1
|
Lundberg R, Dahlén J, Lundeberg T. Considerations regarding the selection, sampling, extraction, analysis, and modelling of biomarkers in exhaled breath for early lung cancer screening. J Pharm Biomed Anal 2025; 260:116787. [PMID: 40043331 DOI: 10.1016/j.jpba.2025.116787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/28/2025] [Accepted: 02/28/2025] [Indexed: 04/06/2025]
Abstract
Lung cancer (LC) is the deadliest cancer due to the lack of efficient screening methods that detect the disease early. This review, covering the years 2011 - 2025, summarizes state-of-the-art LC screening through analysis of volatile organic compounds (VOCs) in exhaled breath. All fundamental parts of the methodology are covered, i.e., sampling, analysis, and multivariate data modelling. This review shows that breath is commonly collected in Tedlar® bags and subsequently analysed with solid phase micro-extraction gas chromatography mass spectrometry (SPME-GC-MS) or sensors. Data analysis has been made using multivariate methods like principal component analysis (PCA) or artificial neural networks (ANNs). The VOCs exhaled by LC patients and healthy subjects are in principle the same. However, concentration levels differ between the two groups. Therefore, LC patients are usually separated from healthy controls through multivariate modelling of a set of VOC biomarkers rather than by individual biomarkers. Although most exhaled VOCs are formed endogenously via metabolic processes and oxidative stress, some compounds also have exogenous origins, which must be taken into consideration. More than 200 different VOCs have been reported as potential biomarkers in the breath of LC patients, while the number of biomarkers per study were typically around 10-20 compounds. The 15 most common LC biomarkers were (from high to low frequency) acetone, isoprene, hexanal, benzene, butanone, styrene, ethylbenzene, 1-propanol, 2-propanol, toluene, pentanal, 2-pentanone, cyclohexane, nonanal and decane. Several methods showed, in combination with multivariate data analysis, potential to distinguish between LC patients and healthy controls.
Collapse
Affiliation(s)
- Robert Lundberg
- Department of Physics, Chemistry and Biology, Linköping University, Linköping SE-581 83, Sweden.
| | - Johan Dahlén
- Department of Physics, Chemistry and Biology, Linköping University, Linköping SE-581 83, Sweden
| | | |
Collapse
|
2
|
Capuano R, Ciotti M, Catini A, Bernardini S, Di Natale C. Clinical applications of volatilomic assays. Crit Rev Clin Lab Sci 2025; 62:45-64. [PMID: 39129534 DOI: 10.1080/10408363.2024.2387038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/23/2024] [Accepted: 07/29/2024] [Indexed: 08/13/2024]
Abstract
The study of metabolomics is revealing immense potential for diagnosis, therapy monitoring, and understanding of pathogenesis processes. Volatilomics is a subcategory of metabolomics interested in the detection of molecules that are small enough to be released in the gas phase. Volatile compounds produced by cellular processes are released into the blood and lymph, and can reach the external environment through different pathways, such as the blood-air interface in the lung that are detected in breath, or the blood-water interface in the kidney that leads to volatile compounds detected in urine. Besides breath and urine, additional sources of volatile compounds such as saliva, blood, feces, and skin are available. Volatilomics traces its roots back over fifty years to the pioneering investigations in the 1970s. Despite extensive research, the field remains in its infancy, hindered by a lack of standardization despite ample experimental evidence. The proliferation of analytical instrumentations, sample preparations and methods of volatilome sampling still make it difficult to compare results from different studies and to establish a common standard approach to volatilomics. This review aims to provide an overview of volatilomics' diagnostic potential, focusing on two key technical aspects: sampling and analysis. Sampling poses a challenge due to the susceptibility of human samples to contamination and confounding factors from various sources like the environment and lifestyle. The discussion then delves into targeted and untargeted approaches in volatilomics. Some case studies are presented to exemplify the results obtained so far. Finally, the review concludes with a discussion on the necessary steps to fully integrate volatilomics into clinical practice.
Collapse
Affiliation(s)
- Rosamaria Capuano
- Department of Electronic Engineering, University of Rome Tor Vergata, Roma, Italy
- Interdepartmental Center for Volatilomics, "A. D'Amico", University of Rome Tor Vergata, Rome, Italy
| | - Marco Ciotti
- Department of Laboratory Medicine, University Hospital Tor Vergata, Rome, Italy
| | - Alexandro Catini
- Department of Electronic Engineering, University of Rome Tor Vergata, Roma, Italy
- Interdepartmental Center for Volatilomics, "A. D'Amico", University of Rome Tor Vergata, Rome, Italy
| | - Sergio Bernardini
- Interdepartmental Center for Volatilomics, "A. D'Amico", University of Rome Tor Vergata, Rome, Italy
- Department of Laboratory Medicine, University Hospital Tor Vergata, Rome, Italy
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Corrado Di Natale
- Department of Electronic Engineering, University of Rome Tor Vergata, Roma, Italy
- Interdepartmental Center for Volatilomics, "A. D'Amico", University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
3
|
Su Z, Yu X, He Y, Sha T, Guo H, Tao Y, Liao L, Zhang Y, Lu G, Lu G, Gong W. Inconsistencies in predictive models based on exhaled volatile organic compounds for distinguishing between benign pulmonary nodules and lung cancer: a systematic review. BMC Pulm Med 2024; 24:551. [PMID: 39488679 PMCID: PMC11531146 DOI: 10.1186/s12890-024-03374-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND There is a general rise in incidentally found pulmonary nodules (PNs) requiring follow-up due to increased CT use. Biopsy and repeated CT scan are the most useful methods for distinguishing between benign PNs and lung cancer, while they are either invasive or involves radiation exposure. Therefore, there has been increasing interest in the analysis of exhaled volatile organic compounds (VOCs) to distinguish between benign PNs and lung cancer because it's cheap, noninvasive, efficient, and easy-to-use. However, the exact value of breath analysis in this regard remains unclear. METHODS A PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses)-oriented systematic search was performed to include studies that established exhaled VOC-based predictive models to distinguish between benign PNs and lung cancer and reported the exact VOCs used. Data regarding study characteristics, performance of the models, which predictors were incorporated, and methodologies for breath collection and analysis were independently extracted by two researchers. The exhaled VOCs incorporated into the predictive models were narratively synthesized, and those compounds that were reported in > 2 studies and reportedly exhibited consistent associations with lung cancer were considered key breath biomarkers. A quality assessment was independently performed by two researchers using both the Newcastle-Ottawa Scale (NOS) and the Prediction Model Risk of Bias Assessment Tool (PROBAST). RESULTS A total of 11 articles reporting on 46 VOC-based predictive models were included. The majority relied solely on exhaled VOCs (n = 44), while two incorporated VOCs, demographical factors, and radiological signs. The variation in the sensitivity, specificity, and AUC indicators of the models that incorporated multiple factors was lower compared with those of the models that relied solely on exhaled VOCs. A total of 84 VOCs were incorporated. Of these, 2-butanone, 3-hydroxy-2-butanone, and 2-hydroxyacetaldehyde were identified as key predictors that had significantly higher concentrations in the exhaled breath samples of patients with lung cancer. Substantial heterogeneity was observed in terms of the modeling and validation methods used, as well as the approaches to breath collection and analysis. Many of the reports were missing certain key pieces of clinical and methodological information. CONCLUSIONS Although exhaled VOC-based models for predicting cancer risk might be a conceivable role as monitoring tools for PNs risk, there has been little overall change in the accuracy of these tests over time, and their role in routine clinical practice has not yet been established. CLINICAL TRIAL NUMBER PROSPERO registration number CRD42023381458.
Collapse
Affiliation(s)
- Zhixia Su
- Department of Health Management Center, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, 225012, China
- School of Public Health, Medical College of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Xiaoping Yu
- Department of Health Management Center, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, 225012, China
| | - Yuhang He
- School of Nursing, Medical College of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Taining Sha
- School of Public Health, Medical College of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Hong Guo
- Department of Thoracic Surgery, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu, 225012, China
| | - Yujian Tao
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Yangzhou University, Jiangsu, Yangzhou, 225012, China
| | - Liting Liao
- Department of Basic Medicine, Medical College of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Yanyan Zhang
- Testing Center of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Guotao Lu
- Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, 225012, China
- Pancreatic Center, Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University,, Yangzhou, Jiangsu, 225012, China
| | - Guangyu Lu
- School of Public Health, Medical College of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, 225009, China.
| | - Weijuan Gong
- Department of Health Management Center, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, 225012, China.
- Department of Basic Medicine, Medical College of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, 225009, China.
- Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, 225012, China.
| |
Collapse
|
4
|
Biswal JK, Das S, Mohapatra JK, Rout M, Ranjan R, Singh RP. A species-independent indirect-ELISA for detection of antibodies to the non-structural protein 2B of foot-and-mouth disease virus. Biologicals 2024; 87:101785. [PMID: 39121525 DOI: 10.1016/j.biologicals.2024.101785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/24/2024] [Accepted: 08/04/2024] [Indexed: 08/12/2024] Open
Abstract
Diagnostic assays that are able to detect foot-and-mouth disease (FMD) virus infection in the vaccinated population are essential tools in the progressive control pathway for the FMD. However, testing of serum samples using a single diagnostic assay may not completely substantiate freedom from the virus infection. Therefore, viral non-structural proteins (NSPs)-based various serological assays have been developed for the detection of FMD infection. Nevertheless, the NSPs-based ELISAs have been developed in the indirect-ELISA format, thereby necessitating the use of species-specific conjugated secondary-antibodies for the detection of anti-NSP antibodies in various FMD-susceptible species. Therefore, this study presents a novel recombinant 2B-NSP-based indirect ELISA, employing HRP-conjugated protein-A/G detection system which can detect anti-NSPs antibodies from multiple FMD-susceptible species in a single ELISA platform. Recombinant 2B (r2B) protein was expressed as His-SUMO tagged protein in the E. Coli cells and purified using NI-NTA affinity column chromatography. Using the r2B protein and HRP-conjugated protein A/G, an indirect ELISA was developed and validated for the detection of anti-2B antibodies in serum samples collected from multiple FMD-susceptible animal species with known FMD status. Further, a resampling based statistical technique has been reported for determination of optimal cut-off value for the diagnostic assay. Through this technique, the optimal cut-off of 44 percentage of positivity value was determined for the assay. At this optimal cut-off value, the developed diagnostic assay provided diagnostic sensitivity, specificity, and accuracy, positive and negative predictive values (PPV and NPV) of 92.35 %, 98.41 %, 95.21 %, 98.58 %, and 91.67 %, respectively. The assay was validated further by analyzing random serum samples collected across multi-locations in India. The assay can be used as a single platform for testing serum samples from different species of FMDV-susceptible animals and will be useful for NSP-based serosurveillance of FMDV.
Collapse
Affiliation(s)
- Jitendra K Biswal
- ICAR-National Institute on Foot-and-mouth Disease, Arugul, Bhubaneswar, Odisha, 752050, India.
| | - Samarendra Das
- ICAR-National Institute on Foot-and-mouth Disease, Arugul, Bhubaneswar, Odisha, 752050, India
| | - Jajati K Mohapatra
- ICAR-National Institute on Foot-and-mouth Disease, Arugul, Bhubaneswar, Odisha, 752050, India
| | - Manoranjan Rout
- ICAR-National Institute on Foot-and-mouth Disease, Arugul, Bhubaneswar, Odisha, 752050, India
| | - Rajeev Ranjan
- ICAR-National Institute on Foot-and-mouth Disease, Arugul, Bhubaneswar, Odisha, 752050, India
| | - Rabindra Prasad Singh
- ICAR-National Institute on Foot-and-mouth Disease, Arugul, Bhubaneswar, Odisha, 752050, India
| |
Collapse
|
5
|
Xie Z, Morris JD, Pan J, Cooke EA, Sutaria SR, Balcom D, Marimuthu S, Parrish LW, Aliesky H, Huang JJ, Rai SN, Arnold FW, Huang J, Nantz MH, Fu XA. Detection of COVID-19 by quantitative analysis of carbonyl compounds in exhaled breath. Sci Rep 2024; 14:14568. [PMID: 38914586 PMCID: PMC11196736 DOI: 10.1038/s41598-024-61735-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/09/2024] [Indexed: 06/26/2024] Open
Abstract
COVID-19 has caused a worldwide pandemic, creating an urgent need for early detection methods. Breath analysis has shown great potential as a non-invasive and rapid means for COVID-19 detection. The objective of this study is to detect patients infected with SARS-CoV-2 and even the possibility to screen between different SARS-CoV-2 variants by analysis of carbonyl compounds in breath. Carbonyl compounds in exhaled breath are metabolites related to inflammation and oxidative stress induced by diseases. This study included a cohort of COVID-19 positive and negative subjects confirmed by reverse transcription polymerase chain reaction between March and December 2021. Carbonyl compounds in exhaled breath were captured using a microfabricated silicon microreactor and analyzed by ultra-high-performance liquid chromatography-mass spectrometry (UHPLC-MS). A total of 321 subjects were enrolled in this study. Of these, 141 (85 males, 60.3%) (mean ± SD age: 52 ± 15 years) were COVID-19 (55 during the alpha wave and 86 during the delta wave) positive and 180 (90 males, 50%) (mean ± SD age: 45 ± 15 years) were negative. Panels of a total of 34 ketones and aldehydes in all breath samples were identified for detection of COVID-19 positive patients. Logistic regression models indicated high accuracy/sensitivity/specificity for alpha wave (98.4%/96.4%/100%), for delta wave (88.3%/93.0%/84.6%) and for all COVID-19 positive patients (94.7%/90.1%/98.3%). The results indicate that COVID-19 positive patients can be detected by analysis of carbonyl compounds in exhaled breath. The technology for analysis of carbonyl compounds in exhaled breath has great potential for rapid screening and detection of COVID-19 and for other infectious respiratory diseases in future pandemics.
Collapse
Affiliation(s)
- Zhenzhen Xie
- Department of Chemical Engineering, University of Louisville, Louisville, KY, USA
| | - James D Morris
- Department of Chemical Engineering, University of Louisville, Louisville, KY, USA
| | - Jianmin Pan
- Division of Biostatistics and Bioinformatics, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- The Cancer Data Science Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Biostatistics and Informatics Shared Resource, University of Cincinnati Cancer Center, Cincinnati, OH, USA
| | - Elizabeth A Cooke
- Department of Anesthesiology and Perioperative Medicine, University of Louisville, Louisville, KY, USA
| | - Saurin R Sutaria
- Department of Chemistry, University of Louisville, Louisville, KY, USA
| | - Dawn Balcom
- Division of Infectious Diseases, Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Subathra Marimuthu
- Division of Infectious Diseases, Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Leslie W Parrish
- Division of Infectious Diseases, Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Holly Aliesky
- Division of Infectious Diseases, Department of Medicine, University of Louisville, Louisville, KY, USA
| | | | - Shesh N Rai
- Division of Biostatistics and Bioinformatics, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- The Cancer Data Science Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Biostatistics and Informatics Shared Resource, University of Cincinnati Cancer Center, Cincinnati, OH, USA
| | - Forest W Arnold
- Division of Infectious Diseases, Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Jiapeng Huang
- Department of Anesthesiology and Perioperative Medicine, University of Louisville, Louisville, KY, USA.
| | - Michael H Nantz
- Department of Chemistry, University of Louisville, Louisville, KY, USA.
| | - Xiao-An Fu
- Department of Chemical Engineering, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
6
|
Boutsikou E, Hardavella G, Fili E, Bakiri A, Gaitanakis S, Kote A, Samitas K, Gkiozos I. The Role of Biomarkers in Lung Cancer Screening. Cancers (Basel) 2024; 16:1980. [PMID: 38893101 PMCID: PMC11171002 DOI: 10.3390/cancers16111980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 03/20/2024] [Accepted: 04/01/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Lung Cancer Screening (LCS) is an evolving field with variations in its implementation in various countries. There are only scarce data from National LCS programs. AIM We aim to provide an up-to-date overview of the current evidence regarding the use of biomarkers in LCS. MATERIALS AND METHODS A multidisciplinary Task Force experts' panel collaborated and conducted a systematic literature search, followed by screening, review and synthesis of available evidence. RESULTS Biomarkers in LCS could be used to improve risk stratification in high-risk participants, improve clarification regarding indeterminate lung nodules and avoid overdiagnosis in suspicious lung findings. Currently, there seem to be promising biomarkers (blood/serum/breath) that have been studied in various trials; however, there is still a lack of solid evidence in clinical validation that would pave the way for their integration into LCS programs. CONCLUSIONS Biomarkers are the next logical step in improving the LCS pathway and its efficiency by playing an adjuvant role in a minimally invasive way. National LCS programs and pilot studies should integrate biomarkers to validate their accuracy in real-life LCS participants.
Collapse
Affiliation(s)
- Efimia Boutsikou
- Department of Respiratory Medicine and Oncology, “Theageneio” Anti-Cancer Hospital of Thessaloniki, AL. Simeonidi Str., 54639 Thessaloniki, Greece;
| | - Georgia Hardavella
- 4th–9th Department of Respiratory Medicine, “Sotiria” Athens’ Chest Diseases Hospital, 152 Mesogeion Av., 11527 Athens, Greece
| | - Eleni Fili
- Health Sciences Library, “Sotiria” Athens’ Chest Diseases Hospital, 152 Mesogeion Av., 11527 Athens, Greece;
| | - Aikaterini Bakiri
- 1st University Department of Respiratory Medicine, “Sotiria” Athens’ Chest Diseases Hospital, 152 Mesogeion Av., 11527 Athens, Greece;
| | - Stylianos Gaitanakis
- Department of Thoracic Surgery, 401 Hellenic Army Hospital, Panagiotis Kanellopoulos Av., 11525 Athens, Greece;
| | - Alexandra Kote
- 6th Department of Respiratory Medicine, “Sotiria” Athens’ Chest Diseases Hospital, 152 Mesogeion Av., 11527 Athens, Greece;
| | - Konstantinos Samitas
- 7th Department of Respiratory Medicine, “Sotiria” Athens’ Chest Diseases Hospital, 152 Mesogeion Av., 11527 Athens, Greece;
| | - Ioannis Gkiozos
- Oncology Unit, 3rd University Department of Internal Medicine, “Sotiria” Athens’ Chest Diseases Hospital, 152 Mesogeion Av., 11527 Athens, Greece;
| |
Collapse
|
7
|
Maiti KS, Fill E, Strittmatter F, Volz Y, Sroka R, Apolonski A. Standard operating procedure to reveal prostate cancer specific volatile organic molecules by infrared spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123266. [PMID: 37657373 DOI: 10.1016/j.saa.2023.123266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/03/2023] [Accepted: 08/15/2023] [Indexed: 09/03/2023]
Abstract
The growing number of prostate cancer cases is a real concern in modern society. Over 1.4 million new cases and about 400 thousand (>26%) deaths were registered worldwide in 2020 due to prostate cancer. The high mortality rate of prostate cancer is due to the lack of reliable early detection of the disease. Till now the most reliable diagnosis of cancer is tissue biopsy, which is an invasive process. A non-invasive or minimally invasive technique could lead to a diagnostic tool that will allow for saving or prolonging the lifespan of millions of lives. Metabolite-based diagnostics may have a better chance of early cancer detection. However, reliable detection techniques need to be developed. Infrared spectroscopy based gaseous-biofluid holds great promise towards the development of non-invasive diagnostics. A pilot study based on breath analysis by infrared spectroscopy showed promising results in distinguishing prostate cancer patients from healthy volunteers. Details of the spectral metabolic analysis are presented.
Collapse
Affiliation(s)
- Kiran Sankar Maiti
- Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching, Germany; Lehrstuhl für Experimental Physik, Ludwig-Maximilians-Universität München, Am Couombwall 1, 85748 Garching, Germany; Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, Garching, 85747, Germany; Department of Anesthesiology and Intensive Care Medicine/Center for Sepsis Control and Care, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany.
| | - Ernst Fill
- Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching, Germany; Lehrstuhl für Experimental Physik, Ludwig-Maximilians-Universität München, Am Couombwall 1, 85748 Garching, Germany
| | - Frank Strittmatter
- Urologische Klinik und Poliklinik des Klinikums der Ludwig-Maximilians- Universität München in Großhadern, 81377 Munich, Germany
| | - Yannic Volz
- Urologische Klinik und Poliklinik des Klinikums der Ludwig-Maximilians- Universität München in Großhadern, 81377 Munich, Germany
| | - Ronald Sroka
- Urologische Klinik und Poliklinik des Klinikums der Ludwig-Maximilians- Universität München in Großhadern, 81377 Munich, Germany; Laser-Forschungslabor, LIFE Center, University Hospital, Ludwig-Maximilians-Universität München, 82152 Planegg, Germany
| | - Alexander Apolonski
- Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching, Germany; Lehrstuhl für Experimental Physik, Ludwig-Maximilians-Universität München, Am Couombwall 1, 85748 Garching, Germany; Institute of Automation and Electrometry SB RAS, 630090 Novosibirsk, Russia
| |
Collapse
|
8
|
Pradère P, Zajacova A, Bos S, Le Pavec J, Fisher A. Molecular monitoring of lung allograft health: is it ready for routine clinical use? Eur Respir Rev 2023; 32:230125. [PMID: 37993125 PMCID: PMC10663940 DOI: 10.1183/16000617.0125-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/16/2023] [Indexed: 11/24/2023] Open
Abstract
Maintenance of long-term lung allograft health in lung transplant recipients (LTRs) requires a fine balancing act between providing sufficient immunosuppression to reduce the risk of rejection whilst at the same time not over-immunosuppressing individuals and exposing them to the myriad of immunosuppressant drug side-effects that can cause morbidity and mortality. At present, lung transplant physicians only have limited and rather blunt tools available to assist them with this task. Although therapeutic drug monitoring provides clinically useful information about single time point and longitudinal exposure of LTRs to immunosuppressants, it lacks precision in determining the functional level of immunosuppression that an individual is experiencing. There is a significant gap in our ability to monitor lung allograft health and therefore tailor optimal personalised immunosuppression regimens. Molecular diagnostics performed on blood, bronchoalveolar lavage or lung tissue that can detect early signs of subclinical allograft injury, differentiate rejection from infection or distinguish cellular from humoral rejection could offer clinicians powerful tools in protecting lung allograft health. In this review, we look at the current evidence behind molecular monitoring in lung transplantation and ask if it is ready for routine clinical use. Although donor-derived cell-free DNA and tissue transcriptomics appear to be the techniques with the most immediate clinical potential, more robust data are required on their performance and additional clinical value beyond standard of care.
Collapse
Affiliation(s)
- Pauline Pradère
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, UK
- Department of Respiratory Diseases, Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph and Paris Saclay University, Paris, France
| | - Andrea Zajacova
- Prague Lung Transplant Program, Department of Pneumology, Motol University Hospital and 2nd Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Saskia Bos
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, UK
- Institute of Transplantation, Newcastle Upon Tyne Hospitals NHS Trust, Newcastle Upon Tyne, UK
| | - Jérôme Le Pavec
- Department of Respiratory Diseases, Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph and Paris Saclay University, Paris, France
| | - Andrew Fisher
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, UK
- Institute of Transplantation, Newcastle Upon Tyne Hospitals NHS Trust, Newcastle Upon Tyne, UK
| |
Collapse
|
9
|
Ding X, Lin G, Wang P, Chen H, Li N, Yang Z, Qiu M. Diagnosis of primary lung cancer and benign pulmonary nodules: a comparison of the breath test and 18F-FDG PET-CT. Front Oncol 2023; 13:1204435. [PMID: 37333820 PMCID: PMC10272389 DOI: 10.3389/fonc.2023.1204435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/17/2023] [Indexed: 06/20/2023] Open
Abstract
With the application of low-dose computed tomography in lung cancer screening, pulmonary nodules have become increasingly detected. Accurate discrimination between primary lung cancer and benign nodules poses a significant clinical challenge. This study aimed to investigate the viability of exhaled breath as a diagnostic tool for pulmonary nodules and compare the breath test with 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET)-computed tomography (CT). Exhaled breath was collected by Tedlar bags and analyzed by high-pressure photon ionization time-of-flight mass spectrometry (HPPI-TOFMS). A retrospective cohort (n = 100) and a prospective cohort (n = 63) of patients with pulmonary nodules were established. In the validation cohort, the breath test achieved an area under the receiver operating characteristic curve (AUC) of 0.872 (95% CI 0.760-0.983) and a combination of 16 volatile organic compounds achieved an AUC of 0.744 (95% CI 0.7586-0.901). For PET-CT, the SUVmax alone had an AUC of 0.608 (95% CI 0.433-0.784) while after combining with CT image features, 18F-FDG PET-CT had an AUC of 0.821 (95% CI 0.662-0.979). Overall, the study demonstrated the efficacy of a breath test utilizing HPPI-TOFMS for discriminating lung cancer from benign pulmonary nodules. Furthermore, the accuracy achieved by the exhaled breath test was comparable with 18F-FDG PET-CT.
Collapse
Affiliation(s)
- Xiangxiang Ding
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
- Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Guihu Lin
- Department of Thoracic Surgery, Aerospace 731 Hospital, Beijing, China
| | - Peiyu Wang
- Department of Thoracic Surgery, Peking University People’s Hospital, Beijing, China
- Thoracic Oncology Institute, Peking University People’s Hospital, Beijing, China
| | - Haibin Chen
- Breax Laboratory, PCAB Research Center of Breath and Metabolism, Beijing, China
| | - Nan Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
- Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zhi Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
- Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Mantang Qiu
- Department of Thoracic Surgery, Peking University People’s Hospital, Beijing, China
- Thoracic Oncology Institute, Peking University People’s Hospital, Beijing, China
- Breax Laboratory, PCAB Research Center of Breath and Metabolism, Beijing, China
| |
Collapse
|