1
|
Calvo-Silveria S, González-Díaz A, Marimón JM, Cercenado E, Quesada MD, Casabella A, Larrosa N, Berbel D, Alonso M, Bernat-Sole M, Saiz-Escobedo L, Yuste J, Martí S, Càmara J, Ardanuy C. Resilience and emergence of pneumococcal serotypes and lineages in adults post-PCV13 in Spain: A multicentre study. J Infect Public Health 2025; 18:102619. [PMID: 39662160 DOI: 10.1016/j.jiph.2024.102619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 12/13/2024] Open
Abstract
BACKGROUND Streptococcus pneumoniae causes invasive pneumococcal disease (IPD) in adults. The introduction of pneumococcal conjugate vaccines (PCVs) has reduced vaccine serotypes but has also led to the rise of non-vaccine serotypes. The aim of this study was to analyse pneumococcal lineages and their association with recent changes in IPD among adults in Spain. METHODS Data from adult IPD cases (≥18 years) were collected from six Spanish hospitals in 2019-2021. Strains were serotyped, tested for antibiotic susceptibility and subjected to whole genome sequencing (WGS). Findings were compared with data from previous periods (2008-2016). RESULTS A total of 655 IPD episodes were examined. Pneumonia was the main focus (515/655), and 366 episodes occurred in adults over 64 years. Although IPD incidence decreased during COVID-19 pandemic, the burden of disease caused by PCV13 serotypes was significant. Notably, serotype 3 persisted (GPSC12-ST180 and GPSC83-ST260), and a new serotype 4 lineage emerged (GPSC162-ST13022). Among non-PCV13 serotypes, serotype 8 expanded (GPSC3-ST53) and a new serotype 12F lineage emerged (GPSC55-ST8060). Most serotypes presented a dominant Global Pneumococcal Sequencing Cluster (GPSC) like GPSC16-ST67 of 9N or GPSC19-ST433 of 22F. Nevertheless, some GPSCs were associated with several serotypes, the most numerous were GPSC3 (serotypes 8, 11A, and 33F) and GPSC6 (serotypes 11A and 14). The overall penicillin non-susceptibility rate was 17.0 %, 14.6 % resistance for meningitis and 1.6 % for pneumonia (15.1 % susceptible at increased exposure [SIE]). Serotypes 11A and 14 (GPSC6-ST156/6521) and 19A (GPSC1-ST320) had penicillin MICs above 1 mg/L. Acquired resistance genes associated with macrolide and/or tetracycline resistance were present in 19.4 % of isolates, particularly among serotypes 6C (GPSC47-ST386/4310) and 19A (GPSC1-ST320). CONCLUSIONS The burden of PCV13 serotypes in adult IPD remains significant, and serotype 3 is the primary contributor. However, the rise of stable lineages associated with non-PCV13 serotypes, particularly 8, 9N, and 22F highlights a shifting epidemiology. The persistence of multidrug-resistant lineages, such as GPSC6-ST156 and GPSC1-ST320, emphasizes the need for continued surveillance. Vaccination of high-risk adults with current and broader coverage PCVs would help to control the burden of pneumonia and IPD among adults.
Collapse
Affiliation(s)
- Sara Calvo-Silveria
- Microbiology department, Hospital Universitari de Bellvitge - IDIBELL-UB, L'Hospitalet de Llobregat, Spain; Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain
| | - Aida González-Díaz
- Microbiology department, Hospital Universitari de Bellvitge - IDIBELL-UB, L'Hospitalet de Llobregat, Spain; Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain.
| | - José María Marimón
- Biogipuzkoa, Infectious Diseases Area, Infectious Epidemiology and Antimicrobial Resistance Group, Osakidetza Basque Health Service, Microbiology Department, Hospital Donostia, Donostia-San Sebastian, Spain
| | - Emilia Cercenado
- Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain; Clinical Microbiology and Infectious Disease Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - M Dolores Quesada
- Microbiology Department, Clinical Laboratory North Metropolitan Area, Hospital Universitari Germans Trias i Pujol, UAB, Badalona, Spain
| | - Antonio Casabella
- Laboratory of Microbiology, Hospital Universitari Parc Taulí, Sabadell, Spain; Institut d'Investigació I Innovació Parc Taulí (I3PT), Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Nieves Larrosa
- Microbiology Department, Hospital Universitari Vall d'Hebron, UAB, Barcelona, Spain; Research Network for Infectious Diseases (CIBERINFEC), ISCIII, Madrid, Spain
| | - Dàmaris Berbel
- Microbiology department, Hospital Universitari de Bellvitge - IDIBELL-UB, L'Hospitalet de Llobregat, Spain; Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain
| | - Marta Alonso
- Biogipuzkoa, Infectious Diseases Area, Infectious Epidemiology and Antimicrobial Resistance Group, Osakidetza Basque Health Service, Microbiology Department, Hospital Donostia, Donostia-San Sebastian, Spain
| | - Marta Bernat-Sole
- Microbiology Department, Hospital Universitari Vall d'Hebron, UAB, Barcelona, Spain
| | - Lucía Saiz-Escobedo
- Microbiology department, Hospital Universitari de Bellvitge - IDIBELL-UB, L'Hospitalet de Llobregat, Spain
| | - José Yuste
- Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain; Spanish Pneumococcal Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Sara Martí
- Microbiology department, Hospital Universitari de Bellvitge - IDIBELL-UB, L'Hospitalet de Llobregat, Spain; Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain; Department of Medicine, School of Medicine and Health Sciences, University of Barcelona, Spain
| | - Jordi Càmara
- Microbiology department, Hospital Universitari de Bellvitge - IDIBELL-UB, L'Hospitalet de Llobregat, Spain; Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain
| | - Carmen Ardanuy
- Microbiology department, Hospital Universitari de Bellvitge - IDIBELL-UB, L'Hospitalet de Llobregat, Spain; Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain; Department of Pathology and Experimental Therapeutics, University of Barcelona, Spain.
| |
Collapse
|
2
|
Crestani C, Forde TL, Bell J, Lycett SJ, Oliveira LMA, Pinto TCA, Cobo-Ángel CG, Ceballos-Márquez A, Phuoc NN, Sirimanapong W, Chen SL, Jamrozy D, Bentley SD, Fontaine M, Zadoks RN. Genomic and functional determinants of host spectrum in Group B Streptococcus. PLoS Pathog 2024; 20:e1012400. [PMID: 39133742 PMCID: PMC11341095 DOI: 10.1371/journal.ppat.1012400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/22/2024] [Accepted: 07/08/2024] [Indexed: 08/24/2024] Open
Abstract
Group B Streptococcus (GBS) is a major human and animal pathogen that threatens public health and food security. Spill-over and spill-back between host species is possible due to adaptation and amplification of GBS in new niches but the evolutionary and functional mechanisms underpinning those phenomena are poorly known. Based on analysis of 1,254 curated genomes from all major GBS host species and six continents, we found that the global GBS population comprises host-generalist, host-adapted and host-restricted sublineages, which are found across host groups, preferentially within one host group, or exclusively within one host group, respectively, and show distinct levels of recombination. Strikingly, the association of GBS genomes with the three major host groups (humans, cattle, fish) is driven by a single accessory gene cluster per host, regardless of sublineage or the breadth of host spectrum. Moreover, those gene clusters are shared with other streptococcal species occupying the same niche and are functionally relevant for host tropism. Our findings demonstrate (1) the heterogeneity of genome plasticity within a bacterial species of public health importance, enabling the identification of high-risk clones; (2) the contribution of inter-species gene transmission to the evolution of GBS; and (3) the importance of considering the role of animal hosts, and the accessory gene pool associated with their microbiota, in the evolution of multi-host bacterial pathogens. Collectively, these phenomena may explain the adaptation and clonal expansion of GBS in animal reservoirs and the risk of spill-over and spill-back between animals and humans.
Collapse
Affiliation(s)
- Chiara Crestani
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Taya L. Forde
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - John Bell
- Moredun Research Institute, Penicuik, Scotland, United Kingdom
| | - Samantha J. Lycett
- The Roslin Institute, University of Edinburgh, Midlothian, Scotland, United Kingdom
| | - Laura M. A. Oliveira
- Instituto de Microbiologia Paulo de Goes, Federal University of Rio de Janeiro, Rio de Janeiro, State of Rio de Janeiro, Brazil
| | - Tatiana C. A. Pinto
- Instituto de Microbiologia Paulo de Goes, Federal University of Rio de Janeiro, Rio de Janeiro, State of Rio de Janeiro, Brazil
| | | | | | - Nguyen N. Phuoc
- Faculty of Fisheries, University of Agriculture and Forestry, Hue University, Hue, Vietnam
| | - Wanna Sirimanapong
- Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Swaine L. Chen
- Infectious Diseases Translational Research Programme, Department of Medicine, Division of Infectious Diseases, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Laboratory of Bacterial Genomics, Genome Institute of Singapore, Singapore
| | - Dorota Jamrozy
- Parasites and Microbes Programme, Wellcome Sanger Institute, Hinxton, England, United Kingdom
| | - Stephen D. Bentley
- Parasites and Microbes Programme, Wellcome Sanger Institute, Hinxton, England, United Kingdom
| | | | - Ruth N. Zadoks
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, Scotland, United Kingdom
- Moredun Research Institute, Penicuik, Scotland, United Kingdom
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Camden, NSW, Australia
| |
Collapse
|
3
|
Jansen van Rensburg MJ, Berger DJ, Yassine I, Shaw D, Fohrmann A, Bray JE, Jolley KA, Maiden MCJ, Brueggemann AB. Development of the Pneumococcal Genome Library, a core genome multilocus sequence typing scheme, and a taxonomic life identification number barcoding system to investigate and define pneumococcal population structure. Microb Genom 2024; 10:001280. [PMID: 39137139 PMCID: PMC11321556 DOI: 10.1099/mgen.0.001280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 07/17/2024] [Indexed: 08/15/2024] Open
Abstract
Investigating the genomic epidemiology of major bacterial pathogens is integral to understanding transmission, evolution, colonization, disease, antimicrobial resistance and vaccine impact. Furthermore, the recent accumulation of large numbers of whole genome sequences for many bacterial species enhances the development of robust genome-wide typing schemes to define the overall bacterial population structure and lineages within it. Using the previously published data, we developed the Pneumococcal Genome Library (PGL), a curated dataset of 30 976 genomes and contextual data for carriage and disease pneumococci recovered between 1916 and 2018 in 82 countries. We leveraged the size and diversity of the PGL to develop a core genome multilocus sequence typing (cgMLST) scheme comprised of 1222 loci. Finally, using multilevel single-linkage clustering, we stratified pneumococci into hierarchical clusters based on allelic similarity thresholds and defined these with a taxonomic life identification number (LIN) barcoding system. The PGL, cgMLST scheme and LIN barcodes represent a high-quality genomic resource and fine-scale clustering approaches for the analysis of pneumococcal populations, which support the genomic epidemiology and surveillance of this leading global pathogen.
Collapse
Affiliation(s)
| | - Duncan J. Berger
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Iman Yassine
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - David Shaw
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Andy Fohrmann
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - James E. Bray
- Department of Biology, University of Oxford, Oxford, UK
| | | | | | | |
Collapse
|
4
|
Mettu R, Cheng YY, Vulupala HR, Lih YH, Chen CY, Hsu MH, Lo HJ, Liao KS, Chiu CH, Wu CY. Chemical Synthesis of Truncated Capsular Oligosaccharide of Serotypes 6C and 6D of Streptococcus pneumoniae with Their Immunological Studies. ACS Infect Dis 2024; 10:2161-2171. [PMID: 38770797 PMCID: PMC11184553 DOI: 10.1021/acsinfecdis.4c00147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/04/2024] [Accepted: 05/06/2024] [Indexed: 05/22/2024]
Abstract
Serotypes 6C and 6D of Streptococcus pneumoniae are two major variants that cause invasive pneumococcal disease (IPD) in serogroup 6 alongside serotypes 6A and 6B. Since the introduction of the pneumococcal conjugate vaccines PCV7 and PCV13, the number of cases of IPD caused by pneumococcus in children and the elderly population has greatly decreased. However, with the widespread use of vaccines, a replacement effect has recently been observed among different serotypes and lowered the effectiveness of the vaccines. To investigate protection against the original serotypes and to explore protection against variants and replacement serotypes, we created a library of oligosaccharide fragments derived from the repeating units of the capsular polysaccharides of serotypes 6A, 6B, 6C, and 6D through chemical synthesis. The library includes nine pseudosaccharides with or without exposed terminal phosphate groups and four pseudotetrasaccharides bridged by phosphate groups. Six carbohydrate antigens related to 6C and 6D were prepared as glycoprotein vaccines for immunogenicity studies. Two 6A and two 6B glycoconjugate vaccines from previous studies were included in immunogenicity studies. We found that the conjugates containing four phosphate-bridged pseudotetrasaccharides were able to induce good immune antibodies and cross-immunogenicity by showing superior activity and broad cross-protective activity in OPKA bactericidal experiments.
Collapse
Affiliation(s)
- Ravinder Mettu
- Genomics
Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Yang-Yu Cheng
- Genomics
Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
- Institute
of Biochemistry and Molecular Biology, National
Yang Ming Chiao Tung University, No. 155, Section 2, Linong Street, Taipei 112304, Taiwan
| | - Hanmanth Reddy Vulupala
- Genomics
Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Yu-Hsuan Lih
- Genomics
Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Chiang-Yun Chen
- Genomics
Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Mei-Hua Hsu
- Molecular
Infectious Disease Research Center, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 259 Wenhua First Road, Guishan, Taoyuan 33302, Taiwan
| | - Hong-Jay Lo
- Genomics
Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Kuo-Shiang Liao
- Genomics
Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Cheng-Hsun Chiu
- Molecular
Infectious Disease Research Center, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 259 Wenhua First Road, Guishan, Taoyuan 33302, Taiwan
| | - Chung-Yi Wu
- Genomics
Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| |
Collapse
|
5
|
Pell ME, Blankenship HM, Gaddy JA, Davies HD, Manning SD. Intrapartum antibiotic prophylaxis selects for mutators in group B streptococci among persistently colonized patients. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.01.587590. [PMID: 38617326 PMCID: PMC11014637 DOI: 10.1101/2024.04.01.587590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Through vaginal colonization, GBS causes severe pregnancy outcomes including neonatal sepsis and meningitis. Although intrapartum antibiotic prophylaxis (IAP) has reduced early-onset disease rates, persistent GBS colonization has been observed in patients following prophylaxis. To determine whether IAP selects for genomic signatures that enhance GBS survival and persistence in the vaginal tract, whole-genome sequencing was performed on 97 isolates from 58 patients before (prenatal) and after (postpartum) IAP/childbirth. Core-gene mutation analysis identified 7,025 mutations between the paired isolates. Three postpartum isolates accounted for 98% of mutations and were classified as "mutators" because of point mutations within DNA repair systems. In vitro assays revealed stronger biofilms in two mutators. These findings suggest that antibiotics select for mutations that promote survival in vivo, which increases the likelihood of transmission to neonates. They also demonstrate how mutators can provide a reservoir of beneficial mutations that enhance fitness and genetic diversity in the GBS population.
Collapse
Affiliation(s)
- Macy E Pell
- Michigan State University, Department of Microbiology, Genetics, and Immunology (MGI), E. Lansing, MI
| | - Heather M Blankenship
- Michigan Department of Health and Human Services, Bureau of Laboratories, Division of Infectious Diseases, Lansing, MI
| | - Jennifer A Gaddy
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN
- Tennessee Valley Healthcare Systems, Department of Veterans Affairs, Nashville, TN
| | | | - Shannon D Manning
- Michigan State University, Department of Microbiology, Genetics, and Immunology (MGI), E. Lansing, MI
| |
Collapse
|
6
|
Johnson CN, Wilde S, Tuomanen E, Rosch JW. Convergent impact of vaccination and antibiotic pressures on pneumococcal populations. Cell Chem Biol 2024; 31:195-206. [PMID: 38052216 PMCID: PMC10938186 DOI: 10.1016/j.chembiol.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 09/08/2023] [Accepted: 11/07/2023] [Indexed: 12/07/2023]
Abstract
Streptococcus pneumoniae is a remarkably adaptable and successful human pathogen, playing dual roles of both asymptomatic carriage in the nasopharynx and invasive disease including pneumonia, bacteremia, and meningitis. Efficacious vaccines and effective antibiotic therapies are critical to mitigating morbidity and mortality. However, clinical interventions can be rapidly circumvented by the pneumococcus by its inherent proclivity for genetic exchange. This leads to an underappreciated interplay between vaccine and antibiotic pressures on pneumococcal populations. Circulating populations have undergone dramatic shifts due to the introduction of capsule-based vaccines of increasing valency imparting strong selective pressures. These alterations in population structure have concurrent consequences on the frequency of antibiotic resistance profiles in the population. This review will discuss the interactions of these two selective forces. Understanding and forecasting the drivers of antibiotic resistance and capsule switching are of critical importance for public health, particularly for such a genetically promiscuous pathogen as S. pneumoniae.
Collapse
Affiliation(s)
- Cydney N Johnson
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Shyra Wilde
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Elaine Tuomanen
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Jason W Rosch
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
7
|
Higgs C, Kumar LS, Stevens K, Strachan J, Korman T, Horan K, Daniel D, Russell M, McDevitt CA, Sherry NL, Stinear TP, Howden BP, Gorrie CL. Comparison of contemporary invasive and non-invasive Streptococcus pneumoniae isolates reveals new insights into circulating anti-microbial resistance determinants. Antimicrob Agents Chemother 2023; 67:e0078523. [PMID: 37823632 PMCID: PMC10649040 DOI: 10.1128/aac.00785-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/23/2023] [Indexed: 10/13/2023] Open
Abstract
Streptococcus pneumoniae is a major human pathogen with a high burden of disease. Non-invasive isolates (those found in non-sterile sites) are thought to be a key source of invasive isolates (those found in sterile sites) and a reservoir of anti-microbial resistance (AMR) determinants. Despite this, pneumococcal surveillance has almost exclusively focused on invasive isolates. We aimed to compare contemporaneous invasive and non-invasive isolate populations to understand how they interact and identify differences in AMR gene distribution. We used a combination of whole-genome sequencing and phenotypic anti-microbial susceptibility testing and a data set of invasive (n = 1,288) and non-invasive (n = 186) pneumococcal isolates, collected in Victoria, Australia, between 2018 and 2022. The non-invasive population had increased levels of antibiotic resistance to multiple classes of antibiotics including beta-lactam antibiotics penicillin and ceftriaxone. We identified genomic intersections between the invasive and non-invasive populations and no distinct phylogenetic clustering of the two populations. However, this analysis revealed sub-populations overrepresented in each population. The sub-populations that had high levels of AMR were overrepresented in the non-invasive population. We determined that WamR-Pneumo was the most accurate in silico tool for predicting resistance to the antibiotics tested. This tool was then used to assess the allelic diversity of the penicillin-binding protein genes, which acquire mutations leading to beta-lactam antibiotic resistance, and found that they were highly conserved (≥80% shared) between the two populations. These findings show the potential of non-invasive isolates to serve as reservoirs of AMR determinants.
Collapse
Affiliation(s)
- Charlie Higgs
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Lamali Sadeesh Kumar
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Kerrie Stevens
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Janet Strachan
- Communicable Diseases Branch, Department of Health, Victoria, Australia
| | - Tony Korman
- Department of Microbiology, Monash Health, Clayton, Victoria, Australia
| | - Kristy Horan
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Diane Daniel
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Madeline Russell
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Christopher A. McDevitt
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Norelle L. Sherry
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Department of Infectious Diseases, Austin Health, Heidelberg, Victoria, Australia
| | - Timothy P. Stinear
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Centre for Pathogen Genomics, University of Melbourne, Melbourne, Victoria, Australia
| | - Benjamin P. Howden
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Department of Infectious Diseases, Austin Health, Heidelberg, Victoria, Australia
- Centre for Pathogen Genomics, University of Melbourne, Melbourne, Victoria, Australia
| | - Claire L. Gorrie
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Centre for Pathogen Genomics, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
8
|
Golden AR, Lefebvre B, Deceuninck G, Brousseau N, De Wals P, Quach C, Demczuk WHB, Martin I. Clonal diversity of Streptococcus pneumoniae serotype 19A collected from children < 5 years old in Québec, Canada, 2016-2021. Vaccine 2023; 41:6612-6618. [PMID: 37758569 DOI: 10.1016/j.vaccine.2023.09.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/12/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023]
Abstract
Streptococcus pneumoniae serotype 19A is a highly diverse, often antimicrobial-resistant Gram-positive bacterium which can cause invasive pneumococcal disease (IPD). In 2021, public health authorities in the Canadian province of Québec observed an increase of serotype 19A IPD in children <5 years. The purpose of this study was to determine the clonal composition of serotype 19A isolates collected from this age group in Québec, from 2016 to 2021. Forty-one and 37 IPD isolates from children <5 years from Québec and the remainder of Canada, respectively, were sequenced using the Illumina NextSeq platform. Phylogenetic analysis using SNVPhyl identified three clusters, corresponding to three common clones of serotype 19A: CC199, CC320 and ST695. CC199, predominantly represented by ST416, accounted for similar proportions of serotype 19A isolates collected from children in Québec (19.5 %) and other Canadian jurisdictions (OCJs, 21.6 %), with significant presence of ermB (62.5 % and 60 % of ST416 isolates, respectively). CC320 was more commonly identified from OCJs in comparison to Québec (18.9 % vs. 7.3 %, respectively), but were highly antimicrobial-resistant regardless of region. ST695 was the most common clone of serotype 19A collected in Québec from children <5 years, representing 65.9 % of isolates collected over the study period (40.5 % of isolates collected in OCJs). Phylogenetic analysis identified geographical differences in ST695 across Canada; including a large clade specific to Québec (with both susceptible and macrolide-resistant [ermB] subclades), and a separate macrolide-resistant (mefA) clade associated with OCJs. The Québec-specific ermB-ST695 clone represented 48.1 % of ST695 collected from the province. Continued genomic surveillance of S. pneumoniae serotype 19A is required to: i) track the prevalence and clonal composition of serotype 19A in Québec in future years; ii) characterize the clonal distribution of serotype 19A in adult populations; and iii) monitor whether the currently geographically restricted ermB-ST695 clone observed in Québec expands to OCJs.
Collapse
Affiliation(s)
- Alyssa R Golden
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada.
| | - Brigitte Lefebvre
- Laboratoire de santé publique du Québec, Institut national de santé publique du Québec, Sainte-Anne-de-Bellevue, Québec, Canada
| | - Geneviève Deceuninck
- Centre de recherche du Centre hospitalier universitaire de Québec, Équipe de recherche en vaccination, Québec, QC, Canada
| | - Nicholas Brousseau
- Centre de recherche du Centre hospitalier universitaire de Québec, Équipe de recherche en vaccination, Québec, QC, Canada; Institut national de santé publique du Québec, Direction des risques biologiques, Québec, QC, Canada
| | - Philippe De Wals
- Institut national de santé publique du Québec, Direction des risques biologiques, Québec, QC, Canada; Département de médecine sociale et préventive, Université Laval, Québec, QC, Canada
| | - Caroline Quach
- Department of Microbiology, Infectious Diseases and Immunology, University of Montreal, Montreal, QC, Canada
| | - Walter H B Demczuk
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Irene Martin
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| |
Collapse
|
9
|
Bhosale S, Deen MC, Proceviat C, Hettle A, Winter DK, Brockerman J, Levene M, Bennet AJ, Spino C, Boraston AB, Vocadlo DJ. A Fluorogenic Disaccharide Substrate for α-Mannosidases Enables High-Throughput Screening and Identification of an Inhibitor of the GH92 Virulence Factor from Streptococcus pneumoniae. ACS Chem Biol 2023; 18:1730-1737. [PMID: 37531094 DOI: 10.1021/acschembio.3c00053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Trimming of host glycans is a mechanism that is broadly employed by both commensal and pathogenic microflora to enable colonization. Host glycan trimming by the opportunistic Gram-positive bacterium Streptococcus pneumoniae has been demonstrated to be an important mechanism of virulence. While S. pneumoniae employs a multitude of glycan processing enzymes, the exo-mannosidase SpGH92 has been shown to be an important virulence factor. Accordingly, SpGH92 is hypothesized to be a target for much-needed new treatments of S. pneumoniae infection. Here we report the synthesis of 4-methylumbelliferyl α-d-mannopyranosyl-(1→2)-β-d-mannopyranoside (Manα1,2Manβ-4MU) as a fluorogenic disaccharide substrate and development of an assay for SpGH92 that overcomes its requirement for +1 binding site occupancy. We miniaturize our in vitro assay and apply it to a high-throughput screen of >65 000 compounds, identifying a single inhibitory chemotype, LIPS-343. We further show that Manα1,2Manβ-4MU is also a substrate of the human Golgi-localized α-mannosidase MAN1A1, suggesting that this substrate should be useful for assessing the activity of this and other mammalian α-mannosidases.
Collapse
Affiliation(s)
- Sandeep Bhosale
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Matthew C Deen
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Cameron Proceviat
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Andrew Hettle
- Department of Biochemistry & Microbiology, University of Victoria, P.O. Box 3055 STN CSC, Victoria, British Columbia V8W 3P6, Canada
| | - Dana K Winter
- Département de Chimie, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| | - Jacob Brockerman
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Marina Levene
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Andrew J Bennet
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Claude Spino
- Département de Chimie, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| | - Alisdair B Boraston
- Department of Biochemistry & Microbiology, University of Victoria, P.O. Box 3055 STN CSC, Victoria, British Columbia V8W 3P6, Canada
| | - David J Vocadlo
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
10
|
Puzia W, Gawor J, Gromadka R, Żuchniewicz K, Wróbel-Pawelczyk I, Ronkiewicz P, Gołębiewska A, Hryniewicz W, Sadowy E, Skoczyńska A. Highly Resistant Serotype 19A Streptococcus pneumoniae of the GPSC1/CC320 Clone from Invasive Infections in Poland Prior to Antipneumococcal Vaccination of Children. Infect Dis Ther 2023; 12:2017-2037. [PMID: 37442903 PMCID: PMC10505132 DOI: 10.1007/s40121-023-00842-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
INTRODUCTION The introduction of pneumococcal conjugate vaccines (PCV) into the national immunization programs (NIPs) has significantly reduced the number of pneumococcal infections. However, infections caused by isolates of non-vaccine serotypes (NVT) started spreading shortly thereafter and strains of NVT 19A have become the main cause of invasive pneumococcal disease burden worldwide. The aim of the study was to characterize serotype 19A invasive pneumococci of GPSC1/CC320 circulating in Poland before the introduction of PCV into the Polish NIP in 2017 and to compare them to isolates from other countries where PCVs were implemented much earlier than in Poland. METHODS All the GPSC1/CC320 isolates were analyzed by serotyping, susceptibility testing, and whole genome sequencing followed by analyses of resistome, virulome, and core genome multilocus sequence typing (cgMLST), including comparative analysis with isolates with publicly accessible genomic sequences (PubMLST). RESULTS During continuous surveillance the NRCBM collected 4237 invasive Streptococcus pneumoniae isolates between 1997 and 2016, including 200 isolates (4.7%) of serotype 19A. The most prevalent among 19A pneumococci were highly resistant representatives of Global Pneumococcal Sequence Cluster 1/Clonal Complex 320, GPSC1/CC320 (n = 97, 48.5%). Isolates of GPSC1/CC320 belonged to three sequence types (STs): ST320 (75.2%) ST4768 (23.7%), and ST15047 (1.0%), which all represented the 19A-III cps subtype and had complete loci for both PI-1 and PI-2 pili types. On the basis of the cgMLST analysis the majority of Polish GPSC1/CC320 isolates formed a group clearly distinct from pneumococci of this clone observed in other countries. CONCLUSION Before introduction of PCV in the Polish NIP we noticed an unexpected increase of serotype 19A in invasive pneumococcal infections, with the most common being representatives of highly drug-resistant GPSC1/CC320 clone, rarely identified in Europe both before and even after PCV introduction.
Collapse
Affiliation(s)
- Weronika Puzia
- Department of Epidemiology and Clinical Microbiology, National Reference Centre for Bacterial Meningitis, National Medicines Institute, Chełmska 30/34 Str., 00-725, Warsaw, Poland
- DNA Sequencing and Synthesis Facility, Institute of Biochemistry and Biophysics PAS, Pawińskiego 5a Str., 02-106, Warsaw, Poland
| | - Jan Gawor
- DNA Sequencing and Synthesis Facility, Institute of Biochemistry and Biophysics PAS, Pawińskiego 5a Str., 02-106, Warsaw, Poland
| | - Robert Gromadka
- DNA Sequencing and Synthesis Facility, Institute of Biochemistry and Biophysics PAS, Pawińskiego 5a Str., 02-106, Warsaw, Poland
| | - Karolina Żuchniewicz
- DNA Sequencing and Synthesis Facility, Institute of Biochemistry and Biophysics PAS, Pawińskiego 5a Str., 02-106, Warsaw, Poland
| | - Izabela Wróbel-Pawelczyk
- Department of Epidemiology and Clinical Microbiology, National Reference Centre for Bacterial Meningitis, National Medicines Institute, Chełmska 30/34 Str., 00-725, Warsaw, Poland
| | - Patrycja Ronkiewicz
- Department of Epidemiology and Clinical Microbiology, National Reference Centre for Bacterial Meningitis, National Medicines Institute, Chełmska 30/34 Str., 00-725, Warsaw, Poland
| | - Agnieszka Gołębiewska
- Department of Epidemiology and Clinical Microbiology, National Reference Centre for Bacterial Meningitis, National Medicines Institute, Chełmska 30/34 Str., 00-725, Warsaw, Poland
| | - Waleria Hryniewicz
- Department of Epidemiology and Clinical Microbiology, National Reference Centre for Bacterial Meningitis, National Medicines Institute, Chełmska 30/34 Str., 00-725, Warsaw, Poland
| | - Ewa Sadowy
- Department of Molecular Microbiology, National Medicines Institute, Chełmska 30/34 Str., 00-725, Warsaw, Poland
| | - Anna Skoczyńska
- Department of Epidemiology and Clinical Microbiology, National Reference Centre for Bacterial Meningitis, National Medicines Institute, Chełmska 30/34 Str., 00-725, Warsaw, Poland.
| |
Collapse
|
11
|
Maruhn K, Itzek A, Imoehl M, van der Linden M. A simple PCR assay for the identification of the novel Streptococcus pneumoniae serotype 7D. J Med Microbiol 2023; 72. [PMID: 37552048 DOI: 10.1099/jmm.0.001739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023] Open
Abstract
The identification of the novel pneumococcal serotype 7D by Neufeld quellung reaction requires significant expertise. To circumvent this, we developed a simple serotype-specific PCR method to discriminate serotype 7D from the closely related serotypes 7C, 7B and 40. The established PCR was validated with the strain collection of the German National Reference Center for Streptococci (GNRCS). However, no isolate initially assigned as serotype 7B, 7C or 40 was identified as serotype 7D.
Collapse
Affiliation(s)
- Karsten Maruhn
- National Reference Center for Streptococci, Institute of Medical Microbiology, University Hospital RWTH, Aachen, Germany
- Laboratory Diagnostic Center, University Hospital RWTH Aachen, Aachen, Germany
| | - Andreas Itzek
- National Reference Center for Streptococci, Institute of Medical Microbiology, University Hospital RWTH, Aachen, Germany
| | - Matthias Imoehl
- Laboratory Diagnostic Center, University Hospital RWTH Aachen, Aachen, Germany
| | - Mark van der Linden
- National Reference Center for Streptococci, Institute of Medical Microbiology, University Hospital RWTH, Aachen, Germany
| |
Collapse
|
12
|
Higgs C, Kumar LS, Stevens K, Strachan J, Sherry NL, Horan K, Zhang J, Stinear TP, Howden BP, Gorrie CL. Population structure, serotype distribution and antibiotic resistance of Streptococcus pneumoniae causing invasive disease in Victoria, Australia. Microb Genom 2023; 9:mgen001070. [PMID: 37471116 PMCID: PMC10438814 DOI: 10.1099/mgen.0.001070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/21/2023] [Indexed: 07/21/2023] Open
Abstract
Streptococcus pneumoniae is a major human pathogen and can cause a range of conditions from asymptomatic colonization to invasive pneumococcal disease (IPD). The epidemiology and distribution of IPD-causing serotypes in Australia has undergone large changes following the introduction of the 7-valent pneumococcal conjugate vaccine (PCV) in 2005 and the 13-valent PCV in 2011. In this study, to provide a contemporary understanding of the IPD causing population in Victoria, Australia, we aimed to examine the population structure and prevalence of antimicrobial resistance using whole-genome sequencing and comprehensive antimicrobial susceptibility data of 1288 isolates collected between 2018 and 2022. We observed high diversity among the isolates with 52 serotypes, 203 sequence types (STs) and 70 Global Pneumococcal Sequencing Project Clusters (GPSCs) identified. Serotypes contained in the 13v-PCV represented 35.3 % (n=405) of isolates. Antimicrobial resistance (AMR) to at least one antibiotic was identified in 23.8 % (n=358) of isolates with penicillin resistance the most prevalent (20.3 %, n=261 using meningitis breakpoints and 5.1 % n=65 using oral breakpoints). Of the AMR isolates, 28 % (n=101) were multidrug resistant (MDR) (resistant to three or more drug classes). Vaccination status of cases was determined for a subset of isolates with 34 cases classified as vaccine failure events (fully vaccinated IPD cases of vaccine serotype). However, no phylogenetic association with failure events was observed. Within the highly diverse IPD population, we identified six high-risk sub-populations of public health concern characterized by high prevalence, high rates of AMR and MDR, or serotype inclusion in vaccines. High-risk serotypes included serotypes 3, 19F, 19A, 14, 11A, 15A and serofamily 23. In addition, we present our data validating seroBA for in silico serotyping to facilitate ISO-accreditation of this test in routine use in a public health reference laboratory and have made this data set available. This study provides insights into the population dynamics, highlights non-vaccine serotypes of concern that are highly resistant, and provides a genomic framework for the ongoing surveillance of IPD in Australia which can inform next-generation IPD prevention strategies.
Collapse
Affiliation(s)
- Charlie Higgs
- Department of Microbiology & Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Lamali Sadeesh Kumar
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology & Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Kerrie Stevens
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology & Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | | | - Norelle L. Sherry
- Department of Microbiology & Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology & Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Department of Infectious Diseases, Austin Health, Heidelberg, Victoria, Australia
| | - Kristy Horan
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology & Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Josh Zhang
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology & Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Timothy P. Stinear
- Department of Microbiology & Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Centre for Pathogen Genomics, University of Melbourne, Melbourne, Victoria, Australia
| | - Benjamin P. Howden
- Department of Microbiology & Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology & Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Department of Infectious Diseases, Austin Health, Heidelberg, Victoria, Australia
- Centre for Pathogen Genomics, University of Melbourne, Melbourne, Victoria, Australia
| | - Claire L. Gorrie
- Department of Microbiology & Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology & Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Centre for Pathogen Genomics, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
13
|
Puzia W, Gawor J, Gromadka R, Skoczyńska A, Sadowy E. Comparative genomic analysis of two ST320 Streptococcus pneumoniae isolates, representing serotypes 19A and 19F. BMC Genom Data 2023; 24:19. [PMID: 37032356 PMCID: PMC10084702 DOI: 10.1186/s12863-023-01118-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 03/03/2023] [Indexed: 04/11/2023] Open
Abstract
BACKGROUND Streptococcus pneumoniae (pneumococcus) represents an important human pathogen, responsible for respiratory and invasive infections in the community. The efficacy of polysaccharide conjugate vaccines formulated against pneumococci is reduced by the phenomenon of serotype replacement in population of this pathogen. The aim of the current study was to obtain and compare complete genomic sequences of two pneumococcal isolates, both belonging to ST320 but differing by the serotype. RESULTS Here, we report genomic sequences of two isolates of important human pathogen, S. pneumoniae. Genomic sequencing resulted in complete sequences of chromosomes of both isolates, 2,069,241 bp and 2,103,144 bp in size, and confirmed the presence of cps loci specific for serotypes 19A and 19F. The comparative analysis of these genomes revealed several instances of recombination, which involved not only S. pneumoniae but also presumably other streptococci as donors. CONCLUSIONS We report the complete genomic sequences of two S. pneumoniae isolates of ST320 and serotypes 19A and 19F. The detailed comparative analysis of these genomes revealed the history of several recombination events, clustered in the region including the cps locus.
Collapse
Affiliation(s)
- Weronika Puzia
- Department of Epidemiology and Clinical Microbiology, National Medicines Institute, Warsaw, Poland
- DNA Sequencing and Synthesis Facility, Institute of Biochemistry and Biophysics PAS, Warsaw, Poland
| | - Jan Gawor
- DNA Sequencing and Synthesis Facility, Institute of Biochemistry and Biophysics PAS, Warsaw, Poland
| | - Robert Gromadka
- DNA Sequencing and Synthesis Facility, Institute of Biochemistry and Biophysics PAS, Warsaw, Poland
| | - Anna Skoczyńska
- Department of Epidemiology and Clinical Microbiology, National Medicines Institute, Warsaw, Poland
- National Reference Centre for Bacterial Meningitis, National Medicines Institute, Warsaw, Poland
| | - Ewa Sadowy
- Department of Molecular Microbiology, National Medicines Institute, Ul. Chelmska 30/34, 00-725, Warsaw, Poland.
| |
Collapse
|
14
|
Hawkins PA, Chochua S, Lo SW, Belman S, Antonio M, Kwambana-Adams B, von Gottberg A, du Plessis M, Cornick J, Beall B, Breiman RF, Bentley SD, McGee L. A global genomic perspective on the multidrug-resistant Streptococcus pneumoniae 15A-CC63 sub-lineage following pneumococcal conjugate vaccine introduction. Microb Genom 2023; 9. [PMID: 37083600 DOI: 10.1099/mgen.0.000998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023] Open
Abstract
The introduction of pneumococcal conjugate vaccines (PCV7, PCV10, PCV13) around the world has proved successful in preventing invasive pneumococcal disease. However, immunization against Streptococcus pneumoniae has led to serotype replacement by non-vaccine serotypes, including serotype 15A. Clonal complex 63 (CC63) is associated with many serotypes and has been reported in association with 15A after introduction of PCVs. A total of 865 CC63 isolates were included in this study, from the USA (n=391) and a global collection (n=474) from 1998-2019 and 1995-2018, respectively. We analysed the genomic sequences to identify serotypes and penicillin-binding protein (PBP) genes 1A, 2B and 2X, and other resistance determinants, to predict minimum inhibitory concentrations (MICs) against penicillin, erythromycin, clindamycin, co-trimoxazole and tetracycline. We conducted phylogenetic and spatiotemporal analyses to understand the evolutionary history of the 15A-CC63 sub-lineage. Overall, most (89.5 %, n=247) pre-PCV isolates in the CC63 cluster belonged to serotype 14, with 15A representing 6.5 % of isolates. Conversely, serotype 14 isolates represented 28.2 % of post-PCV CC63 isolates (n=618), whilst serotype 15A isolates represented 65.4 %. Dating of the CC63 lineage determined the most recent common ancestor emerged in the 1980s, suggesting the 15A-CC63 sub-lineage emerged from its closest serotype 14 ancestor prior to the development of pneumococcal vaccines. This sub-lineage was predominant in the USA, Israel and China. Multidrug resistance (to three or more drug classes) was widespread among isolates in this sub-lineage. We show that the CC63 lineage is globally distributed and most of the isolates are penicillin non-susceptible, and thus should be monitored.
Collapse
Affiliation(s)
- Paulina A Hawkins
- Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Sopio Chochua
- Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Stephanie W Lo
- Parasites and Microbes, Wellcome Sanger Institute, Hinxton, Cambridge, UK
| | - Sophie Belman
- Parasites and Microbes, Wellcome Sanger Institute, Hinxton, Cambridge, UK
| | - Martin Antonio
- MRC Unit The Gambia, London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Brenda Kwambana-Adams
- MRC Unit The Gambia, London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Anne von Gottberg
- National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
- School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Mignon du Plessis
- National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
- School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Jen Cornick
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Bernard Beall
- Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Robert F Breiman
- Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Stephen D Bentley
- Parasites and Microbes, Wellcome Sanger Institute, Hinxton, Cambridge, UK
| | - Lesley McGee
- Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
15
|
Johnston CHG, Hope R, Soulet AL, Dewailly M, De Lemos D, Polard P. The RecA-directed recombination pathway of natural transformation initiates at chromosomal replication forks in the pneumococcus. Proc Natl Acad Sci U S A 2023; 120:e2213867120. [PMID: 36795748 PMCID: PMC9974461 DOI: 10.1073/pnas.2213867120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 12/09/2022] [Indexed: 02/17/2023] Open
Abstract
Homologous recombination (HR) is a crucial mechanism of DNA strand exchange that promotes genetic repair and diversity in all kingdoms of life. Bacterial HR is driven by the universal recombinase RecA, assisted in the early steps by dedicated mediators that promote its polymerization on single-stranded DNA (ssDNA). In bacteria, natural transformation is a prominent HR-driven mechanism of horizontal gene transfer specifically dependent on the conserved DprA recombination mediator. Transformation involves internalization of exogenous DNA as ssDNA, followed by its integration into the chromosome by RecA-directed HR. How DprA-mediated RecA filamentation on transforming ssDNA is spatiotemporally coordinated with other cellular processes remains unknown. Here, we tracked the localization of fluorescent fusions to DprA and RecA in Streptococcus pneumoniae and revealed that both accumulate in an interdependent manner with internalized ssDNA at replication forks. In addition, dynamic RecA filaments were observed emanating from replication forks, even with heterologous transforming DNA, which probably represent chromosomal homology search. In conclusion, this unveiled interaction between HR transformation and replication machineries highlights an unprecedented role for replisomes as landing pads for chromosomal access of tDNA, which would define a pivotal early HR step for its chromosomal integration.
Collapse
Affiliation(s)
- Calum H. G. Johnston
- Laboratoire de Microbiologie et Génétique Moléculaires, UMR5100, Centre de Biologie Intégrative, Centre Nationale de la Recherche Scientifique, 31062Toulouse, France
- Université Paul Sabatier (Toulouse III), 31062Toulouse, France
| | - Rachel Hope
- Laboratoire de Microbiologie et Génétique Moléculaires, UMR5100, Centre de Biologie Intégrative, Centre Nationale de la Recherche Scientifique, 31062Toulouse, France
- Université Paul Sabatier (Toulouse III), 31062Toulouse, France
- Department of Life Sciences, Imperial College, SW7 2AZLondon, UK
| | - Anne-Lise Soulet
- Laboratoire de Microbiologie et Génétique Moléculaires, UMR5100, Centre de Biologie Intégrative, Centre Nationale de la Recherche Scientifique, 31062Toulouse, France
- Université Paul Sabatier (Toulouse III), 31062Toulouse, France
| | - Marie Dewailly
- Laboratoire de Microbiologie et Génétique Moléculaires, UMR5100, Centre de Biologie Intégrative, Centre Nationale de la Recherche Scientifique, 31062Toulouse, France
- Université Paul Sabatier (Toulouse III), 31062Toulouse, France
| | - David De Lemos
- Laboratoire de Microbiologie et Génétique Moléculaires, UMR5100, Centre de Biologie Intégrative, Centre Nationale de la Recherche Scientifique, 31062Toulouse, France
- Université Paul Sabatier (Toulouse III), 31062Toulouse, France
| | - Patrice Polard
- Laboratoire de Microbiologie et Génétique Moléculaires, UMR5100, Centre de Biologie Intégrative, Centre Nationale de la Recherche Scientifique, 31062Toulouse, France
- Université Paul Sabatier (Toulouse III), 31062Toulouse, France
| |
Collapse
|
16
|
Multi-Omic Profiling, Structural Characterization, and Potent Inhibitor Screening of Evasion-Related Proteins of a Parasitic Nematode, Haemonchus contortus, Surviving Vaccine Treatment. Biomedicines 2023; 11:biomedicines11020411. [PMID: 36830947 PMCID: PMC9952990 DOI: 10.3390/biomedicines11020411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/15/2023] [Accepted: 01/27/2023] [Indexed: 02/01/2023] Open
Abstract
The emergence of drug-resistant parasitic nematodes in both humans and livestock calls for development of alternative and cost-effective control strategies. Barbervax® is the only registered vaccine for the economically important ruminant strongylid Haemonchus contortus. In this study, we compared the microbiome, genome-wide diversity, and transcriptome of H. contortus adult male populations that survived vaccination with an experimental vaccine after inoculation in sheep. Our genome-wide SNP analysis revealed 16 putative candidate vaccine evasion genes. However, we did not identify any evidence for changes in microbial community profiling based on the 16S rRNA gene sequencing results of the vaccine-surviving parasite populations. A total of fifty-eight genes were identified as significantly differentially expressed, with six genes being long non-coding (lnc) RNAs and none being putative candidate SNP-associated genes. The genes that highly upregulated in surviving parasites from vaccinated animals were associated with GO terms belonging to predominantly molecular functions and a few biological processes that may have facilitated evasion or potentially lessened the effect of the vaccine. These included five targets: astacin (ASTL), carbonate dehydratase (CA2), phospholipase A2 (PLA2), glutamine synthetase (GLUL), and fatty acid-binding protein (FABP3). Our tertiary structure predictions and modelling analyses were used to perform in silico searches of all published and commercially available inhibitor molecules or substrate analogs with potential broad-spectrum efficacy against nematodes of human and veterinary importance.
Collapse
|
17
|
Novel Copper Oxide Bio-Nanocrystals to Target Outer Membrane Lectin of Vancomycin-Resistant Enterococcus faecium (VREfm): In Silico, Bioavailability, Antimicrobial, and Anticancer Potential. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227957. [PMID: 36432057 PMCID: PMC9696412 DOI: 10.3390/molecules27227957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/06/2022] [Accepted: 11/09/2022] [Indexed: 11/19/2022]
Abstract
In present study, we used Olea europaea leaf extract to biosynthesize in situ Copper Oxide nanocrystals (CuO @OVLe NCs) with powerful antibacterial and anti-cancer capabilities. Physio-chemical analyses, such as UV/Vis, FTIR, XRD, EDX, SEM, and TEM, were applied to characterize CuO @OVLe NCs. The UV/Vis spectrum demonstrated a strong peak at 345 nm. Furthermore, FTIR, XRD, and EDX validated the coating operation's contact with colloidal CuO @OVLe NCs. According to TEM and SEM analyses, CuO @OVLe NCs exhibited a spherical shape and uniform distribution of size with aggregation, for an average size of ~75 nm. The nanoparticles demonstrated a considerable antibacterial effect against E. faecium bacterial growth, as well as an increased inhibition rate in a dose-dependent manner on the MCF-7, PC3, and HpeG2 cancer cell lines and a decreased inhibition rate on WRL-68. Molecular docking and MD simulation were used to demonstrate the high binding affinity of a ligand (Oleuropein) toward the lectin receptor complex of the outer membrane to vancomycin-resistant E. faecium (VREfm) via amino acids (Leu 195, Thr 288, His 165, and Ser 196). Hence, our results expand the accessibility of OVLe's bioactive components as a promising natural source for the manufacture of physiologically active components and the creation of green biosynthesis of metal nanocrystals.
Collapse
|
18
|
Silva PH, Vázquez Y, Campusano C, Retamal-Díaz A, Lay MK, Muñoz CA, González PA, Kalergis AM, Bueno SM. Non-capsular based immunization approaches to prevent Streptococcus pneumoniae infection. Front Cell Infect Microbiol 2022; 12:949469. [PMID: 36225231 PMCID: PMC9548657 DOI: 10.3389/fcimb.2022.949469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 09/02/2022] [Indexed: 12/02/2022] Open
Abstract
Streptococcus pneumoniae is a Gram-positive bacterium and the leading cause of bacterial pneumonia in children and the elderly worldwide. Currently, two types of licensed vaccines are available to prevent the disease caused by this pathogen: the 23-valent pneumococcal polysaccharide-based vaccine and the 7-, 10, 13, 15 and 20-valent pneumococcal conjugate vaccine. However, these vaccines, composed of the principal capsular polysaccharide of leading serotypes of this bacterium, have some problems, such as high production costs and serotype-dependent effectiveness. These drawbacks have stimulated research initiatives into non-capsular-based vaccines in search of a universal vaccine against S. pneumoniae. In the last decades, several research groups have been developing various new vaccines against this bacterium based on recombinant proteins, live attenuated bacterium, inactivated whole-cell vaccines, and other newer platforms. Here, we review and discuss the status of non-capsular vaccines against S. pneumoniae and the future of these alternatives in a post-pandemic scenario.
Collapse
Affiliation(s)
- Pedro H. Silva
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Yaneisi Vázquez
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Camilo Campusano
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Angello Retamal-Díaz
- Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
| | - Margarita K. Lay
- Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
| | - Christian A. Muñoz
- Unidad de Microbiología, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile
| | - Pablo A. González
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M. Bueno
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- *Correspondence: Susan M. Bueno,
| |
Collapse
|
19
|
How GBS Got Its Hump: Genomic Analysis of Group B Streptococcus from Camels Identifies Host Restriction as well as Mobile Genetic Elements Shared across Hosts and Pathogens. Pathogens 2022; 11:pathogens11091025. [PMID: 36145457 PMCID: PMC9504112 DOI: 10.3390/pathogens11091025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/23/2022] Open
Abstract
Group B Streptococcus (GBS) literature largely focuses on humans and neonatal disease, but GBS also affects numerous animals, with significant impacts on health and productivity. Spill-over events occur between humans and animals and may be followed by amplification and evolutionary adaptation in the new niche, including changes in the core or accessory genome content. Here, we describe GBS from one-humped camels (Camelus dromedarius), a relatively poorly studied GBS host of increasing importance for food security in arid regions. Genomic analysis shows that virtually all GBS from camels in East Africa belong to a monophyletic clade, sublineage (SL)609. Capsular types IV and VI, including a new variant of type IV, were over-represented compared to other host species. Two genomic islands with signatures of mobile elements contained most camel-associated genes, including genes for metal and carbohydrate utilisation. Lactose fermentation genes were associated with milk isolates, albeit at lower prevalence in camel than bovine GBS. The presence of a phage with high identity to Streptococcus pneumoniae and Streptococcus suis suggests lateral gene transfer between GBS and bacterial species that have not been described in camels. The evolution of camel GBS appears to combine host restriction with the sharing of accessory genome content across pathogen and host species.
Collapse
|
20
|
Dewachter L, Dénéréaz J, Liu X, de Bakker V, Costa C, Baldry M, Sirard JC, Veening JW. Amoxicillin-resistant Streptococcus pneumoniae can be resensitized by targeting the mevalonate pathway as indicated by sCRilecs-seq. eLife 2022; 11:e75607. [PMID: 35748540 PMCID: PMC9363119 DOI: 10.7554/elife.75607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 06/23/2022] [Indexed: 11/23/2022] Open
Abstract
Antibiotic resistance in the important opportunistic human pathogen Streptococcus pneumoniae is on the rise. This is particularly problematic in the case of the β-lactam antibiotic amoxicillin, which is the first-line therapy. It is therefore crucial to uncover targets that would kill or resensitize amoxicillin-resistant pneumococci. To do so, we developed a genome-wide, single-cell based, gene silencing screen using CRISPR interference called sCRilecs-seq (subsets of CRISPR interference libraries extracted by fluorescence activated cell sorting coupled to next generation sequencing). Since amoxicillin affects growth and division, sCRilecs-seq was used to identify targets that are responsible for maintaining proper cell size. Our screen revealed that downregulation of the mevalonate pathway leads to extensive cell elongation. Further investigation into this phenotype indicates that it is caused by a reduced availability of cell wall precursors at the site of cell wall synthesis due to a limitation in the production of undecaprenyl phosphate (Und-P), the lipid carrier that is responsible for transporting these precursors across the cell membrane. The data suggest that, whereas peptidoglycan synthesis continues even with reduced Und-P levels, cell constriction is specifically halted. We successfully exploited this knowledge to create a combination treatment strategy where the FDA-approved drug clomiphene, an inhibitor of Und-P synthesis, is paired up with amoxicillin. Our results show that clomiphene potentiates the antimicrobial activity of amoxicillin and that combination therapy resensitizes amoxicillin-resistant S. pneumoniae. These findings could provide a starting point to develop a solution for the increasing amount of hard-to-treat amoxicillin-resistant pneumococcal infections.
Collapse
Affiliation(s)
- Liselot Dewachter
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore BuildingLausanneSwitzerland
| | - Julien Dénéréaz
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore BuildingLausanneSwitzerland
| | - Xue Liu
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore BuildingLausanneSwitzerland
- Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Pharmacology, International Cancer Center, Shenzhen University Health Science CenterShenzhenChina
| | - Vincent de Bakker
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore BuildingLausanneSwitzerland
| | - Charlotte Costa
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of LilleLilleFrance
| | - Mara Baldry
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of LilleLilleFrance
| | - Jean-Claude Sirard
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of LilleLilleFrance
| | - Jan-Willem Veening
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore BuildingLausanneSwitzerland
| |
Collapse
|
21
|
Bengtsson RJ, Simpkin AJ, Pulford CV, Low R, Rasko DA, Rigden DJ, Hall N, Barry EM, Tennant SM, Baker KS. Pathogenomic analyses of Shigella isolates inform factors limiting shigellosis prevention and control across LMICs. Nat Microbiol 2022; 7:251-261. [PMID: 35102306 PMCID: PMC8813619 DOI: 10.1038/s41564-021-01054-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 12/17/2021] [Indexed: 12/17/2022]
Abstract
Shigella spp. are the leading bacterial cause of severe childhood diarrhoea in low- and middle-income countries (LMICs), are increasingly antimicrobial resistant and have no widely available licenced vaccine. We performed genomic analyses of 1,246 systematically collected shigellae sampled from seven countries in sub-Saharan Africa and South Asia as part of the Global Enteric Multicenter Study (GEMS) between 2007 and 2011, to inform control and identify factors that could limit the effectiveness of current approaches. Through contemporaneous comparison among major subgroups, we found that S. sonnei contributes ≥6-fold more disease than other Shigella species relative to its genomic diversity, and highlight existing diversity and adaptative capacity among S. flexneri that may generate vaccine escape variants in <6 months. Furthermore, we show convergent evolution of resistance against ciprofloxacin, the current WHO-recommended antimicrobial for the treatment of shigellosis, among Shigella isolates. This demonstrates the urgent need to integrate existing genomic diversity into vaccine and treatment plans for Shigella, providing a framework for the focused application of comparative genomics to guide vaccine development, and the optimization of control and prevention strategies for other pathogens relevant to public health policy considerations.
Collapse
Affiliation(s)
- Rebecca J Bengtsson
- Clinical Infection, Microbiology and Immunity, Institute of Infection, Veterinary and Ecological Sciences, The University of Liverpool, Liverpool, UK
| | - Adam J Simpkin
- Biochemistry and Systems Biology, Institute of Systems, Molecular and Systems Biology, The University of Liverpool, Liverpool, UK
| | - Caisey V Pulford
- Clinical Infection, Microbiology and Immunity, Institute of Infection, Veterinary and Ecological Sciences, The University of Liverpool, Liverpool, UK
- Gastrointestinal Infections and Food Safety (One Health), United Kingdom Health Security Agency, London, UK
| | - Ross Low
- Earlham Institute, Norwich Research Park, Norwich, UK
| | - David A Rasko
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Daniel J Rigden
- Biochemistry and Systems Biology, Institute of Systems, Molecular and Systems Biology, The University of Liverpool, Liverpool, UK
| | - Neil Hall
- Earlham Institute, Norwich Research Park, Norwich, UK
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Eileen M Barry
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sharon M Tennant
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kate S Baker
- Clinical Infection, Microbiology and Immunity, Institute of Infection, Veterinary and Ecological Sciences, The University of Liverpool, Liverpool, UK.
| |
Collapse
|
22
|
Dammann AN, Chamby AB, Gonzalez FJ, Sharp ME, Flores K, Shahi I, Dongas S, Hooven TA, Ratner AJ. Group B Streptococcus capsular serotype alters vaginal colonization fitness. J Infect Dis 2021; 225:1896-1904. [PMID: 34788438 DOI: 10.1093/infdis/jiab559] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 11/02/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Group B Streptococcus (GBS) remains a leading cause of infant morbidity and mortality. A candidate vaccine targets six GBS serotypes, offering a potential alternative to intrapartum antibiotic prophylaxis to reduce disease burden. However, our understanding of the contributions of specific capsule types to GBS colonization and disease remains limited. METHODS Using allelic exchange, we generated isogenic GBS strains differing only in the serotype-determining region in two genetic backgrounds, including the hypervirulent clonal complex (CC) 17. Using a murine model of vaginal co-colonization, we evaluated the roles of the presence of capsule and of expression of specific capsular types in GBS vaginal colonization fitness independent of other genetic factors. RESULTS Encapsulated wild-type strains COH1 (CC17, serotype III) and A909 (non-CC17, serotype Ia), outcompeted isogenic acapsular mutants in murine vaginal co-colonization. COH1 wild-type outcompeted A909. Notably, expression of type Ia capsule conferred an advantage over type III capsule in both genetic backgrounds. CONCLUSIONS Specific capsule types may provide an advantage in GBS vaginal colonization in vivo. However, success of certain GBS lineages, including CC17, likely involves both capsule and non-capsule genetic elements. Capsule switching in GBS, a potential outcome of conjugate vaccine programs, may alter colonization fitness or pathogenesis.
Collapse
Affiliation(s)
- Allison N Dammann
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY, USA
| | - Anna B Chamby
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY, USA
| | - Francisco J Gonzalez
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY, USA
| | - Molly E Sharp
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Karina Flores
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Ifrah Shahi
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Sophia Dongas
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY, USA
| | - Thomas A Hooven
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Richard King Mellon Institute for Pediatric Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Adam J Ratner
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY, USA.,Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
23
|
Du QQ, Shi W, Yu D, Yao KH. Epidemiology of non-vaccine serotypes of Streptococcus pneumoniae before and after universal administration of pneumococcal conjugate vaccines. Hum Vaccin Immunother 2021; 17:5628-5637. [PMID: 34726580 DOI: 10.1080/21645515.2021.1985353] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
The universal administration of pneumococcal conjugate vaccines (PCVs) had been demonstrated as an effective way to prevent Streptococcus pneumoniae infection. However, the immunity induced by PCVs protected against the infections caused by vaccine serotypes, which were usually more frequent than non-vaccine serotypes (NVTs). The prevalence and pathogenicity of NVTs after universal vaccination have caused widespread concern. We reviewed the epidemiology of non-PCV13 S. pneumoniae before and after PCV13 introduction, and explored the potential reasons for the spread of NVTs. Emerging and spreading NVTs can be regarded as the focus for future serotype epidemiological survey and vaccine optimization.AbbreviationsIPD: invasive pneumococcal disease PCV: pneumococcal conjugate vaccines VT: vaccine serotypeNVT: non-vaccine serotype.
Collapse
Affiliation(s)
- Qian-Qian Du
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Key Discipline of Pediatrics, Laboratory of Microbiology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Wei Shi
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Key Discipline of Pediatrics, Laboratory of Microbiology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Dan Yu
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Key Discipline of Pediatrics, Laboratory of Microbiology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Kai-Hu Yao
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Key Discipline of Pediatrics, Laboratory of Microbiology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| |
Collapse
|
24
|
Corcoran M, Mereckiene J, Cotter S, Murchan S, Lo SW, McGee L, Breiman RF, Cunney R, Humphreys H, Bentley SD, Gladstone RA. Using genomics to examine the persistence of Streptococcus pneumoniae serotype 19A in Ireland and the emergence of a sub-clade associated with vaccine failures. Vaccine 2021; 39:5064-5073. [PMID: 34301430 DOI: 10.1016/j.vaccine.2021.06.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND Streptococcus pneumoniae serotype 19A remains a significant cause of invasive pneumococcal disease (IPD) in Ireland despite the successful introduction of a 13-valent pneumococcal conjugate vaccine (PCV13) in 2010 which reduced the overall incidence of IPD in children. METHODS Invasive Streptococcus pneumoniae serotype 19A isolates from the Irish reference laboratory between 2007-08 and 2017-18 were analysed using whole genome sequencing (WGS) to investigate the persistence of this vaccine-preventable serotype. We compared the entire national 19A collection to other international collections using a standardised nomenclature of Global Pneumococcal Sequencing Clusters (GPSC). RESULTS Expansion of GPSCs and clonal complexes (CCs) may have been associated with vaccine introduction and antimicrobial prescribing policies. A sub-clade of GPSC1-CC320 (n = 25) unique to Ireland, included five of the ten vaccine failures/breakthrough cases identified (p = 0.0086). This sub-clade was not observed in a global GPSC1-CC320 collection. All isolates within the sub-clade (n = 25) contained a galE gene variant rarely observed in a global pneumococcal collection (n = 37/13454, p < 0.001) nor within GPSC1-CC320 (n = 19/227) (p < 0.001). The sub-clade was estimated to have emerged at the start of the PCV-vaccine era (ancestral origin 2000, range 1995-2004) and expanded in Ireland, with most isolated after PCV13 introduction (n = 24/25). CONCLUSIONS The identification of a sub-clade/variant of serotype 19A highlights the benefit of using WGS to analyse genotypes associated with persistence of a preventable serotype of S. pneumoniae. Particularly as this sub-clade identified was more likely to be associated with IPD in vaccinated children than other 19A genotypes. It is possible that changes to the galE gene, which is involved in capsule production but outside of the capsular polysaccharide biosynthesis locus, may affect bacterial persistence within the population. Discrete changes associated with vaccine-serotype persistence should be further investigated and may inform vaccine strategies.
Collapse
Affiliation(s)
- M Corcoran
- Irish Meningitis and Sepsis Reference Laboratory, Children's Health Ireland at Temple Street, Dublin, Ireland; Department of Clinical Microbiology, Royal College of Sugeons in Ireland, Dublin, Ireland.
| | - J Mereckiene
- Health Protection Surveillance Centre, Dublin, Ireland
| | - S Cotter
- Health Protection Surveillance Centre, Dublin, Ireland
| | - S Murchan
- Health Protection Surveillance Centre, Dublin, Ireland
| | - S W Lo
- Parasites and Microbes, Wellcome Sanger Institute, Hinxton, UK
| | - L McGee
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - R F Breiman
- Department of Global Health, Rollins School Public Health, Emory University, Atlanta, GA, USA
| | - R Cunney
- Irish Meningitis and Sepsis Reference Laboratory, Children's Health Ireland at Temple Street, Dublin, Ireland; Department of Clinical Microbiology, Royal College of Sugeons in Ireland, Dublin, Ireland; Department of Microbiology, Children's Health Ireland at Temple Street, Dublin, Ireland
| | - H Humphreys
- Department of Clinical Microbiology, Royal College of Sugeons in Ireland, Dublin, Ireland; Department of Microbiology, Beaumont Hospital, Dublin, Ireland
| | - S D Bentley
- Parasites and Microbes, Wellcome Sanger Institute, Hinxton, UK
| | - R A Gladstone
- Parasites and Microbes, Wellcome Sanger Institute, Hinxton, UK; Department of Biostatistics, Institute of Basic Medical Sciences, University of Oslo, N-0317 Oslo, Norway
| |
Collapse
|
25
|
Rochman ND, Wolf YI, Faure G, Mutz P, Zhang F, Koonin EV. Ongoing global and regional adaptive evolution of SARS-CoV-2. Proc Natl Acad Sci U S A 2021; 118:e2104241118. [PMID: 34292871 PMCID: PMC8307621 DOI: 10.1073/pnas.2104241118] [Citation(s) in RCA: 167] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Understanding the trends in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) evolution is paramount to control the COVID-19 pandemic. We analyzed more than 300,000 high-quality genome sequences of SARS-CoV-2 variants available as of January 2021. The results show that the ongoing evolution of SARS-CoV-2 during the pandemic is characterized primarily by purifying selection, but a small set of sites appear to evolve under positive selection. The receptor-binding domain of the spike protein and the region of the nucleocapsid protein associated with nuclear localization signals (NLS) are enriched with positively selected amino acid replacements. These replacements form a strongly connected network of apparent epistatic interactions and are signatures of major partitions in the SARS-CoV-2 phylogeny. Virus diversity within each geographic region has been steadily growing for the entirety of the pandemic, but analysis of the phylogenetic distances between pairs of regions reveals four distinct periods based on global partitioning of the tree and the emergence of key mutations. The initial period of rapid diversification into region-specific phylogenies that ended in February 2020 was followed by a major extinction event and global homogenization concomitant with the spread of D614G in the spike protein, ending in March 2020. The NLS-associated variants across multiple partitions rose to global prominence in March to July, during a period of stasis in terms of interregional diversity. Finally, beginning in July 2020, multiple mutations, some of which have since been demonstrated to enable antibody evasion, began to emerge associated with ongoing regional diversification, which might be indicative of speciation.
Collapse
Affiliation(s)
- Nash D Rochman
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894;
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894
| | - Guilhem Faure
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Pascal Mutz
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894
| | - Feng Zhang
- Broad Institute of MIT and Harvard, Cambridge, MA 02142;
- HHMI, Massachusetts Institute of Technology, Cambridge, MA 02139
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894;
| |
Collapse
|
26
|
Metcalf BJ, Chochua S, Walker H, Tran T, Li Z, Varghese J, Snippes Vagnone PM, Lynfield R, McGee L, Li Y, Pilishvili T, Beall B. Invasive Pneumococcal Strain Distributions and Isolate Clusters Associated With Persons Experiencing Homelessness During 2018. Clin Infect Dis 2021; 72:e948-e956. [PMID: 33150366 PMCID: PMC11915190 DOI: 10.1093/cid/ciaa1680] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 10/29/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND We aimed to characterize invasive pneumococcal disease (IPD) isolates collected from multistate surveillance in the United States during 2018 and examine within-serotype propensities of isolates to form related clusters. METHODS We predicted strain features using whole genome sequencing obtained from 2885 IPD isolates obtained through the Center for Disease Control and Prevention's Active Bacterial Core surveillance (ABCs), which has a surveillance population of approximately 34.5 million individuals distributed among 10 states. Phylogenetic analysis was provided for serotypes accounting for ≥27 isolates. RESULTS Thirteen-valent pneumococcal conjugate vaccine (PCV13) serotypes together with 6C accounted for 23 of 105 (21.9%) of isolates from children aged <5 years and 820 of 2780 (29.5%) isolates from those aged ≥5 years. The most common serotypes from adult IPD isolates were serotypes 3 (413/2780 [14.9%]), 22F (291/2780 [10.5%]), and 9N (191/2780 [6.9%]). Among child IPD isolates, serotypes 15BC (18/105 [17.1%]), 3 (11/105 [10.5%]), and 33F (10/105 [9.5%]) were most common. Serotypes 4, 12F, 20, and 7F had the highest proportions of isolates that formed related clusters together with the highest proportions of isolates from persons experiencing homelessness (PEH). Among 84 isolates from long-term care facilities, 2 instances of highly related isolate pairs from co-residents were identified. CONCLUSIONS Non-PCV13 serotypes accounted for >70% of IPD in ABCs; however, PCV13 serotype 3 is the most common IPD serotype overall. Serotypes most common among PEH were more often associated with temporally related clusters identified both among PEH and among persons not reportedly experiencing homelessness.
Collapse
Affiliation(s)
- Benjamin J Metcalf
- Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Sopio Chochua
- Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | | | | | | | | | - Ruth Lynfield
- Minnesota Department of Health, St. Paul, Minnesota, USA
| | - Lesley McGee
- Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Yuan Li
- Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Tamara Pilishvili
- Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Bernard Beall
- Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
27
|
Streptococcus Pneumoniae-Associated Hemolytic Uremic Syndrome in the Era of Pneumococcal Vaccine. Pathogens 2021; 10:pathogens10060727. [PMID: 34207609 PMCID: PMC8227211 DOI: 10.3390/pathogens10060727] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/30/2021] [Accepted: 06/02/2021] [Indexed: 01/09/2023] Open
Abstract
Streptococcus pneumoniae-associated hemolytic uremic syndrome (Sp-HUS) is a serious complication of invasive pneumococcal disease that is associated with increased mortality in the acute phase and morbidity in the long term. Recently, Sp-HUS definition has undergone revision and cases are categorized as definite, probable, and possible, based on less invasive serological investigations that evaluate Thomsen-Friedenreich crypt antigen (T-antigen) activation. In comparison to the pre-vaccine era, Sp-HUS incidence seems to be decreasing after the introduction of 7-serotype valence and 13-serotype valence pneumococcal vaccines in 2000 and 2010, respectively. However, Sp-HUS cases continue to occur secondary to vaccine failure and emergence of non-vaccine/replacement serotypes. No single hypothesis elucidates the molecular basis for Sp-HUS occurrence, although pneumococcal neuraminidase production and formation of T-antigen antibody complexes on susceptible endothelial and red blood cells continues to remain the most acceptable explanation. Management of Sp-HUS patients remains supportive in nature and better outcomes are being reported secondary to earlier recognition, better diagnostic tools and improved medical care. Recently, the addition of eculizumab therapy in the management of Sp-HUS for control of dysregulated complement activity has demonstrated good outcomes, although randomized clinical trials are awaited. A sustained pneumococcal vaccination program and vigilance for replacement serotypes will be the key for persistent reduction in Sp-HUS cases worldwide.
Collapse
|
28
|
Sealy RE, Dayton B, Finkelstein D, Hurwitz JL. Harnessing Natural Mosaics: Antibody-Instructed, Multi-Envelope HIV-1 Vaccine Design. Viruses 2021; 13:v13050884. [PMID: 34064894 PMCID: PMC8151930 DOI: 10.3390/v13050884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/27/2021] [Accepted: 05/01/2021] [Indexed: 11/16/2022] Open
Abstract
The year 2021 marks the 40th anniversary since physicians recognized symptoms of the acquired immunodeficiency syndrome (AIDS), a disease that has since caused more than 30 million deaths worldwide. Despite the passing of four decades, there remains no licensed vaccine for the human immunodeficiency virus type 1 (HIV-1), the etiologic agent of AIDS. Despite the development of outstanding anti-retroviral drugs, there are currently more than one-half million deaths each year due to AIDS. Here, we revisit a conventional vaccine strategy used for protection against variable pathogens like HIV-1, which combines an array of diverse surface antigens. The strategy uses antibody recognition patterns to categorize viruses and their surface antigens into groups. Then a leader is assigned for each group and group leaders are formulated into vaccine cocktails. The group leaders are ‘natural mosaics’, because they share one or more epitope(s) with each of the other group members. We encourage the application of this conventional approach to HIV-1 vaccine design. We suggest that the partnering of an antibody-instructed envelope cocktail with new vaccine vectors will yield a successful vaccine in the HIV-1 field.
Collapse
Affiliation(s)
- Robert E. Sealy
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA;
| | - Barry Dayton
- Department of Mathematics, Northeastern Illinois University, 5500 N. St Louis Ave, Chicago, IL 60625, USA;
| | - David Finkelstein
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA;
| | - Julia L. Hurwitz
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA;
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, 858 Madison Avenue, Memphis, TN 38163, USA
- Correspondence: ; Tel.: +1-901-595-2464
| |
Collapse
|
29
|
Rochman N, Wolf YI, Koonin EV. Substantial impact of post-vaccination contacts on cumulative infections during viral epidemics. F1000Res 2021; 10:315. [PMID: 34504684 PMCID: PMC8406440 DOI: 10.12688/f1000research.52341.2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/17/2021] [Indexed: 12/15/2022] Open
Abstract
Background: The start of 2021 was marked by the initiation of a global vaccination campaign against the novel coronavirus SARS-CoV-2. Formulating an optimal distribution strategy under social and economic constraints is challenging. Optimal distribution is additionally constrained by the potential emergence of vaccine resistance. Analogous to chronic low-dose antibiotic exposure, recently inoculated individuals who are not yet immune play an outsized role in the emergence of resistance. Classical epidemiological modelling is well suited to explore how the behavior of the inoculated population impacts the total number of infections over the entirety of an epidemic. Methods: A deterministic model of epidemic evolution is analyzed, with seven compartments defined by their relationship to the emergence of vaccine-resistant mutants and representing three susceptible populations, three infected populations, and one recovered population. This minimally computationally intensive design enables simulation of epidemics across a broad parameter space. The results are used to identify conditions minimizing the cumulative number of infections. Results: When an escape variant is only modestly less infectious than the originating strain within a naïve population, the cumulative number of infections does not monotonically decrease with the rate of vaccine distribution. Analysis of the model also demonstrates that inoculated individuals play a major role in the mitigation or exacerbation of vaccine-resistant outbreaks. Modulating the rate of host-host contact for the inoculated population by less than an order of magnitude can alter the cumulative number of infections by more than 20%. Conclusions: Mathematical modeling shows that limiting post-vaccination contacts can perceptibly affect the course of an epidemic. The consideration of limitations on post-vaccination contacts remains relevant for the entire duration of any vaccination campaign including the current status of SARS-CoV-2 vaccination.
Collapse
Affiliation(s)
- Nash Rochman
- National Center for Biotechnology Information, NIH, Bethesda, MD, 20894, USA
| | - Yuri I Wolf
- National Center for Biotechnology Information, NIH, Bethesda, MD, 20894, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, NIH, Bethesda, MD, 20894, USA
| |
Collapse
|
30
|
Rochman N, Wolf YI, Koonin EV. Substantial impact of post-vaccination contacts on cumulative infections during viral epidemics. F1000Res 2021; 10:315. [PMID: 34504684 PMCID: PMC8406440 DOI: 10.12688/f1000research.52341.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/14/2021] [Indexed: 07/20/2023] Open
Abstract
Background: The start of 2021 was marked by the initiation of a global vaccination campaign against the novel coronavirus SARS-CoV-2. Formulating an optimal distribution strategy under social and economic constraints is challenging. Optimal distribution is additionally constrained by the potential emergence of vaccine resistance. Analogous to chronic low-dose antibiotic exposure, recently inoculated individuals who are not yet immune play an outsized role in the emergence of resistance. Classical epidemiological modelling is well suited to explore how the behavior of the inoculated population impacts the total number of infections over the entirety of an epidemic. Methods: A deterministic model of epidemic evolution is analyzed, with seven compartments defined by their relationship to the emergence of vaccine-resistant mutants and representing three susceptible populations, three infected populations, and one recovered population. This minimally computationally intensive design enables simulation of epidemics across a broad parameter space. The results are used to identify conditions minimizing the cumulative number of infections. Results: When an escape variant is only modestly less infectious than the originating strain within a naïve population, there exists an optimal rate of vaccine distribution. Exceeding this rate increases the cumulative number of infections due to vaccine escape. Analysis of the model also demonstrates that inoculated individuals play a major role in the mitigation or exacerbation of vaccine-resistant outbreaks. Modulating the rate of host-host contact for the inoculated population by less than an order of magnitude can alter the cumulative number of infections by more than 20%. Conclusions: Mathematical modeling shows that optimization of the vaccination rate and limiting post-vaccination contacts can perceptibly affect the course of an epidemic. The consideration of limitations on post-vaccination contacts remains relevant for the entire duration of any vaccination campaign including the current status of SARS-CoV-2 vaccination.
Collapse
Affiliation(s)
- Nash Rochman
- National Center for Biotechnology Information, NIH, Bethesda, MD, 20894, USA
| | - Yuri I Wolf
- National Center for Biotechnology Information, NIH, Bethesda, MD, 20894, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, NIH, Bethesda, MD, 20894, USA
| |
Collapse
|
31
|
Comparative genomics of invasive Streptococcus pneumoniae CC320/271 serotype 19F/19A before the introduction of pneumococcal vaccine in India. Mol Biol Rep 2021; 48:3265-3276. [PMID: 33876375 DOI: 10.1007/s11033-021-06353-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 04/12/2021] [Indexed: 10/21/2022]
Abstract
The emergence of multi drug resistant clone CC320 serotype19F/19A and their capsular (cps) antigenic variants due to selective pressures such as vaccine had been reported worldwide. Hence, it is important to identify the prevalent clones, sequence types and cps variants of serotype 19F/19A in India, where PCV13 has been recently introduced. Multi-locus sequence typing (MLST) was performed for all (n = 21) invasive S. pneumoniae isolates of serotype 19A (n = 5) and 19F (n = 16) collected between the years 2012 and 2018 from children less than 5 years. The genome characterization by whole genome sequencing for the Sequence types (STs) 320 and 271(n = 7) were performed and compared with another six Indian WGSs of similar STs available from the GPS platform. The predominant STs in the serotype 19F/19A study isolates were of CC320: ST 320, 236 and 271, associated with PMEN clone Taiwan19F-14. The WGSs of CC320 study isolates showed high genomic similarity to the Taiwan19F-14 clone, and the penicillin binding protein (PBP) amino acid sequence similarity was 100% for PBP1A, 93% for PBP 2B and 2X. Whilst PBP comparison with other global MDR ST320 strains revealed that the ST320 clones in India are of low-level penicillin resistance. The presence of a few ST320/19A/19F invasive isolates with high similarity to the Taiwan clone suggests slow and gradual expansion of Taiwan19F-14 associated CC320 clones in India. Since serotype 19F/19A is covered by PCV13 vaccine, the expansion of 19F/19A cones with non-PCV13 vaccine serotype in India should be monitored.
Collapse
|
32
|
Rochman ND, Wolf YI, Faure G, Mutz P, Zhang F, Koonin EV. Ongoing Global and Regional Adaptive Evolution of SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2020.10.12.336644. [PMID: 33083804 PMCID: PMC7574262 DOI: 10.1101/2020.10.12.336644] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Understanding the trends in SARS-CoV-2 evolution is paramount to control the COVID-19 pandemic. We analyzed more than 300,000 high quality genome sequences of SARS-CoV-2 variants available as of January 2021. The results show that the ongoing evolution of SARS-CoV-2 during the pandemic is characterized primarily by purifying selection, but a small set of sites appear to evolve under positive selection. The receptor-binding domain of the spike protein and the nuclear localization signal (NLS) associated region of the nucleocapsid protein are enriched with positively selected amino acid replacements. These replacements form a strongly connected network of apparent epistatic interactions and are signatures of major partitions in the SARS-CoV-2 phylogeny. Virus diversity within each geographic region has been steadily growing for the entirety of the pandemic, but analysis of the phylogenetic distances between pairs of regions reveals four distinct periods based on global partitioning of the tree and the emergence of key mutations. The initial period of rapid diversification into region-specific phylogenies that ended in February 2020 was followed by a major extinction event and global homogenization concomitant with the spread of D614G in the spike protein, ending in March 2020. The NLS associated variants across multiple partitions rose to global prominence in March-July, during a period of stasis in terms of inter-regional diversity. Finally, beginning July 2020, multiple mutations, some of which have since been demonstrated to enable antibody evasion, began to emerge associated with ongoing regional diversification, which might be indicative of speciation.
Collapse
Affiliation(s)
- Nash D Rochman
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894
| | - Guilhem Faure
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Pascal Mutz
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894
| | - Feng Zhang
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894
| |
Collapse
|
33
|
Martín-Galiano AJ, Escolano-Martínez MS, Corsini B, de la Campa AG, Yuste J. Immunization with SP_1992 (DiiA) Protein of Streptococcus pneumoniae Reduces Nasopharyngeal Colonization and Protects against Invasive Disease in Mice. Vaccines (Basel) 2021; 9:vaccines9030187. [PMID: 33668195 PMCID: PMC7995960 DOI: 10.3390/vaccines9030187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/19/2021] [Accepted: 02/19/2021] [Indexed: 11/16/2022] Open
Abstract
Knowledge-based vaccinology can reveal uncharacterized antigen candidates for a new generation of protein-based anti-pneumococcal vaccines. DiiA, encoded by the sp_1992 locus, is a surface protein containing either one or two repeats of a 37mer N-terminal motif that exhibits low interstrain variability. DiiA belongs to the core proteome, contains several conserved B-cell epitopes, and is associated with colonization and pathogenesis. Immunization with DiiA protein via the intraperitoneal route induced a strong IgG response, including different IgG subtypes. Vaccination with DiiA increased bacterial clearance and induced protection against sepsis, conferring 70% increased survival at 48 h post-infection when compared to the adjuvant control. The immunogenic response and survival rates in mice immunized with a truncated DiiA version lacking 119 N-terminal residues were remarkably lower, confirming the relevance of the repeat zone in the immunoprotection by DiiA. Intranasal immunization of mice with the entire recombinant protein elicited mucosal IgG and IgA responses that reduced bacterial colonization of the nasopharynx, confirming that this protein might be a vaccine candidate for reducing the carrier rate. DiiA constitutes an example of how functionally unannotated proteins may still represent promising candidates that can be used in prophylactic strategies against the pneumococcal carrier state and invasive disease.
Collapse
Affiliation(s)
- Antonio J. Martín-Galiano
- Centro Nacional de Microbiología, Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain; (M.S.E.-M.); (B.C.); (A.G.d.l.C.)
- Correspondence: (A.J.M.-G.); (J.Y.); Tel.: +34-918223976 (A.J.M.-G.); +34-918223620 (J.Y.)
| | - María S. Escolano-Martínez
- Centro Nacional de Microbiología, Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain; (M.S.E.-M.); (B.C.); (A.G.d.l.C.)
| | - Bruno Corsini
- Centro Nacional de Microbiología, Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain; (M.S.E.-M.); (B.C.); (A.G.d.l.C.)
| | - Adela G. de la Campa
- Centro Nacional de Microbiología, Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain; (M.S.E.-M.); (B.C.); (A.G.d.l.C.)
- Presidencia Consejo Superior de Investigaciones Científicas, 28006 Madrid, Spain
| | - José Yuste
- Centro Nacional de Microbiología, Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain; (M.S.E.-M.); (B.C.); (A.G.d.l.C.)
- CIBER de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
- Correspondence: (A.J.M.-G.); (J.Y.); Tel.: +34-918223976 (A.J.M.-G.); +34-918223620 (J.Y.)
| |
Collapse
|
34
|
Tsang RSW. A Narrative Review of the Molecular Epidemiology and Laboratory Surveillance of Vaccine Preventable Bacterial Meningitis Agents: Streptococcus pneumoniae, Neisseria meningitidis, Haemophilus influenzae and Streptococcus agalactiae. Microorganisms 2021; 9:449. [PMID: 33671611 PMCID: PMC7926440 DOI: 10.3390/microorganisms9020449] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/16/2021] [Accepted: 02/16/2021] [Indexed: 12/23/2022] Open
Abstract
This narrative review describes the public health importance of four most common bacterial meningitis agents, Streptococcus pneumoniae, Neisseria meningitidis, Haemophilus influenzae, and S. agalactiae (group B Streptococcus). Three of them are strict human pathogens that normally colonize the nasopharynx and may invade the blood stream to cause systemic infections and meningitis. S. agalactiae colonizes the genito-gastrointestinal tract and is an important meningitis agent in newborns, but also causes invasive infections in infants or adults. These four bacteria have polysaccharide capsules that protect them against the host complement defense. Currently licensed conjugate vaccines (against S. pneumoniae, H. influenza, and N. meningitidis only but not S. agalactiae) can induce protective serum antibodies in infants as young as two months old offering protection to the most vulnerable groups, and the ability to eliminate carriage of homologous serotype strains in vaccinated subjects lending further protection to those not vaccinated through herd immunity. However, the serotype-specific nature of these vaccines have driven the bacteria to adapt by mechanisms that affect the capsule antigens through either capsule switching or capsule replacement in addition to the possibility of unmasking of strains or serotypes not covered by the vaccines. The post-vaccine molecular epidemiology of vaccine-preventable bacterial meningitis is discussed based on findings obtained with newer genomic laboratory surveillance methods.
Collapse
Affiliation(s)
- Raymond S W Tsang
- Laboratory for Vaccine Preventable Bacterial Diseases, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB R3E 3R2, Canada
| |
Collapse
|
35
|
Joshi SS, Al-Mamun MA, Weinberger DM. Correlates of Nonrandom Patterns of Serotype Switching in Pneumococcus. J Infect Dis 2021; 221:1669-1676. [PMID: 31875229 DOI: 10.1093/infdis/jiz687] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 12/23/2019] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Pneumococcus is a diverse pathogen, with >90 serotypes, each of which has a distinct polysaccharide capsule. Pneumococci can switch capsules, evading vaccine pressure. Certain serotype pairs are more likely to occur on the same genetic background as a results of serotype switching, but the drivers of these patterns are not well understood. METHODS We used the PubMLST and Global Pneumococcal Sequencing Project databases to quantify the number of genetic lineages on which different serotype pairs occur together. We also quantified the genetic diversity of each serotype. Regression model were used to evaluate the relationship between shared polysaccharide components and the frequency of serotype co-occurrence and diversity. RESULTS A number of serotype pairs occurred together on the same genetic lineage more commonly than expected. Co-occurrence of between-serogroup pairs was more common when both serotypes had glucose as a component of the capsule (and, potentially, glucuronic acid, any-N-acetylated sugar, or ribitol). Diversity also varied markedly by serotype and was associated with the presence of specific sugars in the capsule. CONCLUSIONS Certain pairs of serotypes are more likely to co-occur on the same genetic background. These patterns were correlated with shared polysaccharide components. This might reflect adaptation of strains to produce capsules with specific characteristics.
Collapse
Affiliation(s)
- Shreyas S Joshi
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Mohammad A Al-Mamun
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Daniel M Weinberger
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| |
Collapse
|
36
|
Munia M, Mahmud S, Mohasin M, Kibria KK. In silico design of an epitope-based vaccine against choline binding protein A of Streptococcus pneumoniae. INFORMATICS IN MEDICINE UNLOCKED 2021. [DOI: 10.1016/j.imu.2021.100546] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
37
|
Rochman ND, Wolf YI, Koonin EV. Substantial Impact of Post Vaccination Contacts on Cumulative Infections during Viral Epidemics. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020:2020.12.19.20248554. [PMID: 33398300 PMCID: PMC7781343 DOI: 10.1101/2020.12.19.20248554] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Background The start of 2021 will be marked by a global vaccination campaign against the novel coronavirus SARS-CoV-2. Formulating an optimal distribution strategy under social and economic constraints is challenging. Optimal distribution is additionally constrained by the potential emergence of vaccine resistance. Analogous to chronic low-dose antibiotic exposure, recently inoculated individuals who are not yet immune play an outsized role in the emergence of resistance. Classical epidemiological modelling is well suited to explore how the behavior of the inoculated population impacts the total number of infections over the entirety of an epidemic. Methods A deterministic model of epidemic evolution is analyzed, with 7 compartments defined by their relationship to the emergence of vaccine-resistant mutants and representing three susceptible populations, three infected populations, and one recovered population. This minimally computationally intensive design enables simulation of epidemics across a broad parameter space. The results are used to identify conditions minimizing the cumulative number of infections. Results When an escape variant is only modestly less infectious than the originating strain within a naïve population, there exists an optimal rate of vaccine distribution. Exceeding this rate increases the cumulative number of infections due to vaccine escape. Analysis of the model also demonstrates that inoculated individuals play a major role in the mitigation or exacerbation of vaccine-resistant outbreaks. Modulating the rate of host-host contact for the inoculated population by less than an order of magnitude can alter the cumulative number of infections by more than 20%. Conclusions Mathematical modeling shows that optimization of the vaccination rate and limiting post-vaccination contacts can affect the course of an epidemic. Given the relatively short window between inoculation and the acquisition of immunity, these results might merit consideration for an immediate, practical public health response.
Collapse
Affiliation(s)
- Nash D Rochman
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894
| |
Collapse
|
38
|
Iovino F, Nannapaneni P, Henriques-Normark B, Normark S. The impact of the ancillary pilus-1 protein RrgA of Streptococcus pneumoniae on colonization and disease. Mol Microbiol 2020; 113:650-658. [PMID: 32185835 DOI: 10.1111/mmi.14451] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 12/11/2022]
Abstract
The Gram-positive bacterium Streptococcus pneumoniae, the pneumococcus, is an important commensal resident of the human nasopharynx. Carriage is usually asymptomatic, however, S. pneumoniae can become invasive and spread from the upper respiratory tract to the lungs causing pneumonia, and to other organs to cause severe diseases such as bacteremia and meningitis. Several pneumococcal proteins important for its disease-causing capability have been described and many are expressed on the bacterial surface. The surface located pneumococcal type-1 pilus has been associated with virulence and the inflammatory response, and it is present in 20%-30% of clinical isolates. Its tip protein RrgA has been shown to be a major adhesin to human cells and to promote invasion through the blood-brain barrier. In this review we discuss recent findings of the impact of RrgA on bacterial colonization of the upper respiratory tract and on pneumococcal virulence, and use epidemiological data and genome-mining to suggest trade-off mechanisms potentially explaining the rather low prevalence of pilus-1 expressing pneumococci in humans.
Collapse
Affiliation(s)
- Federico Iovino
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Priyanka Nannapaneni
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Birgitta Henriques-Normark
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden.,Singapore Centre on Environmental Life Sciences Engineering (SCELSE) and Lee Kong Chian School of Medicine (LKC), Nanyang Technological University (NTU), Singapore, Singapore
| | - Staffan Normark
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Singapore Centre on Environmental Life Sciences Engineering (SCELSE) and Lee Kong Chian School of Medicine (LKC), Nanyang Technological University (NTU), Singapore, Singapore
| |
Collapse
|
39
|
Hanachi M, Kiran A, Cornick J, Harigua-Souiai E, Everett D, Benkahla A, Souiai O. Genomic Characteristics of Invasive Streptococcus pneumoniae Serotype 1 in New Caledonia Prior to the Introduction of PCV13. Bioinform Biol Insights 2020; 14:1177932220962106. [PMID: 33088176 PMCID: PMC7545519 DOI: 10.1177/1177932220962106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 08/31/2020] [Indexed: 12/17/2022] Open
Abstract
Streptococcus pneumoniae serotype 1 is a common cause of global invasive pneumococcal disease. In New Caledonia, serotype 1 is the most prevalent serotype and led to two major outbreaks reported in the 2000s. The pneumococcal conjugate vaccine 13 (PCV13) was introduced into the vaccination routine, intending to prevent the expansion of serotype 1 in New Caledonia. Aiming to provide a baseline for monitoring the post-PCV13 changes, we performed a whole-genome sequence analysis on 67 serotype 1 isolates collected prior to the PCV13 introduction. To highlight the S. pneumoniae serotype 1 population structure, we performed a multilocus sequence typing (MLST) analysis revealing that NC serotype 1 consisted of 2 sequence types: ST3717 and the highly dominant ST306. Both sequence types harbored the same resistance genes to beta-lactams, macrolide, streptogramin B, fluoroquinolone, and lincosamide antibiotics. We have also identified 36 virulence genes that were ubiquitous to all the isolates. Among these virulence genes, the pneumolysin sequence presented an allelic profile associated with disease outbreaks and reduced hemolytic activity. Moreover, recombination hotspots were identified in 4 virulence genes and more notably in the cps locus (cps2L), potentially leading to capsular switching, a major mechanism of the emergence of nonvaccine types. In summary, this study represents the first overview of the genomic characteristics of S. pneumoniae serotype 1 in New Caledonia prior to the introduction of PCV13. This preliminary description represents a baseline to assess the impact of PCV13 on serotype 1 population structure and genomic diversity.
Collapse
Affiliation(s)
- Mariem Hanachi
- Laboratory of Bioinformatics, Biomathematics and Biostatistics-LR16IPT09, Institut Pasteur de Tunis, University of Tunis El Manar (UTM), Tunis, Tunisia.,Faculty of Science of Bizerte, University of Carthage, Jarzouna, Tunisia
| | - Anmol Kiran
- Queens Research Institute, University of Edinburgh, Edinburgh, UK.,Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Jennifer Cornick
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi.,Departement of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Emna Harigua-Souiai
- Laboratory of Molecular Epidemiology and Experimental Pathology-LR16IPT04, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Dean Everett
- Queens Research Institute, University of Edinburgh, Edinburgh, UK.,Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Alia Benkahla
- Laboratory of Bioinformatics, Biomathematics and Biostatistics-LR16IPT09, Institut Pasteur de Tunis, University of Tunis El Manar (UTM), Tunis, Tunisia
| | - Oussama Souiai
- Laboratory of Bioinformatics, Biomathematics and Biostatistics-LR16IPT09, Institut Pasteur de Tunis, University of Tunis El Manar (UTM), Tunis, Tunisia.,Institut Supérieur des Technologies Médicales de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
40
|
Beall B, Walker H, Tran T, Li Z, Varghese J, McGee L, Li Y, Metcalf BJ, Gierke R, Mosites E, Chochua S, Pilishvili T. Upsurge of Conjugate Vaccine Serotype 4 Invasive Pneumococcal Disease Clusters Among Adults Experiencing Homelessness in California, Colorado, and New Mexico. J Infect Dis 2020; 223:1241-1249. [PMID: 32798216 DOI: 10.1093/infdis/jiaa501] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/04/2020] [Indexed: 11/14/2022] Open
Abstract
After 7-valent pneumococcal conjugate vaccine introduction in the United States in 2000, invasive pneumococcal disease (IPD) due to serotype 4 greatly decreased in children and adults. Starting in 2013, serotype 4 IPD incidence increased among adults within 3 of 10 Active Bacterial Core surveillance sites. Of 325 serotype 4 cases among adults in 2010-2018, 36% were persons experiencing homelessness (PEH); incidence of serotype 4 IPD among PEH was 100-300 times higher than in the general population within these 3 areas. Genome sequencing for isolates recovered 2015-2018 (n = 246), revealed that increases in serotype 4 IPD were driven by lineages ST10172, ST244, and ST695. Within each lineage, clusters of near-identical isolates indicated close temporal relatedness. Increases in serotype 4 IPD were limited to Colorado, California, and New Mexico, with highest increases among PEH, who were at increased risk for exposure to and infections caused by these strains.
Collapse
Affiliation(s)
- Bernard Beall
- Respiratory Disease Branch, National Center for Immunizations and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Hollis Walker
- IHRC Inc., Contractor to Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Theresa Tran
- ASRT Inc., Contractor to Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Zhongya Li
- ASRT Inc., Contractor to Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jasmine Varghese
- ASRT Inc., Contractor to Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Lesley McGee
- Respiratory Disease Branch, National Center for Immunizations and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Yuan Li
- Respiratory Disease Branch, National Center for Immunizations and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Benjamin J Metcalf
- Respiratory Disease Branch, National Center for Immunizations and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Ryan Gierke
- Respiratory Disease Branch, National Center for Immunizations and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Emily Mosites
- Respiratory Disease Branch, National Center for Immunizations and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Sopio Chochua
- Respiratory Disease Branch, National Center for Immunizations and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Tamara Pilishvili
- Respiratory Disease Branch, National Center for Immunizations and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
41
|
Golden AR, Baxter MR, Davidson RJ, Martin I, Demczuk W, Mulvey MR, Karlowsky JA, Hoban DJ, Zhanel GG, Adam HJ. Comparison of antimicrobial resistance patterns in Streptococcus pneumoniae from respiratory and blood cultures in Canadian hospitals from 2007-16. J Antimicrob Chemother 2020; 74:iv39-iv47. [PMID: 31505644 DOI: 10.1093/jac/dkz286] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVES To compare the epidemiology and antimicrobial susceptibility patterns of Streptococcus pneumoniae collected from respiratory and blood culture samples in Canada between 2007 and 2016. METHODS S. pneumoniae strains were obtained from Canadian hospitals as part of the ongoing national surveillance study, CANWARD. Isolates were serotyped using the Quellung method. Antimicrobial susceptibility testing was performed using the CLSI broth microdilution method. MDR and XDR were defined as resistance to three or more and five or more classes of antimicrobials, respectively. RESULTS Of the 2581 S. pneumoniae isolates collected, 1685 (65.3%) and 896 (34.7%) were obtained from respiratory and blood samples, respectively. Respiratory isolates demonstrated lower rates of antimicrobial susceptibility than blood isolates to penicillin, ceftriaxone, clarithromycin, clindamycin, doxycycline and trimethoprim/sulfamethoxazole (P ≤ 0.03). From 2007 to 2016, invasive isolates demonstrated trends towards increasing penicillin susceptibility and decreasing clarithromycin susceptibility. MDR was significantly higher in respiratory S. pneumoniae compared with blood (9.1% versus 4.5%, P < 0.0001). Serotypes 11A, 16F, 19F, 23A/B/F, 34, 35B and non-typeable strains were more commonly isolated from respiratory specimens, while 4, 5, 7F, 8, 12F, 14 and 19A were more commonly invasive serotypes. Numerous serotypes, including 3 and 22F, were isolated frequently from both specimen sources. CONCLUSIONS S. pneumoniae from respiratory samples demonstrated lower antimicrobial susceptibilities and higher MDR in a greater diversity of serotypes than isolates obtained from blood. Many serotypes were associated with one specific specimen source, while others were associated with both; genetic characterization is necessary to elucidate the specific factors influencing the ability of these serotypes to commonly cause both invasive and non-invasive disease.
Collapse
Affiliation(s)
- Alyssa R Golden
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Room 543-745 Bannatyne Avenue, Winnipeg, Manitoba, Canada
| | - Melanie R Baxter
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Room 543-745 Bannatyne Avenue, Winnipeg, Manitoba, Canada
| | - Ross J Davidson
- Queen Elizabeth II Health Sciences Centre, Dalhousie University, 5788 University Avenue, Halifax, Nova Scotia, Canada
| | - Irene Martin
- National Microbiology Laboratory - Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, Manitoba, Canada
| | - Walter Demczuk
- National Microbiology Laboratory - Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, Manitoba, Canada
| | - Michael R Mulvey
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Room 543-745 Bannatyne Avenue, Winnipeg, Manitoba, Canada.,National Microbiology Laboratory - Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, Manitoba, Canada
| | - James A Karlowsky
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Room 543-745 Bannatyne Avenue, Winnipeg, Manitoba, Canada.,Department of Clinical Microbiology, Health Sciences Centre, Diagnostic Services - Shared Health Manitoba, MS673-820 Sherbrook Street, Winnipeg, Manitoba, Canada
| | - Daryl J Hoban
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Room 543-745 Bannatyne Avenue, Winnipeg, Manitoba, Canada.,Department of Clinical Microbiology, Health Sciences Centre, Diagnostic Services - Shared Health Manitoba, MS673-820 Sherbrook Street, Winnipeg, Manitoba, Canada
| | - George G Zhanel
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Room 543-745 Bannatyne Avenue, Winnipeg, Manitoba, Canada
| | - Heather J Adam
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Room 543-745 Bannatyne Avenue, Winnipeg, Manitoba, Canada.,Department of Clinical Microbiology, Health Sciences Centre, Diagnostic Services - Shared Health Manitoba, MS673-820 Sherbrook Street, Winnipeg, Manitoba, Canada
| | | |
Collapse
|
42
|
Spanelova P, Jakubu V, Malisova L, Musilek M, Kozakova J, Papagiannitsis CC, Bitar I, Hrabak J, Pantosti A, Del Grosso M, Zemlickova H. Whole genome sequencing of macrolide resistant Streptococcus pneumoniae serotype 19A sequence type 416. BMC Microbiol 2020; 20:224. [PMID: 32711478 PMCID: PMC7382794 DOI: 10.1186/s12866-020-01909-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 07/16/2020] [Indexed: 01/27/2023] Open
Abstract
Background The resistance of Streptococcus pneumoniae to macrolides is becoming an increasingly important issue and thus it is important to understand the genetics related to adaptation of this species to the widespread use of antibiotics in Europe. The 58 isolates of S. pneumoniae belonging to sequence type (ST) 416 and serotype 19A and to several different phenotypes originated from Italy, Portugal and Czech Republic were thus sequenced on Illumina MiSeq. The aim of the study was to describe genetical origine of isolates, investigate their macrolide resistance and suggest reasons for spread of ST416 in the Czech Republic. Results Investigation of genes associated with serotype determined serotype switch between 15B and 19A serotypes and core genome multilocus sequence typing (cgMLST) confirmed the origine of concerned isolates in Netherlands15B-37 clone. Inspected genomes proved variability of genes associated with the macrolide resistance even within closely genetically relative isolates. Conclusions Participation of 19A/ST416 on the spread of Netherlands15B-37 is accompanied by serotype switch between 19A and 15B serotypes and with acquisition of genes involved in macrolide resistance to the clone that was originally macrolide susceptible. There is evident tendency to interchanging and modifications of these and surrounding genes, that could lead to accelerate spreading of this sequence type in regions with high macrolide consumption.
Collapse
Affiliation(s)
- Petra Spanelova
- Centre for Epidemiology and Microbiology, National Institute of Public Health, Prague, Czech Republic.
| | - Vladislav Jakubu
- Centre for Epidemiology and Microbiology, National Institute of Public Health, Prague, Czech Republic.,Department of Clinical Microbiology, Faculty of Medicine and University Hospital, Charles University, Hradec Kralove, Czech Republic
| | - Lucia Malisova
- Centre for Epidemiology and Microbiology, National Institute of Public Health, Prague, Czech Republic
| | - Martin Musilek
- Centre for Epidemiology and Microbiology, National Institute of Public Health, Prague, Czech Republic
| | - Jana Kozakova
- Centre for Epidemiology and Microbiology, National Institute of Public Health, Prague, Czech Republic
| | | | - Ibrahim Bitar
- Faculty of Medicine, Biomedical Center, Charles University, Plzen, Czech Republic
| | - Jaroslav Hrabak
- Faculty of Medicine, Biomedical Center, Charles University, Plzen, Czech Republic
| | - Annalisa Pantosti
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Maria Del Grosso
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Helena Zemlickova
- Centre for Epidemiology and Microbiology, National Institute of Public Health, Prague, Czech Republic.,Department of Clinical Microbiology, Faculty of Medicine and University Hospital, Charles University, Hradec Kralove, Czech Republic.,Department of Laboratory Medicine, Third Faculty of Medicine, Charles University and Kralovske Vinohrady University Hospital, Prague, Czech Republic
| |
Collapse
|
43
|
Rodgers E, Bentley SD, Borrow R, Bratcher HB, Brisse S, Brueggemann AB, Caugant DA, Findlow J, Fox L, Glennie L, Harrison LH, Harrison OB, Heyderman RS, van Rensburg MJ, Jolley KA, Kwambana-Adams B, Ladhani S, LaForce M, Levin M, Lucidarme J, MacAlasdair N, Maclennan J, Maiden MCJ, Maynard-Smith L, Muzzi A, Oster P, Rodrigues CMC, Ronveaux O, Serino L, Smith V, van der Ende A, Vázquez J, Wang X, Yezli S, Stuart JM. The global meningitis genome partnership. J Infect 2020; 81:510-520. [PMID: 32615197 DOI: 10.1016/j.jinf.2020.06.064] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/24/2020] [Accepted: 06/26/2020] [Indexed: 10/24/2022]
Abstract
Genomic surveillance of bacterial meningitis pathogens is essential for effective disease control globally, enabling identification of emerging and expanding strains and consequent public health interventions. While there has been a rise in the use of whole genome sequencing, this has been driven predominately by a subset of countries with adequate capacity and resources. Global capacity to participate in surveillance needs to be expanded, particularly in low and middle-income countries with high disease burdens. In light of this, the WHO-led collaboration, Defeating Meningitis by 2030 Global Roadmap, has called for the establishment of a Global Meningitis Genome Partnership that links resources for: N. meningitidis (Nm), S. pneumoniae (Sp), H. influenzae (Hi) and S. agalactiae (Sa) to improve worldwide co-ordination of strain identification and tracking. Existing platforms containing relevant genomes include: PubMLST: Nm (31,622), Sp (15,132), Hi (1935), Sa (9026); The Wellcome Sanger Institute: Nm (13,711), Sp (> 24,000), Sa (6200), Hi (1738); and BMGAP: Nm (8785), Hi (2030). A steering group is being established to coordinate the initiative and encourage high-quality data curation. Next steps include: developing guidelines on open-access sharing of genomic data; defining a core set of metadata; and facilitating development of user-friendly interfaces that represent publicly available data.
Collapse
Affiliation(s)
- Elizabeth Rodgers
- Meningitis Research Foundation, Newminster House, 27-29 Newminster House, Baldwin Street, Bristol BS1 1LT, UK.
| | - Stephen D Bentley
- Wellcome Sanger Institute, Parasites and microbes, Hinxton CB10 1SA, UK
| | - Ray Borrow
- Public Health England, Meningococcal Reference Unit, Manchester Royal Infirmary, Manchester M13 9WZ, UK
| | | | - Sylvain Brisse
- Institut Pasteur, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
| | - Angela B Brueggemann
- Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
| | - Dominique A Caugant
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Jamie Findlow
- Pfizer Limited, Walton Oaks, Dorking Road, Tadworth, Surrey KT20 7NS, UK
| | - LeAnne Fox
- Meningitis and Vaccine Preventable Disease Branch, Division of Bacterial Diseases, Centers for Disease Control and Prevention, United States
| | - Linda Glennie
- Meningitis Research Foundation, Newminster House, 27-29 Newminster House, Baldwin Street, Bristol BS1 1LT, UK
| | - Lee H Harrison
- Infectious Diseases Epidemiology Research Unit, University of Pittsburgh, Pittsburgh, PA, United States
| | | | - Robert S Heyderman
- NIHR Global Health Mucosal Pathogens Research Unit, Division of Infection & Immunity, University College London, London, UK
| | | | - Keith A Jolley
- Department of Zoology, University of Oxford, Oxford OX1 3SY, UK
| | - Brenda Kwambana-Adams
- NIHR Global Health Mucosal Pathogens Research Unit, Division of Infection & Immunity, University College London, London, UK
| | - Shamez Ladhani
- Public Health England, Immunisation and Countermeasures Division, 61 Colindale Avenue, London NW9 5EQ, UK; Paediatric Infectious Diseases Research Group (PIDRG), St. George's University of London, Cranmer Terrace, London SW17 0RE, UK
| | | | | | - Jay Lucidarme
- Public Health England, Meningococcal Reference Unit, Manchester Royal Infirmary, Manchester M13 9WZ, UK
| | - Neil MacAlasdair
- Wellcome Sanger Institute, Parasites and microbes, Hinxton CB10 1SA, UK
| | - Jenny Maclennan
- Department of Zoology, University of Oxford, Oxford OX1 3SY, UK
| | | | | | | | | | | | | | | | - Vinny Smith
- Meningitis Research Foundation, Newminster House, 27-29 Newminster House, Baldwin Street, Bristol BS1 1LT, UK
| | - Arie van der Ende
- Department of Medical Microbiology and Infection Prevention, University of Amsterdam, Amsterdam UMC and, the Netherlands Reference Laboratory for Bacterial Meningitis, Amsterdam, the Netherlands
| | | | - Xin Wang
- Meningitis and Vaccine Preventable Disease Branch, Division of Bacterial Diseases, Centers for Disease Control and Prevention, United States
| | - Saber Yezli
- Ministry of Health, The Global Centre for Mass Gatherings Medicine, Riyadh, Saudi Arabia
| | | |
Collapse
|
44
|
Localized Hypermutation is the Major Driver of Meningococcal Genetic Variability during Persistent Asymptomatic Carriage. mBio 2020; 11:mBio.03068-19. [PMID: 32209693 PMCID: PMC7157529 DOI: 10.1128/mbio.03068-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Host persistence of bacteria is facilitated by mutational and recombinatorial processes that counteract loss of genetic variation during transmission and selection from evolving host responses. Genetic variation was investigated during persistent asymptomatic carriage of Neisseria meningitidis Interrogation of whole-genome sequences for paired isolates from 25 carriers showed that de novo mutations were infrequent, while horizontal gene transfer occurred in 16% of carriers. Examination of multiple isolates per time point enabled separation of sporadic and transient allelic variation from directional variation. A comprehensive comparative analysis of directional allelic variation with hypermutation of simple sequence repeats and hyperrecombination of class 1 type IV pilus genes detected an average of seven events per carrier and 2:1 bias for changes due to localized hypermutation. Directional genetic variation was focused on the outer membrane with 69% of events occurring in genes encoding enzymatic modifiers of surface structures or outer membrane proteins. Multiple carriers exhibited directional and opposed switching of allelic variants of the surface-located Opa proteins that enables continuous expression of these adhesins alongside antigenic variation. A trend for switching from PilC1 to PilC2 expression was detected, indicating selection for specific alterations in the activities of the type IV pilus, whereas phase variation of restriction modification (RM) systems, as well as associated phasevarions, was infrequent. We conclude that asymptomatic meningococcal carriage on mucosal surfaces is facilitated by frequent localized hypermutation and horizontal gene transfer affecting genes encoding surface modifiers such that optimization of adhesive functions occurs alongside escape of immune responses by antigenic variation.IMPORTANCE Many bacterial pathogens coexist with host organisms, rarely causing disease while adapting to host responses. Neisseria meningitidis, a major cause of meningitis and septicemia, is a frequent persistent colonizer of asymptomatic teenagers/young adults. To assess how genetic variation contributes to host persistence, whole-genome sequencing and hypermutable sequence analyses were performed on multiple isolates obtained from students naturally colonized with meningococci. High frequencies of gene transfer were observed, occurring in 16% of carriers and affecting 51% of all nonhypermutable variable genes. Comparative analyses showed that hypermutable sequences were the major mechanism of variation, causing 2-fold more changes in gene function than other mechanisms. Genetic variation was focused on genes affecting the outer membrane, with directional changes in proteins responsible for bacterial adhesion to host surfaces. This comprehensive examination of genetic plasticity in individual hosts provides a significant new platform for rationale design of approaches to prevent the spread of this pathogen.
Collapse
|
45
|
Sempere J, de Miguel S, González-Camacho F, Yuste J, Domenech M. Clinical Relevance and Molecular Pathogenesis of the Emerging Serotypes 22F and 33F of Streptococcus pneumoniae in Spain. Front Microbiol 2020; 11:309. [PMID: 32174903 PMCID: PMC7056674 DOI: 10.3389/fmicb.2020.00309] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 02/12/2020] [Indexed: 12/21/2022] Open
Abstract
Streptococcus pneumoniae is the main bacterial cause of respiratory infections in children and the elderly worldwide. Serotype replacement is a frequent phenomenon after the introduction of conjugated vaccines, with emerging serotypes 22F and 33F as frequent non-PCV13 serotypes in children and adults in North America and other countries. Characterization of mechanisms involved in evasion of the host immune response by these serotypes is of great importance in public health because they are included in the future conjugated vaccines PCV15 and PCV20. One of the main strategies of S. pneumoniae to persistently colonize and causes infection is biofilm formation. In this study, we have evaluated the influence of capsule polysaccharide in biofilm formation and immune evasion by using clinical isolates from different sources and isogenic strains with capsules from prevalent serotypes. Since the introduction of PCV13 in Spain in the year 2010, isolates of serotypes 22F and 33F are rising among risk populations. The predominant circulating genotypes are ST43322F and ST71733F, being CC433 in 22F and CC717 in 33F the main clonal complexes in Spain. The use of clinical isolates of different origin, demonstrated that pediatric isolates of serotypes 22F and 33F formed better biofilms than adult isolates and this was statistically significant. This phenotype was greater in clinical isolates from blood origin compared to those from cerebrospinal fluid, pleural fluid and otitis. Opsonophagocytosis assays showed that serotype 22F and 33F were recognized by the PSGL-1 receptor on leukocytes, although serotype 22F, was more resistant than serotype 33F to phagocytosis killing and more lethal in a mouse sepsis model. Overall, the emergence of additional PCV15 serotypes, especially 22F, could be associated to an enhanced ability to divert the host immune response that markedly increased in a biofilm state. Our findings demonstrate that pediatric isolates of 22F and 33F, that form better biofilm than isolates from adults, could have an advantage to colonize the nasopharynx of children and therefore, be important in carriage and subsequent dissemination to the elderly. The increased ability of serotype 22F to avoid the host immune response, might explain the emergence of this serotype in the last years.
Collapse
Affiliation(s)
- Julio Sempere
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Sara de Miguel
- Servicio de Epidemiología de la Comunidad de Madrid, Dirección General de Salud Pública, Madrid, Spain
| | | | - José Yuste
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Mirian Domenech
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
46
|
Toda H, Tanaka Y, Satoh K, Komatsu M, Wada Y, Tobe T, Kamisako T. Epidemiological and molecular characterization of invasive Streptococcus pneumoniae isolated following introduction of 7-valent conjugate vaccine in Kinki region, Japan, 2008-2013. J Infect Chemother 2019; 26:451-458. [PMID: 31870586 DOI: 10.1016/j.jiac.2019.11.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/14/2019] [Accepted: 11/27/2019] [Indexed: 11/24/2022]
Abstract
Streptococcus pneumoniae is one of the most common bacteria causing community-acquired pneumonia and meningitis. The use of 7-valent pneumococcal conjugate vaccine (PCV7) has reduced the incidence of pneumococcal disease while changing pneumococcal population through herd immunity and non-vaccine pneumococci replacement. This study investigated molecular epidemiologic characteristics of pneumococcal strains in the Kinki region of Japan from 2008 to 2013. A total of 159 invasive pneumococcal isolates were characterized by serotyping, antibiotic susceptibility testing, PCR analysis of penicillin-binding protein genes, multilocus sequence typing (MLST), and pulsed-field gel electrophoresis (PFGE). In adult populations, pediatric PCV7 introduction decreased isolates expressing PCV7 serotypes via herd immunity and increased isolates expressing non-PCV7 serotypes. The rate of penicillin resistance and isolates with alterations in all three pbp genes was higher in PCV7 type isolates than in non-PCV7 type isolates. In MLST analysis, all of serotype 19F isolates were of the same sequence type, ST236, which is the antimicrobial-resistant clone Taiwan19F-14, and the majority of serotypes 23F and 19A isolates were of ST1437 and ST3111 respectively, which are the predominant clones of antimicrobial-resistant pneumococci in Japan. In PFGE profiles, serotype 6B-ST2224, serotype 19F-ST236, serotype 19A-ST3111, and serotype 23F-ST1437 formed six separate clusters composed of genetically identical strains, and genetically identical serotype 22F-ST433 formed two different clusters between the pre- and post-PCV7 period. The results of molecular analysis suggest the spread and persistence of these identical antimicrobial resistant clones in the Kinki region and genetic changes of epidemic clone serotype 22F-ST433 before and after pediatric PCV7 introduction.
Collapse
Affiliation(s)
- Hirofumi Toda
- Department of Clinical Laboratory, Kindai University Hospital, Japan; Laboratory of Molecular Medical Microbiology, Department of Biomedical Informatics, Osaka University Graduate School of Medicine, Japan.
| | - Yuji Tanaka
- Department of Clinical Laboratory Medicine, Kindai University Faculty of Medicine, Japan
| | - Kaori Satoh
- Clinical Research Center, Kindai University Hospital, Japan
| | - Masaru Komatsu
- Department of Clinical Laboratory Science, Tenri Health Care University, Japan
| | - Yasunao Wada
- Department of Clinical Laboratory, Hyogo Medical University Hospital, Japan
| | - Toru Tobe
- Laboratory of Molecular Medical Microbiology, Department of Biomedical Informatics, Osaka University Graduate School of Medicine, Japan
| | - Toshinori Kamisako
- Department of Clinical Laboratory Medicine, Kindai University Faculty of Medicine, Japan
| |
Collapse
|
47
|
Ung L, Bispo PJM, Bryan NC, Andre C, Chodosh J, Gilmore MS. The Best of All Worlds: Streptococcus pneumoniae Conjunctivitis through the Lens of Community Ecology and Microbial Biogeography. Microorganisms 2019; 8:microorganisms8010046. [PMID: 31881682 PMCID: PMC7022640 DOI: 10.3390/microorganisms8010046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/16/2019] [Accepted: 12/21/2019] [Indexed: 12/16/2022] Open
Abstract
The study of the forces which govern the geographical distributions of life is known as biogeography, a subject which has fascinated zoologists, botanists and ecologists for centuries. Advances in our understanding of community ecology and biogeography—supported by rapid improvements in next generation sequencing technology—have now made it possible to identify and explain where and why life exists as it does, including within the microbial world. In this review, we highlight how a unified model of microbial biogeography, one which incorporates the classic ecological principles of selection, diversification, dispersion and ecological drift, can be used to explain community dynamics in the settings of both health and disease. These concepts operate on a multiplicity of temporal and spatial scales, and together form a powerful lens through which to study microbial population structures even at the finest anatomical resolutions. When applied specifically to curious strains of conjunctivitis-causing, nonencapsulated Streptococcus pneumoniae, we show how this conceptual framework can be used to explain the possible evolutionary and disease-causing mechanisms which allowed these lineages to colonize and invade a separate biogeography. An intimate knowledge of this radical bifurcation in phylogeny, still the only known niche subspecialization for S. pneumoniae to date, is critical to understanding the pathogenesis of ocular surface infections, nature of host-pathogen interactions, and developing strategies to curb disease transmission.
Collapse
Affiliation(s)
- Lawson Ung
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA; (L.U.); (P.J.M.B.); (C.A.); (J.C.)
- Infectious Disease Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA;
| | - Paulo J. M. Bispo
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA; (L.U.); (P.J.M.B.); (C.A.); (J.C.)
- Infectious Disease Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA;
| | - Noelle C. Bryan
- Infectious Disease Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA;
- Massachusetts Institute of Technology, Department of Earth, Atmospheric and Planetary Sciences, Cambridge, MA 02139, USA
| | - Camille Andre
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA; (L.U.); (P.J.M.B.); (C.A.); (J.C.)
- Infectious Disease Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA;
| | - James Chodosh
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA; (L.U.); (P.J.M.B.); (C.A.); (J.C.)
- Infectious Disease Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA;
| | - Michael S. Gilmore
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA; (L.U.); (P.J.M.B.); (C.A.); (J.C.)
- Infectious Disease Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA;
- Correspondence: ; Tel.: +1-617-523-7900
| |
Collapse
|
48
|
Coughtrie AL, Jefferies JM, Cleary DW, Doncaster CP, Faust SN, Kraaijeveld AR, Moore MV, Mullee MA, Roderick PJ, Webb JS, Yuen HM, Clarke SC. Microbial epidemiology and carriage studies for the evaluation of vaccines. J Med Microbiol 2019; 68:1408-1418. [DOI: 10.1099/jmm.0.001046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- Abigail L. Coughtrie
- Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Johanna M. Jefferies
- Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, UK
| | - David W. Cleary
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton Foundation NHS Trust, Southampton, UK
- Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, UK
| | | | - Saul N. Faust
- Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, UK
- NIHR Southampton Clinical Research Facility, University Hospital Southampton Foundation NHS Trust, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton Foundation NHS Trust, Southampton, UK
| | | | - Michael V. Moore
- Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Mark A. Mullee
- NIHR Research Design Service South Central, University Hospital Southampton Foundation NHS Trust, Southampton, UK
- Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Paul J. Roderick
- Global Health Research Institute, University of Southampton, Southampton, UK
- Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Jeremy S. Webb
- Centre for Biological Sciences, University of Southampton, Southampton, UK
| | - Ho Ming Yuen
- Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Stuart C. Clarke
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton Foundation NHS Trust, Southampton, UK
- Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, UK
- Global Health Research Institute, University of Southampton, Southampton, UK
| |
Collapse
|
49
|
Azarsa M, Ohadian Moghadam S, Rahbar M, Baseri Z, Pourmand MR. Molecular serotyping and genotyping of penicillin non-susceptible pneumococci: the introduction of new sequence types, Tehran, Iran. New Microbes New Infect 2019; 32:100597. [PMID: 31641513 PMCID: PMC6796605 DOI: 10.1016/j.nmni.2019.100597] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/25/2019] [Accepted: 08/30/2019] [Indexed: 12/04/2022] Open
Abstract
The emergence of penicillin non-susceptible Streptococcus pneumoniae (PNSP) isolates can pose significant challenges to today's health-care system. Resistant clonal isolates are disseminated in different regions and countries, and this study was focused on the description of the epidemiological spread of these strains. Clinical samples were collected from individuals admitted to hospitals affiliated to the Tehran University of Medical Sciences, Iran. To investigate the molecular characteristics of PNSP isolates, they were subjected to molecular typing using multi-locus sequence typing (MLST). Serotype distributions of S. pneumoniae isolates were also evaluated by multiplex PCR assay. The most prevalent serotypes in the PNSP isolates were 23F, 19F, 14, 3 and 9V. Two isolates were considered as a non-vaccine serotype. The MLST analysis showed that PNSP isolates belonged to five different clonal complexes (CC180, CC217, CC81, CC63 and CC320) and 42% (5/12) of the sequence types were novel (12936, 12937, 12938, 12939 and 12940). This study indicates the high level of heterogeneity that is present among PNSP isolates. Unexpected high genetic diversity in small populations indicates consecutive diversification of resistant strains.
Collapse
Affiliation(s)
- M Azarsa
- Department of Microbiology, Khoy University of Medical Sciences, Khoy, Iran
| | - S Ohadian Moghadam
- Uro-Oncology Research Centre, Tehran University of Medical Sciences, Tehran, Iran
| | - M Rahbar
- Department of Microbiology, Reference Health Laboratories Research Centre, Ministry of Health and Medical Education, Tehran, Iran
| | - Z Baseri
- Central Laboratory of Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - M R Pourmand
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
50
|
Affiliation(s)
- Jessica L. Bradshaw
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - Larry S. McDaniel
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
- * E-mail:
| |
Collapse
|