1
|
Sæterstad S, Østvik AE, Røyset ES, Bakke I, Sandvik AK, Granlund AVB. Correction: Profound gene expression changes in the epithelial monolayer of active ulcerative colitis and Crohn's disease. PLoS One 2025; 20:e0325481. [PMID: 40424399 PMCID: PMC12112345 DOI: 10.1371/journal.pone.0325481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2025] Open
Abstract
[This corrects the article DOI: 10.1371/journal.pone.0265189.].
Collapse
|
2
|
Zhao Q, Sun X, Jiang Y, Liu Q, Zhang D. Mendelian Randomization Identifies Putative Aging-Related Causal Genes With Diagnostic Potential in Ulcerative Colitis. Ann Hum Genet 2025:e12600. [PMID: 40317733 DOI: 10.1111/ahg.12600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 04/15/2025] [Indexed: 05/07/2025]
Abstract
BACKGROUND Aging-related immunosenescence increases the risk of ulcerative colitis (UC), and investigating aging-related causal genes in UC patients may aid in deciphering the molecular pathophysiology of UC. This study aims to identify aging-related causal genes and explore their diagnostic value and underlying mechanisms in UC. METHODS AND MATERIALS Colonic transcriptome data, aging-related genes, genome-wide association studies (GWAS) data, and cis-expression quantitative trait loci (cis-eQTL) data were collected from databases. Aging-related differentially expressed genes (ARDEGs) were identified, and functional enrichment analysis was performed. Summary-data-based Mendelian randomization (SMR) analysis and validation were performed to identify putative aging-related causal genes (PARCGs). The expression levels and diagnostic efficacies of the PARCGs were evaluated and validated. Their correlations with immune infiltration were explored. RESULTS 371 ARDEGs were identified that were mainly involved in biological functions related to immunity, inflammation, and senescence. Through SMR, five genes (IRF1, CTSB, IL24, ME2, ERBB2) were first selected as latent aging-related causal genes (LARCGs), and their expression levels were causally correlated with the risk of UC (IRF1, OR: 3.23, 95% CI: 1.80-5.77; CTSB, OR: 1.30, 95% CI: 1.14-1.47; IL24, OR: 1.66, 95% CI: 1.24-2.22; ME2, OR: 0.75, 95% CI: 0.63-0.89; ERBB2, OR: 0.21, 95% CI: 0.10-0.45). By replicating SMR analysis using the two additional UC GWAS data, three PARCGs (IRF1, ME2, ERBB2) were further determined. IRF1 was upregulated, while ME2 and ERBB2 were downregulated in UC, and all three PARCGs showed diagnostic potential for UC. Furthermore, correlation analysis revealed multiple correlations between the PARCGs and immune cells. CONCLUSION We identified three aging-related genes (IRF1, ME2, ERBB2) through SMR for the first time that are causally correlated to the risk of UC. Further analysis revealed their diagnostic potential and explored their correlation with immune infiltration in UC.
Collapse
Affiliation(s)
- Qi Zhao
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Gastroenterology, Cheeloo College of Medicine, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Xiangfei Sun
- Department of Cardiac Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Cardiac Surgery, Cheeloo College of Medicine, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Ying Jiang
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Gastroenterology, Cheeloo College of Medicine, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Qi Liu
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Gastroenterology, Cheeloo College of Medicine, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Di Zhang
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Gastroenterology, Cheeloo College of Medicine, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| |
Collapse
|
3
|
Tang L, Hill MC, He M, Chen J, Wang Z, Ellinor PT, Li M. A 3D Genome Atlas of Genetic Variants and Their Pathological Effects in Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408420. [PMID: 40134047 PMCID: PMC12097094 DOI: 10.1002/advs.202408420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 03/03/2025] [Indexed: 03/27/2025]
Abstract
The hierarchical organization of the eukaryotic genome is crucial for nuclear activities and cellular development. Genetic aberrations can disrupt this 3D genomic architecture, potentially driving oncogenesis. However, current research often lacks a comprehensive perspective, focusing on specific mutation types and singular 3D structural levels. Here, pathological changes from chromosomes to nucleotides are systematically cataloged, including 10 789 interchromosomal translocations (ICTs), 18 863 structural variants (SVs), and 162 769 single nucleotide polymorphisms (SNPs). The multilayered analysis reveals that fewer than 10% of ICTs disrupt territories via potent 3D interactions, and only a minimal fraction of SVs disrupt compartments or intersect topologically associated domain structures, yet these events significantly influence gene expression. Pathogenic SNPs typically show reduced interactions within the 3D genomic space. To investigate the effects of variants in the context of 3D organization, a two-phase scoring algorithm, 3DFunc, is developed to evaluate the pathogenicity of variant-gene pairs in cancer. Using 3DFunc, IGHV3-23's critical role in chronic lymphocytic leukemia is identified and it is found that three pathological SNPs (rs6605578, rs7814783, rs2738144) interact with DEFA3. Additionally, 3DGAtlas is introduced, which provides a highly accessible 3D genome atlas and a valuable resource for exploring the pathological effects of genetic mutations in cancer.
Collapse
Affiliation(s)
- Li Tang
- School of Computer Science and EngineeringCentral South UniversityChangsha410083China
| | - Matthew C. Hill
- Cardiovascular Research CenterMassachusetts General HospitalBostonMA02129USA
- Cardiovascular Disease InitiativeThe Broad Institute of MIT and HarvardCambridgeMA02142USA
| | - Mingxing He
- School of Computer Science and EngineeringCentral South UniversityChangsha410083China
| | - Junhao Chen
- School of Computer Science and EngineeringCentral South UniversityChangsha410083China
| | - Zirui Wang
- School of Computer Science and EngineeringCentral South UniversityChangsha410083China
| | - Patrick T. Ellinor
- Cardiovascular Research CenterMassachusetts General HospitalBostonMA02129USA
- Cardiovascular Disease InitiativeThe Broad Institute of MIT and HarvardCambridgeMA02142USA
| | - Min Li
- School of Computer Science and EngineeringCentral South UniversityChangsha410083China
| |
Collapse
|
4
|
Deng J, Gan W, Hu C, Liu Z, Chen N, Jia C, Ding M, Zou J, Cai T, Li J, Xu Y, Chen J, Ma C, Yin H, Zhang Z, Wang H, Cao Y. San Huang Xiao Yan recipe promoted wound healing in diabetic ulcer mice by inhibiting Th17 cell differentiation. JOURNAL OF ETHNOPHARMACOLOGY 2025; 341:119243. [PMID: 39722327 DOI: 10.1016/j.jep.2024.119243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/08/2024] [Accepted: 12/13/2024] [Indexed: 12/28/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Diabetic ulcer is a serious diabetes complication and a primary reason for amputations. For many years, the San Huang Xiao Yan (SHXY) recipe has served as a conventional remedy for these ulcers, effectively reducing inflammatory factors and exhibiting considerable therapeutic efficacy. However, the precise mechanism remains incompletely understood. AIM OF THE STUDY To explore the efficacy and mechanisms of SHXY and its active ingredients in treating diabetic ulcer. MATERIALS AND METHODS A diabetic ulcer mouse model was established using C57BL/6J mice on a high-fat diet, followed by streptozotocin injection and skin damage. We investigated the bioactive compounds, key targets, and pharmacological mechanisms of SHXY in addressing diabetic ulcers through network pharmacology, molecular docking, both in vitro and in vivo validation experiments. RESULTS One week after intragastric administration, SHXY can reduce inflammation and edema, increase collagen synthesis, and reduce the expression of RORγT and IL-17A without affecting Treg cells. In vitro, SHXY-containing serum inhibited the differentiation of Th17 cells but did not affect Treg and Th1 cells. Network pharmacology found that SHXY acts through inflammatory pathways, including TNF, IL-17, Th17 cell differentiation, HIF-1, and PI3K-Akt. CONCLUSIONS SHXY and its candidate enhance healing in diabetic ulcers by modulating CD4+ T cells, particularly by inhibiting Th17 cell differentiation.
Collapse
Affiliation(s)
- Jie Deng
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200082, China
| | - Wanwan Gan
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200082, China; Department of Physiology and Pharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Can Hu
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200082, China
| | - Zhe Liu
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200082, China
| | - Nan Chen
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200082, China; The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Zhejiang, 310006, China
| | - Chenglin Jia
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200082, China
| | - Minlu Ding
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200082, China
| | - Jiaqi Zou
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200082, China; Department of Physiology and Pharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Tongkai Cai
- Shanghai Diacart Biomedical Science and Technology Limited Company, Shanghai, 201203, China
| | - Jiacheng Li
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200082, China
| | - Yicheng Xu
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200082, China
| | - Jian Chen
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200082, China
| | - Chao Ma
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200082, China
| | - Hao Yin
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200082, China
| | - Zhihui Zhang
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200082, China.
| | - Haikun Wang
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
| | - Yongbing Cao
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200082, China.
| |
Collapse
|
5
|
Mahurkar‐Joshi S, Thompson M, Villarruel E, Lewis JD, Lin LD, Farid M, Nayeb‐Hashemi H, Storage T, Weiss GA, Limketkai BN, Sauk JS, Mayer EA, Chang L. Genome-Wide DNA Methylation Identifies Potential Disease-Specific Biomarkers and Pathophysiologic Mechanisms in Irritable Bowel Syndrome, Inflammatory Bowel Disease, and Celiac Disease. Neurogastroenterol Motil 2025; 37:e14980. [PMID: 39673136 PMCID: PMC11748828 DOI: 10.1111/nmo.14980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/16/2024]
Abstract
BACKGROUND AND AIMS Irritable bowel syndrome (IBS), inflammatory bowel disease (IBD), and celiac disease (CeD) present with similar gastrointestinal (GI) symptoms. DNA methylation-based biomarkers have not been investigated as diagnostic biomarkers to classify these disorders. We aimed to study DNA methylation profiles of IBS, IBD, CeD, and healthy controls (HC), develop machine learning-based classifiers, and identify associated gene ontology (GO) terms. METHODS Genome-wide DNA methylation of peripheral blood mononuclear cells from 315 patients with IBS, IBD, CeD, and HC was measured using Illumina's 450K or EPIC arrays. A methylation dataset on 304 IBD and HC samples was used for external validation. Differential methylation was measured using general linear models. Classifiers were developed using penalized generalized linear models using double cross-validation controlling for confounders. Functional enrichment was assessed using GO. RESULTS Three hundred and fifteen participants (148 IBS, 47 IBD, 34 CeD, and 86 HC) had DNA methylation data. IBS-IBD and IBD-CeD showed the highest number of differentially methylated CpG sites followed by IBD-HC, CeD-HC, and IBS-HC. IBS-associated genes were enriched in cell adhesion and neuronal pathways, while IBD- and CeD-associated markers were enriched in inflammation and MHC class II pathways, respectively (p < 0.05). Classification performances assessed using area under the receiver operating characteristic curves (AUC) for IBS-IBD, IBS-CeD, and IBD-CeD were 0.80 (95% CI = 0.7-0.87, p = 6.75E-10), 0.78 (95% CI = 0.68-0.86, p = 4.57E-10), and 0.73 (95% CI = 0.62-0.83, p = 0.03), respectively. The performance of IBD-HC was successfully validated using external data (AUC = 0.74 [95% CI = 68-0.80, p < 0.001]). CONCLUSIONS Blood-based DNA methylation biomarkers can potentially distinguish chronic GI disorders that present with similar symptoms. GO suggested functional significance of the classifiers in disease-specific pathology.
Collapse
Affiliation(s)
- Swapna Mahurkar‐Joshi
- G. Oppenheimer Center for the Neurobiology of Stress and ResilienceLos AngelesCaliforniaUSA
- Vatche and Tamar Manoukian Division of Digestive DiseasesLos AngelesCaliforniaUSA
- David Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
| | - Mike Thompson
- Systems BiologyCentre for Genomic RegulationBarcelonaSpain
| | | | - James D. Lewis
- Division of Gastroenterology and HepatologyUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Lisa D. Lin
- Vatche and Tamar Manoukian Division of Digestive DiseasesLos AngelesCaliforniaUSA
- David Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
| | - Mary Farid
- Vatche and Tamar Manoukian Division of Digestive DiseasesLos AngelesCaliforniaUSA
- David Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
| | - Hamed Nayeb‐Hashemi
- Vatche and Tamar Manoukian Division of Digestive DiseasesLos AngelesCaliforniaUSA
- David Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
| | - Tina Storage
- Vatche and Tamar Manoukian Division of Digestive DiseasesLos AngelesCaliforniaUSA
- David Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
| | - Guy A. Weiss
- Vatche and Tamar Manoukian Division of Digestive DiseasesLos AngelesCaliforniaUSA
- David Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
- UCLA Celiac Disease ProgramLos AngelesCaliforniaUSA
| | - Berkeley N. Limketkai
- Vatche and Tamar Manoukian Division of Digestive DiseasesLos AngelesCaliforniaUSA
- David Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
| | - Jenny S. Sauk
- Vatche and Tamar Manoukian Division of Digestive DiseasesLos AngelesCaliforniaUSA
- David Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
| | - Emeran A. Mayer
- G. Oppenheimer Center for the Neurobiology of Stress and ResilienceLos AngelesCaliforniaUSA
- Vatche and Tamar Manoukian Division of Digestive DiseasesLos AngelesCaliforniaUSA
- David Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
| | - Lin Chang
- G. Oppenheimer Center for the Neurobiology of Stress and ResilienceLos AngelesCaliforniaUSA
- Vatche and Tamar Manoukian Division of Digestive DiseasesLos AngelesCaliforniaUSA
- David Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
| |
Collapse
|
6
|
He H, Xu X, Yu Z, Xu F, Chen H. Regulation of Ferroptosis in Intestinal Epithelial Cells by Formononetin via the RXRA/PPARG Pathway. J Interferon Cytokine Res 2025; 45:68-75. [PMID: 39834185 DOI: 10.1089/jir.2024.0148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025] Open
Abstract
Recent studies have revealed that formononetin, a naturally occurring isoflavone found in kudzu root and licorice, has the potential to inhibit ferroptosis in intestinal epithelial cells. Inflammatory bowel disease (IBD) often involves oxidative stress-related pathways, making the modulation of ferroptosis a promising therapeutic avenue. We employed a combination of several techniques to explore how formononetin regulates the retinoid X receptor alpha/peroxisome proliferator activated receptor gamma (RXRA/PPARG) pathway to inhibit ferroptosis in Fetal Human Colonic Epithelial Cells (FHC) induced by RSL3. These techniques included propidium iodide staining, the levels of reactive oxygen species (ROS), Fe2+, malondialdehyde (MDA), and ferroptosis-inhibitory proteins glutathione peroxidase 4 (GPX4) and FTH analysis, Western blot analysis, and gene silencing. Our results demonstrate that formononetin significantly mitigated RSL3-induced ferroptosis as evidenced by reduced cellular levels of ROS, Fe2+, and MDA, alongside an increased expression of GPX4 and FTH. Silencing the RXRA gene reverses the protective effects of formononetin, highlighting that formononetin inhibits ferroptosis in FHC by upregulating the levels of RXRA. These findings provide new molecular targets for potential therapeutic intervention in IBD, suggesting that upregulating RXRA and PPARG expression via formononetin could be a viable strategy to mitigate ferroptosis-associated cellular damage. This could potentially lead to novel treatments for patients suffering from IBD.
Collapse
Affiliation(s)
- Huijuan He
- Department of Anorectal Surgery, the First People's Hospital of Chun'an County, Zhejiang, China
| | - Xiaobo Xu
- Department of Anorectal Surgery, the First People's Hospital of Chun'an County, Zhejiang, China
| | - Zhengyao Yu
- Department of Anorectal Surgery, the First People's Hospital of Chun'an County, Zhejiang, China
| | - Fenfen Xu
- Department of Anorectal Surgery, the First People's Hospital of Chun'an County, Zhejiang, China
| | - Huazhen Chen
- Department of Emergency, Traditional Chinese Hospital of Chun'an County, Hangzhou City, China
| |
Collapse
|
7
|
Veltkamp SHC, Voorneveld PW. The Cell-Specific Effects of JAK1 Inhibitors in Ulcerative Colitis. J Clin Med 2025; 14:608. [PMID: 39860613 PMCID: PMC11766026 DOI: 10.3390/jcm14020608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
JAK1 inhibitors have become an important addition to the therapeutic options for ulcerative colitis (UC), targeting key inflammatory pathways mediated by cytokines such as the IL-6 family, interferons, IL-2 family, IL-10 family, and G-CSF. However, not all patients respond equally, and chronic inflammation persists in a subset of individuals. The variability in treatment response may reflect the heterogeneity of UC. Immune cells, epithelial cells, and stromal cells may have distinct contributions to disease pathogenesis. While JAK inhibitors were originally designed to target immune cells, their impact on non-immune cell types, such as epithelial and stromal cells, remains poorly understood. Investigating the mechanisms through which JAK1 inhibitors affect these diverse cellular populations and identifying the factors underlying differential responses is crucial to optimizing outcomes. This review explores the roles of immune, epithelial, and stromal cells in response to JAK1 inhibition and discusses potential strategies to improve treatment precision, such as predicting responders and identifying complementary therapeutic targets.
Collapse
Affiliation(s)
| | - Philip W. Voorneveld
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| |
Collapse
|
8
|
Zhao Y, Zhou R, Mu Z, Carbonetto P, Zhong X, Xie B, Luo K, Cham CM, Koval J, He X, Dahl AW, Liu X, Chang EB, Basu A, Pott S. Cell-type-resolved chromatin accessibility in the human intestine identifies complex regulatory programs and clarifies genetic associations in Crohn's disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.12.10.24318718. [PMID: 39711713 PMCID: PMC11661348 DOI: 10.1101/2024.12.10.24318718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Crohn's disease (CD) is a complex inflammatory bowel disease resulting from an interplay of genetic, microbial, and environmental factors. Cell-type-specific contributions to CD etiology and genetic risk are incompletely understood. Here we built a comprehensive atlas of cell-type- resolved chromatin accessibility comprising 557,310 candidate cis-regulatory elements (cCREs) in terminal ileum and ascending colon from patients with active and inactive CD and healthy controls. Using this atlas, we identified cell-type-, anatomic location-, and context-specific cCREs and characterized the regulatory programs underlying inflammatory responses in the intestinal mucosa of CD patients. Genetic variants that disrupt binding motifs of cell-type-specific transcription factors significantly affected chromatin accessibility in specific mucosal cell types. We found that CD heritability is primarily enriched in immune cell types. However, using fine- mapped non-coding CD variants we identified 29 variants located within cCREs several of which were accessible in epithelial and stromal cells implicating cell types from additional lineages in mediating CD risk in some loci. Our atlas provides a comprehensive resource to study gene regulatory effects in CD and health, and highlights the cellular complexity underlying CD risk.
Collapse
|
9
|
Murthy S, Anbazhagan M, Maddipatla SC, Kolachala VL, Dodd A, Pelia R, Cutler DJ, Matthews JD, Kugathasan S. Single-cell transcriptomics of rectal organoids from individuals with perianal fistulizing Crohn's disease reveals patient-specific signatures. Sci Rep 2024; 14:26142. [PMID: 39477985 PMCID: PMC11526126 DOI: 10.1038/s41598-024-75947-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/09/2024] [Indexed: 11/02/2024] Open
Abstract
Perianal fistulizing Crohn's disease (CD) is a severe gastrointestinal disorder causing extensive mucosal damage with limited treatment options. Severe manifestations of the disease appear at higher rates in non-Europeans but the genetic and cellular mechanisms driving the disease phenotypes remain poorly understood. Herein, we tested whether pathologic determinants in the epithelial stem cell compartment could be detected at the transcript level in rectal organoids derived from a diverse patient population. Rectal organoid and mucosal cells from endoscopic biopsies of each patient having perianal fistulizing CD or no disease controls were prepared for and sequenced at the single cell level. After cell type annotations based on expressed marker genes, samples were analyzed by principal components, for differential transcript expression, cell type proportions, and pathway enrichment. After QC, we produced 77,044 rectal organoid cells (n = 13 patients; 8 CD, 5 controls) with high quality sequences that identified 10 distinct epithelial subtypes, that we compared to 141,367 mucosal epithelial cells (n = 29 patients; 18 CD, 11 controls). Consistent with mucosal epithelial cells, rectal organoids prominently displayed disease signatures represented by the stem and transit amplifying regions of the rectal crypt, including alterations in transcriptional signatures of metabolic, epigenetic, and proliferating pathways. Organoids also retained their gender- and ancestral-specific gene expression signatures. However, they lacked many of the inflammatory signatures observed in epithelial cells from diseased mucosa. Perianal CD patient derived rectal organoids reflect gene expression signatures related to disease, gender, and ancestry, suggesting they harbor inherent properties amenable to further patient-specific, disease-related experimentation.
Collapse
Affiliation(s)
- Shanta Murthy
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Emory University School of Medicine, Atlanta, GA, USA
| | - Murugadas Anbazhagan
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Emory University School of Medicine, Atlanta, GA, USA
| | - Sushma Chowdary Maddipatla
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Emory University School of Medicine, Atlanta, GA, USA
| | - Vasantha L Kolachala
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Emory University School of Medicine, Atlanta, GA, USA
| | - Anne Dodd
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Emory University School of Medicine, Atlanta, GA, USA
| | - Ranjit Pelia
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Emory University School of Medicine, Atlanta, GA, USA
| | - David J Cutler
- Department of Human Genetics, Emory University, Atlanta, GA, USA
| | - Jason D Matthews
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Emory University School of Medicine, Atlanta, GA, USA
| | - Subra Kugathasan
- Department of Pediatrics & Pediatric Research Institute, Division of Pediatric Gastroenterology, Emory University School of Medicine & Children's Healthcare of Atlanta, Atlanta, GA, USA.
| |
Collapse
|
10
|
Yokoi F, Deguchi S, Watanabe Y, Takayama K. Establishment of an ulcerative colitis model using colon organoids derived from human induced pluripotent stem cells. iScience 2024; 27:111049. [PMID: 39435148 PMCID: PMC11492162 DOI: 10.1016/j.isci.2024.111049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/31/2024] [Accepted: 09/24/2024] [Indexed: 10/23/2024] Open
Abstract
The etiology of inflammatory bowel disease (IBD) is complex, with much room for a greater understanding and development of improved therapies. Therefore, establishing a reliable IBD model is crucial for future advancements. In this study, human induced pluripotent stem (iPS) cell-derived colon organoids (hiPSC-COs) were treated with a combination of tumor necrosis factor alpha (TNF-α), interferon-gamma (IFN-γ), and interleukin (IL)-1β (3 cytokines [3CK]), known to be elevated in the serum of IBD patients. Inflammatory responses in stromal cells and damage to intestinal epithelial cells were observed in the 3CK-treated hiPSC-COs. Comparison of molecular signatures of 3CK-treated hiPSC-COs with those of ulcerative colitis (UC) patient's colon revealed that 3CK-treated hiPSC-COs resemble UC patient's colon. Furthermore, the elevated production of inflammatory cytokines observed in 3CK-treated hiPSC-COs was attenuated by treatment with tofacitinib. Our UC model will be an essential tool to understand its pathologic mechanisms and identify effective therapeutic approaches.
Collapse
Affiliation(s)
- Fuki Yokoi
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Sayaka Deguchi
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Yukio Watanabe
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Kazuo Takayama
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
- AMED-CREST, Japan Agency for Medical Research and Development (AMED), Tokyo 100-0004, Japan
| |
Collapse
|
11
|
Tindle C, Fonseca AG, Taheri S, Katkar GD, Lee J, Maity P, Sayed IM, Ibeawuchi SR, Vidales E, Pranadinata RF, Fuller M, Stec DL, Anandachar MS, Perry K, Le HN, Ear J, Boland BS, Sandborn WJ, Sahoo D, Das S, Ghosh P. A living organoid biobank of patients with Crohn's disease reveals molecular subtypes for personalized therapeutics. Cell Rep Med 2024; 5:101748. [PMID: 39332415 PMCID: PMC11513829 DOI: 10.1016/j.xcrm.2024.101748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 07/15/2024] [Accepted: 08/31/2024] [Indexed: 09/29/2024]
Abstract
Crohn's disease (CD) is a complex and heterogeneous condition with no perfect preclinical model or cure. To address this, we explore adult stem cell-derived organoids that retain their tissue identity and disease-driving traits. We prospectively create a biobank of CD patient-derived organoid cultures (PDOs) from colonic biopsies of 53 subjects across all clinical subtypes and healthy subjects. Gene expression analyses enabled benchmarking of PDOs as tools for modeling the colonic epithelium in active disease and identified two major molecular subtypes: immune-deficient infectious CD (IDICD) and stress and senescence-induced fibrostenotic CD (S2FCD). Each subtype shows internal consistency in the transcriptome, genome, and phenome. The spectrum of morphometric, phenotypic, and functional changes within the "living biobank" reveals distinct differences between the molecular subtypes. Drug screens reverse subtype-specific phenotypes, suggesting phenotyped-genotyped CD PDOs can bridge basic biology and patient trials by enabling preclinical phase "0" human trials for personalized therapeutics.
Collapse
Affiliation(s)
- Courtney Tindle
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; HUMANOID™ Center of Research Excellence (CoRE), University of California, San Diego, La Jolla, CA 92093, USA
| | - Ayden G Fonseca
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; HUMANOID™ Center of Research Excellence (CoRE), University of California, San Diego, La Jolla, CA 92093, USA
| | - Sahar Taheri
- Department of Computer Science and Engineering, Jacobs School of Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Gajanan D Katkar
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jasper Lee
- Department of Pathology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Priti Maity
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; HUMANOID™ Center of Research Excellence (CoRE), University of California, San Diego, La Jolla, CA 92093, USA
| | - Ibrahim M Sayed
- Department of Pathology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Stella-Rita Ibeawuchi
- Department of Pathology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Eleadah Vidales
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; HUMANOID™ Center of Research Excellence (CoRE), University of California, San Diego, La Jolla, CA 92093, USA
| | - Rama F Pranadinata
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; HUMANOID™ Center of Research Excellence (CoRE), University of California, San Diego, La Jolla, CA 92093, USA
| | - Mackenzie Fuller
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; HUMANOID™ Center of Research Excellence (CoRE), University of California, San Diego, La Jolla, CA 92093, USA
| | - Dominik L Stec
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; HUMANOID™ Center of Research Excellence (CoRE), University of California, San Diego, La Jolla, CA 92093, USA
| | | | - Kevin Perry
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; HUMANOID™ Center of Research Excellence (CoRE), University of California, San Diego, La Jolla, CA 92093, USA
| | - Helen N Le
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jason Ear
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Brigid S Boland
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| | - William J Sandborn
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Debashis Sahoo
- Department of Computer Science and Engineering, Jacobs School of Engineering, University of California, San Diego, La Jolla, CA 92093, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Soumita Das
- HUMANOID™ Center of Research Excellence (CoRE), University of California, San Diego, La Jolla, CA 92093, USA; Department of Pathology, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Pradipta Ghosh
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; HUMANOID™ Center of Research Excellence (CoRE), University of California, San Diego, La Jolla, CA 92093, USA; Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
12
|
Magnusson MK, Bas Forsberg A, Verveda A, Sapnara M, Lorent J, Savolainen O, Wettergren Y, Strid H, Simrén M, Öhman L. Exposure of Colon-Derived Epithelial Monolayers to Fecal Luminal Factors from Patients with Colon Cancer and Ulcerative Colitis Results in Distinct Gene Expression Patterns. Int J Mol Sci 2024; 25:9886. [PMID: 39337373 PMCID: PMC11431989 DOI: 10.3390/ijms25189886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Microbiota and luminal components may affect epithelial integrity and thus participate in the pathophysiology of colon cancer (CC) and inflammatory bowel disease (IBD). Therefore, we aimed to determine the effects of fecal luminal factors derived from patients with CC and ulcerative colitis (UC) on the colonic epithelium using a standardized colon-derived two-dimensional epithelial monolayer. The complex primary human stem cell-derived intestinal epithelium model, termed RepliGut® Planar, was expanded and passaged in a two-dimensional culture which underwent stimulation for 48 h with fecal supernatants (FS) from CC patients (n = 6), UC patients with active disease (n = 6), and healthy subjects (HS) (n = 6). mRNA sequencing of monolayers was performed and cytokine secretion in the basolateral cell culture compartment was measured. The addition of fecal supernatants did not impair the integrity of the colon-derived epithelial monolayer. However, monolayers stimulated with fecal supernatants from CC patients and UC patients presented distinct gene expression patterns. Comparing UC vs. CC, 29 genes were downregulated and 33 genes were upregulated, for CC vs. HS, 17 genes were downregulated and five genes were upregulated, and for UC vs. HS, three genes were downregulated and one gene was upregulated. The addition of FS increased secretion of IL8 with no difference between the study groups. Fecal luminal factors from CC patients and UC patients induce distinct colonic epithelial gene expression patterns, potentially reflecting the disease pathophysiology. The culture of colonic epithelial monolayers with fecal supernatants derived from patients may facilitate the exploration of IBD- and CC-related intestinal microenvironmental and barrier interactions.
Collapse
Affiliation(s)
- Maria K Magnusson
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Anna Bas Forsberg
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Alexandra Verveda
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Maria Sapnara
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Julie Lorent
- National Bioinformatics Infrastructure Stockholm (NBIS), Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden
| | - Otto Savolainen
- Chalmers Mass Spectrometry Infrastructure, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70210 Kuopio, Finland
| | - Yvonne Wettergren
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden
- Department of Surgery, Sahlgrenska University Hospital, Region Västra Götaland, 416 85 Gothenburg, Sweden
| | - Hans Strid
- Department of Internal Medicine, Södra Älvsborg Hospital, 501 82 Borås, Sweden
| | - Magnus Simrén
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden
- Center for Functional GI and Motility Disorders, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Lena Öhman
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
| |
Collapse
|
13
|
Jayawardena D, Anbazhagan AN, Majumder A, Akram R, Nazmi A, Kaur R, Kumar A, Saksena S, Olivares-Villagómez D, Dudeja PK. Ion Transport Basis of Diarrhea, Paneth Cell Metaplasia, and Upregulation of Mechanosensory Pathway in Anti-CD40 Colitis Mice. Inflamm Bowel Dis 2024; 30:1454-1466. [PMID: 38300738 PMCID: PMC12102476 DOI: 10.1093/ibd/izae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Indexed: 02/03/2024]
Abstract
BACKGROUND Anti-Cluster of differentiation (CD)-40-induced colitis, driven by innate inflammatory responses in the intestine, is a potent animal model exhibiting IBD pathophysiology including diarrhea. However, the ion transport basis of diarrhea and some key mucosal pathways (Paneth cells, stem cell niche, and mechanosensory) in this model have not been investigated. METHODS Mucosal scrapings and intestinal tissue from control and CD40 antibody (150 µg) treated Rag2-/- mice were examined for gut inflammation, Paneth cell numbers, expression of key transporters, tight/adherens junction proteins, stem cell niche, and mechanosensory pathway via hematoxylin and eosin staining, quantitative polymerase chain reaction, and western blotting. RESULTS Compared with control, anti-CD40 antibody treatment resulted in a significant loss of body weight (P < .05) and diarrhea at day 3 postinjection. Distal colonic tissues of anti-CD40 mice exhibited increased inflammatory infiltrates, higher claudin-2 expression, and appearance of Paneth cell-like structures indicative of Paneth cell metaplasia. Significantly reduced expression (P < .005) of downregulated in adenoma (key Cl- transporter), P-glycoprotein/multidrug resistantance-1 (MDR1, xenobiotic transporter), and adherens junction protein E-cadherin (~2-fold P < .05) was also observed in the colon of anti-CD40 colitis mice. Interestingly, there were also marked alterations in the stem cell markers and upregulation of the mechanosensory YAP-TAZ pathway, suggesting the activation of alternate regeneration pathway post-tissue injury in this model. CONCLUSION Our data demonstrate that the anti-CD40 colitis model shows key features of IBD observed in the human disease, hence making it a suitable model to investigate the pathophysiology of ulcerative colitis (UC).
Collapse
Affiliation(s)
- Dulari Jayawardena
- Division of Gastroenterology and Hepatology, Dept. of Medicine, University of Illinois at Chicago, IL, USA
| | - Arivarasu N Anbazhagan
- Division of Gastroenterology and Hepatology, Dept. of Medicine, University of Illinois at Chicago, IL, USA
| | - Apurba Majumder
- Division of Gastroenterology and Hepatology, Dept. of Medicine, University of Illinois at Chicago, IL, USA
| | - Ramsha Akram
- Division of Gastroenterology and Hepatology, Dept. of Medicine, University of Illinois at Chicago, IL, USA
| | - Ali Nazmi
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Animal Sciences, The Ohio State University, Columbus, OH, USA
| | - Ramandeep Kaur
- Division of Gastroenterology and Hepatology, Dept. of Medicine, University of Illinois at Chicago, IL, USA
| | - Anoop Kumar
- Division of Gastroenterology and Hepatology, Dept. of Medicine, University of Illinois at Chicago, IL, USA
- Jesse Brown VA Medical Center, Chicago, IL, USA
| | - Seema Saksena
- Division of Gastroenterology and Hepatology, Dept. of Medicine, University of Illinois at Chicago, IL, USA
- Jesse Brown VA Medical Center, Chicago, IL, USA
| | - Danyvid Olivares-Villagómez
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Pradeep K Dudeja
- Division of Gastroenterology and Hepatology, Dept. of Medicine, University of Illinois at Chicago, IL, USA
- Jesse Brown VA Medical Center, Chicago, IL, USA
| |
Collapse
|
14
|
Abdelrazig OA, Fadilah F, Erlina L, Hegar B. UNVEILING THERAPEUTIC TARGETS THROUGH PATHWAY ANALYSIS AND IDENTIFICATION OF DIFFERENTIALLY EXPRESSED GENES IN ULCERATIVE COLITIS. ANKARA UNIVERSITESI ECZACILIK FAKULTESI DERGISI 2024; 48:11-11. [DOI: 10.33483/jfpau.1439430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Objective: This study utilizes integrated bioinformatics to investigate Differentially Expressed Genes (DEGs) and pathways related to ulcerative colitis (UC).
Material and Method: Differentially Expressed Genes were identified from UC patients' colonic mucosal samples and controls using GSE13367 and GSE134025 datasets. Differentially Expressed Genes selection utilized GEO2R and Venn diagrams, followed by functional annotation, pathway analysis, PPI determination via the STRING database, and GO/KEGG enrichment analysis using Metascape.
Result and Discussion: Analysis unveiled 197 DEGs, with 76 up-regulated and 121 down-regulated genes. Up-regulated genes were enriched in humoral immune response, peptidoglycan binding, and NADPH oxidase complex, while down-regulated genes were linked to inorganic anion transport, transmitter-gated ion channel activity, and integral plasma membrane components. In the PPI network, up-regulated DEGs formed a dense network (75 nodes, 190 edges), indicating significant interactions, whereas down-regulated DEGs formed a less dense network (114 nodes, 63 edges). Five hub genes (CXCR4, CXCL13, CXCL1, MMP3) were identified among the 197 DEGs. These findings provide new insights into UC's causes and offer promise for more effective therapeutic approaches.
Collapse
|
15
|
Sæterstad S, Østvik AE, Hansen MD, Bruland T, van Beelen Granlund A. The effect of rs2910686 on ERAP2 expression in IBD and epithelial inflammatory response. J Transl Med 2024; 22:750. [PMID: 39123229 PMCID: PMC11316291 DOI: 10.1186/s12967-024-05532-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND ERAP2 is an aminopeptidase involved in antigen processing and presentation, and harbor genetic variants linked to several inflammatory diseases such as Inflammatory Bowel Disease (IBD). The lack of an ERAP2 gene homologue in mice has hampered functional studies, and most human studies have focused on cells of hematopoietic origin. Using an IBD biobank as vantage point, this study explores how genetic variation in ERAP2 affects gene expression in human-derived epithelial organoids upon proinflammatory stimulation. METHODS An IBD patient cohort was genotyped with regards to two single nucleotide polymorphisms (SNP) (rs2910686/rs2248374) associated with ERAP2 expression levels, and we examined the correlation between colon gene expression and genotype, specifically aiming to establish a relationship with ERAP2 expression proficiency. Human-derived colon organoids (colonoids) with known ERAP2 genotype were established and used to explore differences in whole genome gene expression between ERAP2-deficient (n = 4) and -proficient (n = 4) donors upon pro-inflammatory encounter. RESULTS When taking rs2910686 genotype into account, ERAP2 gene expression is upregulated in the inflamed colon of IBD patients. Colonoids upregulate ERAP2 upon IFNɣ stimulation, and ERAP2 expression proficiency is dependent on rs2910686 genotype. Colonoid genotyping confirms that mechanisms independent of the frequently studied SNP rs2248374 can cause ERAP2-deficiency. A total of 586 genes involved in various molecular mechanisms are differentially expressed between ERAP2 proficient- and deficient colonoids upon proinflammatory stimulation, including genes encoding proteins with the following molecular function: catalytic activity (AOC1, CPE, ANPEP and MEP1A), regulator activity (TNFSF9, MDK, GDF15, ILR6A, LGALS3 and FLNA), transmembrane transporter activity (SLC40A1 and SLC5A1), and extracellular matrix structural constituents (FGL2, HMCN2, and MUC17). CONCLUSIONS ERAP2 is upregulated in the inflamed IBD colon mucosa, and expression proficiency is highly correlated with genotype of rs2910686. While the SNP rs2248374 is commonly used to determine ERAP2 expressional proficiency, our data confirms that mechanisms independent of this SNP can lead to ERAP2 deficiency. Our data demonstrates that epithelial ERAP2 presence affects the inflammatory response in colonoids, suggesting a pleiotropic role of ERAP2 beyond MHC class I antigen processing.
Collapse
Affiliation(s)
- Siri Sæterstad
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Ann Elisabeth Østvik
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Gastroenterology and Hepatology, Clinic of Medicine, St. Olav's University Hospital, Trondheim, Norway
| | - Marianne Doré Hansen
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Clinic of Laboratory Medicine, St. Olav's University Hospital, Trondheim, Norway
| | - Torunn Bruland
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Gastroenterology and Hepatology, Clinic of Medicine, St. Olav's University Hospital, Trondheim, Norway
| | - Atle van Beelen Granlund
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
- Department of Gastroenterology and Hepatology, Clinic of Medicine, St. Olav's University Hospital, Trondheim, Norway.
- Department of Pathology, St. Olav's University Hospital, Trondheim, Norway.
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| |
Collapse
|
16
|
Jelinsky S, Lee I, Monetti M, Breitkopf S, Martz F, Kongala R, Culver J, Vo V, Xue L, Gieseck R, Dickinson C, Kasaian M, Lord JD. Proteomic Differences in Colonic Epithelial Cells in Ulcerative Colitis Have an Epigenetic Basis. GASTRO HEP ADVANCES 2024; 3:830-841. [PMID: 39280905 PMCID: PMC11401595 DOI: 10.1016/j.gastha.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 04/30/2024] [Indexed: 09/18/2024]
Abstract
Background and Aims The colonic epithelium serves as both a barrier to lumenal contents and a gatekeeper of inflammatory responses. In ulcerative colitis (UC), epithelial dysfunction is a core feature, but little is known about the cellular changes that may underlie disease pathology. We therefore evaluated how the chromatin epigenetics and proteome of epithelial cells differs between health and UC. Methods We sorted live CD326+ epithelial cells from colon biopsies of healthy control (HC) screening colonoscopy recipients and from inflamed or uninflamed colon segments of UC patients on no biologic nor immunomodulator therapy (n = 5-7 subjects per group). Cell lysates were analyzed by proteomic evaluation and nuclei were analyzed for open chromatin with assay for transposase-accessible chromatin using sequencing. Results Proteins most highly elevated in inflamed UC biopsies relative to HC were those encoded by the HLA-DRA (P = 3.1 × 10-33) and CD74 (P = 1.6 × 10-27), genes associated with antigen presentation, and the antimicrobial dual oxidase 2 (DUOX2) (P = 3.2 × 10-28) and lipocalin-2 (P = 2.2 × 10-26) genes. Conversely, the water channel aquaporin 8 was strikingly less common with inflammation (P = 1.9 × 10-18). Assay for transposase-accessible chromatin using sequencing revealed more open chromatin around the aquaporin 8 gene in HCs (P = 2.0 × 10-2) and more around the DUOX2/DUOXA2 locus in inflamed UC colon (P = 5.7 × 10-4), suggesting an epigenetic basis for differential protein expression by epithelial cells in health and disease. Conclusion Numerous differences exist between the proteome and chromatin of colonic epithelial cells in UC patients and HCs, some of which correlate to suggest specific epigenetic mechanisms regulating the epithelial proteome.
Collapse
Affiliation(s)
- Scott Jelinsky
- Department of Inflammation and Immunology, Pfizer, Cambridge, Massachusetts
| | - Isac Lee
- Department of Inflammation and Immunology, Pfizer, Cambridge, Massachusetts
| | - Mara Monetti
- Internal Medicine Research Unit, Pfizer, Cambridge, Massachusetts
| | | | - Flora Martz
- Translational Research Program, Benaroya Research Institute, Seattle, Washington
| | - Ramya Kongala
- Translational Research Program, Benaroya Research Institute, Seattle, Washington
| | - Jeffrey Culver
- Internal Medicine Research Unit, Pfizer, Cambridge, Massachusetts
| | - Vanessa Vo
- Internal Medicine Research Unit, Pfizer, Cambridge, Massachusetts
| | - Liang Xue
- Machine Learning and Computational Sciences, Early Clinical Development, Pfizer, Cambridge, Massachusetts
| | - Richard Gieseck
- Department of Inflammation and Immunology, Pfizer, Cambridge, Massachusetts
| | - Caitlyn Dickinson
- Department of Inflammation and Immunology, Pfizer, Cambridge, Massachusetts
| | - Marion Kasaian
- Department of Inflammation and Immunology, Pfizer, Cambridge, Massachusetts
| | - James D Lord
- Translational Research Program, Benaroya Research Institute, Seattle, Washington
| |
Collapse
|
17
|
Spathakis M, Dovrolis N, Filidou E, Kandilogiannakis L, Tarapatzi G, Valatas V, Drygiannakis I, Paspaliaris V, Arvanitidis K, Manolopoulos VG, Kolios G, Vradelis S. Exploring Microbial Metabolite Receptors in Inflammatory Bowel Disease: An In Silico Analysis of Their Potential Role in Inflammation and Fibrosis. Pharmaceuticals (Basel) 2024; 17:492. [PMID: 38675452 PMCID: PMC11054721 DOI: 10.3390/ph17040492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Metabolites produced by dysbiotic intestinal microbiota can influence disease pathophysiology by participating in ligand-receptor interactions. Our aim was to investigate the differential expression of metabolite receptor (MR) genes between inflammatory bowel disease (IBD), healthy individuals (HIs), and disease controls in order to identify possible interactions with inflammatory and fibrotic pathways in the intestine. RNA-sequencing datasets containing 643 Crohn's disease (CD) patients, 467 ulcerative colitis (UC) patients and 295 HIs, and 4 Campylobacter jejuni-infected individuals were retrieved from the Sequence Read Archive, and differential expression was performed using the RaNA-seq online platform. The identified differentially expressed MR genes were used for correlation analysis with up- and downregulated genes in IBD, as well as functional enrichment analysis using a R based pipeline. Overall, 15 MR genes exhibited dysregulated expression in IBD. In inflamed CD, the hydroxycarboxylic acid receptors 2 and 3 (HCAR2, HCAR3) were upregulated and were associated with the recruitment of innate immune cells, while, in the non-inflamed CD ileum, the cannabinoid receptor 1 (CNR1) and the sphingosine-1-phospate receptor 4 (S1PR4) were downregulated and were involved in the regulation of B-cell activation. In inflamed UC, the upregulated receptors HCAR2 and HCAR3 were more closely associated with the process of TH-17 cell differentiation, while the pregnane X receptor (NR1I2) and the transient receptor potential vanilloid 1 (TRPV1) were downregulated and were involved in epithelial barrier maintenance. Our results elucidate the landscape of metabolite receptor expression in IBD, highlighting associations with disease-related functions that could guide the development of new targeted therapies.
Collapse
Affiliation(s)
- Michail Spathakis
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (M.S.); (E.F.); (L.K.); (G.T.); (V.V.); (K.A.); (V.G.M.); (G.K.)
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
| | - Nikolas Dovrolis
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (M.S.); (E.F.); (L.K.); (G.T.); (V.V.); (K.A.); (V.G.M.); (G.K.)
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
| | - Eirini Filidou
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (M.S.); (E.F.); (L.K.); (G.T.); (V.V.); (K.A.); (V.G.M.); (G.K.)
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
| | - Leonidas Kandilogiannakis
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (M.S.); (E.F.); (L.K.); (G.T.); (V.V.); (K.A.); (V.G.M.); (G.K.)
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
| | - Gesthimani Tarapatzi
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (M.S.); (E.F.); (L.K.); (G.T.); (V.V.); (K.A.); (V.G.M.); (G.K.)
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
| | - Vassilis Valatas
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (M.S.); (E.F.); (L.K.); (G.T.); (V.V.); (K.A.); (V.G.M.); (G.K.)
- Gastroenterology and Hepatology Research Laboratory, Medical School, University of Crete, 71003 Heraklion, Greece;
| | - Ioannis Drygiannakis
- Gastroenterology and Hepatology Research Laboratory, Medical School, University of Crete, 71003 Heraklion, Greece;
| | | | - Konstantinos Arvanitidis
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (M.S.); (E.F.); (L.K.); (G.T.); (V.V.); (K.A.); (V.G.M.); (G.K.)
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
| | - Vangelis G. Manolopoulos
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (M.S.); (E.F.); (L.K.); (G.T.); (V.V.); (K.A.); (V.G.M.); (G.K.)
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
| | - George Kolios
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (M.S.); (E.F.); (L.K.); (G.T.); (V.V.); (K.A.); (V.G.M.); (G.K.)
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
| | - Stergios Vradelis
- Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| |
Collapse
|
18
|
Pochini L, Galluccio M, Console L, Scalise M, Eberini I, Indiveri C. Inflammation and Organic Cation Transporters Novel (OCTNs). Biomolecules 2024; 14:392. [PMID: 38672410 PMCID: PMC11048549 DOI: 10.3390/biom14040392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Inflammation is a physiological condition characterized by a complex interplay between different cells handled by metabolites and specific inflammatory-related molecules. In some pathological situations, inflammation persists underlying and worsening the pathological state. Over the years, two membrane transporters namely OCTN1 (SLC22A4) and OCTN2 (SLC22A5) have been shown to play specific roles in inflammation. These transporters form the OCTN subfamily within the larger SLC22 family. The link between these proteins and inflammation has been proposed based on their link to some chronic inflammatory diseases such as asthma, Crohn's disease (CD), and rheumatoid arthritis (RA). Moreover, the two transporters show the ability to mediate the transport of several compounds including carnitine, carnitine derivatives, acetylcholine, ergothioneine, and gut microbiota by-products, which have been specifically associated with inflammation for their anti- or proinflammatory action. Therefore, the absorption and distribution of these molecules rely on the presence of OCTN1 and OCTN2, whose expression is modulated by inflammatory cytokines and transcription factors typically activated by inflammation. In the present review, we wish to provide a state of the art on OCTN1 and OCTN2 transport function and regulation in relationships with inflammation and inflammatory diseases focusing on the metabolic signature collected in different body districts and gene polymorphisms related to inflammatory diseases.
Collapse
Affiliation(s)
- Lorena Pochini
- Laboratory of Biochemistry, Molecular Biotechnology and Molecular Biology, Department DiBEST (Biologia, Ecologia, Scienze della Terra), University of Calabria, Via Bucci 4C, 6C, 87036 Arcavacata di Rende, Italy; (M.G.); (L.C.); (M.S.)
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council (CNR), Via Amendola 122/O, 70126 Bari, Italy
| | - Michele Galluccio
- Laboratory of Biochemistry, Molecular Biotechnology and Molecular Biology, Department DiBEST (Biologia, Ecologia, Scienze della Terra), University of Calabria, Via Bucci 4C, 6C, 87036 Arcavacata di Rende, Italy; (M.G.); (L.C.); (M.S.)
| | - Lara Console
- Laboratory of Biochemistry, Molecular Biotechnology and Molecular Biology, Department DiBEST (Biologia, Ecologia, Scienze della Terra), University of Calabria, Via Bucci 4C, 6C, 87036 Arcavacata di Rende, Italy; (M.G.); (L.C.); (M.S.)
| | - Mariafrancesca Scalise
- Laboratory of Biochemistry, Molecular Biotechnology and Molecular Biology, Department DiBEST (Biologia, Ecologia, Scienze della Terra), University of Calabria, Via Bucci 4C, 6C, 87036 Arcavacata di Rende, Italy; (M.G.); (L.C.); (M.S.)
| | - Ivano Eberini
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy;
| | - Cesare Indiveri
- Laboratory of Biochemistry, Molecular Biotechnology and Molecular Biology, Department DiBEST (Biologia, Ecologia, Scienze della Terra), University of Calabria, Via Bucci 4C, 6C, 87036 Arcavacata di Rende, Italy; (M.G.); (L.C.); (M.S.)
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council (CNR), Via Amendola 122/O, 70126 Bari, Italy
| |
Collapse
|
19
|
Becker B, Wottawa F, Bakr M, Koncina E, Mayr L, Kugler J, Yang G, Windross SJ, Neises L, Mishra N, Harris D, Tran F, Welz L, Schwärzler J, Bánki Z, Stengel ST, Ito G, Krötz C, Coleman OI, Jaeger C, Haller D, Paludan SR, Blumberg R, Kaser A, Cicin-Sain L, Schreiber S, Adolph TE, Letellier E, Rosenstiel P, Meiser J, Aden K. Serine metabolism is crucial for cGAS-STING signaling and viral defense control in the gut. iScience 2024; 27:109173. [PMID: 38496294 PMCID: PMC10943449 DOI: 10.1016/j.isci.2024.109173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/27/2023] [Accepted: 02/06/2024] [Indexed: 03/19/2024] Open
Abstract
Inflammatory bowel diseases are characterized by the chronic relapsing inflammation of the gastrointestinal tract. While the molecular causality between endoplasmic reticulum (ER) stress and intestinal inflammation is widely accepted, the metabolic consequences of chronic ER stress on the pathophysiology of IBD remain unclear. By using in vitro, in vivo models, and patient datasets, we identified a distinct polarization of the mitochondrial one-carbon metabolism and a fine-tuning of the amino acid uptake in intestinal epithelial cells tailored to support GSH and NADPH metabolism upon ER stress. This metabolic phenotype strongly correlates with IBD severity and therapy response. Mechanistically, we uncover that both chronic ER stress and serine limitation disrupt cGAS-STING signaling, impairing the epithelial response against viral and bacterial infection and fueling experimental enteritis. Consequently, the antioxidant treatment restores STING function and virus control. Collectively, our data highlight the importance of serine metabolism to allow proper cGAS-STING signaling and innate immune responses upon gut inflammation.
Collapse
Affiliation(s)
- Björn Becker
- Luxembourg Institute of Health, Department of Cancer Research, Luxembourg, Luxembourg
| | - Felix Wottawa
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Mohamed Bakr
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Eric Koncina
- Faculty of Science, Technology and Medicine, Department of Life Sciences and Medicine, Université du Luxembourg, Luxembourg, Luxembourg
| | - Lisa Mayr
- Department of Internal Medicine I, Gastroenterology, Hepatology, Metabolism & Endocrinology, Medical University of Innsbruck, Innsbruck, Austria
| | - Julia Kugler
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Guang Yang
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | | | - Laura Neises
- Luxembourg Institute of Health, Department of Cancer Research, Luxembourg, Luxembourg
| | - Neha Mishra
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Danielle Harris
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Florian Tran
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
- Department of Internal Medicine I, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Lina Welz
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
- Department of Internal Medicine I, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Julian Schwärzler
- Department of Internal Medicine I, Gastroenterology, Hepatology, Metabolism & Endocrinology, Medical University of Innsbruck, Innsbruck, Austria
| | - Zoltán Bánki
- Institute of Virology, Department of Hygiene, Microbiology and Public Health, Medical University of Innsbruck, Innsbruck, Austria
| | - Stephanie T. Stengel
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Go Ito
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Christina Krötz
- Luxembourg Institute of Health, Department of Cancer Research, Luxembourg, Luxembourg
| | - Olivia I. Coleman
- Chair of Nutrition and Immunology, TUM School of Life Sciences, Technical University of Munich, Luxembourg, Luxembourg
| | - Christian Jaeger
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Dirk Haller
- Chair of Nutrition and Immunology, TUM School of Life Sciences, Technical University of Munich, Luxembourg, Luxembourg
- ZIEL-Institute for Food & Health, Technical University of Munich, 85354 Freising, Germany
| | | | - Richard Blumberg
- Gastroenterology Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Arthur Kaser
- Division of Gastroenterology and Hepatology, Department of Medicine, Addenbrooke’s Hospital, University of Cambridge, Cambridge, England, UK
| | - Luka Cicin-Sain
- Helmholtz Zentrum für Infektionsforschung, Braunschweig, Germany
| | - Stefan Schreiber
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
- Department of Internal Medicine I, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Timon E. Adolph
- Department of Internal Medicine I, Gastroenterology, Hepatology, Metabolism & Endocrinology, Medical University of Innsbruck, Innsbruck, Austria
| | - Elisabeth Letellier
- Faculty of Science, Technology and Medicine, Department of Life Sciences and Medicine, Université du Luxembourg, Luxembourg, Luxembourg
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Johannes Meiser
- Luxembourg Institute of Health, Department of Cancer Research, Luxembourg, Luxembourg
| | - Konrad Aden
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
- Department of Internal Medicine I, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| |
Collapse
|
20
|
Peng W, Zeng C, Xu J, Zhao H, Zhu Q, Xu H, Chen H, Huang H, Zhou Y, Zhao C. Regulation of epithelial cell differentiation by the Ubiquitous expressed transcript isoform 1 in ulcerative colitis. J Gastroenterol Hepatol 2023; 38:2006-2017. [PMID: 37608570 DOI: 10.1111/jgh.16311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/16/2023] [Accepted: 07/17/2023] [Indexed: 08/24/2023]
Abstract
BACKGROUND AND AIM Mucosal healing has emerged as a desirable treatment goal for patients with ulcerative colitis (UC). Healing of mucosal wounds involves epithelial cell proliferation and differentiation, and Y-box transcription factor ZONAB has recently been identified as the key modulator of intestinal epithelial restitution. METHODS We studied the characteristics of UXT-V1 expression in UC patients using immunohistochemistry and qPCR. The functional role of UXT-V1 in the colonic epithelium was investigated using lentivirus-mediated shRNA in vitro and ex vivo. Through endogenous Co-immunoprecipitation and LC-MS/MS, we identified ZONAB as a UXT-V1-interactive protein. RESULTS Herein, we report that UXT-V1 promotes differentiation of intestinal epithelial cells by regulating the nuclear translocation of ZONAB. UXT-V1 was upregulated in the intestinal epithelia of UC patients compared with that of healthy controls. Knocking down UXT-V1 in NCM-460 cells led to the enrichment of pathways associated with proliferation and differentiation. Furthermore, the absence of UXT-V1 in cultured intestinal epithelial cells and colonic organoids inhibited differentiation to the goblet cell phenotype. Mechanistically, the loss of UXT-V1 in the intestinal epithelial cells allowed nuclear translocation of ZONAB, wherein it regulated the transcription of differentiation-related genes, including AML1 and KLF4. CONCLUSION Taken together, our study reveals a potential role of UXT-V1 in regulating epithelial cell differentiation, proving a molecular basis for mucosal healing in UC.
Collapse
Affiliation(s)
- Wu Peng
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medical, South China University of Technology, Guangzhou, China
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, China
| | - Chengcheng Zeng
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medical, South China University of Technology, Guangzhou, China
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, China
| | - Jing Xu
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medical, South China University of Technology, Guangzhou, China
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, China
| | - Hailan Zhao
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medical, South China University of Technology, Guangzhou, China
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, China
| | - Qingqing Zhu
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medical, South China University of Technology, Guangzhou, China
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, China
| | - Haoming Xu
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medical, South China University of Technology, Guangzhou, China
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, China
| | - Huiting Chen
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medical, South China University of Technology, Guangzhou, China
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, China
| | - Hongli Huang
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medical, South China University of Technology, Guangzhou, China
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, China
| | - Yongjian Zhou
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medical, South China University of Technology, Guangzhou, China
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, China
| | - Chong Zhao
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medical, South China University of Technology, Guangzhou, China
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, China
| |
Collapse
|
21
|
Diegelmann J, Brand S. Identification of IL-27 as a novel regulator of major histocompatibility complex class I and class II expression, antigen presentation, and processing in intestinal epithelial cells. Front Immunol 2023; 14:1226809. [PMID: 37818353 PMCID: PMC10561092 DOI: 10.3389/fimmu.2023.1226809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/16/2023] [Indexed: 10/12/2023] Open
Abstract
Antigen presentation via major histocompatibility complex (MHC) class I and class II receptors plays a fundamental role in T cell-mediated adaptive immunity. A dysregulation of this fine-tuned recognition might result in the development of autoimmune diseases such as inflammatory bowel diseases that are characterized by chronic relapsing inflammation of the intestinal tract and a damaged intestinal epithelial barrier. While MHCII receptors are usually expressed by professional antigen presenting cells (APC) only, there is increasing evidence that non-immune cells such as intestinal epithelial cells (IEC) might express MHCII upon stimulation with IFN-γ and thus act as non-professional APC. However, little is known about other factors regulating intestinal epithelial MHC expression. Here, we identify IL-27 as an inducer of different MHCI and MHCII receptor subtypes and the invariant chain (CD74/li) in IEC via the STAT1/IRF1/CIITA axis. CIITA, MHCII, and CD74 expression was significantly increased in IEC from Crohn's disease (CD) patients with active disease compared to controls or CD patients in remission. IEC phagocytosed and digested external antigens and apoptotic cells. IL-27 strongly stimulated antigen processing via the immunoproteasome in a IRF1-dependent manner. In co-culture experiments, antigen-primed IEC strongly enhanced lymphocyte proliferation and IL-2 secretion, dependent on direct cell-cell contact. IL-27 pretreatment of IEC significantly increased CD4+ T cell proliferation and reduced IL-2 levels in lymphocytes in coculture. In summary, we identified IL-27 as a novel regulator of IEC antigen processing and presentation via MHCI and MHCII receptors, underscoring the importance of IEC as non-professional APC.
Collapse
Affiliation(s)
- Julia Diegelmann
- Department of Medicine II, Ludwig-Maximilians-Universität (LMU) University Hospital, LMU Munich, Munich, Germany
- Department of Conservative Dentistry and Periodontology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Stephan Brand
- Department of Medicine II, Ludwig-Maximilians-Universität (LMU) University Hospital, LMU Munich, Munich, Germany
- Department of Gastroenterology and Hepatology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| |
Collapse
|
22
|
Rutherford D, Ho GT. Therapeutic Potential of Human Intestinal Organoids in Tissue Repair Approaches in Inflammatory Bowel Diseases. Inflamm Bowel Dis 2023; 29:1488-1498. [PMID: 37094358 PMCID: PMC10472753 DOI: 10.1093/ibd/izad044] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Indexed: 04/26/2023]
Abstract
Inflammatory bowel diseases (IBDs) are chronic immune-mediated conditions characterized by significant gut tissue damage due to uncontrolled inflammation. Anti-inflammatory treatments have improved, but there are no current prorepair approaches. Organoids have developed into a powerful experimental platform to study mechanisms of human diseases. Here, we specifically focus on its role as a direct tissue repair modality in IBD. We discuss the scientific rationale for this, recent parallel advances in scientific technologies (CRISPR [clustered regularly interspaced short palindromic repeats]/Cas9 and metabolic programming), and in addition, the clinical IBD context in which this therapeutic approach is tractable. Finally, we review the translational roadmap for the application of organoids and the need for this as a novel direction in IBD.
Collapse
Affiliation(s)
- Duncan Rutherford
- Gut Research Unit, Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Gwo-Tzer Ho
- Gut Research Unit, Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
23
|
Lee Y, Kim SH, Jeong H, Kim KH, Jeon D, Cho Y, Lee D, Nam KT. Role of Nox4 in Mitigating Inflammation and Fibrosis in Dextran Sulfate Sodium-Induced Colitis. Cell Mol Gastroenterol Hepatol 2023; 16:411-429. [PMID: 37207801 PMCID: PMC10372905 DOI: 10.1016/j.jcmgh.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 05/21/2023]
Abstract
BACKGROUND & AIMS Fibrosis development in ulcerative colitis is associated directly with the severity of mucosal inflammation, which increases the risk of colorectal cancer. The transforming growth factor-β (TGF-β) signaling pathway is an important source of tissue fibrogenesis, which is stimulated directly by reactive oxygen species produced from nicotinamide adenine dinucleotide phosphate oxidases (NOX). Among members of the NOX family, NOX4 expression is up-regulated in patients with fibrostenotic Crohn's disease (CD) and in dextran sulfate sodium (DSS)-induced murine colitis. The aim of this study was to determine whether NOX4 plays a role in fibrogenesis during inflammation in the colon using a mouse model. METHODS Acute and recovery models of colonic inflammation were performed by DSS administration to newly generated Nox4-/- mice. Pathologic analysis of colon tissues was performed, including detection of immune cells, proliferation, and fibrotic and inflammatory markers. RNA sequencing was performed to detect differentially expressed genes between Nox4-/- and wild-type mice in both the untreated and DSS-treated conditions, followed by functional enrichment analysis to explore the molecular mechanisms contributing to pathologic differences during DSS-induced colitis and after recovery. RESULTS Nox4-/- mice showed increased endogenous TGF-β signaling in the colon, increased reactive oxygen species levels, intensive inflammation, and an increased fibrotic region after DSS treatment compared with wild-type mice. Bulk RNA sequencing confirmed involvement of canonical TGF-β signaling in fibrogenesis of the DSS-induced colitis model. Up-regulation of TGF-β signaling affects collagen activation and T-cell lineage commitment, increasing the susceptibility for inflammation. CONCLUSIONS Nox4 protects against injury and plays a crucial role in fibrogenesis in DSS-induced colitis through canonical TGF-β signaling regulation, highlighting a new treatment target.
Collapse
Affiliation(s)
- Yura Lee
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Sung-Hee Kim
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Haengdueng Jeong
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Kwang H Kim
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Donghun Jeon
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Yejin Cho
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Daekee Lee
- Department of Life Science, Ewha Womans University, Seoul, Korea
| | - Ki Taek Nam
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
24
|
Tindle C, Katkar GD, Fonseca AG, Taheri S, Lee J, Maity P, Sayed IM, Ibeawuchi SR, Vidales E, Pranadinata RF, Fuller M, Stec DL, Anandachar MS, Perry K, Le HN, Ear J, Boland BS, Sandborn WJ, Sahoo D, Das S, Ghosh P. A Living Organoid Biobank of Crohn's Disease Patients Reveals Molecular Subtypes for Personalized Therapeutics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.11.532245. [PMID: 36993763 PMCID: PMC10054961 DOI: 10.1101/2023.03.11.532245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Crohn's disease (CD) is a complex, clinically heterogeneous disease of multifactorial origin; there is no perfect pre-clinical model, little insight into the basis for such heterogeneity, and still no cure. To address these unmet needs, we sought to explore the translational potential of adult stem cell-derived organoids that not only retain their tissue identity, but also their genetic and epigenetic disease-driving traits. We prospectively created a biobank of CD patient-derived organoid cultures (PDOs) using biopsied tissues from colons of 34 consecutive subjects representing all clinical subtypes (Montreal Classification B1-B3 and perianal disease). PDOs were generated also from healthy subjects. Comparative gene expression analyses enabled benchmarking of PDOs as tools for modeling the colonic epithelium in active disease and revealed that despite the clinical heterogeneity there are two major molecular subtypes: immune-deficient infectious-CD [IDICD] and stress and senescence-induced fibrostenotic-CD [S2FCD]. The transcriptome, genome and phenome show a surprising degree of internal consistency within each molecular subtype. The spectrum of morphometric, phenotypic, and functional changes within the "living biobank" reveals distinct differences between the molecular subtypes. These insights enabled drug screens that reversed subtype-specific phenotypes, e.g., impaired microbial clearance in IDICD was reversed using agonists for nuclear receptors, and senescence in S2FCD was rectified using senotherapeutics, but not vice versa . Phenotyped-genotyped CD-PDOs may fill the gap between basic biology and patient trials by enabling pre-clinical Phase '0' human trials for personalized therapeutics. GRAPHIC ABSTRACT In Brief This work creates a prospectively biobanked phenotyped-genotyped Crohn's disease patient-derived organoids (CD-PDOs) as platforms for molecular subtyping of disease and for ushering personalized therapeutics. HIGHLIGHTS Prospectively biobanked CD-organoids recapitulate the disease epithelium in patientsThe phenome-transcriptome-genome of CD-organoids converge on two molecular subtypesOne subtype shows impaired microbial clearance, another increased cellular senescencePhenotyped-genotyped PDOs are then used for integrative and personalized therapeutics.
Collapse
|
25
|
Gopalakrishnan S, Hansen MD, Skovdahl HK, Roseth IA, van Beelen Granlund A, Østvik AE, Bakke I, Sandvik AK, Bruland T. Tofacitinib Downregulates TNF and Poly(I:C)-Dependent MHC-II Expression in the Colonic Epithelium. Front Immunol 2022; 13:882277. [PMID: 35655783 PMCID: PMC9152176 DOI: 10.3389/fimmu.2022.882277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/15/2022] [Indexed: 11/13/2022] Open
Abstract
Major Histocompatibility Complex (MHC)-I and -II genes are upregulated in intestinal epithelial cells (IECs) during active inflammatory bowel diseases (IBD), but little is known about how IBD-relevant pro-inflammatory signals and IBD drugs can regulate their expression. We have previously shown that the synthetic analog of double-stranded RNA (dsRNA) Polyinosinic:polycytidylic acid (Poly(I:C)), induces interferon stimulated genes (ISGs) in colon organoids (colonoids). These ISGs may be involved in the induction of antigen presentation. In the present study, we applied colonoids derived from non-IBD controls and ulcerative colitis patients to identify induction and effects of IBD-drugs on antigen presentation in IECs in the context of Tumor Necrosis Factor (TNF)-driven inflammation. By RNA sequencing, we show that a combination of TNF and Poly(I:C) strongly induced antigen-presentation gene signatures in colonoids, including expression of MHC-II genes. MHC-I and -II protein expression was confirmed by immunoblotting and immunofluorescence. TNF+Poly(I:C)-dependent upregulation of MHC-II expression was associated with increased expression of Janus Kinases JAK1/2 as well as increased activation of transcription factor Signal transducer and activator of transcription 1 (STAT1). Accordingly, pre-treatment of colonoids with IBD-approved pan-Janus Kinase (JAK) inhibitor Tofacitinib led to the downregulation of TNF+Poly(I:C)-dependent MHC-II expression associated with the abrogation of STAT1 activation. Pre-treatment with corticosteroid Budesonide, commonly used in IBD, did not alter MHC-II expression. Collectively, our results identify a regulatory role for IBD-relevant pro-inflammatory signals on MHC-II expression that is influenced by Tofacitinib.
Collapse
Affiliation(s)
- Shreya Gopalakrishnan
- Department of Clinical and Molecular Medicine (IKOM), NTNU - Norwegian University of Science and Technology, Trondheim, Norway.,Department of Gastroenterology and Hepatology, Clinic of Medicine, St. Olav's University Hospital, Trondheim, Norway
| | - Marianne Doré Hansen
- Department of Clinical and Molecular Medicine (IKOM), NTNU - Norwegian University of Science and Technology, Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olav's University Hospital, Trondheim, Norway
| | - Helene Kolstad Skovdahl
- Department of Clinical and Molecular Medicine (IKOM), NTNU - Norwegian University of Science and Technology, Trondheim, Norway.,Centre of Molecular Inflammation Research (CEMIR), NTNU - Norwegian University of Science and Technology, Trondheim, Norway
| | - Ingrid Aass Roseth
- Department of Clinical and Molecular Medicine (IKOM), NTNU - Norwegian University of Science and Technology, Trondheim, Norway
| | - Atle van Beelen Granlund
- Department of Clinical and Molecular Medicine (IKOM), NTNU - Norwegian University of Science and Technology, Trondheim, Norway.,Department of Gastroenterology and Hepatology, Clinic of Medicine, St. Olav's University Hospital, Trondheim, Norway.,Centre of Molecular Inflammation Research (CEMIR), NTNU - Norwegian University of Science and Technology, Trondheim, Norway
| | - Ann Elisabet Østvik
- Department of Clinical and Molecular Medicine (IKOM), NTNU - Norwegian University of Science and Technology, Trondheim, Norway.,Department of Gastroenterology and Hepatology, Clinic of Medicine, St. Olav's University Hospital, Trondheim, Norway
| | - Ingunn Bakke
- Department of Clinical and Molecular Medicine (IKOM), NTNU - Norwegian University of Science and Technology, Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olav's University Hospital, Trondheim, Norway
| | - Arne Kristian Sandvik
- Department of Clinical and Molecular Medicine (IKOM), NTNU - Norwegian University of Science and Technology, Trondheim, Norway.,Department of Gastroenterology and Hepatology, Clinic of Medicine, St. Olav's University Hospital, Trondheim, Norway.,Centre of Molecular Inflammation Research (CEMIR), NTNU - Norwegian University of Science and Technology, Trondheim, Norway
| | - Torunn Bruland
- Department of Clinical and Molecular Medicine (IKOM), NTNU - Norwegian University of Science and Technology, Trondheim, Norway.,Department of Gastroenterology and Hepatology, Clinic of Medicine, St. Olav's University Hospital, Trondheim, Norway
| |
Collapse
|