1
|
Balkin AS, Cherkasov SV, Gogolev YV, Plotnikov AO. The Phase-Specific Dynamics in Gene Expression of Salmonella Typhimurium During Acanthamoeba castellanii Infection. Curr Microbiol 2025; 82:270. [PMID: 40310525 DOI: 10.1007/s00284-025-04256-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 04/21/2025] [Indexed: 05/02/2025]
Abstract
Being facultative intracellular pathogens, the bacterium often is found in the environment. In natural habitats, Salmonella are able to survive and multiply inside free-living protists that support preservation and distribution of the pathogen, its virulence, and resistance to antimicrobial agents. At the same time, the expression profile of Salmonella genes in the eukaryotic cells has been shown not to be stable, but changes dramatically according to the sequential stages of infection. Previously, we had described the gene expression profile of S. enterica serovar Typhimurium 14028S at the early stage of interaction with Acanthamoeba castellanii. In this study, we have revealed the phase-specific dynamics in expression of several clusters and functional groups of S. Typhimurium 14028S genes. The early stage of invasion characterized by a maximum response to oxidative stress, and it was accompanied by activation of SPI-1 genes, which can contribute to the successful internalization into the host cell. At the second stage (8 h) increase in expression of SPI-2 and SPI-3 genes was accompanied with a maximum expression of iron uptake genes and lysozyme inhibitors. At the late stage of the infection (15 h), downregulation of carbon metabolism and oxidative stress response genes, as well as a decrease in the expression of all other genes, was revealed that may be an evidence of adaptation of Salmonella to intracellular conditions. The obtained results might be useful for further search of factors reducing persistence of pathogens like Salmonella in the environment.
Collapse
Affiliation(s)
- A S Balkin
- Institute for Cellular and Intracellular Symbiosis Ural Branch of Russian Academy of Sciences, Orenburg, Russia, 460000.
| | - S V Cherkasov
- Institute for Cellular and Intracellular Symbiosis Ural Branch of Russian Academy of Sciences, Orenburg, Russia, 460000
| | - Y V Gogolev
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center Kazan Scientific Center of the Russian Academy of Sciences, Kazan, Russia, 420111
| | - A O Plotnikov
- Institute for Cellular and Intracellular Symbiosis Ural Branch of Russian Academy of Sciences, Orenburg, Russia, 460000
| |
Collapse
|
2
|
Newson JPM, Gürtler F, Piffaretti P, Meyer A, Sintsova A, Barthel M, Steiger Y, McHugh SC, Enz U, Alto NM, Sunagawa S, Hardt WD. Salmonella multimutants enable efficient identification of SPI-2 effector protein function in gut inflammation and systemic colonization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.14.628483. [PMID: 39713370 PMCID: PMC11661221 DOI: 10.1101/2024.12.14.628483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Salmonella enterica spp. rely on translocation of effector proteins through the SPI-2 encoded type III secretion system (T3SS) to achieve pathogenesis. More than 30 effectors contribute to manipulation of host cells through diverse mechanisms, but interdependency or redundancy between effectors complicates the discovery of effector phenotypes using single mutant strains. Here, we engineer six mutant strains to be deficient in cohorts of SPI-2 effector proteins, as defined by their reported function. Using various animal models of infection, we show that three principle phenotypes define the functional contribution of the SPI-2 T3SS to infection. Multimutant strains deficient for intracellular replication, for manipulation of host cell defences, or for expression of virulence plasmid effectors all showed strong attenuation in vivo, while mutants representing approximately half of the known effector complement showed phenotypes similar to the wild-type parent strain. By additionally removing the SPI-1 T3SS, we find cohorts of effector proteins that contribute to SPI-2 T3SS-driven enhancement of gut inflammation. Further, we provide an example of how iterative mutation can be used to find a minimal number of effector deletions required for attenuation, and thus establish that the SPI-2 effectors SopD2 and GtgE are critical for the promotion of gut inflammation and mucosal pathology. This strategy provides a powerful toolset for simultaneous parallel screening of all known SPI-2 effectors in a single experimental context, and further facilitates the identification of the responsible effectors, and thereby provides an efficient approach to study how individual effectors contribute to disease.
Collapse
Affiliation(s)
| | - Flavia Gürtler
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
- Current address: Epidemiology, Biostatistics & Prevention Institute, University of Zurich, Zurich, Switzerland
| | | | - Annina Meyer
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
- Current address: Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Anna Sintsova
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Manja Barthel
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Yves Steiger
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Sarah C McHugh
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
- Current address: Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Ursina Enz
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Neal M Alto
- Department of Microbiology, University of Texas (UT) Southwestern Medical Center, Dallas, TX, United States
| | | | | |
Collapse
|
3
|
Campos IC, Vilela FP, Saraiva MDMS, Junior AB, Falcão JP. Insights into the global genomic features of Salmonella enterica serovar Gallinarum biovars Gallinarum and Pullorum. J Appl Microbiol 2024; 135:lxae217. [PMID: 39165105 DOI: 10.1093/jambio/lxae217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/02/2024] [Accepted: 08/19/2024] [Indexed: 08/22/2024]
Abstract
AIMS Characterize global genomic features of 86 genomes of Salmonella Gallinarum (SG) and Pullorum (SP), which are important pathogens causing systemic infections in poultry. METHODS AND RESULTS All genomes harbored efflux pump encoding gene mdsA and gold tolerance genes golS and golT. Aminoglycoside (aac(6')-Ib, aadA5, aph(6)-Id, aph(3'')-Ib, ant(2'')-Ia), beta-lactam (blaTEM-1, blaTEM-135), efflux pump (mdsB), fosfomycin (fosA3), sulfonamide (sul1, sul2), tetracycline [tet(A)], trimethoprim (dfrA17), acid (asr), and disinfectant (qacEdelta1) resistance genes, gyrA, gyrB, and parC quinolone resistance point mutations, and mercury tolerance genes (mer) were found in different frequencies. Additionally, 310 virulence genes, pathogenicity islands (including SPI-1, 2, 3, 4, 5, 6, 9, 10, 12, 13, and 14), plasmids [IncFII(S), ColpVC, IncX1, IncN, IncX2, and IncC], and prophages (Fels-2, ST104, 500465-1, pro483, Gifsy-2, 103 203_sal5, Fels-1, RE-2010, vB_SenS-Ent2, and L-413C) were detected. MLST showed biovar-specific sequence types, and core genome MLST showed country-specific and global-related clusters. CONCLUSION SG and SP global strains carry many virulence factors and important antimicrobial resistance genes. The diverse plasmids and prophages suggest genetic variability. MLST and cgMLST differentiated biovars and showed profiles occurring locally or worldwide.
Collapse
Affiliation(s)
- Isabela C Campos
- Department of Pathology, Reproduction and One Health, School of Agriculture and Veterinarian Sciences, São Paulo State University, Via de Acesso Prof. Paulo Donato Castellane, s/n, CEP 14884-900 Jaboticabal, SP, Brazil
| | - Felipe Pinheiro Vilela
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. Prof. Dr. Zeferino Vaz, s/n, Campus da USP, CEP 14040-903 Ribeirão Preto, SP, Brazil
| | - Mauro de M S Saraiva
- Department of Pathology, Reproduction and One Health, School of Agriculture and Veterinarian Sciences, São Paulo State University, Via de Acesso Prof. Paulo Donato Castellane, s/n, CEP 14884-900 Jaboticabal, SP, Brazil
| | - Angelo Berchieri Junior
- Department of Pathology, Reproduction and One Health, School of Agriculture and Veterinarian Sciences, São Paulo State University, Via de Acesso Prof. Paulo Donato Castellane, s/n, CEP 14884-900 Jaboticabal, SP, Brazil
| | - Juliana Pfrimer Falcão
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. Prof. Dr. Zeferino Vaz, s/n, Campus da USP, CEP 14040-903 Ribeirão Preto, SP, Brazil
| |
Collapse
|
4
|
Giuliano CJ, Wei KJ, Harling FM, Waldman BS, Farringer MA, Boydston EA, Lan TCT, Thomas RW, Herneisen AL, Sanderlin AG, Coppens I, Dvorin JD, Lourido S. CRISPR-based functional profiling of the Toxoplasma gondii genome during acute murine infection. Nat Microbiol 2024; 9:2323-2343. [PMID: 38977907 PMCID: PMC11811839 DOI: 10.1038/s41564-024-01754-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/07/2024] [Indexed: 07/10/2024]
Abstract
Examining host-pathogen interactions in animals can capture aspects of infection that are obscured in cell culture. Using CRISPR-based screens, we functionally profile the entire genome of the apicomplexan parasite Toxoplasma gondii during murine infection. Barcoded gRNAs enabled bottleneck detection and mapping of population structures within parasite lineages. Over 300 genes with previously unknown roles in infection were found to modulate parasite fitness in mice. Candidates span multiple axes of host-parasite interaction. Rhoptry Apical Surface Protein 1 was characterized as a mediator of host-cell tropism that facilitates repeated invasion attempts. GTP cyclohydrolase I was also required for fitness in mice and druggable through a repurposed compound, 2,4-diamino-6-hydroxypyrimidine. This compound synergized with pyrimethamine against T. gondii and malaria-causing Plasmodium falciparum parasites. This work represents a complete survey of an apicomplexan genome during infection of an animal host and points to novel interfaces of host-parasite interaction.
Collapse
Affiliation(s)
| | - Kenneth J Wei
- Whitehead Institute, Cambridge, MA, USA
- Biology Department, MIT, Cambridge, MA, USA
| | | | - Benjamin S Waldman
- Whitehead Institute, Cambridge, MA, USA
- Biology Department, MIT, Cambridge, MA, USA
| | - Madeline A Farringer
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Biological Sciences in Public Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | | | - Raina W Thomas
- Whitehead Institute, Cambridge, MA, USA
- Biology Department, MIT, Cambridge, MA, USA
| | - Alice L Herneisen
- Whitehead Institute, Cambridge, MA, USA
- Biology Department, MIT, Cambridge, MA, USA
| | | | - Isabelle Coppens
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jeffrey D Dvorin
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Sebastian Lourido
- Whitehead Institute, Cambridge, MA, USA.
- Biology Department, MIT, Cambridge, MA, USA.
| |
Collapse
|
5
|
Mayo-Pérez S, Gama-Martínez Y, Dávila S, Rivera N, Hernández-Lucas I. LysR-type transcriptional regulators: state of the art. Crit Rev Microbiol 2024; 50:598-630. [PMID: 37635411 DOI: 10.1080/1040841x.2023.2247477] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 08/29/2023]
Abstract
The LysR-type transcriptional regulators (LTTRs) are DNA-binding proteins present in bacteria, archaea, and in algae. Knowledge about their distribution, abundance, evolution, structural organization, transcriptional regulation, fundamental roles in free life, pathogenesis, and bacteria-plant interaction has been generated. This review focuses on these aspects and provides a current picture of LTTR biology.
Collapse
Affiliation(s)
- S Mayo-Pérez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Y Gama-Martínez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - S Dávila
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - N Rivera
- IPN: CICATA, Unidad Morelos del Instituto Politécnico Nacional, Atlacholoaya, Mexico
| | - I Hernández-Lucas
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
6
|
Lv N, Ni J, Fang S, Liu Y, Wan S, Sun C, Li J, Zhou A. Potential Convergence to Accommodate Pathogenicity Determinants and Antibiotic Resistance Revealed in Salmonella Mbandaka. Microorganisms 2024; 12:1667. [PMID: 39203510 PMCID: PMC11357217 DOI: 10.3390/microorganisms12081667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/06/2024] [Accepted: 08/10/2024] [Indexed: 09/03/2024] Open
Abstract
Salmonella species are causal pathogens instrumental in human food-borne diseases. The pandemic survey related to multidrug resistant (MDR) Salmonella genomics enables the prevention and control of their dissemination. Currently, serotype Mbandaka is notorious as a multiple host-adapted non-typhoid Salmonella. However, its epidemic and MDR properties are still obscure, especially its genetic determinants accounting for virulence and MD resistance. Here, we aim to characterize the genetic features of a strain SMEH pertaining to Salmonella Mbandaka (S. Mbandaka), isolated from the patient's hydropericardium, using cell infections, a mouse model, antibiotic susceptibility test and comparative genomics. The antibiotic susceptibility testing showed that it could tolerate four antibiotics, including chloramphenicol, tetracycline, fisiopen and doxycycline by Kirby-Bauer (K-B) testing interpreted according to the Clinical and Laboratory Standards Institute (CLSI). Both the reproducibility in RAW 264.7 macrophages and invasion ability to infect HeLa cells with strain SMEH were higher than those of S. Typhimurium strain 14028S. In contrast, its attenuated virulence was determined in the survival assay using a mouse model. As a result, the candidate genetic determinants responsible for antimicrobial resistance, colonization/adaptability and their transferability were comparatively investigated, such as bacterial secretion systems and pathogenicity islands (SPI-1, SPI-2 and SPI-6). Moreover, collective efforts were made to reveal a potential role of the plasmid architectures in S. Mbandaka as the genetic reservoir to transfer or accommodate drug-resistance genes. Our findings highlight the essentiality of antibiotic resistance and risk assessment in S. Mbandaka. In addition, genomic surveillance is an efficient method to detect pathogens and monitor drug resistance. The genetic determinants accounting for virulence and antimicrobial resistance underscore the increasing clinical challenge of emerging MDR Mbandaka isolates, and provide insights into their prevention and treatment.
Collapse
Affiliation(s)
- Na Lv
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China; (N.L.); (S.F.); (S.W.); (C.S.)
- Department of Laboratory Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200123, China
| | - Jinjing Ni
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
| | - Shiqi Fang
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China; (N.L.); (S.F.); (S.W.); (C.S.)
| | - Yue Liu
- Department of Microbiology, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China;
| | - Shuang Wan
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China; (N.L.); (S.F.); (S.W.); (C.S.)
| | - Chao Sun
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China; (N.L.); (S.F.); (S.W.); (C.S.)
| | - Jun Li
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China; (N.L.); (S.F.); (S.W.); (C.S.)
| | - Aiping Zhou
- Department of Laboratory Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200123, China
| |
Collapse
|
7
|
Wang BX, Leshchiner D, Luo L, Tuncel M, Hokamp K, Hinton JCD, Monack DM. High-throughput fitness experiments reveal specific vulnerabilities of human-adapted Salmonella during stress and infection. Nat Genet 2024; 56:1288-1299. [PMID: 38831009 PMCID: PMC11176087 DOI: 10.1038/s41588-024-01779-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 04/25/2024] [Indexed: 06/05/2024]
Abstract
Salmonella enterica is comprised of genetically distinct 'serovars' that together provide an intriguing model for exploring the genetic basis of pathogen evolution. Although the genomes of numerous Salmonella isolates with broad variations in host range and human disease manifestations have been sequenced, the functional links between genetic and phenotypic differences among these serovars remain poorly understood. Here, we conduct high-throughput functional genomics on both generalist (Typhimurium) and human-restricted (Typhi and Paratyphi A) Salmonella at unprecedented scale in the study of this enteric pathogen. Using a comprehensive systems biology approach, we identify gene networks with serovar-specific fitness effects across 25 host-associated stresses encountered at key stages of human infection. By experimentally perturbing these networks, we characterize previously undescribed pseudogenes in human-adapted Salmonella. Overall, this work highlights specific vulnerabilities encoded within human-restricted Salmonella that are linked to the degradation of their genomes, shedding light into the evolution of this enteric pathogen.
Collapse
Affiliation(s)
- Benjamin X Wang
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Lijuan Luo
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Miles Tuncel
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Karsten Hokamp
- Department of Genetics, School of Genetics and Microbiology, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Jay C D Hinton
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Denise M Monack
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
8
|
Sun Y, Gao R, Liao X, Shen M, Chen X, Feng J, Ding T. Stress response of Salmonella Newport with various sequence types toward plasma-activated water: Viable but nonculturable state formation and outer membrane vesicle production. Curr Res Food Sci 2024; 8:100764. [PMID: 38779345 PMCID: PMC11109322 DOI: 10.1016/j.crfs.2024.100764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/29/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024] Open
Abstract
This study aims to investigate the response of Salmonella Newport to plasma-activated water (PAW), a novel disinfectant that attracts attention due to its broad-spectrum antimicrobial efficacy and eco-friendliness. In this work, we demonstrated that S. Newport of different sequence types (STs) could be induced into the viable but nonculturable (VBNC) state by PAW treatment. Notably, a remarkable 99.96% of S. Newport ST45 strain entered the VBNC state after a 12-min PAW treatment, which was the fastest observed among the five S. Newport STs (ST31, ST45, ST46, ST166, ST2364). Secretion of outer membrane vesicles was observed in ST45, suggesting a potential strategy against PAW treatment. Genes related to oxidative stress (sodA, katE, trxA), outer membrane proteins (ompA, ompC, ompD, ompF) and virulence (pagC, sipC, sopE2) were upregulated in the PAW-treated S. Newport, especially in ST45. A reduction of 38-65% in intracellular ATP level after PAW treatment was observed, indicating a contributor to the formation of the VBNC state. In addition, a rapid method for detecting the proportion of VBNC cells in food products based on pagC was established. This study contributes to understanding the formation mechanism of the VBNC state in S. Newport under PAW stress and offers insights for controlling microbial risks in the food industry.
Collapse
Affiliation(s)
- Yuhao Sun
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
- Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314100, China
| | - Rui Gao
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Xinyu Liao
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
- Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314100, China
| | - Mofei Shen
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Xiuqin Chen
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Jinsong Feng
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Tian Ding
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
- Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314100, China
| |
Collapse
|
9
|
Mani P, Priyadarsini S, K Channabasappa N, Sahoo PR, Singh R, Saxena M, Upmanyu V, Agrawal RK, Singh P, Saini M, Kumar A. Role of narL gene in the pathogenesis of Salmonella Typhimurium. J Basic Microbiol 2024; 64:e2300456. [PMID: 38059734 DOI: 10.1002/jobm.202300456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/03/2023] [Accepted: 11/01/2023] [Indexed: 12/08/2023]
Abstract
Salmonella Typhimurium (STM) is a facultative anaerobe and one of the causative agents of nontyphoidal salmonellosis (NTS). Its anaerobic metabolism is enabled under the hypoxic environment that is encountered inside macrophages and the gut lumen of the host. In both of these niches, free radicals and oxidative intermediates are released by neutrophils as an inflammatory response. These chemical species further undergo reactions to produce nitrate, which is preferably taken up by STM as an electron acceptor in the absence of oxygen. NarL, the response regulator of the two-component regulatory system NarX/L, and a transcription factor, gets activated under anaerobic nitrate-rich conditions and upregulates the nitrate reduction during anaerobic respiration of STM. To understand the role of NarL in the pathogenesis of STM, we generated a narL-knockout (STM:ΔnarL) as well as a narL-complemented strain of STM. Anaerobically, the mutant displayed no growth defect but a significant attenuation in the swimming (26%) and swarming (61%) motility, and biofilm-forming ability (73%) in vitro, while these morphotypes got rescued upon genetic complementation. We also observed a downregulation in the expression of genes associated with nitrate reduction (narG) and biofilm formation (csgA and csgD) in anaerobically grown STM:ΔnarL. As compared with wild STM, narL mutant exhibited a threefold reduction in the intracellular replication in both intestinal epithelial cells (INT- 407) and monocyte-derived macrophages of poultry origin. Further, in vivo competitive assay in the liver and spleen of the murine model showed a competitive index of 0.48 ± 0.58 and 0.403668 ± 0.32, respectively, for STM:ΔnarL.
Collapse
Affiliation(s)
- Pashupathi Mani
- Division of Biochemistry, Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | | | - Nikhil K Channabasappa
- Department of Veterinary Physiology and Biochemistry, College of Veterinary Science and Animal Husbandry, Rewa, NDVSU, India
| | - Pravas Ranjan Sahoo
- Division of Biochemistry, Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - Rohit Singh
- Division of Veterinary Pathology, Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - Meeta Saxena
- Division of Biochemistry, Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - Vikramaditya Upmanyu
- Division of Biological Standardization, Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - Ravi Kant Agrawal
- Division of Livestock Products Technology, Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - Praveen Singh
- Division of Biochemistry, Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - Mohini Saini
- Division of Biochemistry, Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - Ajay Kumar
- Division of Biochemistry, Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| |
Collapse
|
10
|
Oke MT, D’Costa VM. Functional Divergence of the Paralog Salmonella Effector Proteins SopD and SopD2 and Their Contributions to Infection. Int J Mol Sci 2024; 25:4191. [PMID: 38673776 PMCID: PMC11050076 DOI: 10.3390/ijms25084191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/05/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Salmonella enterica is a leading cause of bacterial food-borne illness in humans and is responsible for millions of cases annually. A critical strategy for the survival of this pathogen is the translocation of bacterial virulence factors termed effectors into host cells, which primarily function via protein-protein interactions with host proteins. The Salmonella genome encodes several paralogous effectors believed to have arisen from duplication events throughout the course of evolution. These paralogs can share structural similarities and enzymatic activities but have also demonstrated divergence in host cell targets or interaction partners and contributions to the intracellular lifecycle of Salmonella. The paralog effectors SopD and SopD2 share 63% amino acid sequence similarity and extensive structural homology yet have demonstrated divergence in secretion kinetics, intracellular localization, host targets, and roles in infection. SopD and SopD2 target host Rab GTPases, which represent critical regulators of intracellular trafficking that mediate diverse cellular functions. While SopD and SopD2 both manipulate Rab function, these paralogs display differences in Rab specificity, and the effectors have also evolved multiple mechanisms of action for GTPase manipulation. Here, we highlight this intriguing pair of paralog effectors in the context of host-pathogen interactions and discuss how this research has presented valuable insights into effector evolution.
Collapse
Affiliation(s)
- Mosopefoluwa T. Oke
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Vanessa M. D’Costa
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
11
|
Neuber J, Lang C, Aurass P, Flieger A. Tools and mechanisms of vacuolar escape leading to host egress in Legionella pneumophila infection: Emphasis on bacterial phospholipases. Mol Microbiol 2024; 121:368-384. [PMID: 37891705 DOI: 10.1111/mmi.15183] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/29/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023]
Abstract
The phenomenon of host cell escape exhibited by intracellular pathogens is a remarkably versatile occurrence, capable of unfolding through lytic or non-lytic pathways. Among these pathogens, the bacterium Legionella pneumophila stands out, having adopted a diverse spectrum of strategies to disengage from their host cells. A pivotal juncture that predates most of these host cell escape modalities is the initial escape from the intracellular compartment. This critical step is increasingly supported by evidence suggesting the involvement of several secreted pathogen effectors, including lytic proteins. In this intricate landscape, L. pneumophila emerges as a focal point for research, particularly concerning secreted phospholipases. While nestled within its replicative vacuole, the bacterium deftly employs both its type II (Lsp) and type IVB (Dot/Icm) secretion systems to convey phospholipases into either the phagosomal lumen or the host cell cytoplasm. Its repertoire encompasses numerous phospholipases A (PLA), including three enzymes-PlaA, PlaC, and PlaD-bearing the GDSL motif. Additionally, there are 11 patatin-like phospholipases A as well as PlaB. Furthermore, the bacterium harbors three extracellular phospholipases C (PLCs) and one phospholipase D. Within this comprehensive review, we undertake an exploration of the pivotal role played by phospholipases in the broader context of phagosomal and host cell egress. Moreover, we embark on a detailed journey to unravel the established and potential functions of the secreted phospholipases of L. pneumophila in orchestrating this indispensable process.
Collapse
Affiliation(s)
- Jonathan Neuber
- Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany
| | - Christina Lang
- Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany
| | - Philipp Aurass
- Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany
| | - Antje Flieger
- Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany
| |
Collapse
|
12
|
Chowdhury AR, Mukherjee D, Chatterjee R, Chakravortty D. Defying the odds: Determinants of the antimicrobial response of Salmonella Typhi and their interplay. Mol Microbiol 2024; 121:213-229. [PMID: 38071466 DOI: 10.1111/mmi.15209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/12/2023] [Accepted: 11/27/2023] [Indexed: 02/12/2024]
Abstract
Salmonella Typhi, the invasive serovar of S. enterica subspecies enterica, causes typhoid fever in healthy human hosts. The emergence of antibiotic-resistant strains has consistently challenged the successful treatment of typhoid fever with conventional antibiotics. Antimicrobial resistance (AMR) in Salmonella is acquired either by mutations in the genomic DNA or by acquiring extrachromosomal DNA via horizontal gene transfer. In addition, Salmonella can form a subpopulation of antibiotic persistent (AP) cells that can survive at high concentrations of antibiotics. These have reduced the effectiveness of the first and second lines of antibiotics used to treat Salmonella infection. The recurrent and chronic carriage of S. Typhi in human hosts further complicates the treatment process, as a remarkable shift in the immune response from pro-inflammatory Th1 to anti-inflammatory Th2 is observed. Recent studies have also highlighted the overlap between AP, persistent infection (PI) and AMR. These incidents have revealed several areas of research. In this review, we have put forward a timeline for the evolution of antibiotic resistance in Salmonella and discussed the different mechanisms of the same availed by the pathogen at the genotypic and phenotypic levels. Further, we have presented a detailed discussion on Salmonella antibiotic persistence (AP), PI, the host and bacterial virulence factors that can influence PI, and how both AP and PI can lead to AMR.
Collapse
Affiliation(s)
- Atish Roy Chowdhury
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Debapriya Mukherjee
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Ritika Chatterjee
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, India
| |
Collapse
|
13
|
Felsl A, Brokatzky D, Kröger C, Heermann R, Fuchs TM. Hierarchic regulation of a metabolic pathway: H-NS, CRP, and SsrB control myo-inositol utilization by Salmonella enterica. Microbiol Spectr 2024; 12:e0272423. [PMID: 38095474 PMCID: PMC10783015 DOI: 10.1128/spectrum.02724-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/07/2023] [Indexed: 01/13/2024] Open
Abstract
IMPORTANCE The capacity to utilize myo-inositol (MI) as sole carbon and energy source is widespread among bacteria, among them the intestinal pathogen S. Typhimurium. This study elucidates the complex and hierarchical regulation that underlies the utilization of MI by S. Typhimurium under substrate limitation. A total of seven regulatory factors have been identified so far, allowing the pathogen an environment-dependent, efficient, and fine-tuned regulation of a metabolic property that provides growth advantages in different environments.
Collapse
Affiliation(s)
- Angela Felsl
- Lehrstuhl für Mikrobielle Ökologie, ZIEL-Institute for Food and Health, School of Life Science, Technische Universität München, Freising, Germany
| | - Dominik Brokatzky
- Lehrstuhl für Mikrobielle Ökologie, ZIEL-Institute for Food and Health, School of Life Science, Technische Universität München, Freising, Germany
| | - Carsten Kröger
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Ralf Heermann
- Johannes Gutenberg University Mainz, Institute of Molecular Physiology (imP), Biocenter II, Microbiology and Biotechnology, Mainz, Germany
| | - Thilo M. Fuchs
- Lehrstuhl für Mikrobielle Ökologie, ZIEL-Institute for Food and Health, School of Life Science, Technische Universität München, Freising, Germany
- Friedrich-Loeffler-Institut, Institute of Molecular Pathogenesis, Jena, Germany
| |
Collapse
|
14
|
Hajra D, Nair AV, Chakravortty D. Decoding the invasive nature of a tropical pathogen of concern: The invasive non-Typhoidal Salmonella strains causing host-restricted extraintestinal infections worldwide. Microbiol Res 2023; 277:127488. [PMID: 37716125 DOI: 10.1016/j.micres.2023.127488] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 09/18/2023]
Abstract
Invasive-Non-Typhoidal Salmonella (iNTS) are the major cause of health concern in the low-income, under-developed nations in Africa and Asia that lack proper sanitation facilities. Around 5% of the NTS cases give rise to invasive, extraintestinal diseases leading to focal infections like osteomyelitis, meningitis, osteoarthritis, endocarditis and neonatal sepsis. iNTS serovars like S. Typhimurium, S. Enteritidis, S. Dublin, S. Choleraesuis show a greater propensity to become invasive than others which hints at the genetic basis of their emergence. The major risk factors attributing to the invasive diseases include immune-compromised individuals having co-infection with malaria or HIV, or suffering from malnutrition. The rampant use of antibiotics leading to the emergence of multi-drug resistant strains poses a great challenge in disease management. An extensive understanding of the iNTS pathogenesis and its epidemiology will open up avenues for the development of new vaccination and therapeutic strategies to restrict the spread of this neglected disease.
Collapse
Affiliation(s)
- Dipasree Hajra
- Department of Microbiology & Cell Biology, Indian Institute of Science, India
| | - Abhilash Vijay Nair
- Department of Microbiology & Cell Biology, Indian Institute of Science, India
| | | |
Collapse
|
15
|
Worley MJ. Salmonella Bloodstream Infections. Trop Med Infect Dis 2023; 8:487. [PMID: 37999606 PMCID: PMC10675298 DOI: 10.3390/tropicalmed8110487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/25/2023] Open
Abstract
Salmonella is a major foodborne pathogen of both animals and humans. This bacterium is responsible for considerable morbidity and mortality world-wide. Different serovars of this genus cause diseases ranging from self-limiting gastroenteritis to a potentially fatal systemic disease known as enteric fever. Gastrointestinal infections with Salmonella are usually self-limiting and rarely require medical intervention. Bloodstream infections, on the other hand, are often fatal even with hospitalization. This review describes the routes and underlying mechanisms of the extraintestinal dissemination of Salmonella and the chronic infections that sometimes result. It includes information on the pathogenicity islands and individual virulence factors involved in systemic dissemination as well as a discussion of the host factors that mediate susceptibility. Also, the major outbreaks of invasive Salmonella disease in the tropics are described.
Collapse
Affiliation(s)
- Micah J Worley
- Department of Biology, University of Louisville, Louisville, KY 40292, USA
| |
Collapse
|
16
|
Abstract
The pathogen Salmonella enterica encompasses a range of bacterial serovars that cause intestinal inflammation and systemic infections in humans. Mice are a widely used infection model due to their relative simplicity and versatility. Here, we provide standardized protocols for culturing the prolific zoonotic pathogen S. enterica serovar Typhimurium for intragastric inoculation of mice to model colitis or systemic dissemination, along with techniques for direct extraintestinal infection. Furthermore, we present procedures for quantifying pathogen burden and for characterizing the immune response by analyzing tissue pathology, inflammatory markers, and immune cells from intestinal tissues. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Murine colitis model utilizing oral streptomycin pretreatment and oral S. Typhimurium administration Basic Protocol 2: Intraperitoneal injection of S. Typhimurium for modeling extraintestinal infection Support Protocol 1: Preparation of S. Typhimurium inoculum Support Protocol 2: Preparation of mixed S. Typhimurium inoculum for competitive infection Basic Protocol 3: Assessment of S. Typhimurium burden Support Protocol 3: Preservation and pathological assessment of S. Typhimurium-infected tissues Support Protocol 4: Measurement of inflammatory marker expression in intestinal tissues by qPCR Support Protocol 5: Preparation of intestinal content for inflammatory marker quantification by ELISA Support Protocol 6: Immune cell isolation from Salmonella-infected intestinal tissues.
Collapse
Affiliation(s)
- Gregory T. Walker
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Romana R. Gerner
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
- Technical University Munich, TUM School of Life Sciences Weihenstephan, ZIEL – Institute for Food & Health, Freising, Germany
- Department of Internal Medicine III, School of Medicine, University Hospital rechts der Isar, Technical University of Munich, Munich, Germany
| | - Sean-Paul Nuccio
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Manuela Raffatellu
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA 92093, USA
- Chiba University-UC San Diego Center for Mucosal Immunology, Allergy, and Vaccines (CU-UCSD cMAV), La Jolla, CA 92093, USA
| |
Collapse
|
17
|
Fei X, Li Q, Jiao X, Olsen JE. Identification of Salmonella Pullorum Factors Affecting Immune Reaction in Macrophages from the Avian Host. Microbiol Spectr 2023; 11:e0078623. [PMID: 37191575 PMCID: PMC10269470 DOI: 10.1128/spectrum.00786-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/04/2023] [Indexed: 05/17/2023] Open
Abstract
The host-specific Salmonella serovar S. Pullorum (SP) modulates the chicken immune response to a Th2-biased response associated with persistent infection. This is different from the Th1-biased immune response induced by the genetically close serovar, S. Enteritidis (SE). Based on core genome differences between SP and SE, we used three complementary bioinformatics approaches to identify SP genes, which may be important for stimulation of the immune response. Defined mutants were constructed in selected genes, and the infection potential and ability of mutants to stimulate cytokine production in avian derived HD11 macrophages were determined. Deletion of large genomic regions unique to SP did not change infection potential nor immune stimulation significantly. Mutants in genes with conserved single nucleotide polymorphisms (SNPs) between the two serovars in the region 100 bp upstream of the start codon (conserved upstream SNPs [CuSNPs]) such as sseE, osmB, tolQ, a putative immune antigen, and a putative persistent infection factor, exhibited differences in induction of inflammatory cytokines compared to wild-type SP, suggesting a possible role of these CuSNPs in immune regulation. Single nucleotide SP mutants correcting for the CuSNP difference were constructed in the upstream region of sifA and pipA. The SNP corrected pipA mutant expressed pipA at a higher level than the wild-type SP strain, and the mutant differentially caused upregulation of proinflammatory cytokines. It suggests that this CuSNP is important for the suppression of proinflammatory responses. In conclusion, this study has identified putative immune stimulating factors of relevance to the difference in infection dynamics between SP and SE in avian macrophages. IMPORTANCE Salmonella Pullorum is host specific to avian species, where it causes life-threatening infection in young birds. It is unknown why it is host restricted and causes systemic disease, rather than gastroenteritis normally seen with Salmonella. In the present study, we identified genes and single nucleotide polymorphisms (SNPs; relative to the broad-host-range type Salmonella Enteritidis), which affected survival and immune induction in macrophages from hens suggesting a role in development of the host specific infection. Further studies of such genes may enable understanding of which genetic factors determine the development of host specific infection by S. Pullorum. In this study, we developed an in silico approach to predict candidate genes and SNPs for development of the host-specific infection and the specific induction of immunity associated with this infection. This study flow can be used in similar studies in other clades of bacteria.
Collapse
Affiliation(s)
- Xiao Fei
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, People’s Republic of China
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Qiuchun Li
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, People’s Republic of China
| | - Xinan Jiao
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, People’s Republic of China
| | - John Elmerdahl Olsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
18
|
Ehrhardt K, Becker AL, Grassl GA. Determinants of persistent Salmonella infections. Curr Opin Immunol 2023; 82:102306. [PMID: 36989589 DOI: 10.1016/j.coi.2023.102306] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/29/2023]
Abstract
Persistent bacterial infections constitute an enormous challenge for public health. Amongst infections with other bacteria, infections with typhoidal and nontyphoidal Salmonella enterica serovars can result in long-term infections of the human and animal host. Persistent infections that are asymptomatic are difficult to identify and thus can serve as a silent reservoir for transmission. Symptomatic persistent infections are often difficult to treat as they harbor a combination of antibiotic-tolerant and antibiotic-resistant bacteria and boost the spread of genetic antibiotic resistance. In the last couple of years, the field has made some major progress in understanding the role of persisters, their reservoirs as well as their interplay with host factors in persistent Salmonella infections.
Collapse
|
19
|
Guo Y, Gu D, Huang T, Li A, Zhou Y, Kang X, Meng C, Xiong D, Song L, Jiao X, Pan Z. Salmonella Enteritidis T1SS protein SiiD inhibits NLRP3 inflammasome activation via repressing the mtROS-ASC dependent pathway. PLoS Pathog 2023; 19:e1011381. [PMID: 37155697 DOI: 10.1371/journal.ppat.1011381] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 05/18/2023] [Accepted: 04/24/2023] [Indexed: 05/10/2023] Open
Abstract
Inflammasome activation is an essential innate immune defense mechanism against Salmonella infections. Salmonella has developed multiple strategies to avoid or delay inflammasome activation, which may be required for long-term bacterial persistence. However, the mechanisms by which Salmonella evades host immune defenses are still not well understood. In this study, Salmonella Enteritidis (SE) random insertion transposon library was screened to identify the key factors that affect the inflammasome activation. The type I secretion system (T1SS) protein SiiD was demonstrated to repress the NLRP3 inflammasome activation during SE infection and was the first to reveal the antagonistic role of T1SS in the inflammasome pathway. SiiD was translocated into host cells and localized in the membrane fraction in a T1SS-dependent and partially T3SS-1-dependent way during SE infection. Subsequently, SiiD was demonstrated to significantly suppress the generation of mitochondrial reactive oxygen species (mtROS), thus repressing ASC oligomerization to form pyroptosomes, and impairing the NLRP3 dependent Caspase-1 activation and IL-1β secretion. Importantly, SiiD-deficient SE induced stronger gut inflammation in mice and displayed NLRP3-dependent attenuation of the virulence. SiiD-mediated inhibition of NLRP3 inflammasome activation significantly contributed to SE colonization in the infected mice. This study links bacterial T1SS regulation of mtROS-ASC signaling to NLRP3 inflammasome activation and reveals the essential role of T1SS in evading host immune responses.
Collapse
Affiliation(s)
- Yaxin Guo
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of A griculture of China, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Jiangsu, China
- School of Nursing School of Public Health, Yangzhou University, Jiangsu, China
| | - Dan Gu
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of A griculture of China, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Jiangsu, China
| | - Tingting Huang
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of A griculture of China, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Jiangsu, China
| | - Ang Li
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of A griculture of China, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Jiangsu, China
| | - Yi Zhou
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of A griculture of China, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Jiangsu, China
| | - Xilong Kang
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of A griculture of China, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Jiangsu, China
| | - Chuang Meng
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of A griculture of China, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Jiangsu, China
| | - Dan Xiong
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of A griculture of China, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Jiangsu, China
| | - Li Song
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of A griculture of China, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Jiangsu, China
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of A griculture of China, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Jiangsu, China
| | - Zhiming Pan
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of A griculture of China, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Jiangsu, China
| |
Collapse
|
20
|
Jafari Najaf Abadi MH, Abyaneh FA, Zare N, Zamani J, Abdoli A, Aslanbeigi F, Hamblin MR, Tarrahimofrad H, Rahimi M, Hashemian SM, Mirzaei H. In silico design and immunoinformatics analysis of a chimeric vaccine construct based on Salmonella pathogenesis factors. Microb Pathog 2023; 180:106130. [PMID: 37121524 DOI: 10.1016/j.micpath.2023.106130] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/02/2023]
Abstract
Currently, there are two vaccines based on killed and/or weakened Salmonella bacteria, but no recombinant vaccine is available for preventing or treating the disease. We used an in silico approach to design a multi-epitope vaccine against Salmonella using OmpA, OmpS, SopB, SseB, SthA and FilC antigens. We predicted helper T lymphocyte, cytotoxic T lymphocyte, and IFN-γ epitopes. The FilC sequence was used as a bovine TLR5 agonist, and the linkers KK, AAY, GPGPG and EAAAK were used to connect epitopes. The final sequence consisted of 747 amino acid residues, and the expressed soluble protein (∼79.6 kDa) was predicted to be both non-allergenic and antigenic. The tertiary structure of modeled protein was refined and validated, and the interactions of vaccine 3D structure were evaluated using molecular docking, and molecular dynamics simulation (RMSD, RMSF and Gyration). This structurally stable protein could interact with human TLR5. The C-ImmSim server predicted that this proposed vaccine likely induces an immune response by stimulating T and B cells, making it a potential candidate for further evaluation for the prevention and treatment of Salmonella infection.
Collapse
Affiliation(s)
| | | | - Noushid Zare
- Faculty of Pharmacy, International Campus, Tehran University of Medical Science, Tehran, Iran
| | - Javad Zamani
- Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Amirhossein Abdoli
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Aslanbeigi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa
| | - Hossein Tarrahimofrad
- Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| | - Mohammadreza Rahimi
- Infectious Diseases Research Center, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
| | - Seyed Mohammadreza Hashemian
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Disease, Shahid Beheshti University of Medical Sciences, Tehran, 1983535511, Iran.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
21
|
Ruddle SJ, Massis LM, Cutter AC, Monack DM. Salmonella-liberated dietary L-arabinose promotes expansion in superspreaders. Cell Host Microbe 2023; 31:405-417.e5. [PMID: 36812913 PMCID: PMC10016319 DOI: 10.1016/j.chom.2023.01.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 12/23/2022] [Accepted: 01/27/2023] [Indexed: 02/24/2023]
Abstract
The molecular understanding of host-pathogen interactions in the gastrointestinal (GI) tract of superspreader hosts is incomplete. In a mouse model of chronic, asymptomatic Salmonella enterica serovar Typhimurium (S. Tm) infection, we performed untargeted metabolomics on the feces of mice and found that superspreader hosts possess distinct metabolic signatures compared with non-superspreaders, including differential levels of L-arabinose. RNA-seq on S. Tm from superspreader fecal samples showed increased expression of the L-arabinose catabolism pathway in vivo. By combining bacterial genetics and diet manipulation, we demonstrate that diet-derived L-arabinose provides S. Tm a competitive advantage in the GI tract, and expansion of S. Tm in the GI tract requires an alpha-N-arabinofuranosidase that liberates L-arabinose from dietary polysaccharides. Ultimately, our work shows that pathogen-liberated L-arabinose from the diet provides a competitive advantage to S. Tm in vivo. These findings propose L-arabinose as a critical driver of S. Tm expansion in the GI tracts of superspreader hosts.
Collapse
Affiliation(s)
- Sarah J Ruddle
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Liliana M Massis
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alyssa C Cutter
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Denise M Monack
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
22
|
Giuliano CJ, Wei KJ, Harling FM, Waldman BS, Farringer MA, Boydston EA, Lan TCT, Thomas RW, Herneisen AL, Sanderlin AG, Coppens I, Dvorin JD, Lourido S. Functional profiling of the Toxoplasma genome during acute mouse infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.05.531216. [PMID: 36945434 PMCID: PMC10028831 DOI: 10.1101/2023.03.05.531216] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Within a host, pathogens encounter a diverse and changing landscape of cell types, nutrients, and immune responses. Examining host-pathogen interactions in animal models can therefore reveal aspects of infection absent from cell culture. We use CRISPR-based screens to functionally profile the entire genome of the model apicomplexan parasite Toxoplasma gondii during mouse infection. Barcoded gRNAs were used to track mutant parasite lineages, enabling detection of bottlenecks and mapping of population structures. We uncovered over 300 genes that modulate parasite fitness in mice with previously unknown roles in infection. These candidates span multiple axes of host-parasite interaction, including determinants of tropism, host organelle remodeling, and metabolic rewiring. We mechanistically characterized three novel candidates, including GTP cyclohydrolase I, against which a small-molecule inhibitor could be repurposed as an antiparasitic compound. This compound exhibited antiparasitic activity against T. gondii and Plasmodium falciparum, the most lethal agent of malaria. Taken together, we present the first complete survey of an apicomplexan genome during infection of an animal host, and point to novel interfaces of host-parasite interaction that may offer new avenues for treatment.
Collapse
Affiliation(s)
| | - Kenneth J. Wei
- Whitehead Institute, Cambridge, MA
- Biology Department, MIT, Cambridge, MA
| | - Faye M. Harling
- Whitehead Institute, Cambridge, MA
- Biology Department, MIT, Cambridge, MA
| | | | - Madeline A. Farringer
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, Massachusetts, USA
- Biological Sciences in Public Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | | | | | - Raina W. Thomas
- Whitehead Institute, Cambridge, MA
- Biology Department, MIT, Cambridge, MA
| | - Alice L. Herneisen
- Whitehead Institute, Cambridge, MA
- Biology Department, MIT, Cambridge, MA
| | | | - Isabelle Coppens
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD
| | - Jeffrey D. Dvorin
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Sebastian Lourido
- Whitehead Institute, Cambridge, MA
- Biology Department, MIT, Cambridge, MA
| |
Collapse
|
23
|
Abstract
The major function of the mammalian immune system is to prevent and control infections caused by enteropathogens that collectively have altered human destiny. In fact, as the gastrointestinal tissues are the major interface of mammals with the environment, up to 70% of the human immune system is dedicated to patrolling them The defenses are multi-tiered and include the endogenous microflora that mediate colonization resistance as well as physical barriers intended to compartmentalize infections. The gastrointestinal tract and associated lymphoid tissue are also protected by sophisticated interleaved arrays of active innate and adaptive immune defenses. Remarkably, some bacterial enteropathogens have acquired an arsenal of virulence factors with which they neutralize all these formidable barriers to infection, causing disease ranging from mild self-limiting gastroenteritis to in some cases devastating human disease.
Collapse
Affiliation(s)
- Micah J. Worley
- Department of Biology, University of Louisville, Louisville, Kentucky, USA,CONTACT Micah J. Worley Department of Biology, University of Louisville, 139 Life Sciences Bldg, Louisville, Kentucky, USA
| |
Collapse
|
24
|
The Mobilizable Plasmid P3 of Salmonella enterica Serovar Typhimurium SL1344 Depends on the P2 Plasmid for Conjugative Transfer into a Broad Range of Bacteria In Vitro and In Vivo. J Bacteriol 2022; 204:e0034722. [PMID: 36383016 PMCID: PMC9765291 DOI: 10.1128/jb.00347-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The global rise of drug-resistant bacteria is of great concern. Conjugative transfer of antibiotic resistance plasmids contributes to the emerging resistance crisis. Despite substantial progress in understanding the molecular basis of conjugation in vitro, the in vivo dynamics of intra- and interspecies conjugative plasmid transfer are much less understood. In this study, we focused on the streptomycin resistance-encoding mobilizable plasmid pRSF1010SL1344 (P3) of Salmonella enterica serovar Typhimurium strain SL1344. We show that P3 is mobilized by interacting with the conjugation machinery of the conjugative plasmid pCol1B9SL1344 (P2) of SL1344. Thereby, P3 can be transferred into a broad range of relevant environmental and clinical bacterial isolates in vitro and in vivo. Our data suggest that S. Typhimurium persisters in host tissues can serve as P3 reservoirs and foster transfer of both P2 and P3 once they reseed the gut lumen. This adds to our understanding of resistance plasmid transfer in ecologically relevant niches, including the mammalian gut. IMPORTANCE S. Typhimurium is a globally abundant bacterial species that rapidly occupies new niches and survives unstable environmental conditions. As an enteric pathogen, S. Typhimurium interacts with a broad range of bacterial species residing in the mammalian gut. High abundance of bacteria in the gut lumen facilitates conjugation and spread of plasmid-carried antibiotic resistance genes. By studying the transfer dynamics of the P3 plasmid in vitro and in vivo, we illustrate the impact of S. Typhimurium-mediated antibiotic resistance spread via conjugation to relevant environmental and clinical bacterial isolates. Plasmids are among the most critical vehicles driving antibiotic resistance spread. Further understanding of the dynamics and drivers of antibiotic resistance transfer is needed to develop effective solutions for slowing down the emerging threat of multidrug-resistant bacterial pathogens.
Collapse
|
25
|
Newson JP, Gaissmaier MS, McHugh SC, Hardt WD. Studying antibiotic persistence in vivo using the model organism Salmonella Typhimurium. Curr Opin Microbiol 2022; 70:102224. [PMID: 36335713 DOI: 10.1016/j.mib.2022.102224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/22/2022] [Accepted: 10/02/2022] [Indexed: 11/06/2022]
Abstract
Antibiotic persistence permits a subpopulation of susceptible bacteria to survive lethal concentrations of bactericidal antibiotics. This prolongs antibiotic therapy, promotes the evolution of antibiotic-resistant pathogen strains and can select for pathogen virulence within infected hosts. Here, we review the literature exploring antibiotic persistence in vivo, and describe the consequences of recalcitrant subpopulations, with a focus on studies using the model pathogen Salmonella Typhimurium. In vitro studies have established a concise set of features distinguishing true persisters from other forms of bacterial recalcitrance to bactericidal antibiotics. We discuss how animal infection models are useful for exploring these features in vivo, and describe how technical challenges can sometimes prevent the conclusive identification of true antibiotic persistence within infected hosts. We propose using two complementary working definitions for studying antibiotic persistence in vivo: the strict definition for studying the mechanisms of persister formation, and an operative definition for functional studies assessing the links between invasive virulence and persistence as well as the consequences for horizontal gene transfer, or the emergence of antibiotic-resistant mutants. This operative definition will enable further study of how antibiotic persisters arise in vivo, and of how surviving populations contribute to diverse downstream effects such as pathogen transmission, horizontal gene transfer and the evolution of virulence and antibiotic resistance. Ultimately, such studies will help to improve therapeutic control of antibiotic- recalcitrant populations.
Collapse
Affiliation(s)
- Joshua Pm Newson
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Marla S Gaissmaier
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Sarah C McHugh
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Wolf-Dietrich Hardt
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
26
|
Naseer N, Zhang J, Bauer R, Constant DA, Nice TJ, Brodsky IE, Rauch I, Shin S. Salmonella enterica Serovar Typhimurium Induces NAIP/NLRC4- and NLRP3/ASC-Independent, Caspase-4-Dependent Inflammasome Activation in Human Intestinal Epithelial Cells. Infect Immun 2022; 90:e0066321. [PMID: 35678562 PMCID: PMC9302179 DOI: 10.1128/iai.00663-21] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 05/23/2022] [Indexed: 01/09/2023] Open
Abstract
Salmonella enterica serovar Typhimurium is a Gram-negative pathogen that causes diseases ranging from gastroenteritis to systemic infection and sepsis. Salmonella uses type III secretion systems (T3SS) to inject effectors into host cells. While these effectors are necessary for bacterial invasion and intracellular survival, intracellular delivery of T3SS products also enables detection of translocated Salmonella ligands by cytosolic immune sensors. Some of these sensors form multimeric complexes called inflammasomes, which activate caspases that lead to interleukin-1 (IL-1) family cytokine release and pyroptosis. In particular, the Salmonella T3SS needle, inner rod, and flagellin proteins activate the NAIP/NLRC4 inflammasome in murine intestinal epithelial cells (IECs), which leads to restriction of bacterial replication and extrusion of infected IECs into the intestinal lumen, thereby preventing systemic dissemination of Salmonella. While these processes are quite well studied in mice, the role of the NAIP/NLRC4 inflammasome in human IECs remains unknown. Unexpectedly, we found the NAIP/NLRC4 inflammasome is dispensable for early inflammasome responses to Salmonella in both human IEC lines and enteroids. Additionally, NLRP3 and the adaptor protein ASC are not required for inflammasome activation in Caco-2 cells. Instead, we observed a necessity for caspase-4 and gasdermin D pore-forming activity in mediating inflammasome responses to Salmonella in Caco-2 cells. These findings suggest that unlike murine IECs, human IECs do not rely on NAIP/NLRC4 or NLRP3/ASC inflammasomes and instead primarily use caspase-4 to mediate inflammasome responses to Salmonella pathogenicity island 1 (SPI-1)-expressing Salmonella.
Collapse
Affiliation(s)
- Nawar Naseer
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jenna Zhang
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Renate Bauer
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, USA
- Department of Biosciences, Paris Lodron University of Salzburg, Salzburg, Austria
| | - David A. Constant
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, USA
| | - Timothy J. Nice
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, USA
| | - Igor E. Brodsky
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, USA
| | - Isabella Rauch
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, USA
| | - Sunny Shin
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
27
|
Liu Z, Wang L, Yu Y, Fotin A, Wang Q, Gao P, Zhang Y, Fotina T, Ma J. SteE Enhances the Virulence of Salmonella Pullorum in Chickens by Regulating the Inflammation Response. Front Vet Sci 2022; 9:926505. [PMID: 35909683 PMCID: PMC9330158 DOI: 10.3389/fvets.2022.926505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/16/2022] [Indexed: 11/18/2022] Open
Abstract
Salmonella enterica serovar Pullorum (S. Pullorum) is a host-specific pathogen, which causes acute gastroenteritis with high mortality in poultry. However, the association between steE, encoded by type III secretion system 2, and Salmonella virulence is not well-understood. To elucidate the functions of steE in S. Pullorum, ΔsteE strain was constructed using the λ-Red recombination technology. Compared to that in the wild-type, the deletion of steE in S. Pullorum reduced bacterial invasion, proliferation, and late apoptosis in the infected HD-11 cells. In addition, we analyzed the mRNA expression levels of effector genes and cytokines by qRT-PCR. SteE was associated with the regulation of various effector genes and inflammatory cytokines in HD-11 cells during S. Pullorum infection. The wild-type effector steE promoted the expression of anti-inflammatory cytokines (IL-4 and IL-10) and reduced that of pro-inflammatory cytokines (IL-1β, IL-6, and IL-12) compared to that in the ΔsteE-infected HD-11 cells and chicken spleens. Results from the chicken infection model showed that the deletion of steE resulted in significantly decreased colonization and long-term survival of the bacteria and alleviated pathological lesions compared to those in the wild-type. Further, steE increased the virulence of S. Pullorum in chickens by regulating the expression of inflammatory cytokines. Our findings provide insights into the persistent infection and autoimmunity associated with steE in S. Pullorum.
Collapse
Affiliation(s)
- Zhike Liu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
- Faculty of Veterinary Medicine, Sumy National Agrarian University, Sumy, Ukraine
| | - Li Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Yan Yu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Anatoliy Fotin
- Faculty of Veterinary Medicine, Sumy National Agrarian University, Sumy, Ukraine
| | - Qiuxia Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Pei Gao
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Yanhong Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Tetiana Fotina
- Faculty of Veterinary Medicine, Sumy National Agrarian University, Sumy, Ukraine
- *Correspondence: Tetiana Fotina
| | - Jinyou Ma
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
- Jinyou Ma
| |
Collapse
|
28
|
Salmonella Enteritidis GalE Protein Inhibits LPS-Induced NLRP3 Inflammasome Activation. Microorganisms 2022; 10:microorganisms10050911. [PMID: 35630356 PMCID: PMC9145252 DOI: 10.3390/microorganisms10050911] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/23/2022] [Accepted: 04/24/2022] [Indexed: 02/01/2023] Open
Abstract
Microbial infection can trigger the assembly of inflammasomes and promote secretion of cytokines, such as IL-1β and IL-18. It is well-known that Salmonella modulates the activation of NLRC4 (NLR family CARD domain-containing protein 4) and NLRP3 (NLR family pyrin domain-containing 3) inflammasomes, however the mechanisms whereby Salmonella avoids or delays inflammasome activation remain largely unknown. Therefore, we used Salmonella Enteritidis C50336ΔfliC transposon library to screen for genes involved in modulating inflammasomes activation. The screen revealed the galactose metabolism-related gene galE to be essential for inflammasome activation. Here, we found that inflammasome activation was significantly increased in J774A.1 cells or wild-type bone marrow-derived macrophages (BMDMs) during infection by ΔfliCΔgalE compared to cells infected with ΔfliC. Importantly, we found that secretion of IL-1β was Caspase-1-dependent, consistent with canonical NLRP3 inflammasome activation. Furthermore, the virulence of ΔfliCΔgalE was significantly decreased compared to ΔfliC in a mouse model. Finally, RNA-seq analysis showed that multiple signaling pathways related to the inflammasome were subject to regulation by GalE. Taken together, our results suggest that GalE plays an important role in the regulatory network of Salmonella evasion of inflammasome activation.
Collapse
|
29
|
Grzymajlo K. The Game for Three: Salmonella–Host–Microbiota Interaction Models. Front Microbiol 2022; 13:854112. [PMID: 35516427 PMCID: PMC9062650 DOI: 10.3389/fmicb.2022.854112] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/11/2022] [Indexed: 11/16/2022] Open
Abstract
Colonization of the gastrointestinal (GI) tract by enteric pathogens occurs in a context strongly determined by host-specific gut microbiota, which can significantly affect the outcome of infection. The complex gameplay between the trillions of microbes that inhabit the GI tract, the host, and the infecting pathogen defines a specific triangle of interaction; therefore, a complete model of infection should consider all of these elements. Many different infection models have been developed to explain the complexity of these interactions. This review sheds light on current knowledge, along with the strengths and limitations of in vitro and in vivo models utilized in the study of Salmonella–host–microbiome interactions. These models range from the simplest experiment simulating environmental conditions using dedicated growth media through in vitro interaction with cell lines and 3-D organoid structure, and sophisticated “gut on a chip” systems, ending in various animal models. Finally, the challenges facing this field of research and the important future directions are outlined.
Collapse
|
30
|
Balasubramanian D, López-Pérez M, Grant TA, Ogbunugafor CB, Almagro-Moreno S. Molecular mechanisms and drivers of pathogen emergence. Trends Microbiol 2022; 30:898-911. [DOI: 10.1016/j.tim.2022.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 02/05/2022] [Accepted: 02/10/2022] [Indexed: 12/21/2022]
|
31
|
Tanui CK, Karanth S, Njage PM, Meng J, Pradhan AK. Machine learning-based predictive modeling to identify genotypic traits associated with Salmonella enterica disease endpoints in isolates from ground chicken. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112701] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
32
|
Naseer N, Egan MS, Reyes Ruiz VM, Scott WP, Hunter EN, Demissie T, Rauch I, Brodsky IE, Shin S. Human NAIP/NLRC4 and NLRP3 inflammasomes detect Salmonella type III secretion system activities to restrict intracellular bacterial replication. PLoS Pathog 2022; 18:e1009718. [PMID: 35073381 PMCID: PMC8812861 DOI: 10.1371/journal.ppat.1009718] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 02/03/2022] [Accepted: 12/27/2021] [Indexed: 01/16/2023] Open
Abstract
Salmonella enterica serovar Typhimurium is a Gram-negative pathogen that uses two distinct type III secretion systems (T3SSs), termed Salmonella pathogenicity island (SPI)-1 and SPI-2, to deliver virulence factors into the host cell. The SPI-1 T3SS enables Salmonella to invade host cells, while the SPI-2 T3SS facilitates Salmonella's intracellular survival. In mice, a family of cytosolic immune sensors, including NAIP1, NAIP2, and NAIP5/6, recognizes the SPI-1 T3SS needle, inner rod, and flagellin proteins, respectively. Ligand recognition triggers assembly of the NAIP/NLRC4 inflammasome, which mediates caspase-1 activation, IL-1 family cytokine secretion, and pyroptosis of infected cells. In contrast to mice, humans encode a single NAIP that broadly recognizes all three ligands. The role of NAIP/NLRC4 or other inflammasomes during Salmonella infection of human macrophages is unclear. We find that although the NAIP/NLRC4 inflammasome is essential for detecting T3SS ligands in human macrophages, it is partially required for responses to infection, as Salmonella also activated the NLRP3 and CASP4/5 inflammasomes. Importantly, we demonstrate that combinatorial NAIP/NLRC4 and NLRP3 inflammasome activation restricts Salmonella replication in human macrophages. In contrast to SPI-1, the SPI-2 T3SS inner rod is not sensed by human or murine NAIPs, which is thought to allow Salmonella to evade host recognition and replicate intracellularly. Intriguingly, we find that human NAIP detects the SPI-2 T3SS needle protein. Critically, in the absence of both flagellin and the SPI-1 T3SS, the NAIP/NLRC4 inflammasome still controlled intracellular Salmonella burden. These findings reveal that recognition of Salmonella SPI-1 and SPI-2 T3SSs and engagement of both the NAIP/NLRC4 and NLRP3 inflammasomes control Salmonella infection in human macrophages.
Collapse
Affiliation(s)
- Nawar Naseer
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Marisa S. Egan
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Valeria M. Reyes Ruiz
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - William P. Scott
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon
| | - Emma N. Hunter
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Tabitha Demissie
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Isabella Rauch
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon
| | - Igor E. Brodsky
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania
| | - Sunny Shin
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
- * E-mail:
| |
Collapse
|
33
|
Mandal RK, Jiang T, Kwon YM. Genetic Determinants in Salmonella enterica Serotype Typhimurium Required for Overcoming In Vitro Stressors in the Mimicking Host Environment. Microbiol Spectr 2021; 9:e0015521. [PMID: 34878334 PMCID: PMC8653844 DOI: 10.1128/spectrum.00155-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 10/29/2021] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica serotype Typhimurium, a nontyphoidal Salmonella (NTS), results in a range of enteric diseases, representing a major disease burden worldwide. There is still a significant portion of Salmonella genes whose mechanistic basis to overcome host innate defense mechanisms largely remains unknown. Here, we have applied transposon insertion sequencing (Tn-seq) method to unveil the genetic factors required for the growth or survival of S. Typhimurium under various host stressors simulated in vitro. A highly saturating Tn5 library of S. Typhimurium 14028s was subjected to selection during growth in the presence of short-chain fatty acid (100 mM propionate), osmotic stress (3% NaCl), or oxidative stress (1 mM H2O2) or survival in extreme acidic pH (30 min in pH 3) or starvation (12 days in 1× phosphate-buffered saline [PBS]). We have identified a total of 339 conditionally essential genes (CEGs) required to overcome at least one of these conditions mimicking host insults. Interestingly, all eight genes encoding FoF1-ATP synthase subunit proteins were required for fitness in all five stresses. Intriguingly, a total of 88 genes in Salmonella pathogenicity islands (SPI), including SPI-1, SPI-2, SPI-3, SPI-5, SPI-6, and SPI-11, are also required for fitness under the in vitro conditions. Additionally, by comparative analysis of the genes identified in this study and the genes previously shown to be required for in vivo fitness, we identified novel genes (marBCT, envF, barA, hscA, rfaQ, rfbI, and the genes encoding putative proteins STM14_1138, STM14_3334, STM14_4825, and STM_5184) that have compelling potential for the development of vaccines and antibacterial drugs to curb Salmonella infection. IMPORTANCE Salmonella enterica serotype Typhimurium is a major human bacterial pathogen that enters the food chain through meat animals asymptomatically carrying this pathogen. Despite the rich genome sequence data, a significant portion of Salmonella genes remain to be characterized for their potential contributions to virulence. In this study, we used transposon insertion sequencing (Tn-seq) to elucidate the genetic factors required for growth or survival under various host stressors, including short-chain fatty acids, osmotic stress, oxidative stress, extreme acid, and starvation. Among the total of 339 conditionally essential genes (CEGs) that are required under at least one of these five stress conditions were 221 previously known virulence genes required for in vivo fitness during infection in at least one of four animal species, including mice, chickens, pigs, and cattle. This comprehensive map of virulence phenotype-genotype in S. Typhimurium provides a roadmap for further interrogation of the biological functions encoded by the genome of this important human pathogen to survive in hostile host environments.
Collapse
Affiliation(s)
- Rabindra K. Mandal
- Center of Excellence for Poultry Science, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA
| | - Tieshan Jiang
- Center of Excellence for Poultry Science, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA
| | - Young Min Kwon
- Center of Excellence for Poultry Science, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, Arkansas, USA
| |
Collapse
|
34
|
Cai D, Brickey WJ, Ting JP, Sad S. Isolates of Salmonella typhimurium circumvent NLRP3 inflammasome recognition in macrophages during the chronic phase of infection. J Biol Chem 2021; 298:101461. [PMID: 34864057 PMCID: PMC8715120 DOI: 10.1016/j.jbc.2021.101461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 11/27/2022] Open
Abstract
Inflammasome signaling results in cell death and release of cytokines from the IL-1 family, which facilitates control over an infection. However, some pathogens such as Salmonella typhimurium (ST) activate various innate immune signaling pathways, including inflammasomes, yet evade these cell death mechanisms, resulting in a chronic infection. Here we investigated inflammasome signaling induced by acute and chronic isolates of ST obtained from different organs. We show that ST isolated from infected mice during the acute phase displays an increased potential to activate inflammasome signaling, which then undergoes a protracted decline during the chronic phase of infection. This decline in inflammasome signaling was associated with reduced expression of virulence factors, including flagella and the Salmonella pathogenicity island I genes. This reduction in cell death of macrophages induced by chronic isolates had the greatest impact on the NLRP3 inflammasome, which correlated with a reduction in caspase-1 activation. Furthermore, rapid cell death induced by Casp-1/11 by ST in macrophages limited the subsequent activation of cell death cascade proteins Casp-8, RipK1, RipK3, and MLKL to prevent the activation of alternative forms of cell death. We observed that the lack of the ability to induce cell death conferred a competitive fitness advantage to ST only during the acute phase of infection. Finally, we show that the chronic isolates displayed a significant attenuation in their ability to infect mice through the oral route. These results reveal that ST adapts during chronic infection by circumventing inflammasome recognition to promote the survival of both the host and the pathogen.
Collapse
Affiliation(s)
- David Cai
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Willie June Brickey
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jenny P Ting
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Subash Sad
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Centre for Infection, Immunity, and Inflammation (CI3), University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
35
|
Foster N, Tang Y, Berchieri A, Geng S, Jiao X, Barrow P. Revisiting Persistent Salmonella Infection and the Carrier State: What Do We Know? Pathogens 2021; 10:1299. [PMID: 34684248 PMCID: PMC8537056 DOI: 10.3390/pathogens10101299] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 11/17/2022] Open
Abstract
One characteristic of the few Salmonella enterica serovars that produce typhoid-like infections is that disease-free persistent infection can occur for months or years in a small number of individuals post-convalescence. The bacteria continue to be shed intermittently which is a key component of the epidemiology of these infections. Persistent chronic infection occurs despite high levels of circulating specific IgG. We have reviewed the information on the basis for persistence in S. Typhi, S. Dublin, S. Gallinarum, S. Pullorum, S. Abortusovis and also S. Typhimurium in mice as a model of persistence. Persistence appears to occur in macrophages in the spleen and liver with shedding either from the gall bladder and gut or the reproductive tract. The involvement of host genetic background in defining persistence is clear from studies with the mouse but less so with human and poultry infections. There is increasing evidence that the organisms (i) modulate the host response away from the typical Th1-type response normally associated with immune clearance of an acute infection to Th2-type or an anti-inflammatory response, and that (ii) the bacteria modulate transformation of macrophage from M1 to M2 type. The bacterial factors involved in this are not yet fully understood. There are early indications that it might be possible to remodulate the response back towards a Th1 response by using cytokine therapy.
Collapse
Affiliation(s)
- Neil Foster
- SRUC Aberdeen Campus, Craibstone Estate, Ferguson Building, Aberdeen AB21 9YA, UK
| | - Ying Tang
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518055, China;
| | - Angelo Berchieri
- Departamento de Patologia Veterinária, Faculdade de Ciências Agrárias e Veterinárias, Univ Estadual Paulista, Via de Acesso Paulo Donato Castellane, s/n, 14884-900 Jaboticabal, SP, Brazil;
| | - Shizhong Geng
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; (S.G.); (X.J.)
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; (S.G.); (X.J.)
| | - Paul Barrow
- School of Veterinary Medicine, University of Surrey, Daphne Jackson Road, Guildford GU2 7AL, UK;
| |
Collapse
|
36
|
Fernández-Mora M, Sánchez-Popoca D, Altamirano-Cruz G, López-Méndez G, Téllez-Galicia AT, Guadarrama C, Calva E. The S. Typhi leuO gene contains multiple functional promoters. J Med Microbiol 2021; 70. [PMID: 34590996 DOI: 10.1099/jmm.0.001418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The S. Typhi leuO gene, which codes for the LysR-type transcriptional regulator LeuO, contains five forward promoters named P3, P1, P2, P5 and P4, and two reverse promoters, P6 and P7. The activity of the forward promoters was revealed by primer extension using gene reporter fusions in an S. Typhi hns lrp mutant strain. Likewise, the activity of the reverse promoters was revealed in an hns background. Derepression of the transcription of the chromosomal gene was confirmed by RT-PCR in the hns lrp mutant. The leuOP1 transcriptional reporter fusion, which contained only the major P1 promoter, had a lower expression in a relA spoT mutant strain, indicating that the steady-state levels of the (p)ppGpp alarmone positively regulate it. In contrast, the leuOP3, leuOP5P4, leuOP6 and leuOP7 transcriptional fusions were derepressed in the relA spoT background, indicating that the alarmone has a negative effect on their expression. Thus, the search for genetic regulators and environmental cues that would differentially derepress leuO gene expression by antagonizing the action of the H-NS and Lrp nucleoid-associated proteins, or that would fine-tune the expression of the various promoters, will further our understanding of the significance that multiple promoters have in the control of LeuO expression.
Collapse
Affiliation(s)
- Marcos Fernández-Mora
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, Mexico
| | - Diego Sánchez-Popoca
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, Mexico
| | - Gloria Altamirano-Cruz
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, Mexico
| | - Grecia López-Méndez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, Mexico
| | - Andrea Teresa Téllez-Galicia
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, Mexico
| | - Carmen Guadarrama
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, Mexico
| | | |
Collapse
|
37
|
Powers TR, Haeberle AL, Predeus AV, Hammarlöf DL, Cundiff JA, Saldaña-Ahuactzi Z, Hokamp K, Hinton JCD, Knodler LA. Intracellular niche-specific profiling reveals transcriptional adaptations required for the cytosolic lifestyle of Salmonella enterica. PLoS Pathog 2021; 17:e1009280. [PMID: 34460873 PMCID: PMC8432900 DOI: 10.1371/journal.ppat.1009280] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 09/10/2021] [Accepted: 08/06/2021] [Indexed: 11/18/2022] Open
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium) is a zoonotic pathogen that causes diarrheal disease in humans and animals. During salmonellosis, S. Typhimurium colonizes epithelial cells lining the gastrointestinal tract. S. Typhimurium has an unusual lifestyle in epithelial cells that begins within an endocytic-derived Salmonella-containing vacuole (SCV), followed by escape into the cytosol, epithelial cell lysis and bacterial release. The cytosol is a more permissive environment than the SCV and supports rapid bacterial growth. The physicochemical conditions encountered by S. Typhimurium within the epithelial cytosol, and the bacterial genes required for cytosolic colonization, remain largely unknown. Here we have exploited the parallel colonization strategies of S. Typhimurium in epithelial cells to decipher the two niche-specific bacterial virulence programs. By combining a population-based RNA-seq approach with single-cell microscopic analysis, we identified bacterial genes with cytosol-induced or vacuole-induced expression signatures. Using these genes as environmental biosensors, we defined that Salmonella is exposed to oxidative stress and iron and manganese deprivation in the cytosol and zinc and magnesium deprivation in the SCV. Furthermore, iron availability was critical for optimal S. Typhimurium replication in the cytosol, as well as entC, fepB, soxS, mntH and sitA. Virulence genes that are typically associated with extracellular bacteria, namely Salmonella pathogenicity island 1 (SPI1) and SPI4, showed increased expression in the cytosol compared to vacuole. Our study reveals that the cytosolic and vacuolar S. Typhimurium virulence gene programs are unique to, and tailored for, residence within distinct intracellular compartments. This archetypical vacuole-adapted pathogen therefore requires extensive transcriptional reprogramming to successfully colonize the mammalian cytosol.
Collapse
Affiliation(s)
- TuShun R. Powers
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - Amanda L. Haeberle
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - Alexander V. Predeus
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Disa L. Hammarlöf
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Jennifer A. Cundiff
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - Zeus Saldaña-Ahuactzi
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - Karsten Hokamp
- Smurfit Institute of Genetics, School of Genetics and Microbiology, Trinity College Dublin, Dublin, Ireland
| | - Jay C. D. Hinton
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Leigh A. Knodler
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| |
Collapse
|
38
|
Molecular determinants of peaceful coexistence versus invasiveness of non-Typhoidal Salmonella: Implications in long-term side-effects. Mol Aspects Med 2021; 81:100997. [PMID: 34311996 DOI: 10.1016/j.mam.2021.100997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 07/02/2021] [Accepted: 07/16/2021] [Indexed: 01/28/2023]
Abstract
The genus Salmonella represents a wide range of strains including Typhoidal and Non-Typhoidal Salmonella (NTS) isolates that exhibit illnesses of varied pathophysiologies. The more frequent NTS ensues a self-limiting enterocolitis with rare occasions of bacteremia or systemic infections. These self-limiting Salmonella strains are capable of subverting and dampening the host immune system to achieve a more prolonged survival inside the host system thus leading to chronic manifestations. Notably, emergence of new invasive NTS isolates known as invasive Non-Typhoidal Salmonella (iNTS) have worsened the disease burden significantly in some parts of the world. NTS strains adapt to attain persister phenotype intracellularly and cause relapsing infections. These chronic infections, in susceptible hosts, are also capable of causing diseases like IBS, IBD, reactive arthritis, gallbladder cancer and colorectal cancer. The present understanding of molecular mechanism of how these chronic infections are manifested is quite limited. The current work is an effort to review the prevailing knowledge emanating from a large volume of research focusing on various forms of NTS infections including those that cause localized, systemic and persistent disease. The review will further dwell into the understanding of how this pathogen contributes to the associated long term sequelae.
Collapse
|
39
|
Campylobacter and Salmonella in Scavenging Indigenous Chickens in Rural Central Tanzania: Prevalence, Antimicrobial Resistance, and Genomic Features. MICROBIOLOGY RESEARCH 2021. [DOI: 10.3390/microbiolres12020030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Introduction: Salmonella and Campylobacter spp. are commonly reported bacterial foodborne pathogens causing morbidity and mortality worldwide. In rural areas, where there is a high occurrence rate of human–animal interactions and poor hygiene practices, shedding animals present a high risk to humans in acquiring animal-associated infections. Materials and methods: Seasonal prevalence of Campylobacter jejuni, Campylobacter coli, and Salmonella spp. in scavenging indigenous chicken faeces was determined by polymerase chain reaction (PCR). Antimicrobial resistance was studied in Salmonella isolates by disc diffusion method, and whole-genome sequenced isolates were used to determine Salmonella serovars, antimicrobial resistance genes, virulence genes, and plasmid profile. Results: The overall prevalence of Campylobacter in chickens was 7.2% in the dry season and 8.0% in the rainy season (p = 0.39), and that of Salmonella was 11.1% in the dry season and 16.2% in the rainy season (p = 0.29). Salmonella serovars detected were II 35:g,m,s,t:-, Ball, Typhimurium, Haardt/Blockley, Braenderup, and Enteritidis/Gallinarum. One S. II 35:g,m,s,t:- isolate was resistant to ampicillin and the rest were either intermediate resistant or pansusceptible to the tested antimicrobials. The resistance genes observed were CatA, tetJ, and fosA7, most common in Ball than in other serovars. Seven plasmids were identified, more common in serovar Ball and less common in II 35:g,m,s,t:-. Serovar II 35:g,m,s,t:- isolates were missing some of the virulence genes important for Salmonella pathogenicity found in other serovars isolated. Conclusion: PCR detection of Campylobacter spp. and Salmonella spp. in chickens necessitate the improvement of hygiene at the household level and reducing human–chicken interaction as a strategy of preventing humans from acquiring chicken-associated bacteria, which would enter the human food chain. Infrequent use of antimicrobials in this type of poultry is most likely the reason for the low rates of antimicrobial resistance observed in this study.
Collapse
|
40
|
Dos Santos AMP, Ferrari RG, Panzenhagen P, Rodrigues GL, Conte-Junior CA. Virulence genes identification and characterization revealed the presence of the Yersinia High Pathogenicity Island (HPI) in Salmonella from Brazil. Gene 2021; 787:145646. [PMID: 33848574 DOI: 10.1016/j.gene.2021.145646] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 03/22/2021] [Accepted: 04/07/2021] [Indexed: 11/30/2022]
Abstract
Salmonella spp. is one of the major agents of foodborne disease worldwide, and its virulence genes are responsible for the main pathogenic mechanisms of this micro-organism. The whole-genome sequencing (WGS) of pathogens has become a lower-cost and more accessible genotyping tool providing many gene analysis possibilities. This study provided an in silico investigation of 129 virulence genes, including plasmidial and bacteriophage genes from Brazilian strains' public Salmonella genomes. The frequency analysis of the four most sequenced serovars and a temporal analysis over the past four decades was also performed. The NCBI sequence reads archive (SRA) database comprised 1077 Salmonella public whole-genome sequences of strains isolated in Brazil between 1968 and 2018. Among the 1077 genomes, 775 passed in Salmonella in silico Typing (SISTR) quality control, which also identified 41 different serovars in which the four most prevalent were S. Enteritidis, S. Typhimurium, S. Dublin, and S. Heidelberg. Among these, S. Heidelberg presented the most distinct virulence profile, besides presenting Yersinia High Pathogenicity Island (HPI), rare and first reported in Salmonella from Brazil. The genes mgtC, csgC, ssaI and ssaS were the most prevalent within the 775 genomes with more than 99% prevalence. On the other hand, the less frequent genes were astA, iucBCD, tptC and shdA, with less than 1% frequency. All of the plasmids and bacteriophages virulence genes presented a decreasing trend between the 2000 s and 2010 s decades, except for the phage gene grvA, which increased in this period. This study provides insights into Salmonella virulence genes distribution in Brazil using freely available bioinformatics tools. This approach could guide in vivo and in vitro studies besides being an interesting method for the investigation and surveillance of Salmonella virulence. Moreover, here we propose the genes mgtC, csgC, ssaI and ssaS as additional targets for PCR identification of Salmonella in Brazil due to their very high frequency in the studied genomes.
Collapse
Affiliation(s)
- Anamaria M P Dos Santos
- Molecular & Analytical Laboratory Center, Faculty of Veterinary, Department of Food Technology, Universidade Federal Fluminense, Niterói, Brazil; Chemistry Institute, Food Science Program, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Center for Food Analysis (NAL-LADETEC), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rafaela G Ferrari
- Chemistry Institute, Food Science Program, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Department of Animal Science, College for Agricultural Sciences, Federal University of Paraiba (CCA/UFPB), Areia, PB, Brazil.
| | - Pedro Panzenhagen
- Molecular & Analytical Laboratory Center, Faculty of Veterinary, Department of Food Technology, Universidade Federal Fluminense, Niterói, Brazil; Chemistry Institute, Food Science Program, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Center for Food Analysis (NAL-LADETEC), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Grazielle L Rodrigues
- Chemistry Institute, Food Science Program, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Center for Food Analysis (NAL-LADETEC), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos A Conte-Junior
- Molecular & Analytical Laboratory Center, Faculty of Veterinary, Department of Food Technology, Universidade Federal Fluminense, Niterói, Brazil; Chemistry Institute, Food Science Program, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Center for Food Analysis (NAL-LADETEC), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; National Institute of Health Quality Control, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
41
|
Min H, Baek K, Lee A, Seok YJ, Choi Y. Genomic characterization of four Escherichia coli strains isolated from oral lichen planus biopsies. J Oral Microbiol 2021; 13:1905958. [PMID: 33828821 PMCID: PMC8009128 DOI: 10.1080/20002297.2021.1905958] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Oral lichen planus (OLP) is a chronic T cell-mediated inflammatory disease that affects the mucus membrane of the oral cavity. We previously proposed a potential role of intracellular bacteria detected within OLP lesions in the pathogenesis of OLP and isolated four Escherichia coli strains from OLP tissues that were phylogenetically close to K-12 MG1655 strain. We sequenced the genomes of the four OLP-isolated E. coli strains and generated 6.71 Gbp of Illumina MiSeq data (166–195x coverage per strain). The size of the assembled draft genomes was 4.69 Mbp, with a GC content of 50.7%, in which 4360 to 4367 protein-coding sequences per strain were annotated. We also identified 368 virulence factors and 53 antibiotic resistance genes. Comparative genomics revealed that the OLP-isolated strains shared more pangenome orthologous groups with pathogenic strains than did the K-12 MG1655 strain, a derivative of K-12 strain isolated from human feces. Although the OLP-isolated strains did not have the major virulence factors (VFs) of the pathogenic strains, a number of VFs involved in adherence/invasion, colonization, or systemic infection were identified. The genomic characteristics of E. coli first isolated from the oral cavity would benefit future investigations on the pathogenic potential of these bacteria.
Collapse
Affiliation(s)
- Huitae Min
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, Republic of Korea
| | - Keumjin Baek
- Department of Immunology and Molecular Microbiology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Ahreum Lee
- Department of Immunology and Molecular Microbiology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Yeong-Jae Seok
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, Republic of Korea
| | - Youngnim Choi
- Department of Immunology and Molecular Microbiology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
42
|
Pulford CV, Perez-Sepulveda BM, Canals R, Bevington JA, Bengtsson RJ, Wenner N, Rodwell EV, Kumwenda B, Zhu X, Bennett RJ, Stenhouse GE, Malaka De Silva P, Webster HJ, Bengoechea JA, Dumigan A, Tran-Dien A, Prakash R, Banda HC, Alufandika L, Mautanga MP, Bowers-Barnard A, Beliavskaia AY, Predeus AV, Rowe WPM, Darby AC, Hall N, Weill FX, Gordon MA, Feasey NA, Baker KS, Hinton JCD. Stepwise evolution of Salmonella Typhimurium ST313 causing bloodstream infection in Africa. Nat Microbiol 2021; 6:327-338. [PMID: 33349664 PMCID: PMC8018540 DOI: 10.1038/s41564-020-00836-1] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 11/20/2020] [Indexed: 02/07/2023]
Abstract
Bloodstream infections caused by nontyphoidal Salmonella are a major public health concern in Africa, causing ~49,600 deaths every year. The most common Salmonella enterica pathovariant associated with invasive nontyphoidal Salmonella disease is Salmonella Typhimurium sequence type (ST)313. It has been proposed that antimicrobial resistance and genome degradation has contributed to the success of ST313 lineages in Africa, but the evolutionary trajectory of such changes was unclear. Here, to define the evolutionary dynamics of ST313, we sub-sampled from two comprehensive collections of Salmonella isolates from African patients with bloodstream infections, spanning 1966 to 2018. The resulting 680 genome sequences led to the discovery of a pan-susceptible ST313 lineage (ST313 L3), which emerged in Malawi in 2016 and is closely related to ST313 variants that cause gastrointestinal disease in the United Kingdom and Brazil. Genomic analysis revealed degradation events in important virulence genes in ST313 L3, which had not occurred in other ST313 lineages. Despite arising only recently in the clinic, ST313 L3 is a phylogenetic intermediate between ST313 L1 and L2, with a characteristic accessory genome. Our in-depth genotypic and phenotypic characterization identifies the crucial loss-of-function genetic events that occurred during the stepwise evolution of invasive S. Typhimurium across Africa.
Collapse
Affiliation(s)
- Caisey V Pulford
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Blanca M Perez-Sepulveda
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Rocío Canals
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Jessica A Bevington
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Rebecca J Bengtsson
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Nicolas Wenner
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Ella V Rodwell
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | | | - Xiaojun Zhu
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Rebecca J Bennett
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - George E Stenhouse
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - P Malaka De Silva
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Hermione J Webster
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Jose A Bengoechea
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Amy Dumigan
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Alicia Tran-Dien
- Institut Pasteur, Unité des Bactéries Pathogènes Entériques, Paris, France
| | - Reenesh Prakash
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Happy C Banda
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Lovemore Alufandika
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Mike P Mautanga
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Arthur Bowers-Barnard
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Alexandra Y Beliavskaia
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Alexander V Predeus
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Will P M Rowe
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Alistair C Darby
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Neil Hall
- Earlham Institute, Norwich Research Park, Norwich, UK
| | | | - Melita A Gordon
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Nicholas A Feasey
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Kate S Baker
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Jay C D Hinton
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK.
| |
Collapse
|
43
|
Cheng RA, Wiedmann M. Recent Advances in Our Understanding of the Diversity and Roles of Chaperone-Usher Fimbriae in Facilitating Salmonella Host and Tissue Tropism. Front Cell Infect Microbiol 2021; 10:628043. [PMID: 33614531 PMCID: PMC7886704 DOI: 10.3389/fcimb.2020.628043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/21/2020] [Indexed: 01/04/2023] Open
Abstract
Salmonella enterica is one of the most diverse and successful pathogens, representing a species with >2,600 serovars with a variety of adaptations that enable colonization and infection of a wide range of hosts. Fimbriae, thin hair-like projections that cover the surface of Salmonella, are thought to be the primary organelles that mediate Salmonella's interaction with, and adherence to, the host intestinal epithelium, representing an important step in the infection process. The recent expansion in genome sequencing efforts has enabled the discovery of novel fimbriae, thereby providing new perspectives on fimbrial diversity and distribution among a broad number of serovars. In this review, we provide an updated overview of the evolutionary events that shaped the Salmonella chaperone-usher fimbriome in light of recent phylogenetic studies describing the population structure of Salmonella enterica. Furthermore, we discuss the complexities of the chaperone-usher fimbriae-mediated host-pathogen interactions and the apparent redundant roles of chaperone-usher fimbriae in host and tissue tropism.
Collapse
Affiliation(s)
- Rachel A. Cheng
- Department of Food Science, Cornell University, Ithaca, NY, United States
| | | |
Collapse
|
44
|
Du F, Liao C, Yang Y, Yu C, Zhang X, Cheng X, Zhang C. Salmonella enterica serovar Typhimurium gene sseK3 is required for intracellular proliferation and virulence. CANADIAN JOURNAL OF VETERINARY RESEARCH = REVUE CANADIENNE DE RECHERCHE VETERINAIRE 2020; 84:302-309. [PMID: 33012979 PMCID: PMC7491001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 11/28/2019] [Indexed: 06/11/2023]
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium) is one of the most significant zoonotic pathogens that poses a threat to humans. Previous studies have identified that Salmonella-secreted effector K3 (SseK3) is a novel translated and secreted protein of S. Typhimurium. The objective of this study was to determine whether deletion of the sseK3 gene can attenuate the virulence of S. Typhimurium. To do this, we constructed an sseK3 deletion mutant using the double-exchange allele of the suicide plasmid pRE112ΔsseK3 and assessed the virulence and intracellular proliferation of the mutant. The sseK3 deletion mutant exhibited adhesion and invasion properties similar to those of wild-type (WT) S. Typhimurium, although the virulence and intracellular proliferation of the mutant were significantly reduced compared to that of the WT strain. Furthermore, the observed increase in the median lethal dose (LD50) reflects a decrease in the pathogenicity of the sseK3 deletion mutant in a murine model. In summary, we concluded that disruption of sseK3 can attenuate the intracellular proliferation and reduce the virulence of S. Typhimurium.
Collapse
Affiliation(s)
- Fuyu Du
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Chengshui Liao
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Yadong Yang
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Chuan Yu
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Xiaojie Zhang
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Xiangchao Cheng
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Chunjie Zhang
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
45
|
Bao H, Wang S, Zhao JH, Liu SL. Salmonella secretion systems: Differential roles in pathogen-host interactions. Microbiol Res 2020; 241:126591. [PMID: 32932132 DOI: 10.1016/j.micres.2020.126591] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/24/2020] [Accepted: 08/29/2020] [Indexed: 12/26/2022]
Abstract
The bacterial genus Salmonella includes a large group of food-borne pathogens that cause a variety of gastrointestinal or systemic diseases in hosts. Salmonella use several secretion devices to inject various effectors targeting eukaryotic hosts, or bacteria. In the past few years, considerable progress has been made towards understanding the structural features and molecular mechanisms of the secretion systems of Salmonella, particularly regarding their roles in host-pathogen interactions. In this review, we summarize the current advances about the main characteristics of the Salmonella secretion systems. Clarifying the roles of the secretion systems in the process of infecting various hosts will broaden our understanding of the importance of microbial interactions in maintaining human health and will provide information for developing novel therapeutic approaches.
Collapse
Affiliation(s)
- Hongxia Bao
- Genomics Research Center, College of Pharmacy, Harbin Medical University, Harbin, China; HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China.
| | - Shuang Wang
- Department of Biopharmaceutical Sciences (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jian-Hua Zhao
- Genomics Research Center, College of Pharmacy, Harbin Medical University, Harbin, China; HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Shu-Lin Liu
- Genomics Research Center, College of Pharmacy, Harbin Medical University, Harbin, China; HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China; Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Canada.
| |
Collapse
|
46
|
Hurtado-Escobar GA, Grépinet O, Raymond P, Abed N, Velge P, Virlogeux-Payant I. H-NS is the major repressor of Salmonella Typhimurium Pef fimbriae expression. Virulence 2020; 10:849-867. [PMID: 31661351 PMCID: PMC6844306 DOI: 10.1080/21505594.2019.1682752] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Fimbriae play an important role in adhesion and are therefore essential for the interaction of bacteria with the environments they encounter. Most of them are expressed in vivo but not in vitro, thus making difficult the full characterization of these fimbriae. Here, we characterized the silencing of plasmid-encoded fimbriae (Pef) expression, encoded by the pef operon, in the worldwide pathogen Salmonella Typhimurium. We demonstrated that the nucleoid-associated proteins H-NS and Hha, and their respective paralogs StpA and YdgT, negatively regulate at pH 5.1 and pH 7.1 the transcription of the pef operon. Two promoters, PpefB and PpefA, direct the transcription of this operon. All the nucleoid-associated proteins silence the PpefB promoter and H-NS also targets the PpefA promoter. While Hha and YdgT are mainly considered as acting primarily through H-NS to modulate gene transcription, our results strongly suggest that Hha and YdgT silence pef transcription at acidic pH either by interacting with StpA or independently of H-NS and StpA. We also confirmed the previously described post-transcriptional repression of Pef fimbriae by CsrA titration via the fim mRNA and CsrB and CsrC sRNA. Finally, among all these regulators, H-NS clearly appeared as the major repressor of Pef expression. These results open new avenues of research to better characterize the regulation of these bacterial adhesive proteins and to clarify their role in the virulence of pathogens.
Collapse
Affiliation(s)
| | | | | | - Nadia Abed
- ISP, INRA, Université de Tours, Nouzilly, France
| | | | | |
Collapse
|
47
|
Cain AK, Barquist L, Goodman AL, Paulsen IT, Parkhill J, van Opijnen T. A decade of advances in transposon-insertion sequencing. Nat Rev Genet 2020; 21:526-540. [PMID: 32533119 PMCID: PMC7291929 DOI: 10.1038/s41576-020-0244-x] [Citation(s) in RCA: 251] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2020] [Indexed: 01/12/2023]
Abstract
It has been 10 years since the introduction of modern transposon-insertion sequencing (TIS) methods, which combine genome-wide transposon mutagenesis with high-throughput sequencing to estimate the fitness contribution or essentiality of each genetic component in a bacterial genome. Four TIS variations were published in 2009: transposon sequencing (Tn-Seq), transposon-directed insertion site sequencing (TraDIS), insertion sequencing (INSeq) and high-throughput insertion tracking by deep sequencing (HITS). TIS has since become an important tool for molecular microbiologists, being one of the few genome-wide techniques that directly links phenotype to genotype and ultimately can assign gene function. In this Review, we discuss the recent applications of TIS to answer overarching biological questions. We explore emerging and multidisciplinary methods that build on TIS, with an eye towards future applications. In this Review, several experts discuss progress in the decade since the development of transposon-based approaches for bacterial genetic screens. They describe how advances in both experimental technologies and analytical strategies are resulting in insights into diverse biological processes.
Collapse
Affiliation(s)
- Amy K Cain
- ARC Centre of Excellence in Synthetic Biology, Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia.
| | - Lars Barquist
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany.,Faculty of Medicine, University of Würzburg, Würzburg, Germany
| | - Andrew L Goodman
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA.,Microbial Sciences Institute, Yale University, New Haven, CT, USA
| | - Ian T Paulsen
- ARC Centre of Excellence in Synthetic Biology, Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
48
|
The Salmonella enterica Serovar Typhi ltrR Gene Encodes Two Proteins Whose Transcriptional Expression Is Upregulated by Alkaline pH and Repressed at Their Promoters and Coding Regions by H-NS and Lrp. J Bacteriol 2020; 202:JB.00783-19. [PMID: 32284321 DOI: 10.1128/jb.00783-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 04/03/2020] [Indexed: 11/20/2022] Open
Abstract
LtrR is a LysR-type regulator involved in the positive expression of ompR to promote ompC and ompF expression. This regulatory network is fundamental for the control of bacterial transformation and resistance to the bile salt sodium deoxycholate in Salmonella enterica serovar Typhi. In this work, the transcriptional regulation of ltrR was characterized, revealing that the use of alternative promoters results in two transcripts. The larger one, the ltrR2 mRNA, was repressed at promoter and coding regions by H-NS, whereas Lrp repressed its expression at the coding region. In the case of the second and shorter ltrR1 transcript, it was repressed only at the coding region by H-NS and Lrp. Remarkably, pH 7.5 is a positive signal involved in the transcriptional expression of both ltrR units. Translational fusions and Western blot experiments demonstrated that ltrR2 and ltrR1 mRNAs encode the LtrR2 and LtrR1 proteins. This study adds new data on the complex genetic and regulatory characteristics of one of the most predominant types of transcriptional factors in bacteria, the LysR-type transcriptional regulators.IMPORTANCE The LysR-type transcriptional regulators are present in viruses, archaea, bacteria, and eukaryotic cells. Furthermore, these proteins are the most abundant transcriptional factors in bacteria. Here, we demonstrate that two LysR-type proteins are generated from the ltrR gene. These proteins are genetically induced by pH and repressed at the promoter and coding regions by the global regulators H-NS and Lrp. Thus, novel basic aspects of the complex genetic regulation of the LysR-type transcriptional regulators are described.
Collapse
|
49
|
Shaheen A, Tariq A, Shehzad A, Iqbal M, Mirza O, Maslov DA, Rahman M. Transcriptional regulation of drug resistance mechanisms in Salmonella: where we stand and what we need to know. World J Microbiol Biotechnol 2020; 36:85. [PMID: 32468234 DOI: 10.1007/s11274-020-02862-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/26/2020] [Indexed: 01/13/2023]
Abstract
Salmonellae have evolved a wide range of molecular mechanisms to neutralize the effect of antibiotics and evade the host immune system response. These mechanisms are exquisitely controlled by global and local regulators and enable the pathogens to use its energy as per need and hence allow the pathogen to economize the consumption of energy by its cellular machinery. Several families that regulate the expression of different drug resistance genes are known; some of these are: the TetR family (which affects tetracycline resistance genes), the AraC/XylS family (regulators that can act as both transcriptional activators and repressors), two-component signal transduction systems (e.g. PhoPQ, a key regulator for virulence), mercury resistance Mer-R and multiple antibiotic resistance Mar-R regulators, LysR-type global regulators (e.g. LeuO) and histone-like protein regulators (involved in the repression of newly transferred resistance genes). This minireview focuses on the role of different regulators harbored by the Salmonella genome and characterized for mediating the drug resistance mechanisms particularly via efflux and influx systems. Understanding of such transcriptional regulation mechanisms is imperative to address drug resistance issues in Salmonella and other bacterial pathogens.
Collapse
Affiliation(s)
- Aqsa Shaheen
- Health Biotechnology Division, Drug Discovery and Structural Biology Group, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan.,Department of Biochemistry and Biotechnology, University of Gujrat, Hafiz Hayat Campus, Gujrat, Pakistan
| | - Anam Tariq
- Health Biotechnology Division, Drug Discovery and Structural Biology Group, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Aamir Shehzad
- Health Biotechnology Division, Drug Discovery and Structural Biology Group, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Mazhar Iqbal
- Health Biotechnology Division, Drug Discovery and Structural Biology Group, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Osman Mirza
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Dmitry A Maslov
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia, 119333
| | - Moazur Rahman
- Health Biotechnology Division, Drug Discovery and Structural Biology Group, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan.
| |
Collapse
|
50
|
Jneid B, Rouaix A, Féraudet-Tarisse C, Simon S. SipD and IpaD induce a cross-protection against Shigella and Salmonella infections. PLoS Negl Trop Dis 2020; 14:e0008326. [PMID: 32463817 PMCID: PMC7282677 DOI: 10.1371/journal.pntd.0008326] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 06/09/2020] [Accepted: 04/26/2020] [Indexed: 01/05/2023] Open
Abstract
Salmonella and Shigella species are food- and water-borne pathogens that are responsible for enteric infections in both humans and animals and are still the major cause of morbidity and mortality in the emerging countries. The existence of multiple Salmonella and Shigella serotypes as well as the emergence of strains resistant to antibiotics require the development of broadly protective therapies. Those bacteria utilize a Type III Secretion System (T3SS), necessary for their pathogenicity. The structural proteins composing the T3SS are common to all virulent Salmonella and Shigella spp., particularly the needle-tip proteins SipD (Salmonella) and IpaD (Shigella). We investigated the immunogenicity and protective efficacy of SipD and IpaD administered by intranasal and intragastric routes, in a mouse model of Salmonella enterica serotype Typhimurium (S. Typhimurium) intestinal challenge. Robust IgG (in all immunization routes) and IgA (in intranasal and oral immunization routes) antibody responses were induced against both proteins. Mice immunized with SipD or IpaD were protected against lethal intestinal challenge with S. Typhimurium or Shigella flexneri (100 Lethal Dose 50%). We have shown that SipD and IpaD are able to induce a cross-protection in a murine model of infection by Salmonella and Shigella. We provide the first demonstration that Salmonella and Shigella T3SS SipD and IpaD are promising antigens for the development of a cross-protective Salmonella-Shigella vaccine. These results open the way to the development of cross-protective therapeutic molecules.
Collapse
Affiliation(s)
- Bakhos Jneid
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Gif-sur-Yvette, France
| | - Audrey Rouaix
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Gif-sur-Yvette, France
| | - Cécile Féraudet-Tarisse
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Gif-sur-Yvette, France
| | - Stéphanie Simon
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Gif-sur-Yvette, France
- * E-mail:
| |
Collapse
|