1
|
Shaji S, Sheth P, Shanmugasundaram R, Selvaraj RK. Efficacy of a killed Salmonella Enterica serovar Typhimurium bacterin vaccine administration in layer birds challenged with heterologous Salmonella Enterica serovar Enteritidis. Poult Sci 2025; 104:105044. [PMID: 40158250 PMCID: PMC11997314 DOI: 10.1016/j.psj.2025.105044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/11/2025] [Accepted: 03/15/2025] [Indexed: 04/02/2025] Open
Abstract
In this study, we evaluated the efficacy of administering a killed Salmonella enterica ser. Typhimurium bacterin (ST) vaccine with an adjuvant intramuscularly on humoral immunity, cellular immunity, and SE load reduction in layers. The ST vaccine was prepared with 97% S. Typhimurium and an adjuvant of 3% Immune Plus® with preservatives. Eighty 14-week-old Salmonella-free Hy-Line W-36 pullets were randomly allocated into two groups: unvaccinated control and ST vaccinated, with 40 birds per group. Birds were immunized intramuscularly with 500 µL (Endovac) vaccine at week 17 and a booster dose at week 19. At 27 weeks of age, both groups were challenged with 5 × 108 CFU/mL of nalidixic acid-resistant Salmonella enterica ser. Enteritidis. At 22, 23, and 24 weeks of age, ST-vaccinated birds showed higher serum anti-Salmonella IgY levels than the control group by 186%, 202% (P < 0.05), and 2700% (P > 0.05), respectively. At 28 weeks of age, vaccinated birds had 8.3% lower levels (P > 0.05) of anti-Salmonella IgA in bile and 240% greater levels (P < 0.05) of anti-Salmonella IgY in serum compared to control group. At 28 weeks of age, splenocytes from the ST-vaccinated birds had increased antigen-specific T-lymphocyte proliferation (P > 0.05). There were no significant differences in CD4+/CD8+-T-cell ratios, IL-10, IL-4, IL-1β, IFNγ mRNA levels in the spleen and cecal tonsil between vaccinated birds compared to control. However, the vaccine did not reduce the Salmonella Enteritidis load in ceca, spleen, and liver. It can be concluded that the intramuscular administration of the killed ST vaccine with the adjuvant Immune Plus can increase serum antibody titers and induce a humoral immune response specific to Salmonella. However, the increase in serum antibody titers were not successful in reducing the Salmonella load in ceca, spleen, and liver.
Collapse
Affiliation(s)
- Syamily Shaji
- Department of Poultry Science, University of Georgia, Athens, GA, USA
| | | | | | - Ramesh K Selvaraj
- Department of Poultry Science, University of Georgia, Athens, GA, USA.
| |
Collapse
|
2
|
Peng Y, Li H, Yang J, Yang X, Miao X, Fan X, Liu L, Li X. Temporal transcriptome profiling in the response to Salmonella enterica serovar enteritidis infection in chicken cecum. Poult Sci 2025; 104:104773. [PMID: 39813862 PMCID: PMC11782854 DOI: 10.1016/j.psj.2025.104773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 01/01/2025] [Accepted: 01/03/2025] [Indexed: 01/18/2025] Open
Abstract
Salmonella enterica serovar Enteritidis (S. Enteritidis) is a common zoonotic pathogen that not only causes gastroenteritis or death of livestock and poultry but also poses a serious threat to human health, causing severe economic losses to the poultry industry and society. Herein, RNA-sequencing (RNA-seq) was used to analyze the transcriptome variation of chicken cecum at four different time points (1, 3, 7, and 14 days) following S. Enteritidis infection. There were 529, 1477, 476, and 432 differentially expressed genes (DEGs) in the cecum at four different days post-infection (dpi), respectively. The DEGs were significantly enriched in various immune-related pathways on 3 dpi and 7 dpi, such as cytokine-cytokine-receptor interaction and Toll-like receptor signaling pathway. DEGs were significantly enriched in several metabolic pathways on 14 dpi. Gene ontology (GO) enrichment of DEGs showed that up-regulated genes were significantly enriched in immune-related terms on 3 and 7 dpi. On 14 dpi, up-regulated genes were mainly enriched in the signaling-related terms, while the down-regulated genes were primarily enriched in the metabolic-related terms. Based on weighted gene co-expression network analysis (WGCNA), the key modules related to energy, non-coding processes, immunity, and development-related functions were identified at 1, 3, 7, and 14 dpi, respectively, and 5, 8, 6, and 5 hub genes were screened out, respectively. This study demonstrated that the chicken cecal transcriptome regulation responding to S. Enteritidis infection is time-dependent. The regulation of S. Enteritidis infection in chickens is coordinated by multiple systems, mainly involving immunity, metabolism, and signal transduction. Both 3 and 7 dpi are key time points for immune response. As the infection progresses, metabolism-related pathways were increasingly identified. This change reflects the dynamic adjustment between immune response and metabolism in Jining Bairi chickens following S. Enteritidis infection. These results suggested that starting from 3 dpi, the chickens gradually transition from an immune response triggered by S. Enteritidis infection to a state where they adapt to the infection by modulating their metabolism.
Collapse
Affiliation(s)
- Yanan Peng
- Shandong Provincial Key Laboratory for Livestock Germplasm Innovation Utilization, College of Animal Science and Technology, Shandong Agricultural University, Tai'an 271018 China
| | - Huilong Li
- Shandong Provincial Key Laboratory for Livestock Germplasm Innovation Utilization, College of Animal Science and Technology, Shandong Agricultural University, Tai'an 271018 China
| | - Jingchao Yang
- Shandong Animal Husbandry General Station, Jinan 250010, China
| | - Xiaohua Yang
- Animal Husbandry and Veterinary Development Center of Zhangqiu District, Jinan 250200, China
| | - Xiuxiu Miao
- Shandong Provincial Key Laboratory for Livestock Germplasm Innovation Utilization, College of Animal Science and Technology, Shandong Agricultural University, Tai'an 271018 China
| | - Xinzhong Fan
- Shandong Provincial Key Laboratory for Livestock Germplasm Innovation Utilization, College of Animal Science and Technology, Shandong Agricultural University, Tai'an 271018 China
| | - Liying Liu
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018 China
| | - Xianyao Li
- Shandong Provincial Key Laboratory for Livestock Germplasm Innovation Utilization, College of Animal Science and Technology, Shandong Agricultural University, Tai'an 271018 China.
| |
Collapse
|
3
|
Yang W, Zhang J, Dai J, Guo M, Lu X, Gao R, Liu K, Gu M, Hu S, Liu X, Wang X, Liu X. Multiple pathways to evaluate the immunoprotective effect of Turkeys Herpesvirus recombinant vaccine expressing HA of H9N2. Poult Sci 2025; 104:104335. [PMID: 39577170 PMCID: PMC11617676 DOI: 10.1016/j.psj.2024.104335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/22/2024] [Accepted: 09/11/2024] [Indexed: 11/24/2024] Open
Abstract
H9N2 avian influenza virus is a significant poultry pathogen that provides internal genes for multiple zoonotic subtypes of avian influenza, presenting a severe threat to public health. The isolation rate of H9N2 in poultry has increased annually in recent years. In this study, a recombinant Herpesvirus of Turkeys (HVT) vaccine expressing H9-HA was constructed using Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) technology. In the construction of HVT-EGFP-HA recombinant virus, nonhomologous end joining (NHEJ) is a much more efficient strategy compare to Homology-directed recombination (HDR). HVT-HA demonstrated stability and consistent replication with the parent strain. Subcutaneous injection and in-ovo injection of HVT-HA induced different levels of immune response. Compared to in-ovo injection of HVT-HA, subcutaneous injection induced significantly higher neutralizing serum antibodies. This finding is supported by the significantly higher CD4+ T cell response in Peripheral blood mononuclear cell Peripheral blood mononuclear cell (PBMC) in the subcutaneous injection group. However, in-ovo injection of HVT-HA resulted in significantly higher neutralizing antibodies in the Harderian glands. In addition, it significantly inhibited viral shedding after intranasal exposure to H9N2. This phenomenon could be attributed to the mucosal immunity present in the Hadrian gland. Thus, our findings indicate that the in-ovo injection of the HVT-HA recombinant vaccine is a promising method to inhibit the transmission of H9N2 via the upper respiratory tract in chickens.
Collapse
Affiliation(s)
- Wenhao Yang
- Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Jin Zhang
- Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Jing Dai
- Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Mengjiao Guo
- Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Xiaolong Lu
- Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, Jiangsu, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Ruyi Gao
- Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, Jiangsu, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Kaituo Liu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, Jiangsu, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Min Gu
- Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, Jiangsu, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Shunlin Hu
- Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, Jiangsu, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Xiufan Liu
- Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, Jiangsu, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Xiaoquan Wang
- Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, Jiangsu, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Xiaowen Liu
- Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, Jiangsu, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
4
|
Cardoso EM, Dea Lindner JD, Ferreira FA. Genomic analysis of Salmonella Heidelberg isolated from the Brazilian poultry farms. Braz J Microbiol 2024; 55:4129-4137. [PMID: 39441515 PMCID: PMC11711797 DOI: 10.1007/s42770-024-01544-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 10/12/2024] [Indexed: 10/25/2024] Open
Abstract
The rapid expansion of broiler chicken production in Brazil has presented significant sanitation challenges within the poultry industry. Among these challenges, Salmonella enterica subsp. enterica serotype Heidelberg stands as a contributor to global salmonellosis outbreaks. This study analyzed 13 draft genomes of Salmonella Heidelberg isolated from the pre-slaughter broiler chickens farms in Brazil. By conducting in silico analysis of these genomes, the study investigated genome similarity based on single nucleotide polymorphisms (SNPs) and identified genes encoding resistance to antimicrobials, sanitizers, and virulence factors. Furthermore, mobile genetic elements (MGE) were identified to assess their potential role in propagating genes through horizontal gene transfer. A risk classification was also applied based on the resistomes. The genomes revealed a high prevalence of genes conferring resistance to aminoglycosides, fosfomycin, sulfonamides, tetracycline, and genes linked to quaternary ammonium resistance. The study also uncovered six Salmonella pathogenicity islands (SPI) and over 100 genes encoding virulence factors. The association of MGE with antibiotic-resistant genes sul2 and blaCMY-2 raised concerns about the potential transfer to other bacteria, posing a substantial risk for spreading resistance mechanisms according to established risk protocols. Additionally, SNP analysis indicated close phylogenetic relationships among some isolates, suggesting a common origin. This study enhances our understanding of Salmonella Heidelberg strains by identifying key risk factors for transmission and revealing the association between resistance genes and MGEs. This insight provides a foundation for developing and implementing effective control, monitoring, and treatment strategies in the poultry industry.
Collapse
Affiliation(s)
- Emanuela Mendes Cardoso
- Bacterial Molecular Genetics Laboratory (GeMBac), Department of Microbiology, Immunology, and Parasitology, Biological Sciences Center, Universidade Federal de Santa Catarina (UFSC), Campus Universitário Reitor João David Ferreira Lima, Trindade, Florianópolis, SC, 88040-960, Brazil
| | - Juliano De Dea Lindner
- Food Technology and Bioprocess Research Group, Department of Food Science and Technology, Agricultural Sciences Center, UFSC, Rodovia Admar Gonzaga, 1346. Itacorubi., Florianópolis, SC, 88034-001, Brazil
| | - Fabienne Antunes Ferreira
- Bacterial Molecular Genetics Laboratory (GeMBac), Department of Microbiology, Immunology, and Parasitology, Biological Sciences Center, Universidade Federal de Santa Catarina (UFSC), Campus Universitário Reitor João David Ferreira Lima, Trindade, Florianópolis, SC, 88040-960, Brazil.
| |
Collapse
|
5
|
Toomer OT, Redhead AK, Vu TC, Santos F, Malheiros R, Proszkowiec-Weglarz M. The effect of peanut skins as a natural antimicrobial feed additive on ileal and cecal microbiota in broiler chickens inoculated with Salmonella enterica Enteritidis. Poult Sci 2024; 103:104159. [PMID: 39153270 PMCID: PMC11471096 DOI: 10.1016/j.psj.2024.104159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 08/19/2024] Open
Abstract
The consumption of poultry products contaminated with Salmonella species is one of the most common causes of Salmonella infections. In vivo studies demonstrated the potential application of peanut skins (PS) as an antimicrobial poultry feed additive to help mitigate the proliferation of Salmonella in poultry environments. Tons of PS, a waste by-product of the peanut industry, are generated and disposed in U.S. landfills annually. Peanut skins and extracts have been shown to possess antimicrobial and antioxidant properties. Hence, we aimed to determine the effect of PS as a feed additive on the gut microbiota of broilers fed a control or PS supplemented (4% inclusion) diet and inoculated with or without Salmonella enterica Enteritidis (SE). At hatch 160 male broilers were randomly assigned to 4 treatments: 1) CON-control diet without SE, 2) PS-PS diet without SE, 3) CONSE-control diet with SE, 4) PSSE-PS diet with SE. On d 3, birds from CONSE and PSSE treatments were inoculated with 4.2 × 109 CFU/mL SE. At termination (4 wk), 10 birds/treatment were euthanized and ileal and cecal contents were collected for 16S rRNA analysis using standard methodologies. Sequencing data were analyzed using QIIME2. No effect of PS or SE was observed on ileal alpha and beta diversity, while evenness, richness, number of amplicon sequence variants (ASV) and Shannon, as well as beta diversity were significantly (P < 0.05) affected in ceca. Similarly, more differentially abundant taxa between treatment groups were identified in ceca than in ileum. However, more microbiota functional changes, based on the PICRUST2 prediction, were observed in ileum. Overall, relatively minor changes in microbiota were observed during SE infection and PS treatment, suggesting that PS addition may not attenuate the SE proliferation, as shown previously, through modulation of microbiota in gastrointestinal tract. However, while further studies are warranted, these results suggest that PS may potentially serve as a functional feed additive for poultry for improvement of animal health.
Collapse
Affiliation(s)
- Ondulla T Toomer
- Food Science & Market Quality and Handling Research Unit, ARS, USDA, Raleigh, NC 27695, USA.
| | - Adam K Redhead
- Math and Science Department, Andrew College, Cuthbert, GA 39840, USA
| | - Thien C Vu
- Food Science & Market Quality and Handling Research Unit, ARS, USDA, Raleigh, NC 27695, USA
| | - Fernanda Santos
- Food, Bioprocessing and Nutrition Sciences Dept., NC State University, Raleigh, NC 27695, USA
| | - Ramon Malheiros
- Prestage Department of Poultry Science, NC State University, Raleigh, NC 27695, USA
| | | |
Collapse
|
6
|
Fathima S, Al Hakeem WG, Shanmugasundaram R, Periyannan V, Varadhan R, Selvaraj RK. Effect of 125% and 135% arginine on the growth performance, intestinal health, and immune responses of broilers during necrotic enteritis challenge. Poult Sci 2024; 103:103826. [PMID: 38761462 PMCID: PMC11133980 DOI: 10.1016/j.psj.2024.103826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/20/2024] [Accepted: 05/02/2024] [Indexed: 05/20/2024] Open
Abstract
The objective of this study was to evaluate the effects of 25% and 35% arginine supplementation in partially alleviating the effects of necrotic enteritis (NE) challenge on the production performance, intestinal integrity, and relative gene expression of tight junction proteins and inflammatory cytokines in broilers. Four hundred and eighty 1-day-old chicks were randomly allocated to the 4 treatments- Uninfected + Basal, NE + Basal, NE + Arg 125%, and NE + Arg 135%. NE was induced by inoculating 1 × 104Eimeria maxima sporulated oocysts on d 14 and 1 × 108 CFU/bird C. perfringens on d 19, 20, and 21 of age by oral gavage. The NE challenge significantly decreased body weight gain (BWG) (p < 0.05) and increased the feed conversion ratio (FCR) (p < 0.05). On d 21, the NE challenge also increased the jejunal lesion score (p < 0.05) and relative gene expression of IL-10 and decreased the expression of the tight junction proteins occludin (p < 0.05) and claudin-4 (p < 0.05). The 125% arginine diet significantly increased intestinal permeability (p < 0.05) and the relative gene expression of iNOS (p < 0.05) and IFN-γ (p < 0.05) on d 21 and the bile anti-C. perfringens IgA concentration by 39.74% (p < 0.05) on d 28. The 135% arginine diet significantly increased the feed intake during d 0 - 28 (p < 0.05) and 0 to 35 (p < 0.05) and increased the FCR on d 0 to 35 (p < 0.05). The 135% and 125% arginine diet increased the spleen CD8+: CD4+ T-cell ratio on d 28 (p < 0.05) and 35 (p < 0.05), respectively. The 135% arginine diet increased the CT CD8+:CD4+ T-cell ratio on d 35 (p < 0.05). In conclusion, the 125% and 135% arginine diets did not reverse the effect of the NE challenge on the growth performance. However, the 125% arginine diet significantly increased the cellular and humoral immune response to the challenge. Hence, the 125% arginine diet could be used with other feed additives to improve the immune response of the broilers during the NE challenge.
Collapse
Affiliation(s)
- Shahna Fathima
- Department of Poultry Science, University of Georgia, Athens, GA USA
| | - Walid G Al Hakeem
- Department of Poultry Science, University of Georgia, Athens, GA USA
| | - Revathi Shanmugasundaram
- Toxicology and Mycotoxin Research Unit, U.S. National Poultry Research Center, United States Department of Agriculture, Athens, GA 30605, USA
| | - Vasanthakumar Periyannan
- Department of Animal Nutrition, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Ranganathan Varadhan
- Department of Veterinary Pharmacology, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Ramesh K Selvaraj
- Department of Poultry Science, University of Georgia, Athens, GA USA.
| |
Collapse
|
7
|
Fathima S, Hakeem WGA, Shanmugasundaram R, Selvaraj RK. Effect of arginine supplementation on the growth performance, intestinal health, and immune responses of broilers during necrotic enteritis challenge. Poult Sci 2024; 103:103815. [PMID: 38713988 PMCID: PMC11091696 DOI: 10.1016/j.psj.2024.103815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/07/2024] [Accepted: 04/24/2024] [Indexed: 05/09/2024] Open
Abstract
The objective of this study was to evaluate the effect of 25% arginine supplementation as a functional amino acid in partially alleviating the detrimental effects of necrotic enteritis (NE) on the growth performance, serum biochemistry, gut integrity, and the relative gene expression of tight junction proteins and inflammatory cytokines in broilers during NE. Three hundred and sixty 1-day-old chicks were randomly allocated to 4 treatments in a 2 × 2 factorial arrangement -basal diet and 125% arginine diet, with or without NE challenge. NE was induced by inoculating 1 × 104Eimeria maxima sporulated oocysts on d 14 and 1 × 108 CFU/bird C. perfringens on d 19, 20, and 21. The NE challenge had a significant effect on the BWG (p < 0.05), FCR (p < 0.05), serum AST (p < 0.05), GLU (p < 0.05), and K+ (p < 0.05) levels, and intestinal permeability (p < 0.05) and jejunal lesion score (p < 0.05). A significant challenge × diet interaction effect was observed in the cecal tonsil CD8+: CD4+ T-cell ratio on d 21 (p < 0.05) and 28 (p < 0.05) and spleen CD8+: CD4+ T-cell ratio on d 21 (p < 0.05) and 35 (p < 0.05). Arginine supplementation significantly increased the CD8+: CD4+ T-cell ratio in uninfected birds but decreased the CD8+: CD4+ T-cell ratio in infected birds. On d 21, a significant interaction effect was observed on the relative expression of the iNOS gene (p < 0.05). Arginine supplementation significantly downregulated the expression of the iNOS gene in infected birds. A significant effect of the challenge (p < 0.05) was observed on the relative gene expression of the ZO-1 gene in the jejunum. NE challenge significantly downregulated the expression of the ZO-1 gene on d 21. In conclusion, arginine supplementation did not alleviate the depression in growth performance and disease severity during the NE challenge. However, arginine downregulated the expression of inflammatory cytokines and enzymes, preventing inflammatory injury to the tissues during NE. Hence, arginine might be supplemented with other alternatives to downregulate inflammatory response during NE in poultry.
Collapse
Affiliation(s)
- Shahna Fathima
- Department of Poultry Science, University of Georgia, Athens, GA, USA
| | - Walid G Al Hakeem
- Department of Poultry Science, University of Georgia, Athens, GA, USA
| | - Revathi Shanmugasundaram
- Toxicology and Mycotoxin Research Unit, U.S. National Poultry Research Center, United States Department of Agriculture, Athens, GA 30605, USA
| | - Ramesh K Selvaraj
- Department of Poultry Science, University of Georgia, Athens, GA, USA.
| |
Collapse
|
8
|
Jan TR, Lin CS, Yang WY. Differential cytokine profiling and microbial species involved in cecal microbiota modulations in SPF chicks immunized with a dual vaccine against Salmonella Typhimurium infection. Poult Sci 2024; 103:103334. [PMID: 38104411 PMCID: PMC10765113 DOI: 10.1016/j.psj.2023.103334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/19/2023] Open
Abstract
Salmonella Typhimurium (ST) infection in laying hens is a significant threat to public health and food safety. Host resistance against enteric pathogen invasion primarily relies on immunity and gut barrier integrity. This study applied the ST infection model and a dual live vaccine containing Salmonella Enteritidis (SE) strain Sm24/Rif12/Ssq and ST strain Nal2/Rif9/Rtt to investigate the cellular cytokine expression profiles and the differential community structure in the cecal microbiota of specific-pathogen-free (SPF) chicks and field-raised layers. The results showed that ST challenge significantly upregulated expressions of IL-1β in SPF chicks. Vaccination, on the other hand, led to an elevation in IFNγ expression and restrained IL-1β levels. In the group where vaccination preceded the ST challenge (S.STvc), heightened expressions of IL-1β, IL-6, IL-10, and IL-12β were observed, indicating active involvement of both humoral and cell-mediated immunity in the defense against ST. Regarding the cecal microbiota, the vaccine did not affect alpha diversity nor induce a significant shift in the microbial community. Conversely, ST infection significantly affected the alpha and beta diversity in the cecal microbiota, reducing beneficial commensal genera, such as Blautia and Subdoligranulum. MetagenomeSeq analysis reveals a significant increase in the relative abundance of Faecalibacterium prausnitzii in the groups (S.STvc and STvc) exhibiting protection against ST infection. LEfSe further demonstrated Faecalibacterium prausnitzii as the prominent biomarker within the cecal microbiota of SPF chicks and field layers demonstrating protection. Another biomarker identified in the S.STvc group, Eubacterium coprostanoligenes, displayed an antagonistic relationship with Faecalibacterium prausnitzii, suggesting the limited biological significance of the former in reducing cloacal shedding and tissue invasion. In conclusion, the application of AviPro Salmonella DUO vaccine stimulates host immunity and modulates cecal microbiota to defend against ST infection. Among the microbial modulations observed in SPF chicks and field layers with protection, Faecalibacterium prausnitzii emerges as a significant species in the ceca. Further research is warranted to elucidate its role in protecting layers against ST infection.
Collapse
Affiliation(s)
- Tong-Rong Jan
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei City 106, Taiwan
| | - Chen-Si Lin
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei City 106, Taiwan; Zoonoses Research Center and School of Veterinary Medicine, National Taiwan University, Taipei City 106, Taiwan
| | - Wen-Yuan Yang
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei City 106, Taiwan; Zoonoses Research Center and School of Veterinary Medicine, National Taiwan University, Taipei City 106, Taiwan.
| |
Collapse
|
9
|
Choi J, Yadav S, Vaddu S, Thippareddi H, Kim WK. In vitro and in vivo evaluation of tannic acid as an antibacterial agent in broilers infected with Salmonella Typhimurium. Poult Sci 2023; 102:102987. [PMID: 37844525 PMCID: PMC10585643 DOI: 10.1016/j.psj.2023.102987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 10/18/2023] Open
Abstract
This study was conducted to evaluate tannic acid (TA) as an antibacterial agent against Salmonella Typhimurium in in vitro and in vivo chicken models. The TA formed an inhibitory zone against Salmonella enterica serotypes including S. Typhimurium, S. Enteritidis, and S. Infantis. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of TA against Salmonella Typhimurium nalidixic acid resistant strain (STNR) were determined as 40 and 700 μg/mL, respectively. Sublethal doses of TA (5, 10, and 20 μg/mL) restricted swimming and swarming motility and biofilm formation of STNR compared to the control group (0 μg/mL) (P < 0.05). The TA-bovine serum albumin (BSA) complex formed at simulated gastric pH (pH 3.75) was hydrolyzed at pH 6.75 and 7.25 (P < 0.05), and the hydrolysis of the TA-BSA complex was stronger at pH 7.25 compared to the pH 6.75 (P < 0.05). The inhibitory zone of the TA-BSA complex against STNR at pH 6.75 was lower than TA without BSA at 30 and 60 min (P < 0.05), but not at 120 min (P > 0.1). The inhibitory zone of the TA-BSA complex against STNR at pH 7.25 was not decreased at 0, 30, and 60 min compared to TA without BSA (P > 0.1). The recovery rate of TA was 83, 54.8, 10.5, and 19.6% in the gizzard, jejunum, ileum, and ceca, respectively, in broiler chickens. The STNR-infected broilers fed 0.25 g/kg of TA had significantly lower unweighted beta diversity distance compared to the sham-challenged control (SCC) and challenged controlled (CC) group on D 21. TA supplementation linearly (P < 0.05) and quadratically (tendency; P = 0.071) reduced relative abundance of the family Peptostreptococcaceae in broilers infected with STNR on D 7. TA supplementation linearly (P < 0.05) and quadratically (tendency; P = 0.06) increased the relative abundance of the family Erysipelotrichaceae in broilers infected with STNR on D 21. Therefore, TA has potential to be used as an antibacterial agent against the S. Typhimurium infection in broilers.
Collapse
Affiliation(s)
- Janghan Choi
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Sudhir Yadav
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Sasikala Vaddu
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | | | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
10
|
Obe T, Boltz T, Kogut M, Ricke SC, Brooks LA, Macklin K, Peterson A. Controlling Salmonella: strategies for feed, the farm, and the processing plant. Poult Sci 2023; 102:103086. [PMID: 37839165 PMCID: PMC10587538 DOI: 10.1016/j.psj.2023.103086] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 10/17/2023] Open
Abstract
Controlling Salmonella in poultry is an ongoing food safety measure and while significant progress has been made, there is a need to continue to evaluate different strategies that include understanding Salmonella-poultry interaction, Salmonella-microbiota interactions, Salmonella genetics and response to adverse conditions, and preharvest and postharvest parameters that enable persistence. The purpose of this symposium is to discuss different strategies to consider from feed milling to the farm to the processing environment. This Poultry Science Association symposium paper is divided into 5 different sections that covers 1) immunological aspects of Salmonella control, 2) application of Salmonella genetics for targeted control strategies in poultry production, 3) improving poultry feed hygienics: utilizing feed manufacture techniques and equipment to improve feed hygienics, 4) practical on farm interventions for controlling Salmonella-what works and what may not work, and 5) monitoring and mitigating Salmonella in poultry. These topics elucidate the critical need to establish control strategies that will improve poultry gut health and limit conditions that exposes Salmonella to stress causing alterations to virulence and pathogenicity both at preharvest and postharvest poultry production. This information is relevant to the poultry industry's continued efforts to ensure food safety poultry production.
Collapse
Affiliation(s)
- Tomi Obe
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA.
| | - Timothy Boltz
- Department of Poultry Science, Mississippi State University, Mississippi State, MS, USA
| | - Mike Kogut
- Southern Plains Agricultural Research Center, USDA-ARS, College Station, TX, USA
| | - Steven C Ricke
- Meat Science and Animal Biologics Discovery Program, Department of Animal and Dairy Sciences, University of Wisconsin - Madison, Madison, WI, USA
| | | | - Ken Macklin
- Department of Poultry Science, Mississippi State University, Mississippi State, MS, USA
| | | |
Collapse
|
11
|
Shaji S, Selvaraj RK, Shanmugasundaram R. Salmonella Infection in Poultry: A Review on the Pathogen and Control Strategies. Microorganisms 2023; 11:2814. [PMID: 38004824 PMCID: PMC10672927 DOI: 10.3390/microorganisms11112814] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/08/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
Salmonella is the leading cause of food-borne zoonotic disease worldwide. Non-typhoidal Salmonella serotypes are the primary etiological agents associated with salmonellosis in poultry. Contaminated poultry eggs and meat products are the major sources of human Salmonella infection. Horizontal and vertical transmission are the primary routes of infection in chickens. The principal virulence genes linked to Salmonella pathogenesis in poultry are located in Salmonella pathogenicity islands 1 and 2 (SPI-1 and SPI-2). Cell-mediated and humoral immune responses are involved in the defense against Salmonella invasion in poultry. Vaccination of chickens and supplementation of feed additives like prebiotics, probiotics, postbiotics, synbiotics, and bacteriophages are currently being used to mitigate the Salmonella load in poultry. Despite the existence of various control measures, there is still a need for a broad, safe, and well-defined strategy that can confer long-term protection from Salmonella in poultry flocks. This review examines the current knowledge on the etiology, transmission, cell wall structure, nomenclature, pathogenesis, immune response, and efficacy of preventative approaches to Salmonella.
Collapse
Affiliation(s)
- Syamily Shaji
- Department of Poultry Science, The University of Georgia, Athens, GA 30602, USA; (S.S.); (R.K.S.)
| | - Ramesh K. Selvaraj
- Department of Poultry Science, The University of Georgia, Athens, GA 30602, USA; (S.S.); (R.K.S.)
| | - Revathi Shanmugasundaram
- Toxicology and Mycotoxin Research Unit, US National Poultry Research Center, Athens, GA 30605, USA
| |
Collapse
|
12
|
Kogut MH, Fernandez Miyakawa ME. Phenotype Alterations in the Cecal Ecosystem Involved in the Asymptomatic Intestinal Persistence of Paratyphoid Salmonella in Chickens. Animals (Basel) 2023; 13:2824. [PMID: 37760224 PMCID: PMC10525526 DOI: 10.3390/ani13182824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/28/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
The gastrointestinal ecosystem involves interactions between the host, gut microbiota, and external environment. To colonize the gut of poultry, Salmonella must surmount barriers levied by the intestine including mucosal innate immune responses and microbiota-mediated niche restrictions. Accordingly, comprehending Salmonella intestinal colonization in poultry requires an understanding of how the pathogen interacts with the intestinal ecosystem. In chickens, the paratyphoid Salmonella have evolved the capacity to survive the initial immune response and persist in the avian ceca for months without triggering clinical signs. The persistence of a Salmonella infection in the avian host involves both host defenses and tolerogenic defense strategies. The initial phase of the Salmonella-gut ecosystem interaction is characteristically an innate pro-inflammatory response that controls bacterial invasion. The second phase is initiated by an expansion of the T regulatory cell population in the cecum of Salmonella-infected chickens accompanied by well-defined shifts in the enteric neuro-immunometabolic pathways that changes the local phenotype from pro-inflammatory to an anti-inflammatory environment. Thus, paratyphoid Salmonella in chickens have evolved a unique survival strategy that minimizes the inflammatory response (disease resistance) during the initial infection and then induces an immunometabolic reprogramming in the cecum that alters the host defense to disease tolerance that provides an environment conducive to drive asymptomatic carriage of the bacterial pathogen.
Collapse
Affiliation(s)
- Michael H. Kogut
- Southern Plains Agricultural Research Center, USDA-ARS, College Station, TX 77845, USA
| | - Mariano Enrique Fernandez Miyakawa
- Instituto de Patobiología, Instituto Nacional de Tecnología, Nicolas Repetto y Los Reseros S/N, Hurlingham 1686, Buenos Aires, Argentina;
| |
Collapse
|
13
|
Addition of a protected complex of biofactors and antioxidants to breeder hen diets confers transgenerational protection against Salmonella enterica serovar Enteritidis in progeny chicks. Poult Sci 2023; 102:102531. [PMID: 36805406 PMCID: PMC9958073 DOI: 10.1016/j.psj.2023.102531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/29/2022] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Addition of vitamins and antioxidants has been long associated with increased immunity and are commonly used in the poultry industry; however, less is known regarding their use in broiler breeder hens. The objective of this study was to determine if feeding a complex of protected biofactors and antioxidants composed of vitamins and fermentation extracts to broiler breeder hens conferred resistance against Salmonella enterica serovar Enteritidis (S. Enteritidis) in the progeny chicks. Three-day-old chicks from control- and supplement-fed hens were challenged with S. Enteritidis and necropsied 4- and 11-days postchallenge (dpc) to determine if there were differences in invasion and colonization. Serum and jejunum were evaluated for various cytokine and chemokine production. Fewer (P = 0.002) chicks from supplement-fed hens had detectable S. Enteritidis in the ceca (32.6%) compared to chicks from control-fed hens (64%). By 11 dpc, significantly (P < 0.001) fewer chicks from supplement-fed hens were positive for S. Enteritidis (liver [36%]; ceca [16%]) compared to chicks from the control hens (liver [76%]; ceca [76%]). The recoverable S. Enteritidis in the cecal content was also lower (P = 0.01) at 11 dpc. In additional to the differences in invasion and colonization, cytokine and chemokine production were distinct between the 2 groups of chicks. Chicks from supplement-fed hens had increased production of IL-16, IL-6, MIP-3α, and RANTES in the jejunum while IL-16 and MIP-1β were higher in the serum of chicks from the control-fed hens. By 11 dpc, production of IFN-γ was decreased in the jejunum of chicks from supplement-fed hens. Collectively, these data demonstrate adding a protected complex of biofactors and antioxidants to the diet of broiler breeder hens offers a measure of transgenerational protection to the progeny against S. Enteritidis infection and reduces colonization that is mediated, in part, by a robust and distinct cytokine and chemokine response locally at the intestine and systemically in the blood.
Collapse
|
14
|
Shanmugasundaram R, Adams D, Ramirez S, Murugesan GR, Applegate TJ, Cunningham S, Pokoo-Aikins A, Glenn AE. Subclinical Doses of Combined Fumonisins and Deoxynivalenol Predispose Clostridium perfringens–Inoculated Broilers to Necrotic Enteritis. Front Physiol 2022; 13:934660. [PMID: 35936897 PMCID: PMC9353554 DOI: 10.3389/fphys.2022.934660] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/13/2022] [Indexed: 11/21/2022] Open
Abstract
Fumonisins (FB) and deoxynivalenol (DON) are mycotoxins which may predispose broiler chickens to necrotic enteritis (NE). The objective of this study was to identify the effects of subclinical doses of combined FB and DON on NE. A total of 480 day-old male broiler chicks were divided into four treatment groups; 1) control group (basal diet + Clostridium perfringens); 2) necrotic enteritis group (basal diet + Eimeria maxima + C. perfringens); 3) FB + DON group (basal diet + 3 mg/kg FB + 4 mg/kg DON + C. perfringens); and 4) FB + DON + NE group (basal diet + 3 mg/kg FB + 4 mg/kg DON + E. maxima + C. perfringens). Birds in NE and FB + DON + NE groups received 2.5 × 103E. maxima on day 14. All birds were inoculated with C. perfringens on days 19, 20, and 21. On day 35, birds in the NE, FB + DON, and FB + DON + NE groups had 242, 84, and 339 g lower BWG and a 19-, 2-, and 22-point increase in FCR respectively, than in the control group. Subclinical doses of FB + DON increased (p < 0.05) the NE lesion scores compared to the control group on day 21. On day 21, birds in the NE, FB + DON, and FB + DON + NE groups had increased (p < 0.05) serum FITC-D, lower (p < 0.05) jejunal tight junction protein mRNA, and increased (p < 0.05) cecal tonsil IL-1 mRNA compared to control group. On day 21, birds in the NE group had decreased (p < 0.05) villi height to crypt depth ratio compared to the control group and the presence of FB + DON in NE-induced birds further decreased the villi height to crypt depth ratio. Birds in the NE, FB + DON, and FB + DON + NE groups had increased (p < 0.05) C. perfringens, lower (p < 0.05) Lactobacillus loads in the cecal content, and a lower (p < 0.05) CD8+: CD4+ cell ratio in the cecal tonsils compared to the control group. It can be concluded that subclinical doses of combined FB and DON predispose C. perfringens-inoculated birds to NE, and the presence of FB + DON in NE-induced birds exacerbated the severity of NE.
Collapse
Affiliation(s)
- R. Shanmugasundaram
- Toxicology and Mycotoxin Research Unit, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA, United States
- *Correspondence: R. Shanmugasundaram,
| | - D. Adams
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | - S. Ramirez
- DSM Animal Nutrition and Health, Kaiseraugst, Switzerland
| | | | - T. J. Applegate
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | - S. Cunningham
- Toxicology and Mycotoxin Research Unit, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA, United States
| | - A. Pokoo-Aikins
- Toxicology and Mycotoxin Research Unit, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA, United States
| | - A. E. Glenn
- Toxicology and Mycotoxin Research Unit, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA, United States
| |
Collapse
|
15
|
Acevedo-Villanueva K, Akerele G, Al-Hakeem W, Adams D, Gourapura R, Selvaraj R. Immunization of Broiler Chickens With a Killed Chitosan Nanoparticle Salmonella Vaccine Decreases Salmonella Enterica Serovar Enteritidis Load. Front Physiol 2022; 13:920777. [PMID: 35923229 PMCID: PMC9340066 DOI: 10.3389/fphys.2022.920777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
There is a critical need for an oral-killed Salmonella vaccine for broilers. Chitosan nanoparticle (CNP) vaccines can be used to deliver Salmonella antigens orally. We investigated the efficacy of a killed Salmonella CNP vaccine on broilers. CNP vaccine was synthesized using Salmonella enterica serovar Enteritidis (S. Enteritidis) outer membrane and flagella proteins. CNP was stable at acidic conditions by releasing 14% of proteins at pH 5.5. At 17 h post-incubation, the cumulative protein release for CNP was 75% at pH 7.4. Two hundred microliters of PBS with chicken red blood cells incubated with 20 μg/ml CNP released 0% hemoglobin. Three hundred chicks were allocated into 1) Control, 2) Challenge, 3) Vaccine + Challenge. At d1 of age, chicks were spray-vaccinated with PBS or 40 mg CNP. At d7 of age, chicks were orally-vaccinated with PBS or 20 μg CNP/bird. At d14 of age, birds were orally-challenged with PBS or 1 × 107 CFU/bird of S. Enteritidis. The CNP-vaccinated birds had higher antigen-specific IgY/IgA and lymphocyte-proliferation against flagellin (p < 0.05). At 14 days post-infection, CNP-vaccinated birds reversed the loss in gut permeability by 13% (p < 0.05). At 21 days post-infection, the CNP-vaccinated birds decreased S. Enteritidis in the ceca and spleen by 2 Log10 CFU/g, and in the small intestine by 0.6 Log10 CFU/g (p < 0.05). We conclude that the CNP vaccine is a viable alternative to conventional Salmonella poultry vaccines.
Collapse
Affiliation(s)
- Keila Acevedo-Villanueva
- Department of Poultry Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, United States
| | - Gabriel Akerele
- Department of Poultry Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, United States
| | - Walid Al-Hakeem
- Department of Poultry Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, United States
| | - Daniel Adams
- Department of Poultry Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, United States
| | - Renukaradhy Gourapura
- Ohio Agricultural Research and Development Center, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Columbus, OH, United States
| | - Ramesh Selvaraj
- Department of Poultry Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, United States
- *Correspondence: Ramesh Selvaraj,
| |
Collapse
|