1
|
Mocarski ES. Cytomegalovirus Biology Viewed Through a Cell Death Suppression Lens. Viruses 2024; 16:1820. [PMID: 39772130 PMCID: PMC11680106 DOI: 10.3390/v16121820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025] Open
Abstract
Cytomegaloviruses, species-specific members of the betaherpesviruses, encode an impressive array of immune evasion strategies committed to the manipulation of the host immune system enabling these viruses to remain for life in a stand-off with host innate and adaptive immune mechanisms. Even though they are species-restricted, cytomegaloviruses are distributed across a wide range of different mammalian species in which they cause systemic infection involving many different cell types. Regulated, or programmed cell death has a recognized potential to eliminate infected cells prior to completion of viral replication and release of progeny. Cell death also naturally terminates replication during the final stages of replication. Over the past two decades, the host defense potential of known programmed cell death pathways (apoptosis, necroptosis, and pyroptosis), as well as a novel mitochondrial serine protease pathway have been defined through studies of cytomegalovirus-encoded cell death suppressors. Such virus-encoded inhibitors prevent virus-induced, cytokine-induced, and stress-induced death of infected cells while also moderating inflammation. By evading cell death and consequent inflammation as well as innate and adaptive immune clearance, cytomegaloviruses represent successful pathogens that become a critical disease threat when the host immune system is compromised. This review will discuss cell death programs acquired for mammalian host defense against cytomegaloviruses and enumerate the range of modulatory strategies this type of virus employs to balance host defense in favor of lifelong persistence.
Collapse
Affiliation(s)
- Edward S. Mocarski
- Department of Microbiology & Immunology, Stanford Medical School, Stanford University, Stanford, CA 94305, USA;
- Department of Microbiology & Immunology, Emory Medical School, Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
2
|
Deng Y, Águeda-Pinto A, Brune W. No Time to Die: How Cytomegaloviruses Suppress Apoptosis, Necroptosis, and Pyroptosis. Viruses 2024; 16:1272. [PMID: 39205246 PMCID: PMC11359067 DOI: 10.3390/v16081272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/31/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
Viruses are obligate intracellular pathogens as their replication depends on the metabolism of the host cell. The induction of cellular suicide, known as programmed cell death (PCD), has the potential to hinder viral replication and act as a first line of defense against viral pathogens. Apoptosis, necroptosis, and pyroptosis are three important PCD modalities. Different signaling pathways are involved in their execution, and they also differ in their ability to cause inflammation. Cytomegaloviruses (CMV), beta-herpesviruses with large double-stranded DNA genomes, encode a great variety of immune evasion genes, including several cell death suppressors. While CMV inhibitors of apoptosis and necroptosis have been known and studied for years, the first pyroptosis inhibitor has been identified and characterized only recently. Here, we describe how human and murine CMV interfere with apoptosis, necroptosis, and pyroptosis signaling pathways. We also discuss the importance of the different PCD forms and their viral inhibitors for the containment of viral replication and spread in vivo.
Collapse
Affiliation(s)
| | | | - Wolfram Brune
- Leibniz Institute of Virology (LIV), 20251 Hamburg, Germany; (Y.D.); (A.Á.-P.)
| |
Collapse
|
3
|
Weiß J, Heib M, Korn T, Hoyer J, Fuchslocher Chico J, Voigt S, Koudelka T, Tholey A, Adam D. Protease-independent control of parthanatos by HtrA2/Omi. Cell Mol Life Sci 2023; 80:258. [PMID: 37594630 PMCID: PMC10439076 DOI: 10.1007/s00018-023-04904-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/15/2023] [Accepted: 07/31/2023] [Indexed: 08/19/2023]
Abstract
HtrA2/Omi is a mitochondrial serine protease with ascribed pro-apoptotic as well as pro-necroptotic functions. Here, we establish that HtrA2/Omi also controls parthanatos, a third modality of regulated cell death. Deletion of HtrA2/Omi protects cells from parthanatos while reconstitution with the protease restores the parthanatic death response. The effects of HtrA2/Omi on parthanatos are specific and cannot be recapitulated by manipulating other mitochondrial proteases such as PARL, LONP1 or PMPCA. HtrA2/Omi controls parthanatos in a manner mechanistically distinct from its action in apoptosis or necroptosis, i.e., not by cleaving cytosolic IAP proteins but rather exerting its effects without exiting mitochondria, and downstream of PARP-1, the first component of the parthanatic signaling cascade. Also, previously identified or candidate substrates of HtrA2/Omi such as PDXDC1, VPS4B or moesin are not cleaved and dispensable for parthanatos, whereas DBC-1 and stathmin are cleaved, and thus represent potential parthanatic downstream mediators of HtrA2/Omi. Moreover, mass-spectrometric screening for novel parthanatic substrates of HtrA2/Omi revealed that the induction of parthanatos does not cause a substantial proteolytic cleavage or major alterations in the abundance of mitochondrial proteins. Resolving these findings, reconstitution of HtrA2/Omi-deficient cells with a catalytically inactive HtrA2/Omi mutant restored their sensitivity against parthanatos to the same level as the protease-active HtrA2/Omi protein. Additionally, an inhibitor of HtrA2/Omi's protease activity did not confer protection against parthanatic cell death. Our results demonstrate that HtrA2/Omi controls parthanatos in a protease-independent manner, likely via novel, unanticipated functions as a scaffolding protein and an interaction with so far unknown mitochondrial proteins.
Collapse
Affiliation(s)
- Jonas Weiß
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Michaelisstr. 5, 24105, Kiel, Germany
| | - Michelle Heib
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Michaelisstr. 5, 24105, Kiel, Germany
| | - Thiemo Korn
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Michaelisstr. 5, 24105, Kiel, Germany
| | - Justus Hoyer
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Michaelisstr. 5, 24105, Kiel, Germany
| | - Johaiber Fuchslocher Chico
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Michaelisstr. 5, 24105, Kiel, Germany
| | - Susann Voigt
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Michaelisstr. 5, 24105, Kiel, Germany
| | - Tomas Koudelka
- Institut für Experimentelle Medizin, Christian-Albrechts-Universität zu Kiel, Niemannsweg 11, 24105, Kiel, Germany
| | - Andreas Tholey
- Institut für Experimentelle Medizin, Christian-Albrechts-Universität zu Kiel, Niemannsweg 11, 24105, Kiel, Germany
| | - Dieter Adam
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Michaelisstr. 5, 24105, Kiel, Germany.
| |
Collapse
|
4
|
Mocarski ES. Programmed Necrosis in Host Defense. Curr Top Microbiol Immunol 2023; 442:1-40. [PMID: 37563336 DOI: 10.1007/82_2023_264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Host control over infectious disease relies on the ability of cells in multicellular organisms to detect and defend against pathogens to prevent disease. Evolution affords mammals with a wide variety of independent immune mechanisms to control or eliminate invading infectious agents. Many pathogens acquire functions to deflect these immune mechanisms and promote infection. Following successful invasion of a host, cell autonomous signaling pathways drive the production of inflammatory cytokines, deployment of restriction factors and induction of cell death. Combined, these innate immune mechanisms attract dendritic cells, neutrophils and macrophages as well as innate lymphoid cells such as natural killer cells that all help control infection. Eventually, the development of adaptive pathogen-specific immunity clears infection and provides immune memory of the encounter. For obligate intracellular pathogens such as viruses, diverse cell death pathways make a pivotal contribution to early control by eliminating host cells before progeny are produced. Pro-apoptotic caspase-8 activity (along with caspase-10 in humans) executes extrinsic apoptosis, a nonlytic form of cell death triggered by TNF family death receptors (DRs). Over the past two decades, alternate extrinsic apoptosis and necroptosis outcomes have been described. Programmed necrosis, or necroptosis, occurs when receptor interacting protein kinase 3 (RIPK3) activates mixed lineage kinase-like (MLKL), causing cell leakage. Thus, activation of DRs, toll-like receptors (TLRs) or pathogen sensor Z-nucleic acid binding protein 1 (ZBP1) initiates apoptosis as well as necroptosis if not blocked by virus-encoded inhibitors. Mammalian cell death pathways are blocked by herpesvirus- and poxvirus-encoded cell death suppressors. Growing evidence has revealed the importance of Z-nucleic acid sensor, ZBP1, in the cell autonomous recognition of both DNA and RNA virus infection. This volume will explore the detente between viruses and cells to manage death machinery and avoid elimination to support dissemination within the host animal.
Collapse
Affiliation(s)
- Edward S Mocarski
- Robert W. Woodruff Professor Emeritus, Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Professor Emeritus, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
5
|
Heib M, Weiß J, Saggau C, Hoyer J, Fuchslocher Chico J, Voigt S, Adam D. Ars moriendi: Proteases as sculptors of cellular suicide. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119191. [PMID: 34973300 DOI: 10.1016/j.bbamcr.2021.119191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
The Ars moriendi, which translates to "The Art of Dying," encompasses two Latin texts that gave advice on how to die well and without fear according to the Christian precepts of the late Middle Ages. Given that ten to hundred billion cells die in our bodies every day, it is obvious that the concept of a well and orderly ("regulated") death is also paramount at the cellular level. In apoptosis, as the most well-studied form of regulated cell death, proteases of the caspase family are the central mediators. However, caspases are not the only proteases that act as sculptors of cellular suicide, and therefore, we here provide an overview of the impact of proteases in apoptosis and other forms of regulated cell death.
Collapse
Affiliation(s)
- Michelle Heib
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Michaelisstr. 5, 24105 Kiel, Germany
| | - Jonas Weiß
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Michaelisstr. 5, 24105 Kiel, Germany
| | - Carina Saggau
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Michaelisstr. 5, 24105 Kiel, Germany
| | - Justus Hoyer
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Michaelisstr. 5, 24105 Kiel, Germany
| | | | - Susann Voigt
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Michaelisstr. 5, 24105 Kiel, Germany
| | - Dieter Adam
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Michaelisstr. 5, 24105 Kiel, Germany.
| |
Collapse
|
6
|
Mandal P, Nagrani LN, Hernandez L, McCormick AL, Dillon CP, Koehler HS, Roback L, Alnemri ES, Green DR, Mocarski ES. Multiple Autonomous Cell Death Suppression Strategies Ensure Cytomegalovirus Fitness. Viruses 2021; 13:v13091707. [PMID: 34578288 PMCID: PMC8473406 DOI: 10.3390/v13091707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/13/2021] [Accepted: 08/20/2021] [Indexed: 12/31/2022] Open
Abstract
Programmed cell death pathways eliminate infected cells and regulate infection-associated inflammation during pathogen invasion. Cytomegaloviruses encode several distinct suppressors that block intrinsic apoptosis, extrinsic apoptosis, and necroptosis, pathways that impact pathogenesis of this ubiquitous herpesvirus. Here, we expanded the understanding of three cell autonomous suppression mechanisms on which murine cytomegalovirus relies: (i) M38.5-encoded viral mitochondrial inhibitor of apoptosis (vMIA), a BAX suppressor that functions in concert with M41.1-encoded viral inhibitor of BAK oligomerization (vIBO), (ii) M36-encoded viral inhibitor of caspase-8 activation (vICA), and (iii) M45-encoded viral inhibitor of RIP/RHIM activation (vIRA). Following infection of bone marrow-derived macrophages, the virus initially deflected receptor-interacting protein kinase (RIPK)3-dependent necroptosis, the most potent of the three cell death pathways. This process remained independent of caspase-8, although suppression of this apoptotic protease enhances necroptosis in most cell types. Second, the virus deflected TNF-mediated extrinsic apoptosis, a pathway dependent on autocrine TNF production by macrophages that proceeds independently of mitochondrial death machinery or RIPK3. Third, cytomegalovirus deflected BCL-2 family protein-dependent mitochondrial cell death through combined TNF-dependent and -independent signaling even in the absence of RIPK1, RIPK3, and caspase-8. Furthermore, each of these cell death pathways dictated a distinct pattern of cytokine and chemokine activation. Therefore, cytomegalovirus employs sequential, non-redundant suppression strategies to specifically modulate the timing and execution of necroptosis, extrinsic apoptosis, and intrinsic apoptosis within infected cells to orchestrate virus control and infection-dependent inflammation. Virus-encoded death suppressors together hold control over an intricate network that upends host defense and supports pathogenesis in the intact mammalian host.
Collapse
Affiliation(s)
- Pratyusha Mandal
- Emory Vaccine Center, Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA; (L.H.); (H.S.K.); (L.R.)
- Correspondence: (P.M.); (E.S.M.); Tel.: +404-727-0563 (P.M.); +404-727-4273 (E.S.M.)
| | | | - Liliana Hernandez
- Emory Vaccine Center, Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA; (L.H.); (H.S.K.); (L.R.)
| | | | | | - Heather S. Koehler
- Emory Vaccine Center, Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA; (L.H.); (H.S.K.); (L.R.)
| | - Linda Roback
- Emory Vaccine Center, Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA; (L.H.); (H.S.K.); (L.R.)
| | - Emad S. Alnemri
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| | - Douglas R. Green
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA;
| | - Edward S. Mocarski
- Emory Vaccine Center, Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA; (L.H.); (H.S.K.); (L.R.)
- Correspondence: (P.M.); (E.S.M.); Tel.: +404-727-0563 (P.M.); +404-727-4273 (E.S.M.)
| |
Collapse
|
7
|
Mitochondrial calcium signaling in the brain and its modulation by neurotropic viruses. Mitochondrion 2021; 59:8-16. [PMID: 33838333 DOI: 10.1016/j.mito.2021.03.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/15/2021] [Accepted: 03/24/2021] [Indexed: 12/14/2022]
Abstract
Calcium (Ca2+) plays fundamental and diverse roles in brain cells as a second messenger of many signaling pathways. Given the high energy demand in the brain and the generally non-regenerative state of neurons, the role of brain mitochondrial calcium [Ca2+]m in particular, in regulating ATP generation and determination of cell fate by initiation or inhibition of programmed cell death (PCD) becomes critical. Since [Ca2+]m signaling has a central role in brain physiology, it represents an ideal target for viruses to hijack the Ca2+ machinery to favor their own persistence, replication and/or dissemination by modulating cell death. This review discusses the ways by which neurotropic viruses are known to exploit the [Ca2+]m signaling of their host cells to regulate cell death in the brain, particularly in neurons. We hope our review will highlight the importance of [Ca2+]m handling in the virus-infected brain and stimulate further studies towards exploring novel [Ca2+]m related therapeutic strategies for viral effects on the brain.
Collapse
|
8
|
TNF Signaling Dictates Myeloid and Non-Myeloid Cell Crosstalk to Execute MCMV-Induced Extrinsic Apoptosis. Viruses 2020; 12:v12111221. [PMID: 33126536 PMCID: PMC7693317 DOI: 10.3390/v12111221] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/21/2020] [Accepted: 10/24/2020] [Indexed: 12/13/2022] Open
Abstract
Cytomegaloviruses all encode the viral inhibitor of caspase-8-induced apoptosis (vICA). After binding to this initiator caspase, vICA blocks caspase-8 proteolytic activity and ability to activate caspase-3 and/or caspase-7. In this manner, vICA has long been known to prevent apoptosis triggered via tumor necrosis factor (TNF) family death receptor-dependent extrinsic signaling. Here, we employ fully wild-type murine cytomegalovirus (MCMV) and vICA-deficient MCMV (∆M36) to investigate the contribution of TNF signaling to apoptosis during infection of different cell types. ∆M36 shows the expected ability to kill mouse splenic hematopoietic cells, bone marrow-derived macrophages (BMDM), and dendritic cells (BMDC). Antibody blockade or genetic elimination of TNF protects myeloid cells from death, and caspase-8 activation accompanies cell death. Interferons, necroptosis, and pyroptotic gasdermin D (GSDMD) do not contribute to myeloid cell death. Human and murine fibroblasts or murine endothelial cells (SVEC4-10) normally insensitive to TNF become sensitized to ∆M36-induced apoptosis when treated with TNF or TNF-containing BMDM-conditioned medium. We demonstrate that myeloid cells are the natural source of TNF that triggers apoptosis in either myeloid (autocrine) or non-myeloid cells (paracrine) during ∆M36 infection of mice. Caspase-8 suppression by vICA emerges as key to subverting innate immune elimination of a wide variety of infected cell types.
Collapse
|
9
|
Sun Q, Guo H, Xia Q, Jiang L, Zhao P. Transcriptome analysis of the immune response of silkworm at the early stage of Bombyx mori bidensovirus infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 106:103601. [PMID: 31899306 DOI: 10.1016/j.dci.2019.103601] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 12/24/2019] [Accepted: 12/25/2019] [Indexed: 06/10/2023]
Abstract
Bombyx mori bidensovirus (BmBDV) infects silkworm midgut and causes chronic flacherie disease; however, the interaction between BmBDV and silkworm is unclear. Twenty-four hours after BmBDV infection, the midgut was extracted for RNA-seq to analyze the factors associated with BmBDV-invasion and the early antiviral immune response in silkworms. The total reads from each sample were more than 16100000 and the number of expressed genes exceeded 8200. There were 334 upregulated and 272 downregulated differentially expressed genes (DEGs). Gene ontology analysis of DEGs showed that structural constituents of cuticle, antioxidant, and immune system processes were upregulated. Further analysis revealed BmBDV-mediated induction of BmorCPR23 and BmorCPR44, suggesting possible involvement in viral invasion. Antioxidant genes that protect host cells from virus-induced oxidative stress, were significantly upregulated after BmBDV infection. Several genes related to peroxisomes, apoptosis, and autophagy-which may be involved in antiviral immunity-were induced by BmBDV. These results provide insights into the mechanism of BmBDV infection and host defense.
Collapse
Affiliation(s)
- Qiang Sun
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, China
| | - Huizhen Guo
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, China
| | - Liang Jiang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, China.
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
10
|
Xi Y, Harwood S, Wise LM, Purdy JG. Human Cytomegalovirus pUL37x1 Is Important for Remodeling of Host Lipid Metabolism. J Virol 2019; 93:e00843-19. [PMID: 31391267 PMCID: PMC6803270 DOI: 10.1128/jvi.00843-19] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 07/19/2019] [Indexed: 12/11/2022] Open
Abstract
Human cytomegalovirus (HCMV) replication requires host metabolism. Infection alters the activity in multiple metabolic pathways, including increasing fatty acid elongation and lipid synthesis. The virus-host interactions regulating the metabolic changes associated with replication are essential for infection. While multiple host factors, including kinases and transcription factors, important for metabolic changes that occur following HCMV infection have been identified, little is known about the viral factors required to alter metabolism. In this study, we tested the hypothesis that pUL37x1 is important for the metabolic remodeling that is necessary for HCMV replication using a combination of metabolomics, lipidomics, and metabolic tracers to measure fatty acid elongation. We observed that fibroblast cells infected with wild-type (WT) HCMV had levels of metabolites similar to those in cells infected with a mutant virus lacking the UL37x1 gene, subUL37x1. However, we found that relative to WT-infected cells, subUL37x1-infected cells had reduced levels of two host proteins that were previously demonstrated to be important for lipid metabolism during HCMV infection: fatty acid elongase 7 (ELOVL7) and the endoplasmic reticulum (ER) stress-related kinase PERK. Moreover, we observed that HCMV infection results in an increase in phospholipids with very-long-chain fatty acid tails (PL-VLCFAs) that contain 26 or more carbons in one of their two tails. The levels of many PL-VLCFAs were lower in subUL37x1-infected cells than in WT-infected cells. Overall, we conclude that although pUL37x1 is not necessary for network-wide metabolic changes associated with HCMV infection, it is important for the remodeling of a subset of metabolic changes that occur during infection.IMPORTANCE Human cytomegalovirus (HCMV) is a common pathogen that asymptomatically infects most people and establishes a lifelong infection. However, HCMV can cause end-organ disease that results in death in the immunosuppressed and is a leading cause of birth defects. HCMV infection depends on host metabolism, including lipid metabolism. However, the viral mechanisms for remodeling of metabolism are poorly understood. In this study, we demonstrate that the viral UL37x1 protein (pUL37x1) is important for infection-associated increases in lipid metabolism, including fatty acid elongation to produce very-long-chain fatty acids (VLCFAs). Furthermore, we found that HCMV infection results in a significant increase in phospholipids, particularly those with VLCFA tails (PL-VLCFAs). We found that pUL37x1 was important for the high levels of fatty acid elongation and PL-VLCFA accumulation that occur in HCMV-infected cells. Our findings identify a viral protein that is important for changes in lipid metabolism that occur following HCMV infection.
Collapse
Affiliation(s)
- Yuecheng Xi
- Department of Immunobiology, University of Arizona, Tucson, Arizona, USA
| | - Samuel Harwood
- Department of Immunobiology, University of Arizona, Tucson, Arizona, USA
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, USA
| | - Lisa M Wise
- Department of Immunobiology, University of Arizona, Tucson, Arizona, USA
| | - John G Purdy
- Department of Immunobiology, University of Arizona, Tucson, Arizona, USA
- BIO5 Institute, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
11
|
HCMV Infection and Apoptosis: How Do Monocytes Survive HCMV Infection? Viruses 2018; 10:v10100533. [PMID: 30274264 PMCID: PMC6213175 DOI: 10.3390/v10100533] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/10/2018] [Accepted: 09/26/2018] [Indexed: 12/11/2022] Open
Abstract
Human cytomegalovirus (HCMV) infection of peripheral blood monocytes plays a key role in the hematogenous dissemination of the virus to multiple organ systems following primary infection or reactivation of latent virus in the bone marrow. Monocytes have a short life span of 1⁻3 days in circulation; thus, HCMV must alter their survival and differentiation to utilize these cells and their differentiated counterparts-macrophages-for dissemination and long term viral persistence. Because monocytes are not initially permissive for viral gene expression and replication, HCMV must control host-derived factors early during infection to prevent apoptosis or programmed cell death prior to viral induced differentiation into naturally long-lived macrophages. This review provides a short overview of HCMV infection of monocytes and describes how HCMV has evolved to utilize host cell anti-apoptotic pathways to allow infected monocytes to bridge the 48⁻72 h viability gate so that differentiation into a long term stable mature cell can occur. Because viral gene expression is delayed in monocytes following initial infection and only occurs (begins around two to three weeks post infection in our model) following what appears to be complete differentiation into mature macrophages or dendritic cells, or both; virally-encoded anti-apoptotic gene products cannot initially control long term infected cell survival. Anti-apoptotic viral genes are discussed in the second section of this review and we argue they would play an important role in long term macrophage or dendritic cell survival following infection-induced differentiation.
Collapse
|
12
|
Mariamé B, Kappler-Gratias S, Kappler M, Balor S, Gallardo F, Bystricky K. Real-Time Visualization and Quantification of Human Cytomegalovirus Replication in Living Cells Using the ANCHOR DNA Labeling Technology. J Virol 2018; 92:e00571-18. [PMID: 29950406 PMCID: PMC6146708 DOI: 10.1128/jvi.00571-18] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/01/2018] [Indexed: 12/14/2022] Open
Abstract
Human cytomegalovirus (HCMV) induces latent lifelong infections in all human populations. Between 30% and nearly 100% of individuals are affected depending on the geographic area and socioeconomic conditions. The biology of the virus is difficult to explore due to its extreme sophistication and the lack of a pertinent animal model. Here, we present the first application of the ANCHOR DNA labeling system to a herpesvirus, enabling real-time imaging and direct monitoring of HCMV infection and replication in living human cells. The ANCHOR system is composed of a protein (OR) that specifically binds to a short, nonrepetitive DNA target sequence (ANCH) and spreads onto neighboring sequences by protein oligomerization. When the OR protein is fused to green fluorescent protein (GFP), its accumulation results in a site-specific fluorescent focus. We created a recombinant ANCHOR-HCMV harboring an ANCH target sequence and the gene encoding the cognate OR-GFP fusion protein. Infection of permissive cells with ANCHOR-HCMV enables visualization of nearly the complete viral cycle until cell fragmentation and death. Quantitative analysis of infection kinetics and of viral DNA replication revealed cell-type-specific HCMV behavior and sensitivity to inhibitors. Our results show that the ANCHOR technology provides an efficient tool for the study of complex DNA viruses and a new, highly promising system for the development of innovative biotechnology applications.IMPORTANCE The ANCHOR technology is currently the most powerful tool to follow and quantify the replication of HCMV in living cells and to gain new insights into its biology. The technology is applicable to virtually any DNA virus or viruses presenting a double-stranded DNA (dsDNA) phase, paving the way to imaging infection in various cell lines, or even in animal models, and opening fascinating fundamental and applied prospects. Associated with high-content automated microscopy, the technology permitted rapid, robust, and precise determination of ganciclovir 50% and 90% inhibitory concentrations (IC50 and IC90) on HCMV replication, with minimal hands-on time investment. To search for new antiviral activities, the experiment is easy to upgrade toward efficient and cost-effective screening of large chemical libraries. Simple infection of permissive cells with ANCHOR viruses in the presence of a compound of interest even provides a first estimation of the stage of the viral cycle the molecule is acting upon.
Collapse
Affiliation(s)
- Bernard Mariamé
- Laboratoire de Biologie Moléculaire Eucaryote (LBME), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
- Institute for Advanced Life Science Technology (ITAV), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Sandrine Kappler-Gratias
- Institute for Advanced Life Science Technology (ITAV), University of Toulouse, CNRS, UPS, Toulouse, France
- NeoVirTech SAS, Toulouse, France
| | | | - Stéphanie Balor
- Laboratoire de Biologie Moléculaire Eucaryote (LBME), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
- Multiscale Electron Imaging (METi) Facility, Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Franck Gallardo
- Institute for Advanced Life Science Technology (ITAV), University of Toulouse, CNRS, UPS, Toulouse, France
- NeoVirTech SAS, Toulouse, France
| | - Kerstin Bystricky
- Laboratoire de Biologie Moléculaire Eucaryote (LBME), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
- Institute for Advanced Life Science Technology (ITAV), University of Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
13
|
The mitochondrial protease HtrA2 restricts the NLRP3 and AIM2 inflammasomes. Sci Rep 2018; 8:8446. [PMID: 29855523 PMCID: PMC5981608 DOI: 10.1038/s41598-018-26603-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/11/2018] [Indexed: 02/07/2023] Open
Abstract
Activation of the inflammasome pathway is crucial for effective intracellular host defense. The mitochondrial network plays an important role in inflammasome regulation but the mechanisms linking mitochondrial homeostasis to attenuation of inflammasome activation are not fully understood. Here, we report that the Parkinson’s disease-associated mitochondrial serine protease HtrA2 restricts the activation of ASC-dependent NLRP3 and AIM2 inflammasomes, in a protease activity-dependent manner. Consistently, disruption of the protease activity of HtrA2 results in exacerbated NLRP3 and AIM2 inflammasome responses in macrophages ex vivo and systemically in vivo. Mechanistically, we show that the HtrA2 protease activity regulates autophagy and controls the magnitude and duration of inflammasome signaling by preventing prolonged accumulation of the inflammasome adaptor ASC. Our findings identify HtrA2 as a non-redundant mitochondrial quality control effector that keeps NLRP3 and AIM2 inflammasomes in check.
Collapse
|
14
|
Fuchslocher Chico J, Saggau C, Adam D. Proteolytic control of regulated necrosis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:2147-2161. [DOI: 10.1016/j.bbamcr.2017.05.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 05/27/2017] [Accepted: 05/30/2017] [Indexed: 12/20/2022]
|
15
|
Proff J, Walterskirchen C, Brey C, Geyeregger R, Full F, Ensser A, Lehner M, Holter W. Cytomegalovirus-Infected Cells Resist T Cell Mediated Killing in an HLA-Recognition Independent Manner. Front Microbiol 2016; 7:844. [PMID: 27375569 PMCID: PMC4899442 DOI: 10.3389/fmicb.2016.00844] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 05/22/2016] [Indexed: 01/13/2023] Open
Abstract
In order to explore the potential of HLA-independent T cell therapy for human cytomegalovirus (HCMV) infections, we developed a chimeric antigen receptor (CAR) directed against the HCMV encoded glycoprotein B (gB), which is expressed at high levels on the surface of infected cells. T cells engineered with this anti-gB CAR recognized HCMV-infected cells and released cytokines and cytotoxic granules. Unexpectedly, and in contrast to analogous approaches for HIV, Hepatitis B or Hepatitis C virus, we found that HCMV-infected cells were resistant to killing by the CAR-modified T cells. In order to elucidate whether this phenomenon was restricted to the use of CARs, we extended our experiments to T cell receptor (TCR)-mediated recognition of infected cells. To this end we infected fibroblasts with HCMV-strains deficient in viral inhibitors of antigenic peptide presentation and targeted these HLA-class I expressing peptide-loaded infected cells with peptide-specific cytotoxic T cells (CTLs). Despite strong degranulation and cytokine production by the T cells, we again found significant inhibition of lysis of HCMV-infected cells. Impairment of cell lysis became detectable 1 day after HCMV infection and gradually increased during the following 3 days. We thus postulate that viral anti-apoptotic factors, known to inhibit suicide of infected host cells, have evolved additional functions to directly abrogate T cell cytotoxicity. In line with this hypothesis, CAR-T cell cytotoxicity was strongly inhibited in non-infected fibroblasts by expression of the HCMV-protein UL37x1, and even more so by additional expression of UL36. Our data extend the current knowledge on Betaherpesviral evasion from T cell immunity and show for the first time that, beyond impaired antigen presentation, infected cells are efficiently protected by direct blockade of cytotoxic effector functions through viral proteins.
Collapse
Affiliation(s)
- Julia Proff
- Children's Cancer Research Institute, St. Anna KinderkrebsforschungVienna, Austria; Children's University Hospital, Universitätsklinikum ErlangenErlangen, Germany
| | | | - Charlotte Brey
- Children's Cancer Research Institute, St. Anna Kinderkrebsforschung Vienna, Austria
| | - Rene Geyeregger
- Children's Cancer Research Institute, St. Anna Kinderkrebsforschung Vienna, Austria
| | - Florian Full
- Institute for Clinical and Molecular Virology, Universitätsklinikum ErlangenErlangen, Germany; Department of Microbiology, The University of ChicagoChicago, IL, USA
| | - Armin Ensser
- Institute for Clinical and Molecular Virology, Universitätsklinikum Erlangen Erlangen, Germany
| | - Manfred Lehner
- Children's Cancer Research Institute, St. Anna Kinderkrebsforschung Vienna, Austria
| | - Wolfgang Holter
- Children's Cancer Research Institute, St. Anna KinderkrebsforschungVienna, Austria; Department of Pediatrics, St. Anna Kinderspital, Medical University of ViennaVienna, Austria
| |
Collapse
|
16
|
Peepim T, Phiwsaiya K, Charoensapsri W, Khunrae P, Senapin S, Rattanarojpong T. Knockdown of Litopenaeus vannamei HtrA2, an up-regulated gene in response to WSSV infection, leading to delayed shrimp mortality. J Biotechnol 2015; 219:48-56. [PMID: 26712477 DOI: 10.1016/j.jbiotec.2015.12.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 12/12/2015] [Accepted: 12/14/2015] [Indexed: 10/22/2022]
Abstract
HtrA2 is an apoptosis-activating gene that enhances the apoptotic process by preventing the formation of the IAP-caspase complex, thereby freeing caspase to trigger the apoptosis pathway. In this study, we presented the full-length cDNA sequence of HtrA2 from Litopenaeus vannamei (LvHtrA2). The full-length LvHtrA2 was 1335 bp, encoding 444 amino acids. This deduced amino acid sequence contained five conserved domains: a mitochondrial targeting signal (MTS), a transmembrane (TM) domain, an IAP-binding motif (IBM), a trimerization motif, a serine protease domain, and a PDZ domain normally found in the HtrA2 proteins of other organisms. A phylogenetic analysis revealed that LvHtrA2 clustered with the HtrA2 from other invertebrates and was closely related to Penaeus monodon HtrA2 (PmHtrA2). RT-PCR with RNA extracts from L. vannamei revealed that LvHtrA2 expression was found in several tissues, including the lymphoid organs, the haemocytes, the hepatopancreas, the gill, and the stomach, with different expression levels. When determining the role of LvHtrA2 in WSSV infection, it was found that LvHtrA2 transcription was early up-regulated in the WSSV-infected shrimp at 8h post-infection (p.i.) and expression still remained high at 48 h p.i.. It also demonstrated that dsRNA specific to LvHtrA2 reduced the cumulative mortality in the WSSV-infected shrimp compared with the control group. Additionally, depletion of the LvHtrA2 transcripts reduced expression levels for caspase-3 (Cap-3) gene in shrimp. This result could suggest that LvHtrA2 may involved in apoptosis mediated mortality rather than providing immune protection during WSSV infection.
Collapse
Affiliation(s)
- Termsri Peepim
- Department of Microbiology, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
| | - Kornsunee Phiwsaiya
- Center of Excellence for Shrimp Molecular Biology and Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani 12120, Thailand
| | - Walaiporn Charoensapsri
- Center of Excellence for Shrimp Molecular Biology and Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani 12120, Thailand
| | - Pongsak Khunrae
- Department of Microbiology, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
| | - Saengchan Senapin
- Center of Excellence for Shrimp Molecular Biology and Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani 12120, Thailand
| | - Triwit Rattanarojpong
- Department of Microbiology, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand.
| |
Collapse
|
17
|
Poole E, Kuan WL, Barker R, Sinclair J. The human cytomegalovirus non-coding Beta2.7 RNA as a novel therapeutic for Parkinson's disease--Translational research with no translation. Virus Res 2015; 212:64-9. [PMID: 26003955 DOI: 10.1016/j.virusres.2015.05.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/01/2015] [Accepted: 05/08/2015] [Indexed: 10/23/2022]
Abstract
Human cytomegalovirus (HCMV) encodes abundant numbers of microRNAs (miRNAs) and other non-coding RNAs (ncRNAs) whose functions are presently under intense investigation. In this chapter, we discuss the function of one of the more well characterised virus-encoded ncRNAs, derived from the viral major early gene (Beta2.7). This RNA plays an anti-apoptotic role during infection by directly interacting with mitochondrial complex I to help maintain high levels of ATP production and by preventing the stress induced re-localisation of retinoid/interferon-induced mortality-19 protein, GRIM-19. We then go on to describe how an 800 nucleotide sub-domain of the Beta2.7 transcript, p137, has been exploited in the development of a novel therapeutic for the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Emma Poole
- Department of Medicine, Addenbrooke's Hospital, Hills Road, England CB2 0QQ UK.
| | - Wei Li Kuan
- Department of Neurology, Addenbrooke's Hospital, Hills Road, England CB2 0QQ, UK
| | - Roger Barker
- Department of Neurology, Addenbrooke's Hospital, Hills Road, England CB2 0QQ, UK
| | - John Sinclair
- Department of Medicine, Addenbrooke's Hospital, Hills Road, England CB2 0QQ UK.
| |
Collapse
|
18
|
Koldehoff M, Lindemann M, Opalka B, Bauer S, Ross RS, Elmaagacli AH. Cytomegalovirus induces apoptosis in acute leukemia cells as a virus-versus-leukemia function. Leuk Lymphoma 2015; 56:3189-97. [PMID: 25818505 DOI: 10.3109/10428194.2015.1032968] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Cytomegalovirus (HCMV) reactivation occurs frequently after hematopoietic stem cell transplantation and is associated with an increased treatment-related mortality. Induction of apoptosis by HCMV is unusual because HCMV utilizes various strategies to prevent apoptosis in infected cells in order to delay cell death and maintain viral replication. Here we show that HCMV can infect the acute leukemia cell lines Kasumi-1 (AML) and SD-1 (BCR-ABL-positive ALL), which inhibited their proliferation and induced apoptosis in almost all cells after 14 days. Although HCMV induced a significant up-regulation of the anti-apoptotic gene cFLIP and the anti-stress gene Gadd45a, and simultaneously down-regulated the pro-apoptotic genes p53, Gadd45gamma in Kasumi-1 and SD-1 cells, we found that these anti-apoptotic mechanisms failed in HCMV-infected acute leukemia cells and apoptosis occurred via a caspase-dependent pathway. We conclude that HCMV can provide anti-leukemic effects in vitro. To determine if this phenomenon may be clinically relevant further investigations will be required.
Collapse
Affiliation(s)
- Michael Koldehoff
- a Department of Bone Marrow Transplantation , West German Cancer Center , Essen , Germany
| | | | - Bertram Opalka
- c Department of Hematology , West German Cancer Center , Essen , Germany
| | - Sebastian Bauer
- d Department of Medical Oncology , West German Cancer Center , Essen , Germany
| | | | - Ahmet H Elmaagacli
- a Department of Bone Marrow Transplantation , West German Cancer Center , Essen , Germany.,f Department of Oncology and Hematology , HELIOS Schwerin , Schwerin , Germany
| |
Collapse
|
19
|
|
20
|
Bhuvanendran S, Salka K, Rainey K, Sreetama SC, Williams E, Leeker M, Prasad V, Boyd J, Patterson GH, Jaiswal JK, Colberg-Poley AM. Superresolution imaging of human cytomegalovirus vMIA localization in sub-mitochondrial compartments. Viruses 2014; 6:1612-36. [PMID: 24721787 PMCID: PMC4014713 DOI: 10.3390/v6041612] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 03/16/2014] [Accepted: 03/27/2014] [Indexed: 01/04/2023] Open
Abstract
The human cytomegalovirus (HCMV) viral mitochondria-localized inhibitor of apoptosis (vMIA) protein, traffics to mitochondria-associated membranes (MAM), where the endoplasmic reticulum (ER) contacts the outer mitochondrial membrane (OMM). vMIA association with the MAM has not been visualized by imaging. Here, we have visualized this by using a combination of confocal and superresolution imaging. Deconvolution of confocal microscopy images shows vMIA localizes away from mitochondrial matrix at the Mitochondria-ER interface. By gated stimulated emission depletion (GSTED) imaging, we show that along this interface vMIA is distributed in clusters. Through multicolor, multifocal structured illumination microscopy (MSIM), we find vMIA clusters localize away from MitoTracker Red, indicating its OMM localization. GSTED and MSIM imaging show vMIA exists in clusters of ~100–150 nm, which is consistent with the cluster size determined by Photoactivated Localization Microscopy (PALM). With these diverse superresolution approaches, we have imaged the clustered distribution of vMIA at the OMM adjacent to the ER. Our findings directly compare the relative advantages of each of these superresolution imaging modalities for imaging components of the MAM and sub-mitochondrial compartments. These studies establish the ability of superresolution imaging to provide valuable insight into viral protein location, particularly in the sub-mitochondrial compartments, and into their clustered organization.
Collapse
Affiliation(s)
- Shivaprasad Bhuvanendran
- Research Center for Genetic Medicine, Children's Research Institute, Children's National Health System, 111 Michigan Avenue, NW, Washington, DC 20010, USA.
| | - Kyle Salka
- Research Center for Genetic Medicine, Children's Research Institute, Children's National Health System, 111 Michigan Avenue, NW, Washington, DC 20010, USA.
| | - Kristin Rainey
- Section on Biophotonics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Sen Chandra Sreetama
- Research Center for Genetic Medicine, Children's Research Institute, Children's National Health System, 111 Michigan Avenue, NW, Washington, DC 20010, USA.
| | - Elizabeth Williams
- Research Center for Genetic Medicine, Children's Research Institute, Children's National Health System, 111 Michigan Avenue, NW, Washington, DC 20010, USA.
| | - Margretha Leeker
- Research Center for Genetic Medicine, Children's Research Institute, Children's National Health System, 111 Michigan Avenue, NW, Washington, DC 20010, USA.
| | - Vidhya Prasad
- Research Center for Genetic Medicine, Children's Research Institute, Children's National Health System, 111 Michigan Avenue, NW, Washington, DC 20010, USA.
| | - Jonathan Boyd
- Life Science Division, Leica Microsystems, Inc., 1700 Leider Lane, Buffalo Grove, IL 60089, USA.
| | - George H Patterson
- Section on Biophotonics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Jyoti K Jaiswal
- Research Center for Genetic Medicine, Children's Research Institute, Children's National Health System, 111 Michigan Avenue, NW, Washington, DC 20010, USA.
| | - Anamaris M Colberg-Poley
- Research Center for Genetic Medicine, Children's Research Institute, Children's National Health System, 111 Michigan Avenue, NW, Washington, DC 20010, USA.
| |
Collapse
|
21
|
Suwannaboon R, Phiwsaiya K, Senapin S, Khunrae P, Rattanarojpong T. The identification and expression of the full-length HtrA2 gene from Penaeus monodon (black tiger shrimp). Protein Expr Purif 2013; 92:183-9. [DOI: 10.1016/j.pep.2013.09.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 09/14/2013] [Accepted: 09/18/2013] [Indexed: 11/29/2022]
|
22
|
Sosna J, Voigt S, Mathieu S, Kabelitz D, Trad A, Janssen O, Meyer-Schwesinger C, Schütze S, Adam D. The proteases HtrA2/Omi and UCH-L1 regulate TNF-induced necroptosis. Cell Commun Signal 2013; 11:76. [PMID: 24090154 PMCID: PMC3850939 DOI: 10.1186/1478-811x-11-76] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 10/01/2013] [Indexed: 11/23/2022] Open
Abstract
Background In apoptosis, proteolysis by caspases is the primary mechanism for both initiation and execution of programmed cell death (PCD). In contrast, the impact of proteolysis on the regulation and execution of caspase-independent forms of PCD (programmed necrosis, necroptosis) is only marginally understood. Likewise, the identity of the involved proteases has remained largely obscure. Here, we have investigated the impact of proteases in TNF-induced necroptosis. Results The serine protease inhibitor TPKC protected from TNF-induced necroptosis in multiple murine and human cells systems whereas inhibitors of metalloproteinases or calpain/cysteine and cathepsin proteases had no effect. A screen for proteins labeled by a fluorescent TPCK derivative in necroptotic cells identified HtrA2/Omi (a serine protease previously implicated in PCD) as a promising candidate. Demonstrating its functional impact, pharmacological inhibition or genetic deletion of HtrA2/Omi protected from TNF-induced necroptosis. Unlike in apoptosis, HtrA2/Omi did not cleave another protease, ubiquitin C-terminal hydrolase (UCH-L1) during TNF-induced necroptosis, but rather induced monoubiquitination indicative for UCH-L1 activation. Correspondingly, pharmacologic or RNA interference-mediated inhibition of UCH-L1 protected from TNF-induced necroptosis. We found that UCH-L1 is a mediator of caspase-independent, non-apoptotic cell death also in diseased kidney podocytes by measuring cleavage of the protein PARP-1, caspase activity, cell death and cell morphology. Indicating a role of TNF in this process, podocytes with stably downregulated UCH-L1 proved resistant to TNF-induced necroptosis. Conclusions The proteases HtrA2/Omi and UCH-L1 represent two key components of TNF-induced necroptosis, validating the relevance of proteolysis not only for apoptosis, but also for caspase-independent PCD. Since UCH-L1 clearly contributes to the non-apoptotic death of podocytes, interference with the necroptotic properties of HtrA2/Omi and UCH-L1 may prove beneficial for the treatment of patients, e.g. in kidney failure.
Collapse
Affiliation(s)
- Justyna Sosna
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Michaelisstr, 5, 24105 Kiel, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Kaiser WJ, Upton JW, Mocarski ES. Viral modulation of programmed necrosis. Curr Opin Virol 2013; 3:296-306. [PMID: 23773332 DOI: 10.1016/j.coviro.2013.05.019] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 05/21/2013] [Accepted: 05/22/2013] [Indexed: 01/16/2023]
Abstract
Apoptosis and programmed necrosis balance each other as alternate first line host defense pathways against which viruses have evolved countermeasures. Intrinsic apoptosis, the critical programmed cell death pathway that removes excess cells during embryonic development and tissue homeostasis, follows a caspase cascade triggered at mitochondria and modulated by virus-encoded anti-apoptotic B cell leukemia (BCL)2-like suppressors. Extrinsic apoptosis controlled by caspase 8 arose during evolution to trigger executioner caspases directly, circumventing viral suppressors of intrinsic (mitochondrial) apoptosis and providing the selective pressure for viruses to acquire caspase 8 suppressors. Programmed necrosis likely evolved most recently as a 'trap door' adaptation to extrinsic apoptosis. Receptor interacting protein (RIP)3 kinase (also called RIPK3) becomes active when either caspase 8 activity or polyubiquitylation of RIP1 is compromised. This evolutionary dialog implicates caspase 8 as a 'supersensor' alternatively activating and suppressing cell death pathways.
Collapse
Affiliation(s)
- William J Kaiser
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
24
|
Crosby LN, McCormick AL, Mocarski ES. Gene products of the embedded m41/m41.1 locus of murine cytomegalovirus differentially influence replication and pathogenesis. Virology 2013; 436:274-83. [PMID: 23295021 DOI: 10.1016/j.virol.2012.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 09/30/2012] [Accepted: 12/02/2012] [Indexed: 01/08/2023]
Abstract
Cytomegaloviruses utilize overlapping and embedded reading frames as a way to efficiently package and express all genes necessary to carry out a complex lifecycle. Murine cytomegalovirus encodes a mitochondrial-localized inhibitor of Bak oligomerization (vIBO) from m41.1, a reading frame that is embedded within the m41 gene. The m41.1-encoded mitochondrial protein and m41-encoded Golgi-localized protein have both been implicated in cell death suppression; however, their contribution to viral infection within the host has not been investigated. Here, we report that mitochondrial-localized m41.1 (vIBO) is required for optimal viral replication in macrophages and has a modest impact on dissemination in infected mice. In contrast, Golgi-localized m41 protein is dispensable during acute infection and dissemination as well as for latency. All together, these data indicate that the primary evolutionary focus of this locus is to maintain mitochondrial function through inhibition of Bak-mediated death pathways in support of viral pathogenesis.
Collapse
Affiliation(s)
- Lynsey N Crosby
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
25
|
McCormick AL, Roback L, Wynn G, Mocarski ES. Multiplicity-dependent activation of a serine protease-dependent cytomegalovirus-associated programmed cell death pathway. Virology 2012; 435:250-7. [PMID: 23159167 DOI: 10.1016/j.virol.2012.08.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 01/11/2012] [Accepted: 08/26/2012] [Indexed: 01/25/2023]
Abstract
At a low MOI (≤0.01), cytomegalovirus-associated programmed cell death terminates productive infection via a pathway triggered by the mitochondrial serine protease HtrA2/Omi. This infected cell death is associated with late phase replication events naturally suppressed by the viral mitochondrial inhibitor of apoptosis (vMIA). Here, higher MOI (ranging from 0.1-3.0) triggers cell death earlier during infection independent of viral DNA synthesis. Thus, MOI-dependent activating signals early, at high MOI, or late, at low MOI, during replication promote serine protease-dependent death that is suppressed by vMIA. Treatment with an antioxidant targeting reactive oxygen species (ROS) or the serine protease inhibitor N-alpha-p-tosyl-L-lysine chloromethyl ketone (TLCK) delays cell death, and the combination has an additive impact. These studies identify serine proteases and ROS as important factors triggering programmed cell death induced by vMIA-deficient virus, and show that this death pathway occurs earlier and reduces viral yields as the MOI is increased.
Collapse
Affiliation(s)
- A Louise McCormick
- Department of Microbiology and Immunology and Emory Vaccine Center, Emory University School of Medicine, 1462 Clifton Rd NE, Atlanta, GA 30322, USA.
| | | | | | | |
Collapse
|
26
|
Abstract
As intracellular parasites, viruses rely on many host cell functions to ensure their replication. The early induction of programmed cell death (PCD) in infected cells constitutes an effective antiviral host mechanism to restrict viral spread within an organism. As a countermeasure, viruses have evolved numerous strategies to interfere with the induction or execution of PCD. Slowly replicating viruses such as the cytomegaloviruses (CMVs) are particularly dependent on sustained cell viability. To preserve viability, the CMVs encode several viral cell death inhibitors that target different key regulators of the extrinsic and intrinsic apoptosis pathways. The best-characterized CMV-encoded inhibitors are the viral inhibitor of caspase-8-induced apoptosis (vICA), viral mitochondrial inhibitor of apoptosis (vMIA), and viral inhibitor of Bak oligomerization (vIBO). Moreover, a viral inhibitor of RIP-mediated signaling (vIRS) that blocks programmed necrosis has been identified in the genome of murine CMV (MCMV), indicating that this cell death mode is a particularly important part of the antiviral host response. This review provides an overview of the known cell death suppressors encoded by CMVs and their mechanisms of action.
Collapse
|
27
|
Hildreth RL, Bullough MD, Zhang A, Chen HL, Schwartz PH, Panchision DM, Colberg-Poley AM. Viral mitochondria-localized inhibitor of apoptosis (UL37 exon 1 protein) does not protect human neural precursor cells from human cytomegalovirus-induced cell death. J Gen Virol 2012; 93:2436-2446. [PMID: 22875256 DOI: 10.1099/vir.0.044784-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Congenital human cytomegalovirus (HCMV) infection can cause severe brain abnormalities. Apoptotic HCMV-infected brain cells have been detected in a congenitally infected infant. In biologically relevant human neural precursor cells (hNPCs), cultured in physiological oxygen tensions, HCMV infection (m.o.i. of 1 or 3) induced cell death within 3 days post-infection (p.i.) and increased thereafter. Surprisingly, its known anti-apoptotic genes, including the potent UL37 exon 1 protein (pUL37x1) or viral mitochondria-localized inhibitor of apoptosis (vMIA), which protects infected human fibroblasts (HFFs) from apoptosis and from caspase-independent, mitochondrial serine protease-mediated cell death, were expressed by 2 days p.i. Consistent with this finding, an HCMV UL37x1 mutant, BADsubstitutionUL37x1 (BADsubUL37x1) induced cell death in hNPCs (m.o.i. = 1) to level which were indistinguishable from parental virus (BADwild-type)-infected hNPCs. Surprisingly, although BADsubUL37x1 is growth defective in permissive HFFs, it produced infectious progeny in hNPCs with similar kinetics and to levels comparable to BADwild-type-infected hNPCs (m.o.i. = 1). While delayed at a lower multiplicity (m.o.i. = 0.3), the BADsubUL37x1 mutant reached similar levels to revertant within 12 days, in contrast to its phenotype in HFFs. The inability of pUL37x1/vMIA to protect hNPCs from HCMV-induced cell death did not result from impaired trafficking as pUL37x1/vMIA trafficked efficiently to mitochondria in transfected hNPCs and in HCMV-infected hNPCs. These results establish that pUL37x1/vMIA, although protective in permissive HFFs, does not protect HCMV-infected hNPCs from cell death under physiologically relevant oxygen tensions. They further suggest that pUL37x1/vMIA is not essential for HCMV growth in hNPCs and has different cell type-specific roles.
Collapse
Affiliation(s)
- Richard L Hildreth
- Molecular Medicine Program, George Washington University, Washington, DC 20052, USA.,Research Center for Genetic Medicine, Children's Research Institute, Washington, DC 20010, USA
| | - Matthew D Bullough
- Research Center for Genetic Medicine, Children's Research Institute, Washington, DC 20010, USA
| | - Aiping Zhang
- Research Center for Genetic Medicine, Children's Research Institute, Washington, DC 20010, USA
| | - Hui-Ling Chen
- Center for Neuroscience Research, Children's Research Institute; Research Center for Genetic Medicine, Room M5110, Children's National Medical Center, 111 Michigan Ave, NW, Washington, DC 20010, USA
| | - Philip H Schwartz
- National Human Neural Stem Cell Resource, Children's Hospital of Orange County Research Institute, Orange, CA, USA
| | - David M Panchision
- Division of Neuroscience and Basic Behavioral Science, National Institutes of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Anamaris M Colberg-Poley
- Molecular Medicine Program, George Washington University, Washington, DC 20052, USA.,Department of Biochemistry and Molecular Biology, George Washington University, USA.,Department of Integrative Systems Biology, George Washington University, USA.,Research Center for Genetic Medicine, Children's Research Institute, Washington, DC 20010, USA
| |
Collapse
|
28
|
Abstract
Human cytomegalovirus (HCMV) is a herpesvirus that is prevalent in the human population. HCMV has recently been implicated in different cancer forms where it may provide mechanisms for oncogenic transformation, oncomodulation and tumour cell immune evasion. Moreover, antiviral treatment against HCMV has been shown to inhibit tumour growth in preclinical models. Here we describe the possible involvement of HCMV in cancer and discuss the potential molecular impact expression of HCMV proteins have on tumour cells and the surrounding tumour microenvironment.
Collapse
|
29
|
Inhibition of human cytomegalovirus immediate-early gene expression by cyclin A2-dependent kinase activity. J Virol 2012; 86:9369-83. [PMID: 22718829 DOI: 10.1128/jvi.07181-11] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Human cytomegalovirus (HCMV) starts its lytic replication cycle only in the G(0)/G(1) phase of the cell division cycle. S/G(2) cells can be infected but block the onset of immediate-early (IE) gene expression. This block can be overcome by inhibition of cyclin-dependent kinases (CDKs), suggesting that cyclin A2, the only cyclin with an S/G(2)-specific activity profile, may act as a negative regulator of viral gene expression. To directly test this hypothesis, we generated derivatives of an HCMV-permissive glioblastoma cell line that express cyclin A2 in a constitutive, cell cycle-independent manner. We demonstrate that even moderate cyclin A2 overexpression in G(1) was sufficient to severely compromise the HCMV replicative cycle after high-multiplicity infection. This negative effect was composed of a strong but transient inhibition of IE gene transcription and a more sustained alteration of IE mRNA processing, resulting in reduced levels of UL37 and IE2, an essential transactivator of viral early gene expression. Consistently, cyclin A2-overexpressing cells showed a strong delay of viral early and late gene expression, as well as virus reproduction. All effects were dependent on CDK activity, as a cyclin A2 mutant deficient in CDK binding was unable to interfere with the HCMV infectious cycle. Interestingly, murine CMV, whose IE gene expression is known to be cell cycle independent, is not affected by cyclin A2. Instead, it upregulates cyclin A2-associated kinase activity upon infection. Understanding the mechanisms behind the HCMV-specific action of cyclin A2-CDK might reveal new targets for antiviral strategies.
Collapse
|
30
|
Williamson CD, DeBiasi RL, Colberg-Poley AM. Viral product trafficking to mitochondria, mechanisms and roles in pathogenesis. Infect Disord Drug Targets 2012; 12:18-37. [PMID: 22034933 PMCID: PMC4435936 DOI: 10.2174/187152612798994948] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 04/21/2011] [Accepted: 05/02/2011] [Indexed: 05/31/2023]
Abstract
A wide variety of viruses cause significant morbidity and mortality in humans. However, targeted antiviral therapies have been developed for only a subset of these viruses, with the majority of currently licensed antiviral drugs targeting viral entry, replication or exit steps during the viral life cycle. Due to increasing emergence of antiviral drug resistant viruses, the isolation of multiple viral subtypes, and toxicities of existing therapies, there remains an urgent need for the timely development of novel antiviral agents, including those targeting host factors essential for viral replication. This review summarizes viral products that target mitochondria and their effects on common mitochondria regulated pathways. These viral products and the mitochondrial pathways affected by them provide potential novel targets for the rational design of antiviral drugs. Viral products alter oxidative balance, mitochondrial permeability transition pore, mitochondrial membrane potential, electron transport and energy production. Moreover, viruses may cause the Warburg Effect, in which metabolism is reprogrammed to aerobic glycolysis as the main source of energy. Finally, viral products affect proapoptotic and antiapoptotic signaling, as well as mitochondrial innate immune signaling. Because of their importance for the generation of metabolic intermediates and energy as well as cell survival, mitochondrial pathways are targeted by multiple independent viral products. Structural modifications of existing drugs targeted to mitochondrial pathways may lead to the development of novel antiviral drugs with improved efficacy and reduced toxicity.
Collapse
Affiliation(s)
- Chad D. Williamson
- Center for Cancer and Immunology Research, Children’s National Medical Center, 111 Michigan Avenue, NW, Washington, DC 20010
| | - Roberta L. DeBiasi
- Center for Cancer and Immunology Research, Children’s National Medical Center, 111 Michigan Avenue, NW, Washington, DC 20010
- Division of Pediatric Infectious Diseases, Children’s National Medical Center, 111 Michigan Avenue, NW, Washington, DC 20010
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington DC 20037 Tel. 202-476-3984 FAX 202-476-3929
| | - Anamaris M. Colberg-Poley
- Center for Cancer and Immunology Research, Children’s National Medical Center, 111 Michigan Avenue, NW, Washington, DC 20010
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington DC 20037 Tel. 202-476-3984 FAX 202-476-3929
- Department of Biochemistry and Molecular Biology, George Washington University School of Medicine and Health Sciences, Washington DC 20037 Tel. 202-476-3984 FAX 202-476-3929
| |
Collapse
|
31
|
Yatim N, Albert M. Dying to Replicate: The Orchestration of the Viral Life Cycle, Cell Death Pathways, and Immunity. Immunity 2011; 35:478-90. [DOI: 10.1016/j.immuni.2011.10.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 09/20/2011] [Accepted: 10/14/2011] [Indexed: 12/11/2022]
|
32
|
Kaarbø M, Ager-Wick E, Osenbroch PØ, Kilander A, Skinnes R, Müller F, Eide L. Human cytomegalovirus infection increases mitochondrial biogenesis. Mitochondrion 2011; 11:935-45. [PMID: 21907833 DOI: 10.1016/j.mito.2011.08.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 08/23/2011] [Accepted: 08/26/2011] [Indexed: 11/26/2022]
Abstract
Fibroblasts infected by Human Cytomegalovirus (CMV) undergo a robust increase in mitochondrial biogenesis with a corresponding increase in mitochondrial activity that is partly dependent on the viral anti-apoptotic pUL37x1 protein (vMIA). The increased respiration activity is blocked by the mitochondrial translation inhibitor chloramphenicol, which additionally suppresses viral production. Intriguingly, chloramphenicol and pUL37x1 depletion have different effects on respiration capacity but similar effects on CMV production, suggesting that pUL37x1 promotes viral replication by efficient utilization of new mitochondria. These results argue for a role of pUL37x1 beyond controlling apoptosis.
Collapse
|
33
|
Zhang A, Williamson CD, Wong DS, Bullough MD, Brown KJ, Hathout Y, Colberg-Poley AM. Quantitative proteomic analyses of human cytomegalovirus-induced restructuring of endoplasmic reticulum-mitochondrial contacts at late times of infection. Mol Cell Proteomics 2011; 10:M111.009936. [PMID: 21742798 DOI: 10.1074/mcp.m111.009936] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Endoplasmic reticulum-mitochondrial contacts, known as mitochondria-associated membranes, regulate important cellular functions including calcium signaling, bioenergetics, and apoptosis. Human cytomegalovirus is a medically important herpesvirus whose growth increases energy demand and depends upon continued cell survival. To gain insight into how human cytomegalovirus infection affects endoplasmic reticulum-mitochondrial contacts, we undertook quantitative proteomics of mitochondria-associated membranes using differential stable isotope labeling by amino acids in cell culture strategy and liquid chromatography-tandem MS analysis. This is the first reported quantitative proteomic analyses of a suborganelle during permissive human cytomegalovirus infection. Human fibroblasts were uninfected or human cytomegalovirus-infected for 72 h. Heavy mitochondria-associated membranes were isolated from paired unlabeled, uninfected cells and stable isotope labeling by amino acids in cell culture-labeled, infected cells and analyzed by liquid chromatography-tandem MS analysis. The results were verified by a reverse labeling experiment. Human cytomegalovirus infection dramatically altered endoplasmic reticulum-mitochondrial contacts by late times. Notable is the increased abundance of several fundamental networks in the mitochondria-associated membrane fraction of human cytomegalovirus-infected fibroblasts. Chaperones, including HSP60 and BiP, which is required for human cytomegalovirus assembly, were prominently increased at endoplasmic reticulum-mitochondrial contacts after infection. Minimal translational and translocation machineries were also associated with endoplasmic reticulum-mitochondrial contacts and increased after human cytomegalovirus infection as were glucose regulated protein 75 and the voltage dependent anion channel, which can form an endoplasmic reticulum-mitochondrial calcium signaling complex. Surprisingly, mitochondrial metabolic enzymes and cytosolic glycolytic enzymes were confidently detected in the mitochondria-associated membrane fraction and increased therein after infection. Finally, proapoptotic regulatory proteins, including Bax, cytochrome c, and Opa1, were augmented in endoplasmic reticulum-mitochondrial contacts after infection, suggesting attenuation of proapoptotic signaling by their increased presence therein. Together, these results suggest that human cytomegalovirus infection restructures the proteome of endoplasmic reticulum-mitochondrial contacts to bolster protein translation at these junctions, calcium signaling to mitochondria, cell survival, and bioenergetics and, thereby, allow for enhanced progeny production.
Collapse
Affiliation(s)
- Aiping Zhang
- Center for Cancer and Immunology Research, Children's Research Institute, Children's National Medical Center, 111 Michigan Avenue, NW, Washington, DC 20010, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
The human cytomegalovirus protein UL37 exon 1 associates with internal lipid rafts. J Virol 2010; 85:2100-11. [PMID: 21177823 DOI: 10.1128/jvi.01830-10] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human cytomegalovirus (HCMV) protein UL37 exon 1 (pUL37x1), also known as viral mitochondrion-localized inhibitor of apoptosis (vMIA), sequentially traffics from the endoplasmic reticulum (ER) through mitochondrion-associated membranes (MAMs) to the outer mitochondrial membrane (OMM), where it robustly inhibits apoptosis. Here, we report the association of pUL37x1/vMIA with internal lipid rafts (LRs) in the ER/MAM. The MAM, which serves as a site for lipid transfer and calcium signaling to mitochondria, is enriched in detergent-resistant membrane (DRM)-forming lipids, including cholesterol and ceramide, which are found in lower concentrations in the bulk ER. Sigma 1 receptor (Sig-1R), a MAM chaperone affecting calcium signaling to mitochondria, is anchored in the MAM by its LR association. Because of its trafficking through the MAM and partial colocalization with Sig-1R, we tested whether pUL37x1/vMIA associates with MAM LRs. Extraction with methyl-β-cyclodextrin (MβCD) removed pUL37x1/vMIA from lysed but not intact cells, indicating its association with internal LRs. Furthermore, the isolation of DRMs from purified intracellular organelles independently verified the localization of pUL37x1/vMIA within ER/MAM LRs. However, pUL37x1/vMIA was not detected in DRMs from mitochondria. pUL37x1/vMIA associated with LRs during all temporal phases of HCMV infection, indicating the likely importance of this location for HCMV growth. Although detected during its sequential trafficking to the OMM, the pUL37x1/vMIA LR association was independent of its mitochondrial targeting signals. Rather, it was dependent upon cholesterol binding. These studies suggest a conserved ability of UL37 proteins to interact with cholesterol and LRs, which is functionally distinguishable from their sequential trafficking to mitochondria.
Collapse
|
35
|
Inhibition of programmed cell death by cytomegaloviruses. Virus Res 2010; 157:144-50. [PMID: 20969904 DOI: 10.1016/j.virusres.2010.10.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2010] [Revised: 10/07/2010] [Accepted: 10/11/2010] [Indexed: 12/24/2022]
Abstract
The elimination of infected cells by programmed cell death (PCD) is one of the most ancestral defense mechanisms against infectious agents. This mechanism should be most effective against intracellular parasites, such as viruses, which depend on the host cell for their replication. However, even large and slowly replicating viruses like the cytomegaloviruses (CMVs) can prevail and persist in face of cellular suicide programs and other innate defense mechanisms. During evolution, these viruses have developed an impressive set of countermeasures against premature demise of the host cell. In the last decade, several genes encoding suppressors of apoptosis and necrosis have been identified in the genomes of human and murine CMV (HCMV and MCMV). Curiously, most of the gene products are not homologous to cellular antiapoptotic proteins, suggesting that the CMVs did not capture the genes from the host cell genome. This review summarizes our current understanding of how the CMVs suppress PCD and which signaling pathways they target.
Collapse
|
36
|
Upton JW, Kaiser WJ, Mocarski ES. Virus inhibition of RIP3-dependent necrosis. Cell Host Microbe 2010; 7:302-313. [PMID: 20413098 DOI: 10.1016/j.chom.2010.03.006] [Citation(s) in RCA: 472] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Revised: 01/27/2010] [Accepted: 03/12/2010] [Indexed: 12/15/2022]
Abstract
Viral infection activates cytokine expression and triggers cell death, the modulation of which is important for successful pathogenesis. Necroptosis is a form of programmed necrosis dependent on two related RIP homotypic interaction motif (RHIM)-containing signaling adaptors, receptor-interacting protein kinases (RIP) 1 and 3. We find that murine cytomegalovirus infection induces RIP3-dependent necrosis. Whereas RIP3 kinase activity and RHIM-dependent interactions control virus-associated necrosis, virus-induced death proceeds independently of RIP1 and is therefore distinct from TNFalpha-dependent necroptosis. Viral M45-encoded inhibitor of RIP activation (vIRA) targets RIP3 during infection and disrupts RIP3-RIP1 interactions characteristic of TNFalpha-induced necroptosis, thereby suppressing both death pathways. Importantly, attenuation of vIRA mutant virus in wild-type mice is normalized in RIP3-deficient mice. Thus, vIRA function validates necrosis as central to host defense against viral infections and highlights the benefit of multiple virus-encoded cell-death suppressors that inhibit not only apoptotic, but also necrotic mechanisms of virus clearance.
Collapse
Affiliation(s)
- Jason W Upton
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - William J Kaiser
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Edward S Mocarski
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
37
|
Trafficking of UL37 proteins into mitochondrion-associated membranes during permissive human cytomegalovirus infection. J Virol 2010; 84:7898-903. [PMID: 20504938 DOI: 10.1128/jvi.00885-10] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human cytomegalovirus (HCMV) UL37 proteins traffic sequentially from the endoplasmic reticulum (ER) to the mitochondria. In transiently transfected cells, UL37 proteins traffic into the mitochondrion-associated membranes (MAM), the site of contact between the ER and mitochondria. In HCMV-infected cells, the predominant UL37 exon 1 protein, pUL37x1, trafficked into the ER, the MAM, and the mitochondria. Surprisingly, a component of the MAM calcium signaling junction complex, cytosolic Grp75, was increasingly enriched in heavy MAM from HCMV-infected cells. These studies show the first documented case of a herpesvirus protein, HCMV pUL37x1, trafficking into the MAM during permissive infection and HCMV-induced alteration of the MAM protein composition.
Collapse
|
38
|
Abstract
A virus (from the Latin virus meaning toxin or poison) is a small infectious agent that can only replicate inside the cells of another organism. Viruses are found wherever there is life and have probably existed since living cells first evolved. Viruses do not have their own metabolism and require a host cell to make new products. The range of structural and biochemical (i.e., cytopathic) effects that viruses have on the host cell is extensive. Most viral infections eventually result in the death of the host cell. The causes of death include cell lysis, alterations to the cell's surface membrane and various modes of programmed cell death. Some viruses cause no apparent changes to the infected cell. Cells in which the virus is latent and inactive show few signs of infection and often function normally. This causes persistent infection and the virus is often dormant for many months or years. Some viruses can cause cells to proliferate without causing malignancy, whereas others are established causes of cancer. Human organisms use a genetically controlled cell death programme that prevents the spreading of viral infection and kills the virus. Between 19 and 21 November 2009, with sponsorship from the Journal of Internal Medicine, the Swedish Research Foundation and the Swedish Cancer Society hosted a conference in Stockholm entitled: 'To kill or to be killed. Viral evasion strategies and interference with cell death machinery'. Four comprehensive reviews from this conference are presented in this issue of the Journal of Internal Medicine. These reviews include descriptions of: the modulation of host innate and adaptive immune defenses by cytomegalovirus; the impact of gamma-chain family cytokines on T cell homoeostasis in HIV-1 infection and the therapeutic implications; approaches to killing tumours by depriving them of the mechanisms for detoxification; and viral strategies for the evasion of immunogenic cell death.
Collapse
Affiliation(s)
- V Kaminskyy
- Division of Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
39
|
Intracellular sorting signals for sequential trafficking of human cytomegalovirus UL37 proteins to the endoplasmic reticulum and mitochondria. J Virol 2010; 84:6400-9. [PMID: 20410282 DOI: 10.1128/jvi.00556-10] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Human cytomegalovirus UL37 antiapoptotic proteins, including the predominant UL37 exon 1 protein (pUL37x1), traffic sequentially from the endoplasmic reticulum (ER) through the mitochondrion-associated membrane compartment to the mitochondrial outer membrane (OMM), where they inactivate the proapoptotic activity of Bax. We found that widespread mitochondrial distribution occurs within 1 h of pUL37x1 synthesis. The pUL37x1 mitochondrial targeting signal (MTS) spans its first antiapoptotic domain (residues 5 to 34) and consists of a weak hydrophobicity leader (MTSalpha) and proximal downstream residues (MTSbeta). This MTS arrangement of a hydrophobic leader and downstream proximal basic residues is similar to that of the translocase of the OMM 20, Tom20. We examined whether the UL37 MTS functions analogously to Tom20 leader. Surprisingly, lowered hydropathy of the UL37x1 MTSalpha, predicted to block ER translocation, still allowed dual targeting of mutant to the ER and OMM. However, increased hydropathy of the MTS leader caused exclusion of the UL37x1 high-hydropathy mutant from mitochondrial import. Conversely, UL37 MTSalpha replacement with the Tom20 leader did not retarget pUL37x1 exclusively to the OMM; rather, the UL37x1-Tom20 chimera retained dual trafficking. Moreover, replacement of the UL37 MTSbeta basic residues did not reduce OMM import. Ablation of the MTSalpha posttranslational modification site or of the downstream MTS proline-rich domain (PRD) increased mitochondrial import. Our results suggest that pUL37x1 sequential ER to mitochondrial trafficking requires a weakly hydrophobic leader and is regulated by MTSbeta sequences. Thus, HCMV pUL37x1 uses a mitochondrial importation pathway that is genetically distinguishable from that of known OMM proteins.
Collapse
|
40
|
Andoniou CE. Suicide watch: how cytomegalovirus interferes with the cell-death pathways of infected cells. ACTA ACUST UNITED AC 2010; 76:1-8. [PMID: 20403148 DOI: 10.1111/j.1399-0039.2010.01494.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The cytomegaloviruses (CMVs) are a family of species-specific viruses that have evolved sophisticated methods to interfere with the host's ability to generate innate and adaptive immune responses. In addition, CMVs must guard against another host defence mechanism, namely the induction of apoptosis that results in the elimination of infected cells. The importance of inhibiting cell death to the evolutionary survival of CMVs is underlined by the fact that these viruses encode an array of molecules devoted to interfering with host apoptotic pathways. CMVs have also been recognised for their ability to inhibit non-apoptotic forms of cells death. Recent publications have provided important insights into how some of these CMV-encoded molecules mediate their pro-survival effects, and this review will compare the mechanisms used by various members of the CMV family to prevent the premature death of the host cell. The capacity for some of the virally encoded cell-death inhibitors to mediate effects unrelated to the suppression of cell death will also be discussed.
Collapse
Affiliation(s)
- C E Andoniou
- Immunology and Virology Program, Centre for Ophthalmology and Visual Science, The University of Western Australia, Nedlands, Australia.
| |
Collapse
|
41
|
The human cytomegalovirus UL36 gene controls caspase-dependent and -independent cell death programs activated by infection of monocytes differentiating to macrophages. J Virol 2010; 84:5108-23. [PMID: 20219915 DOI: 10.1128/jvi.01345-09] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The cellular protease caspase-8 activates extrinsic apoptosis and also functions to promote monocyte-to-macrophage differentiation. Differentiation-induced alterations to antiviral caspase-8-dependent cell death pathways are unclear. Here, we show THP-1 monocyte-to-macrophage differentiation alters the specific cell death pathways activated in response to human cytomegalovirus (HCMV) infection. Employing viruses with mutations in UL36, the gene that encodes the viral inhibitor of caspase-8 activation (vICA), our data indicate that both caspase-dependent and -independent death pathways are activated in response to infection. Activation of caspase-dependent and -independent cell death responses restricted growth of vICA-deficient viruses, and vICA/pUL36 inhibited either response. Thus, these studies also reveal that the UL36 gene controls a caspase-independent cell death pathway. The impact of caspases on control of antiviral responses differed at early and late stages of macrophage differentiation. Early in differentiation, vICA-deficient virus-induced cell death was dependent on caspases and inhibited by the pan-caspase inhibitor z-VAD(OMe)-fluoromethyl ketone. In contrast, virus-induced death at late times of differentiation was caspase independent. Additional unlabeled and fluorescent inhibitors indicated that caspase-8 promoted death from within infected cells at early but not late stages of differentiation. These data highlight the multifunctional role of vICA/pUL36 as HCMV encounters various antiviral responses during macrophage differentiation.
Collapse
|
42
|
Demmler-Harrison GJ. Congenital cytomegalovirus: Public health action towards awareness, prevention, and treatment. J Clin Virol 2009; 46 Suppl 4:S1-5. [PMID: 19879187 DOI: 10.1016/j.jcv.2009.10.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 10/07/2009] [Accepted: 10/07/2009] [Indexed: 10/20/2022]
Abstract
Key awareness issues surrounding congenital CMV infection are outlined and discussed to provide inspirational motivation for many diverse groups who may have the same goal of reducing congenital CMV disease. To this end, steps for public health action towards awareness, prevention and treatment are outlined. These steps include recommendations for universal screening for all newborns for congenital CMV infection at birth to further define the public health impact and facilitate early diagnosis and treatment of newborns, routine prenatal screening of all pregnant women for the presence of CMV antibody to identify women at risk who may benefit most from preventive behavioral interventions as well as to facilitate prenatal diagnosis and therapies, and grass roots efforts to promote CMV awareness in the community.
Collapse
Affiliation(s)
- Gail J Demmler-Harrison
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, 77030, USA.
| |
Collapse
|
43
|
Prichard MN. Function of human cytomegalovirus UL97 kinase in viral infection and its inhibition by maribavir. Rev Med Virol 2009; 19:215-29. [PMID: 19434630 DOI: 10.1002/rmv.615] [Citation(s) in RCA: 135] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The serine/threonine kinase expressed by human cytomegalovirus from gene UL97 phosphorylates the antiviral drug ganciclovir, but its biological function is the phosphorylation of its natural viral and cellular protein substrates which affect viral replication at many levels. The UL97 kinase null phenotype is therefore complex, as is the mechanism of action of maribavir, a highly specific inhibitor of its enzymatic activity. Studies that utilise the drug corroborate results from genetic approaches and together have elucidated many functions of the UL97 kinase that are critical for viral replication. The kinase phosphorylates eukaryotic elongation factor 1delta, the carboxyl terminal domain of the large subunit of RNA polymerase II, the retinoblastoma tumour suppressor and lamins A and C. Each of these is also phosphorylated and regulated by cdc2/cyclin-dependent kinase 1, suggesting that the viral kinase may perform a similar function. These and other activities of the UL97 kinase appear to stimulate the cell cycle to support viral DNA synthesis, enhance the expression of viral genes, promote virion morphogenesis and facilitate the egress of mature capsids from the nucleus. In the absence of UL97 kinase activity, viral DNA synthesis is inefficient and structural proteins are sequestered in nuclear aggresomes, reducing the efficiency of virion morphogenesis. Mature capsids that do form fail to egress the nucleus as the nuclear lamina are not dispersed by the kinase. The critical functions performed by the UL97 kinase illustrate its importance in viral replication and confirm that the kinase is a target for the development of antiviral therapies.
Collapse
Affiliation(s)
- Mark N Prichard
- Department of Pediatrics, University of Alabama School of Medicine, Birmingham, Alabama 35233, USA.
| |
Collapse
|
44
|
Williamson CD, Colberg-Poley AM. Access of viral proteins to mitochondria via mitochondria-associated membranes. Rev Med Virol 2009; 19:147-64. [PMID: 19367604 DOI: 10.1002/rmv.611] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
By exploiting host cell machineries, viruses provide powerful tools for gaining insight into cellular pathways. Proteins from two unrelated viruses, human CMV (HCMV) and HCV, are documented to traffic sequentially from the ER into mitochondria, probably through the mitochondria-associated membrane (MAM) compartment. The MAM are sites of ER-mitochondrial contact enabling the direct transfer of membrane bound lipids and the generation of high calcium (Ca2+) microdomains for mitochondria signalling and responses to cellular stress. Both HCV core protein and HCMV UL37 proteins are associated with Ca2+ regulation and apoptotic signals. Trafficking of viral proteins to the MAM may allow viruses to manipulate a variety of fundamental cellular processes, which converge at the MAM, including Ca2+ signalling, lipid synthesis and transfer, bioenergetics, metabolic flow, and apoptosis. Because of their distinct topologies and targeted MAM sub-domains, mitochondrial trafficking (albeit it through the MAM) of the HCMV and HCV proteins predictably involves alternative pathways and, hence, distinct targeting signals. Indeed, we found that multiple cellular and viral proteins, which target the MAM, showed no apparent consensus primary targeting sequences. Nonetheless, these viral proteins provide us with valuable tools to access the poorly characterised MAM compartment, to define its cellular constituents and describe how virus infection alters these to its own end. Furthermore, because proper trafficking of viral proteins is necessary for their function, discovering the requirements for MAM to mitochondrial trafficking of essential viral proteins may provide novel targets for the rational design of anti-viral drugs.
Collapse
Affiliation(s)
- Chad D Williamson
- Center for Cancer and Immunology Research, Children's Research Institute, Children's National Medical Center, 111 Michigan Ave, NW, Washington, DC 20010, USA.
| | | |
Collapse
|
45
|
Miller-Kittrell M, Sparer TE. Feeling manipulated: cytomegalovirus immune manipulation. Virol J 2009; 6:4. [PMID: 19134204 PMCID: PMC2636769 DOI: 10.1186/1743-422x-6-4] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Accepted: 01/09/2009] [Indexed: 02/03/2023] Open
Abstract
No one likes to feel like they have been manipulated, but in the case of cytomegalovirus (CMV) immune manipulation, we do not really have much choice. Whether you call it CMV immune modulation, manipulation, or evasion, the bottom line is that CMV alters the immune response in such a way to allow the establishment of latency with lifelong shedding. With millions of years of coevolution within their hosts, CMVs, like other herpesviruses, encode numerous proteins that can broadly influence the magnitude and quality of both innate and adaptive immune responses. These viral proteins include both homologues of host proteins, such as MHC class I or chemokine homologues, and proteins with little similarity to any other known proteins, such as the chemokine binding protein. Although a strong immune response is launched against CMV, these virally encoded proteins can interfere with the host's ability to efficiently recognize and clear virus, while others induce or alter specific immune responses to benefit viral replication or spread within the host. Modulation of host immunity allows survival of both the virus and the host. One way of describing it would be a kind of "mutually assured survival" (as opposed to MAD, Mutually Assured Destruction). Evaluation of this relationship provides important insights into the life cycle of CMV as well as a greater understanding of the complexity of the immune response to pathogens in general.
Collapse
Affiliation(s)
- Mindy Miller-Kittrell
- Department of Microbiology, University of Tennessee, 1414 Cumberland Ave, Knoxville, TN, USA.
| | | |
Collapse
|