1
|
Izzotti A, Pulliero A, Khalid Z, Ferrante O, Aquilia E, Sciacca S, Oliveri Conti G, Ferrante M. Using Natural Isotopes for the Environmental Tracking of a Controlled Landfill Site for Non-Hazardous Waste in Liguria, Italy. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2025; 22:528. [PMID: 40283754 PMCID: PMC12026632 DOI: 10.3390/ijerph22040528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/13/2025] [Accepted: 03/24/2025] [Indexed: 04/29/2025]
Abstract
The application of natural radioisotope and stable isotope tracing represents a novel, sensitive method for confirming the presence of environmental contamination due to leachate water from solid waste landfills. This study aimed to employ this approach to assess the efficiency of containment measures and the potential environmental impact in the vicinity of a landfill designated for non-hazardous waste disposal. We collected leachate water samples from two distinct areas: one currently active, and another exhausted. In February, May, August, and November 2022, we collected deep water samples from a nearby stream utilizing piezometers, both upstream and downstream from the facility. We examined deuterium and tritium radioisotopes via liquid scintillation, and stable isotope oxygen-18 via ratio mass spectrometry. The results revealed the presence of anthropogenic radioisotopes within the landfill, with higher concentrations in the active site. No radioisotopes or stable isotopes above the natural background were identified in any of the samples obtained from outside. The levels of tritium were found to correlate with rainfall in the samples collected inside, but not in those obtained outside. These findings provide evidence of the effectiveness of the active structural, managerial, and procedural containment measures and the absence of environmental contamination stemming from the studied site, reinforcing the value of the responsible management of non-hazardous waste and its limited impact on the surrounding environment. The reported results highlight the utility of performing radioisotope and stable isotope monitoring not only inside but also outside the landfill, and analyzing the relation via pluviometry.
Collapse
Affiliation(s)
- A. Izzotti
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy
| | - A. Pulliero
- Department of Health Sciences, University of Genoa, 16132 Genoa, Italy; (Z.K.); (O.F.)
| | - Z. Khalid
- Department of Health Sciences, University of Genoa, 16132 Genoa, Italy; (Z.K.); (O.F.)
| | - O. Ferrante
- Department of Health Sciences, University of Genoa, 16132 Genoa, Italy; (Z.K.); (O.F.)
| | - E. Aquilia
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95125 Catania, Italy; (E.A.); (S.S.); (G.O.C.); (M.F.)
| | - S. Sciacca
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95125 Catania, Italy; (E.A.); (S.S.); (G.O.C.); (M.F.)
| | - G. Oliveri Conti
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95125 Catania, Italy; (E.A.); (S.S.); (G.O.C.); (M.F.)
| | - M. Ferrante
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95125 Catania, Italy; (E.A.); (S.S.); (G.O.C.); (M.F.)
| |
Collapse
|
2
|
Rahman KF, Abrar MF, Tithi SS, Kabir KB, Kirtania K. Life cycle assessment of hydrothermal carbonization of municipal solid waste for waste-to-energy generation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122850. [PMID: 39405890 DOI: 10.1016/j.jenvman.2024.122850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/23/2024] [Accepted: 10/07/2024] [Indexed: 11/17/2024]
Abstract
Municipal solid waste (MSW) management is a major concern for Bangladesh, given its high population density and increasing waste production rate. Conventional waste management methods, such as landfilling, result in high carbon emissions for the environment. With over 70% of MSW being organic, hydrothermal carbonization (HTC) has emerged as a promising technology for recovering energy and nutrients from such heterogeneous waste streams. This study aimed to compare the environmental effects of HTC coupled with electricity generation (HTC-EG) from MSW with traditional landfilling using life cycle assessment in the context of Bangladesh. The HTC-EG scenario showed lower environmental impacts in three out of five impact categories, specifically reducing climate change, freshwater ecotoxicity, and photochemical ozone formation. For a functional unit of 6000-ton MSW, HTC-EG reduces the climate change impact by 7.7 × 106 kg CO2 eq. Additionally, HTC-EG has 46.77% less impact on freshwater ecotoxicity compared to landfilling and reduces the photochemical ozone formation impact by 1.86 × 104 NMVOC eq. However, the HTC-EG scenario leads to increased particulate matter formation and marine water eutrophication due to SO2, SO3, and PM2.5 emissions during hydrochar combustion and nitrate release from the liquid stream of the HTC reactor, respectively. Addressing these challenges through appropriate post-processing of flue gas from hydrochar combustion and HTC liquid streams could make HTC-EG a viable alternative to landfilling for MSW management in Bangladesh.
Collapse
Affiliation(s)
- Kaniz Fatema Rahman
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh
| | - Md Farhatul Abrar
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh
| | - Sanjida Safa Tithi
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh
| | - Kazi Bayzid Kabir
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh
| | - Kawnish Kirtania
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh.
| |
Collapse
|
3
|
Phaenark C, Phankamolsil Y, Sawangproh W. Ecological and health implications of heavy metal bioaccumulation in Thai Fauna: A systematic review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117086. [PMID: 39353378 DOI: 10.1016/j.ecoenv.2024.117086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 10/04/2024]
Abstract
Heavy metals pose significant threats to ecosystems and human health due to their persistence and bioaccumulation. In Thailand, rapid industrialization, extensive agriculture, and urban development have exacerbated heavy metal pollution in both aquatic and terrestrial ecosystems. This systematic review, conducted according to PRISMA guidelines, evaluates study designs and methodologies to assess heavy metal bioaccumulation in Thai fauna, with a focus on ecological and health impacts. The review reveals that fish, particularly from families like Cyprinidae and Cichlidae, account for 42.11 % of studies, with species such as swamp eel, Henicorhynchus siamensis, Arius maculatus, Osteogeneiosus militaris, Puntioplites proctozystron, and Channa striata showing significant bioaccumulation. Molluscs (31.58 %), including Tegillarca granosa and Filopaludina martensi, serve as critical bioindicators of aquatic pollution due to their filter-feeding habits. Amphibians and crustaceans, like Fejervarya limnocharis and Fenneropenaeus merguiensis, also demonstrate vulnerability to heavy metal contamination. Key contamination hotspots include urban waterways in Bangkok, industrial discharges in Songkhla Lake, and mining sites in Loei Province, highlighting widespread environmental and health impacts. Despite extensive research, gaps remain, particularly concerning benthic scavengers and detritivores, which are vital for ecosystem functions. The review underscores the need for targeted monitoring and mitigation, including stricter regulations on industrial discharges, improved waste treatment, and better management of agricultural runoff. While metals like cadmium (Cd), lead (Pb), copper (Cu), and zinc (Zn) are well-studied, further research on less-examined metals and species-specific bioaccumulation patterns is crucial to enhancing environmental management, supporting biodiversity conservation, and improving ecosystem resilience in Thailand.
Collapse
Affiliation(s)
- Chetsada Phaenark
- Conservation Biology Program, Mahidol University, Kanchanaburi Campus, 199 Moo 9 Lumsum, Sai Yok District, Kanchanaburi 71150, Thailand
| | - Yutthana Phankamolsil
- Environmental Engineering and Disaster Management Program, Mahidol University, Kanchanaburi Campus, 199 Moo 9 Lumsum, Sai Yok District, Kanchanaburi 71150, Thailand
| | - Weerachon Sawangproh
- Conservation Biology Program, Mahidol University, Kanchanaburi Campus, 199 Moo 9 Lumsum, Sai Yok District, Kanchanaburi 71150, Thailand.
| |
Collapse
|
4
|
Gaur VK, Gautam K, Vishvakarma R, Sharma P, Pandey U, Srivastava JK, Varjani S, Chang JS, Ngo HH, Wong JWC. Integrating advanced techniques and machine learning for landfill leachate treatment: Addressing limitations and environmental concerns. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 354:124134. [PMID: 38734050 DOI: 10.1016/j.envpol.2024.124134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
This review article explores the challenges associated with landfill leachate resulting from the increasing disposal of municipal solid waste in landfills and open areas. The composition of landfill leachate includes antibiotics (0.001-100 μg), heavy metals (0.001-1.4 g/L), dissolved organic and inorganic components, and xenobiotics including polyaromatic hydrocarbons (10-25 μg/L). Conventional treatment methods, such as biological (microbial and phytoremediation) and physicochemical (electrochemical and membrane-based) techniques, are available but face limitations in terms of cost, accuracy, and environmental risks. To surmount these challenges, this study advocates for the integration of artificial intelligence (AI) and machine learning (ML) to strengthen treatment efficacy through predictive analytics and optimized operational parameters. It critically evaluates the risks posed by recalcitrant leachate components and appraises the performance of various treatment modalities, both independently and in tandem with biological and physicochemical processes. Notably, physicochemical treatments have demonstrated pollutant removal rates of up to 90% for various contaminants, while integrated biological approaches have achieved over 95% removal efficiency. However, the heterogeneous nature of solid waste composition further complicates treatment methodologies. Consequently, the integration of advanced ML algorithms such as Support Vector Regression, Artificial Neural Networks, and Genetic Algorithms is proposed to refine leachate treatment processes. This review provides valuable insights for different stakeholders specifically researchers, policymakers and practitioners, seeking to fortify waste disposal infrastructure and foster sustainable landfill leachate management practices. By leveraging AI and ML tools in conjunction with a nuanced understanding of leachate complexities, a promising pathway emerges towards effectively addressing this environmental challenge while mitigating potential adverse impacts.
Collapse
Affiliation(s)
- Vivek Kumar Gaur
- Centre for Energy and Environmental Sustainability, Lucknow, India; School of Energy and Chemical Engineering, UNIST, Ulsan, 44919, Republic of Korea
| | - Krishna Gautam
- Centre for Energy and Environmental Sustainability, Lucknow, India
| | | | - Poonam Sharma
- Department of Bioengineering, Integral University, Lucknow, India
| | - Upasana Pandey
- Dabur Research Foundation, Ghaziabad, Uttar Pradesh, 201010, India
| | | | - Sunita Varjani
- School of Engineering, UPES, Dehradun-248 007, Uttarakhand, India; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea; School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong.
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, Tunghai University, Taichung, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, Taiwan
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW - 2007, Australia
| | - Jonathan W C Wong
- Institute of Bioresource and Agriculture, Hong Kong Baptist University, Hong Kong
| |
Collapse
|
5
|
Ali SS, Hassan LHS, El-Sheekh M. Microalgae-mediated bioremediation: current trends and opportunities-a review. Arch Microbiol 2024; 206:343. [PMID: 38967670 DOI: 10.1007/s00203-024-04052-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/05/2024] [Accepted: 06/14/2024] [Indexed: 07/06/2024]
Abstract
Environmental pollution poses a critical global challenge, and traditional wastewater treatment methods often prove inadequate in addressing the complexity and scale of this issue. On the other hand, microalgae exhibit diverse metabolic capabilities that enable them to remediate a wide range of pollutants, including heavy metals, organic contaminants, and excess nutrients. By leveraging the unique metabolic pathways of microalgae, innovative strategies can be developed to effectively remediate polluted environments. Therefore, this review paper highlights the potential of microalgae-mediated bioremediation as a sustainable and cost-effective alternative to conventional methods. It also highlights the advantages of utilizing microalgae and algae-bacteria co-cultures for large-scale bioremediation applications, demonstrating impressive biomass production rates and enhanced pollutant removal efficiency. The promising potential of microalgae-mediated bioremediation is emphasized, presenting a viable and innovative alternative to traditional treatment methods in addressing the global challenge of environmental pollution. This review identifies the opportunities and challenges for microalgae-based technology and proposed suggestions for future studies to tackle challenges. The findings of this review advance our understanding of the potential of microalgae-based technology wastewater treatment.
Collapse
Affiliation(s)
- Sameh S Ali
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Lamiaa H S Hassan
- Faculty of Science, Menoufia University, Shebin El-kom, 32511, Egypt
| | - Mostafa El-Sheekh
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| |
Collapse
|
6
|
Kirichenko-Babko M, Bulak P, Kaczor M, Proc-Pietrycha K, Bieganowski A. Arthropods in landfills and their accumulation potential for toxic elements: A review. ENVIRONMENTAL RESEARCH 2024; 251:118612. [PMID: 38442814 DOI: 10.1016/j.envres.2024.118612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 02/24/2024] [Accepted: 02/29/2024] [Indexed: 03/07/2024]
Abstract
Landfills, as a source of potentially toxic elements (PTEs), pose a threat to the environment and human health. A literature review was conducted to explore the diversity of arthropods inhabiting solid waste landfills, as well as on the bioaccumulation of PTEs by arthropods. This review presents scientific papers over the last 20 years. Their importance in landfill ecosystems has been the subject of research; however, the issue of the accumulation of compounds such as toxic elements is emphasized only in a few studies. The bioaccumulation of PTEs was studied for 10 arthropod species that founded in landfills: Orthomorpha coarctata and Trigoniulus corallinus (class Diplopoda), Armadillidium vulgare and Trachelipus rathkii (class Malacostraca), the 6 species of the class Insecta - Zonocerus variegatus, Anacanthotermes ochraceus, Macrotermes bellicosus, Austroaeschna inermis, Calathus fuscipes and Harpalus rubripes.
Collapse
Affiliation(s)
- Marina Kirichenko-Babko
- Department of Natural Environment Biogeochemistry, Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290, Lublin, Poland; Department of Invertebrate Fauna and Systematics, Schmalhausen Institute of Zoology National Academy of Sciences, B. Khmelnitsky 15, 01054, Kyiv, Ukraine.
| | - Piotr Bulak
- Department of Natural Environment Biogeochemistry, Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290, Lublin, Poland
| | - Monika Kaczor
- Department of Natural Environment Biogeochemistry, Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290, Lublin, Poland
| | - Kinga Proc-Pietrycha
- Department of Natural Environment Biogeochemistry, Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290, Lublin, Poland
| | - Andrzej Bieganowski
- Department of Natural Environment Biogeochemistry, Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290, Lublin, Poland
| |
Collapse
|
7
|
Noudeng V, Pheakdey DV, Xuan TD. Toxic heavy metals in a landfill environment (Vientiane, Laos): Fish species and associated health risk assessment. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 108:104460. [PMID: 38705363 DOI: 10.1016/j.etap.2024.104460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/22/2024] [Accepted: 04/30/2024] [Indexed: 05/07/2024]
Abstract
Leachates from municipal landfills introduce toxic heavy metals into water, causing bioaccumulation. This study assesses metal levels and potential human health risks associated with consuming Anabas testudineus and Channa striata. Inductively coupled plasma mass spectrometry detected Cd, Cu, Cr, Ni, Pb, and Zn in both fish species. Leachate metal concentrations meet international discharge standards, Cd, Cr, and Pb in the fish exceed the international accepted values. Gastrointestinal tract+liver samples show significant variation between species, particularly in Cd and Pb. EDI, THQ/HI, and TR for the both species fall below TDIs, lower than the limit of 1, and within the acceptable range of the US-EPA permissible limit, respectively. Fish consumption appears safe regarding carcinogenic risk, but exceeding metal limits could impact heavy metals accumulation in the local food chain. Raising public awareness is crucial, and governmental agencies and environmental organizations should enhance waste treatment technologies and enact relevant health legislation.
Collapse
Affiliation(s)
- Vongdala Noudeng
- Graduate School of Advanced Science and Engineering, Hiroshima University, 1-5-1 Kagamiyama, Higashi-Hiroshima 739-8529, Japan; Ministry of Natural Resources and Environment, Dongnasok-Nong Beuk Road, P.O.Box 7864, Vientiane 0117, Laos.
| | - Dek Vimean Pheakdey
- Graduate School of Advanced Science and Engineering, Hiroshima University, 1-5-1 Kagamiyama, Higashi-Hiroshima 739-8529, Japan; Department of Hazardous Substances Management, Ministry of Environment, Phnom Penh 120101, Cambodia.
| | - Tran Dang Xuan
- Graduate School of Advanced Science and Engineering, Hiroshima University, 1-5-1 Kagamiyama, Higashi-Hiroshima 739-8529, Japan; Center for the Planetary Health and Innovation Science (PHIS), The IDEC Institute, Hiroshima University, 1-5-1 Kagamiyama, Higashi-Hiroshima 739-8529, Japan.
| |
Collapse
|
8
|
Essien JP, Ikpe DI, Inam EJ, Okon AO, Ebong GA, Benson NU. Correction: Occurrence and spatial distribution of heavy metals in landfill leachates and impacted freshwater ecosystem: An environmental and human health threat. PLoS One 2024; 19:e0304882. [PMID: 38820306 PMCID: PMC11142486 DOI: 10.1371/journal.pone.0304882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024] Open
Abstract
[This corrects the article DOI: 10.1371/journal.pone.0263279.].
Collapse
|
9
|
Podlasek A, Vaverková MD, Jakimiuk A, Koda E. Potentially toxic elements (PTEs) and ecological risk at waste disposal sites: An analysis of sanitary landfills. PLoS One 2024; 19:e0303272. [PMID: 38758824 PMCID: PMC11101111 DOI: 10.1371/journal.pone.0303272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/22/2024] [Indexed: 05/19/2024] Open
Abstract
This study presents an analysis of soil contamination caused by Ni, Zn, Cd, Cu, and Pb at municipal solid waste (MSW) landfills, with a focus on ecological risk assessment. The approach aims to assess how different landfill practices and environmental conditions affect soil contamination with potentially toxic elements (PTEs) and associated environmental risks. Soil samples were collected from MSW landfills in Poland and the Czech Republic. The research included a comprehensive assessment of PTEs in soils in the context of global environmental regulations. The degree of soil contamination by PTEs was assessed using indices: Geoaccumulation Index (Igeo), Single Pollution Index (Pi), Nemerow Pollution Index (PN), and Load Capacity of a Pollutant (PLI). The ecological risk was determined using the Risk of PTEs (ERi) and Sum of Individual Potential Risk Factors (ERI). The maximum values of the indicators observed for the Radiowo landfill were as follows: Igeo = 4.04 for Cd, Pi = 24.80 for Cd, PN = 18.22 for Cd, PLI = 2.66, ERi = 744 for Cd, ERI = 771.80. The maximum values of the indicators observed for the Zdounky landfill were as follows: Igeo = 1.04 for Cu, Pi = 3.10 for Cu, PN = 2.52 for Cu, PLI = 0.27, ERi = 25 for Cd, ERI = 41.86. The soils of the tested landfills were considered to be non-saline, with electrical conductivity (EC) values less than 2,000 μS/cm. Varying levels of PTEs were observed, and geostatistical analysis highlighted hotspots indicating pollution sources. Elevated concentrations of Cd in the soil indicated potential ecological risks. Concentrations of Cu and lead Pb were well below the thresholds set by the environmental legislation in several countries. In addition, Ni concentrations in the soils of both landfills indicated that the average levels were within acceptable limits. Principal Component Analysis (PCA) revealed common sources of PTEs. The identification of specific risk points at the Radiowo and Zdounky sites contributes to a better understanding of potential hazards in landfill environments. By establishing buffer zones and implementing regular maintenance programs, emerging environmental problems can be addressed in a timely manner.
Collapse
Affiliation(s)
- Anna Podlasek
- Department of Revitalization and Architecture, Institute of Civil Engineering, Warsaw University of Life Sciences–SGGW, Warsaw, Poland
| | - Magdalena Daria Vaverková
- Department of Revitalization and Architecture, Institute of Civil Engineering, Warsaw University of Life Sciences–SGGW, Warsaw, Poland
- Department of Applied and Landscape Ecology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
| | - Aleksandra Jakimiuk
- Department of Revitalization and Architecture, Institute of Civil Engineering, Warsaw University of Life Sciences–SGGW, Warsaw, Poland
| | - Eugeniusz Koda
- Department of Revitalization and Architecture, Institute of Civil Engineering, Warsaw University of Life Sciences–SGGW, Warsaw, Poland
| |
Collapse
|
10
|
Ahmad N, Singh SP, Sahu S, Bhattacharyya R, Maurya AS, Kumar N, Rout RK, Tripathy GR. Isotopic evidence of autochthonous organic matter acting as a major sink of anthropogenic heavy metals in modern lacustrine sediments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123964. [PMID: 38631445 DOI: 10.1016/j.envpol.2024.123964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/17/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024]
Abstract
The knowledge of major sources, sinks, and the burial fate of various pollutants added to modern aquatic ecosystems under changing environmental conditions is limited but crucial for our sustainability. In this context, the spatial distributions and causative factors of organic matter (OM) and heavy metal accumulations have been explored in modern lacustrine sediments of a large urbanized and protected wetland (ULB: Upper Lake Bhopal) in Central India. For this purpose, geochemical properties, in particular, stable isotopes (δ13C and δ15N) were measured in the ULB surficial sediments (core depth ∼0-1 cm; n = 19), and additionally collected riverbed sediments (n = 2) and atmospheric free-fall dust samples (n = 3) from the lake periphery. The major and trace element data indicate widespread mafic sediment provenance and nearly dysoxic lacustrine conditions. The riverine supply of soil OM from cropped lands and the lake productivity (algae, largely sustained by nutrients from sewage and agricultural runoff) are the major OM sources to the western and eastern lake portions, respectively. The fractional contribution from autochthonous TOC (∼0.19-0.95, mean ∼0.62) predominates that of allochthonous TOC (∼0.05-0.81, mean ∼0.38). Whereas, atmospheric dust deposition is a primary anthropogenic source of heavy metals (Pb and Zn). The lake productivity rather than soil OM or any mineral sorbent is found responsible for the anthropogenic enrichments of Pb and Zn in the ULB surficial sediments, especially on the eastern ULB portion under high anthropogenic pressure. Therefore, the settled OM (primarily autochthonous) being oxidizable acts as a temporary but major sink of anthropogenic heavy metals in modern lacustrine sediments, which are vulnerable to heavy metal efflux to the water column by sediment diagenesis.
Collapse
Affiliation(s)
- Nafees Ahmad
- Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal-Bypass-Road, Bhauri, Bhopal, 462066, Madhya Pradesh, India
| | - Satinder Pal Singh
- Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal-Bypass-Road, Bhauri, Bhopal, 462066, Madhya Pradesh, India.
| | - Shivam Sahu
- Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal-Bypass-Road, Bhauri, Bhopal, 462066, Madhya Pradesh, India
| | - Rohan Bhattacharyya
- Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal-Bypass-Road, Bhauri, Bhopal, 462066, Madhya Pradesh, India
| | - Abhayanand Singh Maurya
- Department of Earth Sciences, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Nitish Kumar
- Department of Earth Sciences, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Rakesh Kumar Rout
- Department of Earth and Climate Science, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Gyana Ranjan Tripathy
- Department of Earth and Climate Science, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, 411008, India
| |
Collapse
|
11
|
Purbonegoro T, Damar A, Riani E, Butet NA, Cordova MR. Accumulation of Cd and Pb in sediments and Asian swamp eels (Monopterus albus) from downstream area of Cisadane River, Indonesia. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:496. [PMID: 38693437 DOI: 10.1007/s10661-024-12635-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 04/12/2024] [Indexed: 05/03/2024]
Abstract
This study examined the presence of two heavy metals (Cd and Pb) in the sediments and Asian swamp eels (Monopterus albus) in the downstream area of Cisadane River. The average concentrations of Cd and Pb in the sediments from all sampling locations were 0.594 ± 0.230 mg/kg and 34.677 ± 24.406 mg/kg, respectively. These concentrations were above the natural background concentration and the recommended value of interim sediment quality guidelines (ISQG), suggesting an enrichment process and potential ecological risk of studied metals to the ecosystem of Cisadane River. The increase in contamination within this region may be attributed to point sources such as landfill areas, as well as the industrial and agricultural land activities in surrounding area, and experienced an increasing level leading towards the estuary of Cisadane River. Meanwhile, the average concentrations of Cd and Pb in the eels from all sampling locations were 0.775 ± 0.528 μg/g and 28.940 ± 12.921 μg/g, respectively. This study also discovered that gill tissues contained higher levels of Cd and Pb than the digestive organ and flesh of Asian swamp eels. These concentrations were higher than Indonesian and international standards, suggesting a potential human health risk and therefore the needs of limitations in the consumption of the eels. Based on the human health risk assessment, the eels from the downstream of Cisadane River are still considered safe to be consumed as long as they comply with the specified maximum consumption limits.
Collapse
Affiliation(s)
- Triyoni Purbonegoro
- Research Center for Oceanography, National Research and Innovation Agency Republic of Indonesia, Jakarta, Indonesia.
- Study Program of Coastal and Marine Resources Management, Department of Aquatic Resources Management, Faculty of Fisheries and Marine Sciences, IPB University, Bogor, Indonesia.
| | - Ario Damar
- Department of Aquatic Resources Management, Faculty of Fishery and Marine Science, IPB University, Bogor, Indonesia
- Center for Coastal and Marine Resources Studies, IPB University, Bogor, Indonesia
| | - Etty Riani
- Department of Aquatic Resources Management, Faculty of Fishery and Marine Science, IPB University, Bogor, Indonesia
| | - Nurlisa A Butet
- Department of Aquatic Resources Management, Faculty of Fishery and Marine Science, IPB University, Bogor, Indonesia
| | - Muhammad Reza Cordova
- Research Center for Oceanography, National Research and Innovation Agency Republic of Indonesia, Jakarta, Indonesia
| |
Collapse
|
12
|
Mngadi S, Nomngongo PN, Moja S. Elemental composition and potential health risk of vegetable cultivated in residential area situated close to abandoned gold mine dump: Characteristics of soil quality on the vegetables. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2024; 59:300-314. [PMID: 38619427 DOI: 10.1080/03601234.2024.2339779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/30/2024] [Indexed: 04/16/2024]
Abstract
The presence of toxic metals in residential areas near abandoned gold mine tailings is a major environmental issue. This study mainly aimed to investigate the elemental distribution of both toxic and essential elements in soils and leafy vegetables (Brassica oleracea) collected from eight different sites around the Davidsonville residential area, located closer to the abandoned Princess gold mine dump, Johannesburg, South Africa. The nutritional value of vegetables in the human diet was determined to assess their value to their health. The vegetables contained metals in the following descending order: Ca > Mg > Ca > Sb > Pb > Fe > Mo > Cr > Se > As > V > Ni > Co > Cd. The bioaccumulation factor (BAF) revealed that vegetables tend to accumulate most metals even (toxic) during the transfer and translocation process. Based on the recommended daily allowance (%RDA) the vegetables showed to contribute 152%, 84% and 75% toward RDA for Se, V and Ca, respectively for most adults and these play a role in human metabolic activities. The vegetables were found to be a good source of essential elements (Ca, Mg, Ni, Na, Fe) but with some traces of toxic metals such as Pb, As and Sb. Based on the health risk assessment, the vegetable posed an adverse health hazard for human consumption due to metals with high HRI >1.
Collapse
Affiliation(s)
- Sihle Mngadi
- Department of Applied Chemistry, University of Johannesburg, South Africa, South Africa
- Department of Science and Innovation-National Research Foundation South African Research Chair Initiative (DSI-NRF SARChI) in Nanotechnology for Water, University of Johannesburg, Doornfontein, South Africa
- Scientific Services, Laboratories, Chemical Sciences, uMngeni-uThukela Water, Pietermaritzburg, South Africa
| | - Philiswa Nosizo Nomngongo
- Department of Applied Chemistry, University of Johannesburg, South Africa, South Africa
- Department of Science and Innovation-National Research Foundation South African Research Chair Initiative (DSI-NRF SARChI) in Nanotechnology for Water, University of Johannesburg, Doornfontein, South Africa
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, University of Johannesburg, Doornfontein, South Africa
| | - Shadung Moja
- Water and Environmental Unit & Applied Geoscience Division, Council for Geoscience, Pretoria, South Africa
| |
Collapse
|
13
|
Gunarathne V, Phillips AJ, Zanoletti A, Rajapaksha AU, Vithanage M, Di Maria F, Pivato A, Korzeniewska E, Bontempi E. Environmental pitfalls and associated human health risks and ecological impacts from landfill leachate contaminants: Current evidence, recommended interventions and future directions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169026. [PMID: 38056656 DOI: 10.1016/j.scitotenv.2023.169026] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/17/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023]
Abstract
The improper management of solid waste, particularly the dumping of untreated municipal solid waste, poses a growing global challenge in both developed and developing nations. The generation of leachate is one of the significant issues that arise from this practice, and it can have harmful impacts on both the environment and public health. This paper presents an overview of the primary waste types that generate landfill leachate and their characteristics. This includes examining the distribution of waste types in landfills globally and how they have changed over time, which can provide valuable insights into potential pollutants in a given area and their trends. With a lack of specific regulations and growing concerns regarding environmental and health impacts, the paper also focuses on emerging contaminants. Furthermore, the environmental and ecological impacts of leachate, along with associated health risks, are analyzed. The potential applications of landfill leachate, suggested interventions and future directions are also discussed in the manuscript. Finally, this work addresses future research directions in landfill leachate studies, with attention, for the first time to the potentialities that artificial intelligence can offer for landfill leachate management, studies, and applications.
Collapse
Affiliation(s)
- Viraj Gunarathne
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, CO 10250, Sri Lanka; University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - Ankur J Phillips
- Department of Microbiology, College of Basic Sciences and Humanities, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, 263145, Uttarakhand, India
| | - Alessandra Zanoletti
- INSTM and Chemistry for Technologies Laboratory, Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze, 38, 25123 Brescia, Italy
| | - Anushka Upamali Rajapaksha
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, CO 10250, Sri Lanka; Instrument Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Meththika Vithanage
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, CO 10250, Sri Lanka
| | - Francesco Di Maria
- LAR5 Laboratory, Dipartimento di Ingegneria, University of Perugia, via G. Duranti 93, 06125 Perugia, Italy
| | - Alberto Pivato
- DICEA - Department of Civil, Environmental and Architectural Engineering, University of Padova, Via Marzolo 9, 35131 Padova, Italy
| | - Ewa Korzeniewska
- Department of Water Protection Engineering and Environmental Microbiology, The Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1 Str., 10-719 Olsztyn, Poland
| | - Elza Bontempi
- INSTM and Chemistry for Technologies Laboratory, Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze, 38, 25123 Brescia, Italy.
| |
Collapse
|
14
|
George II, Nawawi MGM, Mohd ZJ, Farah BS. Environmental effects from petroleum product transportation spillage in Nigeria: a critical review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:1719-1747. [PMID: 38055166 DOI: 10.1007/s11356-023-31117-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 11/15/2023] [Indexed: 12/07/2023]
Abstract
Nigeria has struggled to meet sustainable development goals (SDGs) on environmental sustainability, transportation, and petroleum product distribution for decades, endangering human and ecological health. Petroleum product spills contaminate soil, water, and air, harming humans, aquatic life, and biodiversity. The oil and gas industry contributes to environmental sustainability and scientific and technological advancement through its supply chain activities in the transport and logistics sectors. This paper reviewed the effects of petroleum product transportation at three accident hotspots on Nigeria highway, where traffic and accident records are alarming due to the road axis connecting the southern and northern regions of the country. The preliminary data was statistically analysed to optimise the review process and reduce risk factors through ongoing data monitoring. Studies on Nigeria's petroleum product transportation spills and environmental impacts between the years 2013 and 2023 were critically analysed to generate updated information. The searches include Scopus, PubMed, and Google Scholar. Five hundred and forty peer-reviewed studies were analysed, and recommendations were established through the conclusions. The findings show that petroleum product transport causes heavy metal deposition in the environment as heavy metals damage aquatic life and build up in the food chain, posing a health risk to humans. The study revealed that petroleum product spills have far-reaching environmental repercussions and, therefore, recommended that petroleum product spills must be mitigated immediately. Furthermore, the study revealed that better spill response and stricter legislation are needed to reduce spills, while remediation is necessary to lessen the effects of spills on environmental and human health.
Collapse
Affiliation(s)
- Ikenna Ignatius George
- Department of Petroleum Engineering (FKT), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, UTM JB, 81310, Skudai, Johor, Malaysia.
- Transport Technology Center, Nigerian Institute of Transport Technology, NITT, P. M. B. 1147, Kaduna State, Zaria, Nigeria.
| | - Mohd Ghazali Mohd Nawawi
- Department of Chemical Engineering, (FKT), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, UTM JB, 81310, Skudai, Johor, Malaysia
| | - Zaidi Jafaar Mohd
- Department of Petroleum Engineering (FKT), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, UTM JB, 81310, Skudai, Johor, Malaysia
| | - Bayero Salih Farah
- Office of the Director General Chief Executive, Nigerian Institute of Transport Technology, NITT, P. M. B. 1147, Kaduna State, Zaria, Nigeria
| |
Collapse
|
15
|
Cadondon J, Vallar E, Roque FJ, Rempillo O, Mandia P, Orbecido A, Beltran A, Deocaris C, Morris V, Belo L, Galvez MC. Elemental distribution and source analysis of atmospheric aerosols from Meycauayan, Bulacan, Philippines. Heliyon 2023; 9:e19459. [PMID: 37809711 PMCID: PMC10558599 DOI: 10.1016/j.heliyon.2023.e19459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 10/10/2023] Open
Abstract
One of the industrialized cities in the Philippines is Meycauayan, Bulacan. This study reports the elemental distribution and source apportionment in eight varying land cover-land use type sampling points located along the Marilao-Meycauayan- Obando Rivers System. Elemental analysis was conducted using a scanning electron microscope coupled with energy dispersive x-ray. Cu, Pb, Zn, Cr, Mn, As, Cd, Co, Fe, Ni, Ti, and V concentrations were determined using Inductively Coupled Plasma Mass Spectrometry, and Hg concentrations by Mercury analyzer. Principal component analysis (PCA), hierarchical cluster analysis (HCA), and Pearson's r correlation were used to analyze different sources of heavy metals and its corresponding land use-land cover type. The aerosol samples showed the presence of heavy metals Pb and Hg, elements that were also detected in trace amounts in the water measurements. Concentrations of heavy metals such as Cu, Fe, Pb, Zn, V, Ni, and As found in the atmospheric aerosols and urban dusts were attributed to anthropogenic sources such as residential, commercial and industrial wastes. Other source of aerosols in the area were traffic and crustal emissions in Meycauayan. Using HCA, there are 3 clusters observed based on the similar sets of heavy metals: (1) AQS1 (Caingin), AQS2 (Banga), and AQS8 (Malhacan); (2) AQS3(Calvario), AQS4 (Camalig), and AQS5(Langka); (3) AQS1(Sto Nino-Perez), and (AQS7) (Sterling). These groups are related based on different land use setting such as residential/commercial, agricultural, and commercial/industrial areas. Our study recommends the need to address heavy metal pollution in Meycauayan in support to the ongoing implementation of laws and regulations by the local and private sectors.
Collapse
Affiliation(s)
- Jumar Cadondon
- Environment And RemoTe sensing researcH (EARTH) Laboratory, Department of Physics, College of Science, De La Salle University, Manila 0922, Philippines
- Division of Physical Sciences and Mathematics, College of Arts and Sciences, University of the Philippines Visayas, Miagao 5023, Philippines
- Applied Research for Community, Health, and Environment Resilience and Sustainability (ARCHERS), Center for Natural Sciences and Environmental Research (CENSER), College of Science, De La Salle University, Manila 0922, Philippines
| | - Edgar Vallar
- Environment And RemoTe sensing researcH (EARTH) Laboratory, Department of Physics, College of Science, De La Salle University, Manila 0922, Philippines
- Applied Research for Community, Health, and Environment Resilience and Sustainability (ARCHERS), Center for Natural Sciences and Environmental Research (CENSER), College of Science, De La Salle University, Manila 0922, Philippines
| | - Floro Junior Roque
- Environment And RemoTe sensing researcH (EARTH) Laboratory, Department of Physics, College of Science, De La Salle University, Manila 0922, Philippines
- Applied Research for Community, Health, and Environment Resilience and Sustainability (ARCHERS), Center for Natural Sciences and Environmental Research (CENSER), College of Science, De La Salle University, Manila 0922, Philippines
| | - Ofelia Rempillo
- Environment And RemoTe sensing researcH (EARTH) Laboratory, Department of Physics, College of Science, De La Salle University, Manila 0922, Philippines
- Applied Research for Community, Health, and Environment Resilience and Sustainability (ARCHERS), Center for Natural Sciences and Environmental Research (CENSER), College of Science, De La Salle University, Manila 0922, Philippines
| | - Paulito Mandia
- Environment And RemoTe sensing researcH (EARTH) Laboratory, Department of Physics, College of Science, De La Salle University, Manila 0922, Philippines
- Applied Research for Community, Health, and Environment Resilience and Sustainability (ARCHERS), Center for Natural Sciences and Environmental Research (CENSER), College of Science, De La Salle University, Manila 0922, Philippines
| | - Aileen Orbecido
- Department of Chemical Engineering, Gokongwei College of Engineering, De La Salle University, Manila 0922, Philippines
| | - Arnel Beltran
- Department of Chemical Engineering, Gokongwei College of Engineering, De La Salle University, Manila 0922, Philippines
| | - Custer Deocaris
- Philippine Nuclear Research Institute, Department of Science and Technology, Quezon City, Philippines
| | - Vernon Morris
- School of Mathematical and Natural Sciences, New College for Interdisciplinary Arts and Sciences, Arizona State University PO Box 37100, MC 1251, Phoenix, AZ, USA
| | - Lawrence Belo
- Department of Chemical Engineering, Gokongwei College of Engineering, De La Salle University, Manila 0922, Philippines
| | - Maria Cecilia Galvez
- Environment And RemoTe sensing researcH (EARTH) Laboratory, Department of Physics, College of Science, De La Salle University, Manila 0922, Philippines
- Applied Research for Community, Health, and Environment Resilience and Sustainability (ARCHERS), Center for Natural Sciences and Environmental Research (CENSER), College of Science, De La Salle University, Manila 0922, Philippines
| |
Collapse
|
16
|
Mondal T, Choudhury M, Kundu D, Dutta D, Samanta P. Landfill: An eclectic review on structure, reactions and remediation approach. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 164:127-142. [PMID: 37054538 DOI: 10.1016/j.wasman.2023.03.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/14/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
Since the enactment of the Clean Water Act (1972), which was supplemented by increased accountability under Resource Conservation and Recovery Act (RCRA) Subtitle D (1991) and the Clean Air Act Amendments (1996), landfills have indeed been widely used all around the world for treating various wastes. The landfill's biological and biogeochemical processes are believed to be originated about 2 to 4 decades ago. Scopus and web of Science based bibliometric study reveals that there are few papers available in scientific domain. Further, till today not a single paper demonstrated the detailed landfills heterogenicity, chemistry and microbiological processes and their associated dynamics in a combined approach. Accordingly, the paper addresses the recent applications of cutting-edge biogeochemical and biological methods adopted by different countries to sketch an emerging perspective of landfill biological and biogeochemical reactions and dynamics. Additionally, the significance of several regulatory factors controlling the landfill's biogeochemical and biological processes is highlighted. Finally, this article emphasizes the future opportunities for integrating advanced techniques to explain landfill chemistry explicitly. In conclusion, this paper will provide a comprehensive vision of the diverse dimensions of landfill biological and biogeochemical reactions and dynamics to the scientific world and policymakers.
Collapse
Affiliation(s)
- Tridib Mondal
- Department of Chemistry, Sukanta Mahavidyalaya, University of North Bengal, Dhupguri 735210, West Bengal, India
| | - Moharana Choudhury
- Environmental Research and Management Division, Voice of Environment (VoE), Guwahati - 781034, Assam, India.
| | - Debajyoti Kundu
- Waste Re-processing Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur 440 020, India
| | - Deblina Dutta
- Department of Environmental Science and Engineering, SRM University-AP, Amaravati, Andhra Pradesh 522 240, India
| | - Palas Samanta
- Department of Environmental Science, Sukanta Mahavidyalaya, University of North Bengal, Dhupguri 735210, West Bengal, India.
| |
Collapse
|
17
|
Sanga VF, Fabian C, Kimbokota F. Heavy metal pollution in leachates and its impacts on the quality of groundwater resources around Iringa municipal solid waste dumpsite. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:8110-8122. [PMID: 36053421 DOI: 10.1007/s11356-022-22760-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
Heavy metal pollution in groundwater due to leachates leaking from the Iringa municipal dumpsite was investigated. The pollution was studied by analyzing pH, electrical conductivity (EC), total dissolved solids (TDS), and heavy metals (Fe, Pb, Cr, Cd, Cu, Ni, Mn, and Zn) in leachates collected within the dumpsite and groundwater samples from residential wells close to the dumpsite. The pH of the leachate samples varied from 7.40 to 9.10, implying alkaline behavior and the methanogenic phase of solid waste deposits. The levels of EC, TDS, and heavy metals (Fe, Pb, Cr, Cu, Ni, Mn, and Zn) in leachates were above the national and/or international standards. On other hand, groundwater samples presented pH values ranging from 7.15 to 7.60 which were within the World Health Organization acceptable limit. The concentrations of EC, TDS, Fe, Pb, Ni, Mn, and Zn in most groundwater samples exceeded the national and/or international permissible limits for drinking water. In addition, the water quality indices (WQI) of groundwater samples ranged between 8.30 and 17.90, which implied the excellent quality of groundwater sources. However, the presence of high levels of heavy metals above the permissible limits in both leachate and groundwater samples signified potential risks to the environment and public health. Therefore, the present study calls for proper management of municipal solid waste to reduce the potential risks of further contamination on the groundwater resources and environment around the Iringa municipal dumpsite.
Collapse
Affiliation(s)
- Victor Fanuel Sanga
- Department of Natural Sciences, Mbeya University of Science and Technology, P.O Box 131, Mbeya, Tanzania.
| | - Christina Fabian
- Department of Chemistry, Mkwawa University College of Education, P.O Box 2513, Iringa, Tanzania
| | - Fikira Kimbokota
- Department of Chemistry, Mkwawa University College of Education, P.O Box 2513, Iringa, Tanzania
| |
Collapse
|
18
|
Czatzkowska M, Wolak I, Harnisz M, Korzeniewska E. Impact of Anthropogenic Activities on the Dissemination of ARGs in the Environment-A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph191912853. [PMID: 36232152 PMCID: PMC9564893 DOI: 10.3390/ijerph191912853] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/28/2022] [Accepted: 10/03/2022] [Indexed: 05/07/2023]
Abstract
Over the past few decades, due to the excessive consumption of drugs in human and veterinary medicine, the antimicrobial resistance (AR) of microorganisms has risen considerably across the world, and this trend is predicted to intensify. Many worrying research results indicate the occurrence of pools of AR, both directly related to human activity and environmental factors. The increase of AR in the natural environment is mainly associated with the anthropogenic activity. The dissemination of AR is significantly stimulated by the operation of municipal facilities, such as wastewater treatment plants (WWTPs) or landfills, as well as biogas plants, agriculture and farming practices, including animal production and land application of manure. These activities entail a risk to public health by spreading bacteria resistant to antimicrobial products (ARB) and antibiotic resistance genes (ARGs). Furthermore, subinhibitory concentrations of antimicrobial substances additionally predispose microbial consortia and resistomes to changes in particular environments that are permeated by these micropollutants. The current state of knowledge on the fate of ARGs, their dissemination and the complexity of the AR phenomenon in relation to anthropogenic activity is inadequate. This review summarizes the state-of-the-art knowledge on AR in the environment, in particular focusing on AR spread in an anthropogenically altered environment and related environmental consequences.
Collapse
|
19
|
Soil Risk Assessment in the Surrounding Area of Hulene-B Waste Dump, Maputo (Mozambique). GEOSCIENCES 2022. [DOI: 10.3390/geosciences12080290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Soil contamination in areas close to unplanned dumpsites represents an increasing risk to the ecosystems and human health. This study aimed to evaluate soil quality in the area surrounding the Hulene-B waste dump, Maputo, Mozambique, and to estimate potential ecological and human health risks. A total of 71 surface soil samples were collected in the surrounding area of the dump, along with 10 samples in areas considered not impacted by the dump. Chemical and mineralogical analyses were performed using XRF and XRD. Quartz was the most abundant mineral phase, followed by feldspars, carbonates, clay minerals, and Fe oxides/hydroxides. Results showed a significant contribution to ecological degradation by PTE enrichment, ranked as Zn >> Cu > Cr > Zr > Pb > Ni > Mn. Carcinogenic risk for both children and adults was significant due to Pb soil content. Soil sample concentrations of Cr, Cu, Mn, Ni, Pb, Zn, and Zr, posing a risk especially in children, suggested the need for continuous monitoring, as well as the definition and implementation of mitigation measures.
Collapse
|