
Marine Synechococcus comprise a numerically and ecologically prominent phytoplankton group, playing a major role in both carbon cycling and trophic networks in all oceanic regions except in the polar oceans. Despite their high abundance in coastal areas, our knowledge of Synechococcus communities in these environments is based on only a few local studies. Here, we use the global metagenome data set of the Ocean Sampling Day (June 21st, 2014) to get a snapshot of the taxonomic composition of coastal Synechococcus communities worldwide, by recruitment on a reference database of 141 picocyanobacterial genomes, representative of the whole Prochlorococcus, Synechococcus, and Cyanobium diversity. This allowed us to unravel drastic community shifts over small to medium scale gradients of environmental factors, in particular along European coasts. The combined analysis of the phylogeography of natural populations and the thermophysiological characterization of eight strains, representative of the four major Synechococcus lineages (clades I to IV), also brought novel insights about the differential niche partitioning of clades I and IV, which most often co-dominate the Synechococcus community in cold and temperate coastal areas. Altogether, this study reveals several important characteristics and specificities of the coastal communities of Synechococcus worldwide. IMPORTANCE Synechococcus is the second most abundant phytoplanktonic organism on Earth, and its wide genetic diversity allowed it to colonize all the oceans except for polar waters, with different clades colonizing distinct oceanic niches. In recent years, the use of global metagenomics data sets has greatly improved our knowledge of "who is where" by describing the distribution of Synechococcus clades or ecotypes in the open ocean. However, little is known about the global distribution of Synechococcus ecotypes in coastal areas, where Synechococcus is often the dominant phytoplanktonic organism. Here, we leverage the global Ocean Sampling Day metagenomics data set to describe Synechococcus community composition in coastal areas worldwide, revealing striking community shifts, in particular along the coasts of Europe. As temperature appears as an important driver of the community composition, we also characterize the thermal preferenda of 8 Synechococcus strains, bringing new insights into the adaptation to temperature of the dominant Synechococcus clades.
Collapse
|
8
|
Viruses affect picocyanobacterial abundance and biogeography in the North Pacific Ocean. Nat Microbiol 2022; 7:570-580. [PMID: 35365792 PMCID: PMC8975747 DOI: 10.1038/s41564-022-01088-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 02/22/2022] [Indexed: 11/09/2022]
Abstract
The photosynthetic picocyanobacteria Prochlorococcus and Synechococcus are models for dissecting how ecological niches are defined by environmental conditions, but how interactions with bacteriophages affect picocyanobacterial biogeography in open ocean biomes has rarely been assessed. We applied single-virus and single-cell infection approaches to quantify cyanophage abundance and infected picocyanobacteria in 87 surface water samples from five transects that traversed approximately 2,200 km in the North Pacific Ocean on three cruises, with a duration of 2-4 weeks, between 2015 and 2017. We detected a 550-km-wide hotspot of cyanophages and virus-infected picocyanobacteria in the transition zone between the North Pacific Subtropical and Subpolar gyres that was present in each transect. Notably, the hotspot occurred at a consistent temperature and displayed distinct cyanophage-lineage composition on all transects. On two of these transects, the levels of infection in the hotspot were estimated to be sufficient to substantially limit the geographical range of Prochlorococcus. Coincident with the detection of high levels of virally infected picocyanobacteria, we measured an increase of 10-100-fold in the Synechococcus populations in samples that are usually dominated by Prochlorococcus. We developed a multiple regression model of cyanophages, temperature and chlorophyll concentrations that inferred that the hotspot extended across the North Pacific Ocean, creating a biological boundary between gyres, with the potential to release organic matter comparable to that of the sevenfold-larger North Pacific Subtropical Gyre. Our results highlight the probable impact of viruses on large-scale phytoplankton biogeography and biogeochemistry in distinct regions of the oceans.
Collapse
|
9
|
Turk-Kubo KA, Mills MM, Arrigo KR, van Dijken G, Henke BA, Stewart B, Wilson ST, Zehr JP. UCYN-A/haptophyte symbioses dominate N 2 fixation in the Southern California Current System. ISME COMMUNICATIONS 2021; 1:42. [PMID: 36740625 PMCID: PMC9723760 DOI: 10.1038/s43705-021-00039-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 02/07/2023]
Abstract
The availability of fixed nitrogen (N) is an important factor limiting biological productivity in the oceans. In coastal waters, high dissolved inorganic N concentrations were historically thought to inhibit dinitrogen (N2) fixation, however, recent N2 fixation measurements and the presence of the N2-fixing UCYN-A/haptophyte symbiosis in nearshore waters challenge this paradigm. We characterized the contribution of UCYN-A symbioses to nearshore N2 fixation in the Southern California Current System (SCCS) by measuring bulk community and single-cell N2 fixation rates, as well as diazotroph community composition and abundance. UCYN-A1 and UCYN-A2 symbioses dominated diazotroph communities throughout the region during upwelling and oceanic seasons. Bulk N2 fixation was detected in most surface samples, with rates up to 23.0 ± 3.8 nmol N l-1 d-1, and was often detected at the deep chlorophyll maximum in the presence of nitrate (>1 µM). UCYN-A2 symbiosis N2 fixation rates were higher (151.1 ± 112.7 fmol N cell-1 d-1) than the UCYN-A1 symbiosis (6.6 ± 8.8 fmol N cell-1 d-1). N2 fixation by the UCYN-A1 symbiosis accounted for a majority of the measured bulk rates at two offshore stations, while the UCYN-A2 symbiosis was an important contributor in three nearshore stations. This report of active UCYN-A symbioses and broad mesoscale distribution patterns establishes UCYN-A symbioses as the dominant diazotrophs in the SCCS, where heterocyst-forming and unicellular cyanobacteria are less prevalent, and provides evidence that the two dominant UCYN-A sublineages are separate ecotypes.
Collapse
Affiliation(s)
- Kendra A Turk-Kubo
- Ocean Sciences Department, University of California at Santa Cruz, Santa Cruz, CA, USA.
| | - Matthew M Mills
- Earth System Science, Stanford University, Stanford, CA, USA
| | - Kevin R Arrigo
- Earth System Science, Stanford University, Stanford, CA, USA
| | - Gert van Dijken
- Earth System Science, Stanford University, Stanford, CA, USA
| | - Britt A Henke
- Ocean Sciences Department, University of California at Santa Cruz, Santa Cruz, CA, USA
| | - Brittany Stewart
- Ocean Sciences Department, University of California at Santa Cruz, Santa Cruz, CA, USA
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Samuel T Wilson
- Center for Microbial Oceanography: Research and Education, University of Hawai'i at Manoa, Honolulu, HI, USA
| | - Jonathan P Zehr
- Ocean Sciences Department, University of California at Santa Cruz, Santa Cruz, CA, USA
| |
Collapse
|
10
|
Hunter-Cevera KR, Hamilton BR, Neubert MG, Sosik HM. Seasonal environmental variability drives microdiversity within a coastal Synechococcus population. Environ Microbiol 2021; 23:4689-4705. [PMID: 34245073 PMCID: PMC8456951 DOI: 10.1111/1462-2920.15666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 04/27/2021] [Accepted: 07/07/2021] [Indexed: 11/29/2022]
Abstract
Marine microbes often show a high degree of physiological or ecological diversity below the species level. This microdiversity raises questions about the processes that drive diversification and permit coexistence of diverse yet closely related marine microbes, especially given the theoretical efficiency of competitive exclusion. Here, we provide insight with an 8‐year time series of diversity within Synechococcus, a widespread and important marine picophytoplankter. The population of Synechococcus on the Northeast U.S. Shelf is comprised of six main types, each of which displays a distinct and consistent seasonal pattern. With compositional data analysis, we show that these patterns can be reproduced with a simple model that couples differential responses to temperature and light with the seasonal cycle of the physical environment. These observations support the hypothesis that temporal variability in environmental factors can maintain microdiversity in marine microbial populations. We also identify how seasonal diversity patterns directly determine overarching Synechococcus population abundance features.
Collapse
Affiliation(s)
- Kristen R Hunter-Cevera
- Josephine Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA, USA.,Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Bryan R Hamilton
- Josephine Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA, USA
| | - Michael G Neubert
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Heidi M Sosik
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| |
Collapse
|