1
|
Roberts GC, Stonehouse NJ, Harris M. The Chikungunya Virus nsP3 Macro Domain Inhibits Activation of the NF-κB Pathway. Viruses 2025; 17:191. [PMID: 40006946 PMCID: PMC11861268 DOI: 10.3390/v17020191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/14/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025] Open
Abstract
The role of the chikungunya virus (CHIKV) non-structural protein 3 (nsP3) in the virus lifecycle is poorly understood. The protein comprises three domains. At the N-terminus is a macro domain, biochemically characterised to bind both RNA and ADP-ribose and to possess ADP-ribosyl hydrolase activity-an enzymatic activity that removes ADP-ribose from mono-ADP-ribosylated proteins. As ADP-ribosylation is important in the signalling pathway, leading to activation of the transcription factor NF-κB, we sought to determine whether the macro domain might perturb NF-κB signalling. We first showed that CHIKV infection did not induce NF-κB activation and could not block exogenous activation of the pathway via TNFα, although TNFα treatment did result in a modest reduction in virus titre. In contrast, ectopic expression of nsP3 was able to inhibit both basal and TNFα-mediated NF-κB activation, and this was dependent on the macro domain, as a mutation previously shown to disrupt ADP-ribose binding and hydrolase activity (D10A) eliminated the ability to inhibit NF-κB activation. The macro domain D10A mutant also resulted in a dramatic reduction in virus infectivity, consistent with the notion that the ability of the macro domain to inhibit NF-κB activation plays a role in the virus lifecycle.
Collapse
Affiliation(s)
| | | | - Mark Harris
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; (G.C.R.); (N.J.S.)
| |
Collapse
|
2
|
Yi XM, Lei YL, Li M, Zhong L, Li S. The monkeypox virus-host interplays. CELL INSIGHT 2024; 3:100185. [PMID: 39144256 PMCID: PMC11321328 DOI: 10.1016/j.cellin.2024.100185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/11/2024] [Accepted: 07/11/2024] [Indexed: 08/16/2024]
Abstract
Monkeypox virus (MPXV) is a DNA virus belonging to the Orthopoxvirus genus within the Poxviridae family which can cause a zoonotic infection. The unexpected non-endemic outbreak of mpox in 2022 is considered as a new global threat. It is imperative to take proactive measures, including enhancing our understanding of MPXV's biology and pathogenesis, and developing novel antiviral strategies. The host immune responses play critical roles in defensing against MPXV infection while the virus has also evolved multiple strategies for immune escape. This review summarizes the biological features, antiviral immunity, immune evasion mechanisms, pathogenicity, and prevention strategies for MPXV.
Collapse
Affiliation(s)
- Xue-Mei Yi
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Research Unit of Innate Immune and Inflammatory Diseases (2019RU063), Chinese Academy of Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Ya-Li Lei
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Research Unit of Innate Immune and Inflammatory Diseases (2019RU063), Chinese Academy of Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Mi Li
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Research Unit of Innate Immune and Inflammatory Diseases (2019RU063), Chinese Academy of Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Li Zhong
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Shu Li
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Research Unit of Innate Immune and Inflammatory Diseases (2019RU063), Chinese Academy of Medical Sciences, Wuhan University, Wuhan, 430071, China
| |
Collapse
|
3
|
Zhao Y, Lu Y, Richardson S, Sreekumar M, Albarnaz JD, Smith GL. TRIM5α restricts poxviruses and is antagonized by CypA and the viral protein C6. Nature 2023; 620:873-880. [PMID: 37558876 PMCID: PMC10447239 DOI: 10.1038/s41586-023-06401-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 07/04/2023] [Indexed: 08/11/2023]
Abstract
Human tripartite motif protein 5α (TRIM5α) is a well-characterized restriction factor for some RNA viruses, including HIV1-5; however, reports are limited for DNA viruses6,7. Here we demonstrate that TRIM5α also restricts orthopoxviruses and, via its SPRY domain, binds to the orthopoxvirus capsid protein L3 to diminish virus replication and activate innate immunity. In response, several orthopoxviruses, including vaccinia, rabbitpox, cowpox, monkeypox, camelpox and variola viruses, deploy countermeasures. First, the protein C6 binds to TRIM5 via the RING domain to induce its proteasome-dependent degradation. Second, cyclophilin A (CypA) is recruited via interaction with the capsid protein L3 to virus factories and virions to antagonize TRIM5α; this interaction is prevented by cyclosporine A (CsA) and the non-immunosuppressive derivatives alisporivir and NIM811. Both the proviral effect of CypA and the antiviral effect of CsA are dependent on TRIM5α. CsA, alisporivir and NIM811 have antiviral activity against orthopoxviruses, and because these drugs target a cellular protein, CypA, the emergence of viral drug resistance is difficult. These results warrant testing of CsA derivatives against orthopoxviruses, including monkeypox and variola.
Collapse
Affiliation(s)
- Yiqi Zhao
- Department of Pathology, University of Cambridge, Cambridge, UK
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Yongxu Lu
- Department of Pathology, University of Cambridge, Cambridge, UK
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | | | | | - Jonas D Albarnaz
- Department of Pathology, University of Cambridge, Cambridge, UK.
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK.
| | - Geoffrey L Smith
- Department of Pathology, University of Cambridge, Cambridge, UK.
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
- The Pirbright Institute, Surrey, UK.
- Chinese Academy of Medical Sciences-Oxford Institute, University of Oxford, Oxford, UK.
| |
Collapse
|
4
|
Ophinni Y, Frediansyah A, Sirinam S, Megawati D, Stoian AM, Enitan SS, Akele RY, Sah R, Pongpirul K, Abdeen Z, Aghayeva S, Ikram A, Kebede Y, Wollina U, Subbaram K, Koyanagi A, Al Serouri A, Blaise Nguendo-Yongsi H, Edwards J, Sallam DE, Khader Y, Viveiros-Rosa SG, Memish ZA, Amir-Behghadami M, Vento S, Rademaker M, Sallam M. Monkeypox: Immune response, vaccination and preventive efforts. NARRA J 2022; 2:e90. [PMID: 38449905 PMCID: PMC10914130 DOI: 10.52225/narra.v2i3.90] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 10/20/2022] [Indexed: 02/05/2023]
Abstract
Infectious threats to humans are continuously emerging. The 2022 worldwide monkeypox outbreak is the latest of these threats with the virus rapidly spreading to 106 countries by the end of September 2022. The burden of the ongoing monkeypox outbreak is manifested by 68,000 cumulative confirmed cases and 26 deaths. Although monkeypox is usually a self-limited disease, patients can suffer from extremely painful skin lesions and complications can occur with reported mortalities. The antigenic similarity between the smallpox virus (variola virus) and monkeypox virus can be utilized to prevent monkeypox using smallpox vaccines; treatment is also based on antivirals initially designed to treat smallpox. However, further studies are needed to fully decipher the immune response to monkeypox virus and the immune evasion mechanisms. In this review we provide an up-to-date discussion of the current state of knowledge regarding monkeypox virus with a special focus on innate immune response, immune evasion mechanisms and vaccination against the virus.
Collapse
Affiliation(s)
- Youdiil Ophinni
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, United States
- Laboratory of Host Defense, WPI Immunology Frontier Research Center (IFReC), Osaka University, Osaka, Japan
| | - Andri Frediansyah
- PRTPP-National Research and Innovation Agency (BRIN), Yogyakarta, Indonesia
| | - Salin Sirinam
- Department of Tropical Pediatrics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Dewi Megawati
- Department of Veterinary Pathobiology, School of Veterinary Medicine, University of Missouri, Columbia, MO, United States
- Department of Microbiology and Parasitology, School of Medicine, Universitas Warmadewa, Bali, Indonesia
| | - Ana M. Stoian
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, CA, United States
| | - Seyi S. Enitan
- Department of Medical Laboratory Science, Babcock University, Ilishan-Remo, Nigeria
| | - Richard Y. Akele
- Department of Biomedical Science, School of Applied Science, University of Brighton, London, United Kingdom
| | - Ranjit Sah
- Tribhuvan University Teaching Hospital, Institute of Medicine, Kathmandu, Nepal
| | - Krit Pongpirul
- Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
- Bumrungrad International Hospital, Bangkok, Thailand
| | - Ziad Abdeen
- Department of Community Health, Faculty of Medicine, Al-Quds University, Jerusalem
| | - Sevda Aghayeva
- Department of Gastroenterology, Baku Medical Plaza Hospital, Baku, Azerbaijan
| | - Aamer Ikram
- National Institute of Heath, Islamabad, Pakistan
| | - Yohannes Kebede
- Department of Health, Behavior and Society, Faculty of Public Health, Jimma University, Jimma, Ethiopia
| | - Uwe Wollina
- Department of Dermatology and Allergology, Städtisches Klinikum Dresden, Dresden, Germany
| | - Kannan Subbaram
- School of Medicine, The Maldives National University, Maldives
| | - Ai Koyanagi
- Research and Development Unit, Parc Sanitari Sant Joan de Déu, CIBERSAM, ISCIII, Barcelona, Spain
| | | | - H. Blaise Nguendo-Yongsi
- Department of Epidemiology, School of Health Sciences, Catholic University of Central Africa, Yaoundé, Cameroon
| | - Jeffrey Edwards
- Medical Research Foundation of Trinidad and Tobago, Port of Spain, Trinidad
| | - Dina E. Sallam
- Department of Pediatrics and Pediatric Nephrology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Yousef Khader
- The Center of Excellence for Applied Epidemiology, The Eastern Mediterranean Public Health Network (EMPHNET), Amman, Jordan
| | | | - Ziad A. Memish
- Research & Innovation Centre, King Saud Medical City, Ministry of Health, Riyadh, Kingdom of Saudi Arabia
- College of Medicine, AlFaisal University, Riyadh, Kingdom of Saudi Arabia
| | - Mehrdad Amir-Behghadami
- Iranian Center of Excellence in Health Management, Department of Health Service Management, School of Management and Medical Informatics, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sandro Vento
- Faculty of Medicine, University of Puthisastra, Phnom Penh, Cambodia
| | - Marius Rademaker
- Clinical Trial New Zealand, Waikato Hospital Campus, Hamilton, New Zealand
| | - Malik Sallam
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman, Jordan
- Department of Clinical Laboratories and Forensic Medicine, Jordan University Hospital, Amman, Jordan
- Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| |
Collapse
|
5
|
Shmeleva EV, Syafiq D, Moldoveanu AL, Ferguson BJ, Smith GL. Suppression of innate immunity by the vaccinia virus protein N1 promotes skin microbiota expansion and increased immune infiltration following vaccination. J Gen Virol 2022; 103. [PMID: 36748513 PMCID: PMC7614846 DOI: 10.1099/jgv.0.001814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Vaccinia virus (VACV) protein N1 is an intracellular immunomodulator that contributes to virus virulence via inhibition of NF-κB. Intradermal infection with a VACV lacking gene N1L (vΔN1) results in smaller skin lesions than infection with wild-type virus (WT VACV), but the impact of N1 deletion on the local microbiota as well as the innate and cellular immune responses in infected ear tissue is mostly uncharacterized. Here, we analysed the bacterial burden and host immune response at the site of infection and report that the presence of protein N1 correlated with enhanced expansion of skin microbiota, even before lesion development. Furthermore, early after infection (days 1-3), prior to lesion development, the levels of inflammatory mediators were higher in vΔN1-infected tissue compared to WT VACV infection. In contrast, infiltration of ear tissue with myeloid and lymphoid cells was greater after WT VACV infection and there was significantly greater secondary bacterial infection that correlated with greater lesion size. We conclude that a more robust innate immune response to vΔN1 infection leads to better control of virus replication, less bacterial growth and hence an overall reduction of tissue damage and lesion size. This analysis shows the potent impact of a single viral immunomodulator on the host immune response and the pathophysiology of VACV infection in the skin.
Collapse
Affiliation(s)
- Evgeniya V Shmeleva
- Department of Pathology, University of Cambridge, Cambridge, UK
- Present address: Department of Biology, Tufts University, Medford, Massachusetts, USA
| | - Danial Syafiq
- Department of Pathology, University of Cambridge, Cambridge, UK
- Present address: Gonville and Caius College, University of Cambridge, Cambridge, UK
| | - Ana L Moldoveanu
- Department of Pathology, University of Cambridge, Cambridge, UK
- Present address: Section of Microbiology, Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, UK
| | | | | |
Collapse
|
6
|
ORF-Interrupting Mutations in Monkeypox Virus Genomes from Washington and Ohio, 2022. Viruses 2022; 14:v14112393. [PMID: 36366490 PMCID: PMC9695478 DOI: 10.3390/v14112393] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 01/31/2023] Open
Abstract
Monkeypox virus, the causative agent of the 2022 monkeypox outbreak, is a double-stranded DNA virus in the Orthopoxvirus genus of the Poxviridae family. Genes in terminal regions of Orthopoxvirus genomes mostly code for host-pathogen interaction proteins and are prone to selective pressure and modification events. Using viral whole genome sequencing, we identified twenty-five total clinical samples with ORF-disrupting mutations, including twenty samples encoding nonsense mutations in MPXVgp001/191 (OPG001), MPXVgp004/188 (OPG015), MPXVgp010 (OPG023), MPXVgp030 (OPG042), MPXVgp159 (OPG0178), or MPXVgp161 (OPG181). Additional mutations include a frameshift leading to an alternative C-terminus in MPXVgp010 (OPG023) and an insertion in an adenine homopolymer at the beginning of the annotated ORF for MPXVgp153 (OPG151), encoding a subunit of the RNA polymerase, suggesting the virus may instead use the start codon that encodes Met9 as annotated. Finally, we detected three samples with large (>900 bp) deletions. These included a 913 bp deletion that truncates the C-terminus of MPXVgp010 (OPG023); a 4205 bp deletion that eliminates MPXVgp012 (OPG025), MPXVgp013 (OPG027), and MPXVgp014 (OPG029) and truncates MPXVgp011 (OPG024; D8L) and MPXVgp015 (OPG030); and a 6881 bp deletion that truncates MPXVgp182 (OPG210) and eliminates putative ORFs MPXVgp184, MPXVgp185 (OPG005), and MPXVgp186, as well as MPXVgp187 (OPG016), and MPXVgp188 (OPG015) from the 3' ITR only. MPXVgp182 encodes the monkeypox-specific, highly immunogenic surface glycoprotein B21R which has been proposed as a serological target. Overall, we find greater than one-tenth of our sequenced MPXV isolates have at least one gene inactivating mutation and these genes together comprised greater than one-tenth of annotated MPXV genes. Our findings highlight non-essential genes in monkeypox virus that may be evolving as a result of selective pressure in humans, as well as the limitations of targeting them for therapeutics and diagnostic testing.
Collapse
|
7
|
Lum FM, Torres-Ruesta A, Tay MZ, Lin RTP, Lye DC, Rénia L, Ng LFP. Monkeypox: disease epidemiology, host immunity and clinical interventions. Nat Rev Immunol 2022; 22:597-613. [PMID: 36064780 PMCID: PMC9443635 DOI: 10.1038/s41577-022-00775-4] [Citation(s) in RCA: 253] [Impact Index Per Article: 84.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2022] [Indexed: 12/11/2022]
Abstract
Monkeypox virus (MPXV), which causes disease in humans, has for many years been restricted to the African continent, with only a handful of sporadic cases in other parts of the world. However, unprecedented outbreaks of monkeypox in non-endemic regions have recently taken the world by surprise. In less than 4 months, the number of detected MPXV infections has soared to more than 48,000 cases, recording a total of 13 deaths. In this Review, we discuss the clinical, epidemiological and immunological features of MPXV infections. We also highlight important research questions and new opportunities to tackle the ongoing monkeypox outbreak.
Collapse
Affiliation(s)
- Fok-Moon Lum
- A*STAR Infectious Diseases Labs, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Anthony Torres-Ruesta
- A*STAR Infectious Diseases Labs, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Matthew Z Tay
- A*STAR Infectious Diseases Labs, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Raymond T P Lin
- National Public Health Laboratory, Singapore, Singapore
- National Centre for Infectious Diseases, Singapore, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - David C Lye
- National Centre for Infectious Diseases, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Tan Tock Seng Hospital, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Laurent Rénia
- A*STAR Infectious Diseases Labs, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Lisa F P Ng
- A*STAR Infectious Diseases Labs, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
- National Institute of Health Research, Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool, UK.
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK.
| |
Collapse
|
8
|
Reus JB, Rex EA, Gammon DB. How to Inhibit Nuclear Factor-Kappa B Signaling: Lessons from Poxviruses. Pathogens 2022; 11:pathogens11091061. [PMID: 36145493 PMCID: PMC9502310 DOI: 10.3390/pathogens11091061] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
The Nuclear Factor-kappa B (NF-κB) family of transcription factors regulates key host inflammatory and antiviral gene expression programs, and thus, is often activated during viral infection through the action of pattern-recognition receptors and cytokine–receptor interactions. In turn, many viral pathogens encode strategies to manipulate and/or inhibit NF-κB signaling. This is particularly exemplified by vaccinia virus (VV), the prototypic poxvirus, which encodes at least 18 different inhibitors of NF-κB signaling. While many of these poxviral NF-κB inhibitors are not required for VV replication in cell culture, they virtually all modulate VV virulence in animal models, underscoring the important influence of poxvirus–NF-κB pathway interactions on viral pathogenesis. Here, we review the diversity of mechanisms through which VV-encoded antagonists inhibit initial NF-κB pathway activation and NF-κB signaling intermediates, as well as the activation and function of NF-κB transcription factor complexes.
Collapse
|
9
|
Verburg SG, Lelievre RM, Westerveld MJ, Inkol JM, Sun YL, Workenhe ST. Viral-mediated activation and inhibition of programmed cell death. PLoS Pathog 2022; 18:e1010718. [PMID: 35951530 PMCID: PMC9371342 DOI: 10.1371/journal.ppat.1010718] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Viruses are ubiquitous intracellular genetic parasites that heavily rely on the infected cell to complete their replication life cycle. This dependency on the host machinery forces viruses to modulate a variety of cellular processes including cell survival and cell death. Viruses are known to activate and block almost all types of programmed cell death (PCD) known so far. Modulating PCD in infected hosts has a variety of direct and indirect effects on viral pathogenesis and antiviral immunity. The mechanisms leading to apoptosis following virus infection is widely studied, but several modalities of PCD, including necroptosis, pyroptosis, ferroptosis, and paraptosis, are relatively understudied. In this review, we cover the mechanisms by which viruses activate and inhibit PCDs and suggest perspectives on how these affect viral pathogenesis and immunity.
Collapse
Affiliation(s)
- Shayla Grace Verburg
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Canada
| | | | | | - Jordon Marcus Inkol
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Canada
| | - Yi Lin Sun
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Canada
| | - Samuel Tekeste Workenhe
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Canada
| |
Collapse
|
10
|
Gao WND, Gao C, Deane JE, Carpentier DCJ, Smith GL, Graham SC. The crystal structure of vaccinia virus protein E2 and perspectives on the prediction of novel viral protein folds. J Gen Virol 2022; 103:001716. [PMID: 35020582 PMCID: PMC8895614 DOI: 10.1099/jgv.0.001716] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/23/2021] [Indexed: 12/12/2022] Open
Abstract
The morphogenesis of vaccinia virus (VACV, family Poxviridae), the smallpox vaccine, is a complex process involving multiple distinct cellular membranes and resulting in multiple different forms of infectious virion. Efficient release of enveloped virions, which promote systemic spread of infection within hosts, requires the VACV protein E2 but the molecular basis of E2 function remains unclear and E2 lacks sequence homology to any well-characterised family of proteins. We solved the crystal structure of VACV E2 to 2.3 Å resolution, revealing that it comprises two domains with novel folds: an N-terminal annular (ring) domain and a C-terminal globular (head) domain. The C-terminal head domain displays weak structural homology with cellular (pseudo)kinases but lacks conserved surface residues or kinase features, suggesting that it is not enzymatically active, and possesses a large surface basic patch that might interact with phosphoinositide lipid headgroups. Recent deep learning methods have revolutionised our ability to predict the three-dimensional structures of proteins from primary sequence alone. VACV E2 is an exemplar 'difficult' viral protein target for structure prediction, being comprised of multiple novel domains and lacking sequence homologues outside Poxviridae. AlphaFold2 nonetheless succeeds in predicting the structures of the head and ring domains with high and moderate accuracy, respectively, allowing accurate inference of multiple structural properties. The advent of highly accurate virus structure prediction marks a step-change in structural virology and beckons a new era of structurally-informed molecular virology.
Collapse
Affiliation(s)
- William N. D. Gao
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Chen Gao
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Janet E. Deane
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| | - David C. J. Carpentier
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Geoffrey L. Smith
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Stephen C. Graham
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| |
Collapse
|
11
|
Abstract
SARS-CoV-2, the etiological agent of COVID-19, is characterized by a delay in type I interferon (IFN-I)-mediated antiviral defenses alongside robust cytokine production. Here, we investigate the underlying molecular basis for this imbalance and implicate virus-mediated activation of NF-κB in the absence of other canonical IFN-I-related transcription factors. Epigenetic and single-cell transcriptomic analyses show a selective NF-κB signature that was most prominent in infected cells. Disruption of NF-κB signaling through the silencing of the NF-κB transcription factor p65 or p50 resulted in loss of virus replication that was rescued upon reconstitution. These findings could be further corroborated with the use of NF-κB inhibitors, which reduced SARS-CoV-2 replication in vitro. These data suggest that the robust cytokine production in response to SARS-CoV-2, despite a diminished IFN-I response, is the product of a dependency on NF-κB for viral replication. IMPORTANCE The COVID-19 pandemic has caused significant mortality and morbidity around the world. Although effective vaccines have been developed, large parts of the world remain unvaccinated while new SARS-CoV-2 variants keep emerging. Furthermore, despite extensive efforts and large-scale drug screenings, no fully effective antiviral treatment options have been discovered yet. Therefore, it is of the utmost importance to gain a better understanding of essential factors driving SARS-CoV-2 replication to be able to develop novel approaches to target SARS-CoV-2 biology.
Collapse
|
12
|
Yu H, Bruneau RC, Brennan G, Rothenburg S. Battle Royale: Innate Recognition of Poxviruses and Viral Immune Evasion. Biomedicines 2021; 9:biomedicines9070765. [PMID: 34356829 PMCID: PMC8301327 DOI: 10.3390/biomedicines9070765] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 12/17/2022] Open
Abstract
Host pattern recognition receptors (PRRs) sense pathogen-associated molecular patterns (PAMPs), which are molecular signatures shared by different pathogens. Recognition of PAMPs by PRRs initiate innate immune responses via diverse signaling pathways. Over recent decades, advances in our knowledge of innate immune sensing have enhanced our understanding of the host immune response to poxviruses. Multiple PRR families have been implicated in poxvirus detection, mediating the initiation of signaling cascades, activation of transcription factors, and, ultimately, the expression of antiviral effectors. To counteract the host immune defense, poxviruses have evolved a variety of immunomodulators that have diverse strategies to disrupt or circumvent host antiviral responses triggered by PRRs. These interactions influence the outcomes of poxvirus infections. This review focuses on our current knowledge of the roles of PRRs in the recognition of poxviruses, their elicited antiviral effector functions, and how poxviral immunomodulators antagonize PRR-mediated host immune responses.
Collapse
|
13
|
The Vaccinia Virus B12 Pseudokinase Represses Viral Replication via Interaction with the Cellular Kinase VRK1 and Activation of the Antiviral Effector BAF. J Virol 2021; 95:JVI.02114-20. [PMID: 33177193 DOI: 10.1128/jvi.02114-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 11/20/2022] Open
Abstract
The poxviral B1 and B12 proteins are a homologous kinase-pseudokinase pair, which modulates a shared host pathway governing viral DNA replication and antiviral defense. While the molecular mechanisms involved are incompletely understood, B1 and B12 seem to intersect with signaling processes mediated by their cellular homologs termed the vaccinia-related kinases (VRKs). In this study, we expand upon our previous characterization of the B1-B12 signaling axis to gain insights into B12 function. We begin our studies by demonstrating that modulation of B12 repressive activity is a conserved function of B1 orthologs from divergent poxviruses. Next, we characterize the protein interactome of B12 using multiple cell lines and expression systems and discover that the cellular kinase VRK1 is a highly enriched B12 interactor. Using complementary VRK1 knockdown and overexpression assays, we first demonstrate that VRK1 is required for the rescue of a B1-deleted virus upon mutation of B12. Second, we find that VRK1 overexpression is sufficient to overcome repressive B12 activity during B1-deleted virus replication. Interestingly, we also evince that B12 interferes with the ability of VRK1 to phosphoinactivate the host defense protein BAF. Thus, B12 restricts vaccinia virus DNA accumulation in part by repressing the ability of VRK1 to inactivate BAF. Finally, these data establish that a B12-VRK1-BAF signaling axis forms during vaccinia virus infection and is modulated via kinases B1 and/or VRK2. These studies provide novel insights into the complex mechanisms that poxviruses use to hijack homologous cellular signaling pathways during infection.IMPORTANCE Viruses from diverse families encode both positive and negative regulators of viral replication. While their functions can sometimes be enigmatic, investigation of virus-encoded, negative regulators of viral replication has revealed fascinating aspects of virology. Studies of poxvirus-encoded genes have largely concentrated on positive regulators of their replication; however, examples of fitness gains attributed to poxvirus gene loss suggests that negative regulators of poxvirus replication also impact infection dynamics. This study focuses on the vaccinia B12 pseudokinase, a protein capable of inhibiting vaccinia DNA replication. Here, we elucidate the mechanisms by which B12 inhibits vaccinia DNA replication, demonstrating that B12 activates the antiviral protein BAF by inhibiting the activity of VRK1, a cellular modulator of BAF. Combined with previous data, these studies provide evidence that poxviruses govern their replication by employing both positive and negative regulators of viral replication.
Collapse
|
14
|
Suraweera CD, Hinds MG, Kvansakul M. Poxviral Strategies to Overcome Host Cell Apoptosis. Pathogens 2020; 10:pathogens10010006. [PMID: 33374867 PMCID: PMC7823800 DOI: 10.3390/pathogens10010006] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 12/17/2022] Open
Abstract
Apoptosis is a form of cellular suicide initiated either via extracellular (extrinsic apoptosis) or intracellular (intrinsic apoptosis) cues. This form of programmed cell death plays a crucial role in development and tissue homeostasis in multicellular organisms and its dysregulation is an underlying cause for many diseases. Intrinsic apoptosis is regulated by members of the evolutionarily conserved B-cell lymphoma-2 (Bcl-2) family, a family that consists of pro- and anti-apoptotic members. Bcl-2 genes have also been assimilated by numerous viruses including pox viruses, in particular the sub-family of chordopoxviridae, a group of viruses known to infect almost all vertebrates. The viral Bcl-2 proteins are virulence factors and aid the evasion of host immune defenses by mimicking the activity of their cellular counterparts. Viral Bcl-2 genes have proved essential for the survival of virus infected cells and structural studies have shown that though they often share very little sequence identity with their cellular counterparts, they have near-identical 3D structures. However, their mechanisms of action are varied. In this review, we examine the structural biology, molecular interactions, and detailed mechanism of action of poxvirus encoded apoptosis inhibitors and how they impact on host–virus interactions to ultimately enable successful infection and propagation of viral infections.
Collapse
Affiliation(s)
- Chathura D. Suraweera
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia;
| | - Mark G. Hinds
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3052, Australia
- Correspondence: (M.G.H.); (M.K.)
| | - Marc Kvansakul
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia;
- Correspondence: (M.G.H.); (M.K.)
| |
Collapse
|
15
|
Lawler C, Brady G. Poxviral Targeting of Interferon Regulatory Factor Activation. Viruses 2020; 12:v12101191. [PMID: 33092186 PMCID: PMC7590177 DOI: 10.3390/v12101191] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/15/2020] [Accepted: 10/15/2020] [Indexed: 12/21/2022] Open
Abstract
As viruses have a capacity to rapidly evolve and continually alter the coding of their protein repertoires, host cells have evolved pathways to sense viruses through the one invariable feature common to all these pathogens-their nucleic acids. These genomic and transcriptional pathogen-associated molecular patterns (PAMPs) trigger the activation of germline-encoded anti-viral pattern recognition receptors (PRRs) that can distinguish viral nucleic acids from host forms by their localization and subtle differences in their chemistry. A wide range of transmembrane and cytosolic PRRs continually probe the intracellular environment for these viral PAMPs, activating pathways leading to the activation of anti-viral gene expression. The activation of Nuclear Factor Kappa B (NFκB) and Interferon (IFN) Regulatory Factor (IRF) family transcription factors are of central importance in driving pro-inflammatory and type-I interferon (TI-IFN) gene expression required to effectively restrict spread and trigger adaptive responses leading to clearance. Poxviruses evolve complex arrays of inhibitors which target these pathways at a variety of levels. This review will focus on how poxviruses target and inhibit PRR pathways leading to the activation of IRF family transcription factors.
Collapse
|
16
|
El-Jesr M, Teir M, Maluquer de Motes C. Vaccinia Virus Activation and Antagonism of Cytosolic DNA Sensing. Front Immunol 2020; 11:568412. [PMID: 33117352 PMCID: PMC7559579 DOI: 10.3389/fimmu.2020.568412] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/24/2020] [Indexed: 12/16/2022] Open
Abstract
Cells express multiple molecules aimed at detecting incoming virus and infection. Recognition of virus infection leads to the production of cytokines, chemokines and restriction factors that limit virus replication and activate an adaptive immune response offering long-term protection. Recognition of cytosolic DNA has become a central immune sensing mechanism involved in infection, autoinflammation, and cancer immunotherapy. Vaccinia virus (VACV) is the prototypic member of the family Poxviridae and the vaccine used to eradicate smallpox. VACV harbors enormous potential as a vaccine vector and several attenuated strains are currently being developed against infectious diseases. In addition, VACV has emerged as a popular oncolytic agent due to its cytotoxic capacity even in hypoxic environments. As a poxvirus, VACV is an unusual virus that replicates its large DNA genome exclusively in the cytoplasm of infected cells. Despite producing large amounts of cytosolic DNA, VACV efficiently suppresses the subsequent innate immune response by deploying an arsenal of proteins with capacity to disable host antiviral signaling, some of which specifically target cytosolic DNA sensing pathways. Some of these strategies are conserved amongst orthopoxviruses, whereas others are seemingly unique to VACV. In this review we provide an overview of the VACV replicative cycle and discuss the recent advances on our understanding of how VACV induces and antagonizes innate immune activation via cytosolic DNA sensing pathways. The implications of these findings in the rational design of vaccines and oncolytics based on VACV are also discussed.
Collapse
Affiliation(s)
- Misbah El-Jesr
- Department of Microbial Sciences, University of Surrey, Guildford, United Kingdom
| | - Muad Teir
- Department of Microbial Sciences, University of Surrey, Guildford, United Kingdom
| | | |
Collapse
|
17
|
Mühlemann B, Vinner L, Margaryan A, Wilhelmson H, de la Fuente Castro C, Allentoft ME, de Barros Damgaard P, Hansen AJ, Holtsmark Nielsen S, Strand LM, Bill J, Buzhilova A, Pushkina T, Falys C, Khartanovich V, Moiseyev V, Jørkov MLS, Østergaard Sørensen P, Magnusson Y, Gustin I, Schroeder H, Sutter G, Smith GL, Drosten C, Fouchier RAM, Smith DJ, Willerslev E, Jones TC, Sikora M. Diverse variola virus (smallpox) strains were widespread in northern Europe in the Viking Age. Science 2020; 369:369/6502/eaaw8977. [PMID: 32703849 DOI: 10.1126/science.aaw8977] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 02/13/2020] [Accepted: 05/29/2020] [Indexed: 12/14/2022]
Abstract
Smallpox, one of the most devastating human diseases, killed between 300 million and 500 million people in the 20th century alone. We recovered viral sequences from 13 northern European individuals, including 11 dated to ~600-1050 CE, overlapping the Viking Age, and reconstructed near-complete variola virus genomes for four of them. The samples predate the earliest confirmed smallpox cases by ~1000 years, and the sequences reveal a now-extinct sister clade of the modern variola viruses that were in circulation before the eradication of smallpox. We date the most recent common ancestor of variola virus to ~1700 years ago. Distinct patterns of gene inactivation in the four near-complete sequences show that different evolutionary paths of genotypic host adaptation resulted in variola viruses that circulated widely among humans.
Collapse
Affiliation(s)
- Barbara Mühlemann
- Centre for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK.,Institute of Virology, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany.,German Center for Infection Research (DZIF), Associated Partner Site, Berlin, Germany
| | - Lasse Vinner
- Lundbeck Foundation GeoGenetics Center, GLOBE Institute, University of Copenhagen, 1350 Copenhagen, Denmark
| | - Ashot Margaryan
- Lundbeck Foundation GeoGenetics Center, GLOBE Institute, University of Copenhagen, 1350 Copenhagen, Denmark.,Institute of Molecular Biology, National Academy of Sciences of Armenia, 0014 Yerevan, Armenia
| | - Helene Wilhelmson
- Department of Archaeology and Ancient History, Lund University, 221 00 Lund, Sweden.,Sydsvensk Arkeologi AB, 291 22 Kristianstad, Sweden
| | | | - Morten E Allentoft
- Lundbeck Foundation GeoGenetics Center, GLOBE Institute, University of Copenhagen, 1350 Copenhagen, Denmark.,Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University, 6102 Perth, WA, Australia
| | - Peter de Barros Damgaard
- Lundbeck Foundation GeoGenetics Center, GLOBE Institute, University of Copenhagen, 1350 Copenhagen, Denmark
| | - Anders Johannes Hansen
- Lundbeck Foundation GeoGenetics Center, GLOBE Institute, University of Copenhagen, 1350 Copenhagen, Denmark
| | - Sofie Holtsmark Nielsen
- Lundbeck Foundation GeoGenetics Center, GLOBE Institute, University of Copenhagen, 1350 Copenhagen, Denmark
| | - Lisa Mariann Strand
- Department of Archaeology and Cultural History, Norwegian University of Science and Technology University Museum, 7491 Trondheim, Norway
| | - Jan Bill
- Museum of Cultural History, University of Oslo, 0130 Oslo, Norway
| | - Alexandra Buzhilova
- Research Institute and Museum of Anthropology, Lomonosov Moscow State University, Moscow 125009, Russian Federation
| | - Tamara Pushkina
- Department of Archaeology, Faculty of History, Lomonosov Moscow State University, Moscow 119992, Russian Federation
| | - Ceri Falys
- Thames Valley Archaeological Services, Reading RG1 5NR, UK
| | - Valeri Khartanovich
- Peter the Great Museum of Anthropology and Ethnography (Kunstkamera) RAS, 199034 St. Petersburg, Russian Federation
| | - Vyacheslav Moiseyev
- Peter the Great Museum of Anthropology and Ethnography (Kunstkamera) RAS, 199034 St. Petersburg, Russian Federation
| | - Marie Louise Schjellerup Jørkov
- Laboratory of Biological Anthropology, Department of Forensic Medicine, Faculty of Health Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | | | | | - Ingrid Gustin
- Department of Archaeology and Ancient History, Lund University, 221 00 Lund, Sweden
| | - Hannes Schroeder
- Section for Evolutionary Genomics, GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, 1353 Copenhagen, Denmark
| | - Gerd Sutter
- Institute for Infectious Diseases and Zoonoses, LMU University of Munich, 80539 Munich, Germany.,German Center for Infection Research (DZIF), Partner Site, Munich, Germany
| | - Geoffrey L Smith
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| | - Christian Drosten
- Institute of Virology, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany.,German Center for Infection Research (DZIF), Associated Partner Site, Berlin, Germany
| | - Ron A M Fouchier
- Department of Viroscience, Erasmus Medical Centre, 3015 CN Rotterdam, Netherlands
| | - Derek J Smith
- Centre for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Eske Willerslev
- Lundbeck Foundation GeoGenetics Center, GLOBE Institute, University of Copenhagen, 1350 Copenhagen, Denmark. .,Lundbeck Foundation GeoGenetics Center, Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK.,Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK.,Danish Institute for Advanced Study, University of Southern Denmark, 5230 Odense M, Denmark
| | - Terry C Jones
- Centre for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK. .,Institute of Virology, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany.,German Center for Infection Research (DZIF), Associated Partner Site, Berlin, Germany
| | - Martin Sikora
- Lundbeck Foundation GeoGenetics Center, GLOBE Institute, University of Copenhagen, 1350 Copenhagen, Denmark.
| |
Collapse
|
18
|
Suraweera CD, Anasir MI, Chugh S, Javorsky A, Impey RE, Hasan Zadeh M, Soares da Costa TP, Hinds MG, Kvansakul M. Structural insight into tanapoxvirus-mediated inhibition of apoptosis. FEBS J 2020; 287:3733-3750. [PMID: 32412687 DOI: 10.1111/febs.15365] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/26/2020] [Accepted: 05/12/2020] [Indexed: 01/07/2023]
Abstract
Premature programmed cell death or apoptosis of cells is a strategy utilized by multicellular organisms to counter microbial threats. Tanapoxvirus (TANV) is a large double-stranded DNA virus belonging to the poxviridae that causes mild monkeypox-like infections in humans and primates. TANV encodes for a putative apoptosis inhibitory protein 16L. We show that TANV16L is able to bind to a range of peptides spanning the BH3 motif of human proapoptotic Bcl-2 proteins and is able to counter growth arrest of yeast induced by human Bak and Bax. We then determined the crystal structures of TANV16L bound to three identified interactors, Bax, Bim and Puma BH3. TANV16L adopts a globular Bcl-2 fold comprising 7 α-helices and utilizes the canonical Bcl-2 binding groove to engage proapoptotic host cell Bcl-2 proteins. Unexpectedly, TANV16L is able to adopt both a monomeric and a domain-swapped dimeric topology where the α1 helix from one protomer is swapped into a neighbouring unit. Despite adopting two different oligomeric forms, the canonical ligand binding groove in TANV16L remains unchanged from monomer to domain-swapped dimer. Our results provide a structural and mechanistic basis for tanapoxvirus-mediated inhibition of host cell apoptosis and reveal the capacity of Bcl-2 proteins to adopt differential oligomeric states whilst maintaining the canonical ligand binding groove in an unchanged state. DATABASE: Structural data are available in the Protein Data Bank (PDB) under the accession numbers 6TPQ, 6TQQ and 6TRR.
Collapse
Affiliation(s)
- Chathura D Suraweera
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Mohd Ishtiaq Anasir
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Srishti Chugh
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Airah Javorsky
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Rachael E Impey
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Mohammad Hasan Zadeh
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Tatiana P Soares da Costa
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Mark G Hinds
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Australia
| | - Marc Kvansakul
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| |
Collapse
|
19
|
Neidel S, Torres AA, Ren H, Smith GL. Leaky scanning translation generates a second A49 protein that contributes to vaccinia virus virulence. J Gen Virol 2020; 101:533-541. [PMID: 32100702 PMCID: PMC7414448 DOI: 10.1099/jgv.0.001386] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 01/08/2020] [Indexed: 12/17/2022] Open
Abstract
Vaccinia virus (VACV) strain Western Reserve gene A49L encodes a small intracellular protein with a Bcl-2 fold that is expressed early during infection and has multiple functions. A49 co-precipitates with the E3 ubiquitin ligase β-TrCP and thereby prevents ubiquitylation and proteasomal degradation of IκBα, and consequently blocks activation of NF-κB. In a similar way, A49 stabilizes β-catenin, leading to activation of the wnt signalling pathway. However, a VACV strain expressing a mutant A49 that neither co-precipitates with β-TrCP nor inhibits NF-κB activation, is more virulent than a virus lacking A49, indicating that A49 has another function that also contributes to virulence. Here we demonstrate that gene A49L encodes a second, smaller polypeptide that is expressed via leaky scanning translation from methionine 20 and is unable to block NF-κB activation. Viruses engineered to express either only the large protein or only the small A49 protein both have lower virulence than wild-type virus and greater virulence than an A49L deletion mutant. This demonstrates that the small protein contributes to virulence by an unknown mechanism that is independent of NF-κB inhibition. Despite having a large genome with about 200 genes, this study illustrates how VACV makes efficient use of its coding potential and from gene A49L expresses a protein with multiple functions and multiple proteins with different functions.
Collapse
Affiliation(s)
- Sarah Neidel
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Alice A. Torres
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Hongwei Ren
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
- Present address: Department of Immunology and Inflammation, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Geoffrey L. Smith
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| |
Collapse
|
20
|
Ng WM, Stelfox AJ, Bowden TA. Unraveling virus relationships by structure-based phylogenetic classification. Virus Evol 2020; 6:veaa003. [PMID: 32064119 PMCID: PMC7015158 DOI: 10.1093/ve/veaa003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Delineation of the intricacies of protein function from macromolecular structure constitutes a continual obstacle in the study of cell and pathogen biology. Structure-based phylogenetic analysis has emerged as a powerful tool for addressing this challenge, allowing the detection and quantification of conserved architectural properties between proteins, including those with low or no detectable sequence homology. With a focus on viral protein structure, we highlight how a number of investigations have utilized this powerful method to infer common functionality and ancestry.
Collapse
Affiliation(s)
- Weng M Ng
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Alice J Stelfox
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Thomas A Bowden
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| |
Collapse
|
21
|
Kitamata M, Hotta M, Hamada‐Nakahara S, Suetsugu S. The membrane binding and deformation property of vaccinia virus K1 ankyrin repeat domain protein. Genes Cells 2020; 25:187-196. [DOI: 10.1111/gtc.12749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/11/2020] [Accepted: 01/15/2020] [Indexed: 11/29/2022]
Affiliation(s)
- Manabu Kitamata
- Graduate School of Science and Technology Nara Institute of Science and Technology Ikoma Japan
| | - Mitsukuni Hotta
- Graduate School of Science and Technology Nara Institute of Science and Technology Ikoma Japan
| | | | - Shiro Suetsugu
- Graduate School of Science and Technology Nara Institute of Science and Technology Ikoma Japan
| |
Collapse
|
22
|
The Bcl-2 Family: Ancient Origins, Conserved Structures, and Divergent Mechanisms. Biomolecules 2020; 10:biom10010128. [PMID: 31940915 PMCID: PMC7022251 DOI: 10.3390/biom10010128] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/18/2019] [Accepted: 01/09/2020] [Indexed: 12/13/2022] Open
Abstract
Intrinsic apoptosis, the response to intracellular cell death stimuli, is regulated by the interplay of the B-cell lymphoma 2 (Bcl-2) family and their membrane interactions. Bcl-2 proteins mediate a number of processes including development, homeostasis, autophagy, and innate and adaptive immune responses and their dysregulation underpins a host of diseases including cancer. The Bcl-2 family is characterized by the presence of conserved sequence motifs called Bcl-2 homology motifs, as well as a transmembrane region, which form the interaction sites and intracellular location mechanism, respectively. Bcl-2 proteins have been recognized in the earliest metazoans including Porifera (sponges), Placozoans, and Cnidarians (e.g., Hydra). A number of viruses have gained Bcl-2 homologs and subvert innate immunity and cellular apoptosis for their replication, but they frequently have very different sequences to their host Bcl-2 analogs. Though most mechanisms of apoptosis initiation converge on activation of caspases that destroy the cell from within, the numerous gene insertions, deletions, and duplications during evolution have led to a divergence in mechanisms of intrinsic apoptosis. Currently, the action of the Bcl-2 family is best understood in vertebrates and nematodes but new insights are emerging from evolutionarily earlier organisms. This review focuses on the mechanisms underpinning the activity of Bcl-2 proteins including their structures and interactions, and how they have changed over the course of evolution.
Collapse
|
23
|
The Vaccinia Virus (VACV) B1 and Cellular VRK2 Kinases Promote VACV Replication Factory Formation through Phosphorylation-Dependent Inhibition of VACV B12. J Virol 2019; 93:JVI.00855-19. [PMID: 31341052 DOI: 10.1128/jvi.00855-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 07/16/2019] [Indexed: 01/08/2023] Open
Abstract
Comparative examination of viral and host protein homologs reveals novel mechanisms governing downstream signaling effectors of both cellular and viral origin. The vaccinia virus B1 protein kinase is involved in promoting multiple facets of the virus life cycle and is a homolog of three conserved cellular enzymes called vaccinia virus-related kinases (VRKs). Recent evidence indicates that B1 and VRK2 mediate a common pathway that is largely uncharacterized but appears independent of previous VRK substrates. Interestingly, separate studies described a novel role for B1 in inhibiting vaccinia virus protein B12, which otherwise impedes an early event in the viral lifecycle. Herein, we characterize the B1/VRK2 signaling axis to better understand their shared functions. First, we demonstrate that vaccinia virus uniquely requires VRK2 for viral replication in the absence of B1, unlike other DNA viruses. Employing loss-of-function analysis, we demonstrate that vaccinia virus's dependence on VRK2 is only observed in the presence of B12, suggesting that B1 and VRK2 share a pathway controlling B12. Moreover, we substantiate a B1/VRK2/B12 signaling axis by examining coprecipitation of B12 by B1 and VRK2. Employing execution point analysis, we reveal that virus replication proceeds normally through early protein translation and uncoating but stalls at replication factory formation in the presence of B12 activity. Finally, structure/function analyses of B1 and VRK2 demonstrate that enzymatic activity is essential for B1 or VRK2 to inhibit B12. Together, these data provide novel insights into B1/VRK signaling coregulation and support a model in which these enzymes modulate B12 in a phosphorylation-dependent manner.IMPORTANCE Constraints placed on viral genome size require that these pathogens must employ sophisticated, yet parsimonious mechanisms to effectively integrate with host cell signaling pathways. Poxviruses are no exception and employ several methods to balance these goals, including encoding single proteins that impact multiple downstream pathways. This study focuses on the vaccinia virus B1 protein kinase, an enzyme that promotes virus replication at multiple phases of the viral lifecycle. Herein, we demonstrate that in addition to its previously characterized functions, B1 inhibits vaccinia virus B12 protein via a phosphorylation-dependent mechanism and that this function of B1 can be complemented by the cellular B1 homolog VRK2. Combined with previous data implicating functional overlap between B1 and an additional cellular B1 homolog, VRK1, these data provide evidence of how poxviruses can be multifaceted in their mimicry of cellular proteins through the consolidation of functions of both VRK1 and VRK2 within the viral B1 protein kinase.
Collapse
|
24
|
Netherton CL, Connell S, Benfield CTO, Dixon LK. The Genetics of Life and Death: Virus-Host Interactions Underpinning Resistance to African Swine Fever, a Viral Hemorrhagic Disease. Front Genet 2019; 10:402. [PMID: 31130984 PMCID: PMC6509158 DOI: 10.3389/fgene.2019.00402] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 04/12/2019] [Indexed: 01/01/2023] Open
Abstract
Pathogen transmission from wildlife hosts to genetically distinct species is a major driver of disease emergence. African swine fever virus (ASFV) persists in sub-Saharan Africa through a sylvatic cycle between warthogs and soft ticks that infest their burrows. The virus does not cause disease in these animals, however transmission of the virus to domestic pigs or wild boar causes a hemorrhagic fever that is invariably fatal. ASFV transmits readily between domestic pigs and causes economic hardship in areas where it is endemic. The virus is also a significant transboundary pathogen that has become established in Eastern Europe, and has recently appeared in China increasing the risk of an introduction of the disease to other pig producing centers. Although a DNA genome mitigates against rapid adaptation of the virus to new hosts, extended epidemics of African swine fever (ASF) can lead to the emergence of viruses with reduced virulence. Attenuation in the field leads to large deletions of genetic material encoding genes involved in modulating host immune responses. Therefore resistance to disease and tolerance of ASFV replication can be dependent on both virus and host factors. Here we describe the different virus-host interfaces and discuss progress toward understanding the genetic determinants of disease outcome after infection with ASFV.
Collapse
|
25
|
De Martini W, Coutu J, Bugert J, Iversen T, Cottrell J, Nichols DB. The molluscum contagiosum virus protein MC163 inhibits TNF-α-induced NF-κB activation. Future Virol 2019. [DOI: 10.2217/fvl-2019-0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aim: The molluscum contagiosum virus (MCV) expresses several immune evasion molecules that inhibit activation of NF-κB. Presumably, inhibition of inflammatory responses mediated by NF-κB allows MCV to cause persistent infections. Materials & methods: MC163-IKK-α interactions were detected by immunoprecipitations. Results: Here, we identify a novel MCV inhibitor of NF-κB. Ectopic expression of the MC163 protein resulted in a significant decrease in TNF-α-induced NF-κB activation. However, MC163 had no detectable effect on mitochondrial antiviral-signaling protein-induced activation of the IFN-β-promoter. MC163 dampened NF-κB activation induced via the overexpression of either IKK-α or IKK-β suggesting MC163 targets the IKK complex. Conclusion: Our data highlight a previously unknown function for the MC163 protein and may represent an additional strategy used by MCV to subvert host immune responses.
Collapse
Affiliation(s)
- William De Martini
- Department of Biological Sciences, Seton Hall University, 400 S. Orange Ave, South Orange, NJ 07079, USA
| | - Jesse Coutu
- Department of Biological Sciences, Seton Hall University, 400 S. Orange Ave, South Orange, NJ 07079, USA
- Department of Microbiology, Oregon State University, Dryden Hall 106A, Corvallis, OR 97333, USA
| | - Joachim Bugert
- Bundeswehr Institute of Microbiology, Neuherbergstrasse 11, 80937 München, Germany
| | - Timothy Iversen
- Department of Biological Sciences, Seton Hall University, 400 S. Orange Ave, South Orange, NJ 07079, USA
| | - Jessica Cottrell
- Department of Biological Sciences, Seton Hall University, 400 S. Orange Ave, South Orange, NJ 07079, USA
| | - Daniel Brian Nichols
- Department of Biological Sciences, Seton Hall University, 400 S. Orange Ave, South Orange, NJ 07079, USA
| |
Collapse
|
26
|
NF-κB activation is a turn on for vaccinia virus phosphoprotein A49 to turn off NF-κB activation. Proc Natl Acad Sci U S A 2019; 116:5699-5704. [PMID: 30819886 PMCID: PMC6431142 DOI: 10.1073/pnas.1813504116] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Vaccinia virus (VACV) encodes many proteins that inhibit innate immunity. For instance, protein A49 inhibits NF-κB activation by binding to β-TrCP. Here we show that A49 is phosphorylated on serine 7 and that this is necessary for binding β-TrCP and inhibition of NF-κB activation. Further, this phosphorylation occurs when the NF-κB pathway is stimulated and the kinase IKKβ is activated. Thus, A49 shows beautiful biological regulation, for activation of the pathway also activates the virus inhibitor of the pathway. The significance is seen in vivo, since VACVs expressing A49 S7A or S7E are less virulent than wild-type virus but more virulent than a virus lacking A49. Vaccinia virus protein A49 inhibits NF-κB activation by molecular mimicry and has a motif near the N terminus that is conserved in IκBα, β-catenin, HIV Vpu, and some other proteins. This motif contains two serines, and for IκBα and β-catenin, phosphorylation of these serines enables recognition by the E3 ubiquitin ligase β-TrCP. Binding of IκBα and β-catenin by β-TrCP causes their ubiquitylation and thereafter proteasome-mediated degradation. In contrast, HIV Vpu and VACV A49 are not degraded. This paper shows that A49 is phosphorylated at serine 7 but not serine 12 and that this is necessary and sufficient for binding β-TrCP and antagonism of NF-κB. Phosphorylation of A49 S7 occurs when NF-κB signaling is activated by addition of IL-1β or overexpression of TRAF6 or IKKβ, the kinase needed for IκBα phosphorylation. Thus, A49 shows beautiful biological regulation, for it becomes an NF-κB antagonist upon activation of NF-κB signaling. The virulence of viruses expressing mutant A49 proteins or lacking A49 (vΔA49) was tested. vΔA49 was attenuated compared with WT, but viruses expressing A49 that cannot bind β-TrCP or bind β-TrCP constitutively had intermediate virulence. So A49 promotes virulence by inhibiting NF-κB activation and by another mechanism independent of S7 phosphorylation and NF-κB antagonism. Last, a virus lacking A49 was more immunogenic than the WT virus.
Collapse
|
27
|
Aouacheria A, Navratil V, Combet C. Database and Bioinformatic Analysis of BCL-2 Family Proteins and BH3-Only Proteins. Methods Mol Biol 2019; 1877:23-43. [PMID: 30535996 DOI: 10.1007/978-1-4939-8861-7_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BCL-2 proteins correspond to a structurally, functionally, and phylogenetically heterogeneous group of regulators that play crucial roles in the life and death of animal cells. Some of these regulators also represent therapeutic targets in human diseases including cancer. In the omics era, there is great need for easy data retrieval and fast analysis of the molecular players involved in cell death. In this chapter, we present generic and specific computational resources (such as the reference database BCL2DB) as well as bioinformatics tools that can be used to investigate BCL-2 homologs and BH3-only proteins.
Collapse
Affiliation(s)
- Abdel Aouacheria
- ISEM, Institut des Sciences de l'Evolution de Montpellier, Université de Montpellier, UMR 5554, CNRS, IRD, EPHE, Montpellier, France.
| | - Vincent Navratil
- PRABI, Rhône Alpes Bioinformatics Center, UCBL, Lyon1, Université de Lyon, Lyon, France
| | - Christophe Combet
- Centre de Recherche en Cancérologie de Lyon, UMR Inserm U1052, CNRS 5286, Université Claude Bernard Lyon 1, Centre Léon Bérard, Lyon, France
| |
Collapse
|
28
|
Suppression of NF-κB Activity: A Viral Immune Evasion Mechanism. Viruses 2018; 10:v10080409. [PMID: 30081579 PMCID: PMC6115930 DOI: 10.3390/v10080409] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 07/29/2018] [Accepted: 08/02/2018] [Indexed: 12/20/2022] Open
Abstract
Nuclear factor-κB (NF-κB) is an important transcription factor that induces the expression of antiviral genes and viral genes. NF-κB activation needs the activation of NF-κB upstream molecules, which include receptors, adaptor proteins, NF-κB (IκB) kinases (IKKs), IκBα, and NF-κB dimer p50/p65. To survive, viruses have evolved the capacity to utilize various strategies that inhibit NF-κB activity, including targeting receptors, adaptor proteins, IKKs, IκBα, and p50/p65. To inhibit NF-κB activation, viruses encode several specific NF-κB inhibitors, including NS3/4, 3C and 3C-like proteases, viral deubiquitinating enzymes (DUBs), phosphodegron-like (PDL) motifs, viral protein phosphatase (PPase)-binding proteins, and small hydrophobic (SH) proteins. Finally, we briefly describe the immune evasion mechanism of human immunodeficiency virus 1 (HIV-1) by inhibiting NF-κB activity in productive and latent infections. This paper reviews a viral mechanism of immune evasion that involves the suppression of NF-κB activation to provide new insights into and references for the control and prevention of viral diseases.
Collapse
|
29
|
Nanson JD, Rahaman MH, Ve T, Kobe B. Regulation of signaling by cooperative assembly formation in mammalian innate immunity signalosomes by molecular mimics. Semin Cell Dev Biol 2018; 99:96-114. [PMID: 29738879 DOI: 10.1016/j.semcdb.2018.05.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 03/18/2018] [Accepted: 05/04/2018] [Indexed: 12/16/2022]
Abstract
Innate immunity pathways constitute the first line of defense against infections and cellular damage. An emerging concept in these pathways is that signaling involves the formation of finite (e.g. rings in NLRs) or open-ended higher-order assemblies (e.g. filamentous assemblies by members of the death-fold family and TIR domains). This signaling by cooperative assembly formation (SCAF) mechanism allows rapid and strongly amplified responses to minute amounts of stimulus. While the characterization of the molecular mechanisms of SCAF has seen rapid progress, little is known about its regulation. One emerging theme involves proteins produced both in host cells and by pathogens that appear to mimic the signaling components. Recently characterized examples involve the capping of the filamentous assemblies formed by caspase-1 CARDs by the CARD-only protein INCA, and those formed by caspase-8 by the DED-containing protein MC159. By contrast, the CARD-only protein ICEBERG and the DED-containing protein cFLIP incorporate into signaling filaments and presumably interfere with proximity based activation of caspases. We review selected examples of SCAF in innate immunity pathways and focus on the current knowledge on signaling component mimics produced by mammalian and pathogen cells and what is known about their mechanisms of action.
Collapse
Affiliation(s)
- Jeffrey D Nanson
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Md Habibur Rahaman
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Thomas Ve
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, 4072, Australia; Institute for Glycomics, Griffith University, Southport, QLD, 4222, Australia
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
30
|
Tang Q, Chakraborty S, Xu G. Mechanism of vaccinia viral protein B14-mediated inhibition of IκB kinase β activation. J Biol Chem 2018; 293:10344-10352. [PMID: 29748387 PMCID: PMC6028965 DOI: 10.1074/jbc.ra118.002817] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/03/2018] [Indexed: 11/28/2022] Open
Abstract
Activation of IκB kinase β (IKKβ) is a central event in the NF-κB–mediated canonical pro-inflammatory pathway. Numerous studies have reported that oligomerization-mediated trans autophosphorylation of IKKβ is indispensable for its phosphorylation, leading to its activation and IKKβ-mediated phosphorylation of substrates such as IκB proteins. Moreover, IKKβ's interaction with the NF-κB essential modifier (NEMO) is necessary for IKKβ activation. Interestingly, some viruses encode virulence factors that target IKKβ to inhibit NF-κB–mediated antiviral immune responses. One of these factors is the vaccinia viral protein B14, which directly interacts with and inhibits IKKβ. Here we mapped the interaction interface on the B14 and IKKβ proteins. We observed that B14 binds to the junction of the kinase domain (KD) and scaffold and dimerization domain (SDD) of IKKβ. Molecular docking analyses identified key interface residues in both IKKβ and B14 that were further confirmed by mutational studies to promote binding of the two proteins. During trans autophosphorylation of protein kinases in the IKK complex, the activation segments of neighboring kinases need to transiently interact with each other's active sites, and we found that the B14–IKKβ interaction sterically hinders direct contact between the kinase domains of IKKβ in the IKK complex, containing IKKβ, IKKα, and NEMO in human cells. We conclude that binding of B14 to IKKβ prevents IKKβ trans autophosphorylation and activation, thereby inhibiting NF-κB signaling. Our study provides critical structural and mechanistic information for the design of potential therapeutic agents to target IKKβ activation for the management of inflammatory disorders.
Collapse
Affiliation(s)
- Qingyu Tang
- From the Department of Molecular and Structural Biochemistry, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, North Carolina 27695
| | - Sayan Chakraborty
- From the Department of Molecular and Structural Biochemistry, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, North Carolina 27695
| | - Guozhou Xu
- From the Department of Molecular and Structural Biochemistry, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, North Carolina 27695
| |
Collapse
|
31
|
Albarnaz JD, Torres AA, Smith GL. Modulating Vaccinia Virus Immunomodulators to Improve Immunological Memory. Viruses 2018; 10:E101. [PMID: 29495547 PMCID: PMC5869494 DOI: 10.3390/v10030101] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 02/21/2018] [Accepted: 02/22/2018] [Indexed: 12/14/2022] Open
Abstract
The increasing frequency of monkeypox virus infections, new outbreaks of other zoonotic orthopoxviruses and concern about the re-emergence of smallpox have prompted research into developing antiviral drugs and better vaccines against these viruses. This article considers the genetic engineering of vaccinia virus (VACV) to enhance vaccine immunogenicity and safety. The virulence, immunogenicity and protective efficacy of VACV strains engineered to lack specific immunomodulatory or host range proteins are described. The ultimate goal is to develop safer and more immunogenic VACV vaccines that induce long-lasting immunological memory.
Collapse
Affiliation(s)
- Jonas D Albarnaz
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK.
| | - Alice A Torres
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK.
| | - Geoffrey L Smith
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK.
| |
Collapse
|
32
|
Banjara S, Mao J, Ryan TM, Caria S, Kvansakul M. Grouper iridovirus GIV66 is a Bcl-2 protein that inhibits apoptosis by exclusively sequestering Bim. J Biol Chem 2018; 293:5464-5477. [PMID: 29483196 DOI: 10.1074/jbc.ra117.000591] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 02/21/2018] [Indexed: 11/06/2022] Open
Abstract
Programmed cell death or apoptosis is a critical mechanism for the controlled removal of damaged or infected cells, and proteins of the Bcl-2 family are important arbiters of this process. Viruses have been shown to encode functional and structural homologs of Bcl-2 to counter premature host-cell apoptosis and ensure viral proliferation or survival. Grouper iridovirus (GIV) is a large DNA virus belonging to the Iridoviridae family and harbors GIV66, a putative Bcl-2-like protein and mitochondrially localized apoptosis inhibitor. However, the molecular and structural basis of GIV66-mediated apoptosis inhibition is currently not understood. To gain insight into GIV66's mechanism of action, we systematically evaluated its ability to bind peptides spanning the BH3 domain of pro-apoptotic Bcl-2 family members. Our results revealed that GIV66 harbors an unusually high level of specificity for pro-apoptotic Bcl-2 and displays affinity only for Bcl-2-like 11 (Bcl2L11 or Bim). Using crystal structures of both apo-GIV66 and GIV66 bound to the BH3 domain from Bim, we unexpectedly found that GIV66 forms dimers via an interface that results in occluded access to the canonical Bcl-2 ligand-binding groove, which breaks apart upon Bim binding. This observation suggests that GIV66 dimerization may affect GIV66's ability to bind host pro-death Bcl-2 proteins and enables highly targeted virus-directed suppression of host apoptosis signaling. Our findings provide a mechanistic understanding for the potent anti-apoptotic activity of GIV66 by identifying it as the first single-specificity, pro-survival Bcl-2 protein and identifying a pivotal role of Bim in GIV-mediated inhibition of apoptosis.
Collapse
Affiliation(s)
- Suresh Banjara
- From the Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia and
| | - Jiahao Mao
- From the Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia and
| | - Timothy M Ryan
- SAXS/WAXS, Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168, Australia
| | - Sofia Caria
- From the Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia and
| | - Marc Kvansakul
- From the Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia and
| |
Collapse
|
33
|
Vaccinia Virus Protein C6: A Multifunctional Interferon Antagonist. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1052:1-7. [PMID: 29785476 DOI: 10.1007/978-981-10-7572-8_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
34
|
Maluquer de Motes C, Smith GL. Vaccinia virus protein A49 activates Wnt signalling by targetting the E3 ligase β-TrCP. J Gen Virol 2017; 98:3086-3092. [PMID: 29058646 PMCID: PMC5845699 DOI: 10.1099/jgv.0.000946] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Vaccinia virus (VACV) encodes multiple proteins inhibiting the NF-κB signalling pathway. One of these, A49, targets the E3 ubiquitin ligase β-TrCP, which is responsible for the ubiquitylation and consequential proteosomal degradation of IκBα and the release of the NF-κB heterodimer. β-TrCP is a pleiotropic enzyme ubiquitylating multiple cellular substrates, including the transcriptional activator β-catenin. Here we demonstrate that A49 can activate the Wnt signalling pathway, a critical pathway that is involved in cell cycle and cell differentiation, and is controlled by β-catenin. The data presented show that the expression of A49 ectopically or during VACV infection causes accumulation of β-catenin, and that A49 triggering of Wnt signalling is dependent on binding β-TrCP. This is consistent with A49 blocking the ability of β-TrCP to recognise β-catenin and IκBα, and possibly other cellular targets. Thus, A49 targetting of β-TrCP affects multiple cellular pathways, including the NF-κB and Wnt signalling cascades.
Collapse
Affiliation(s)
- Carlos Maluquer de Motes
- Department of Pathology, University of Cambridge, Tennis Court Road, CB2 1QP, Cambridge, UK.,Present address: Department of Microbial Sciences, University of Surrey, GU2 7XH, Guildford, UK
| | - Geoffrey L Smith
- Department of Pathology, University of Cambridge, Tennis Court Road, CB2 1QP, Cambridge, UK
| |
Collapse
|
35
|
Fitzsimmons L, Kelly GL. EBV and Apoptosis: The Viral Master Regulator of Cell Fate? Viruses 2017; 9:E339. [PMID: 29137176 PMCID: PMC5707546 DOI: 10.3390/v9110339] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/08/2017] [Accepted: 11/09/2017] [Indexed: 12/14/2022] Open
Abstract
Epstein-Barr virus (EBV) was first discovered in cells from a patient with Burkitt lymphoma (BL), and is now known to be a contributory factor in 1-2% of all cancers, for which there are as yet, no EBV-targeted therapies available. Like other herpesviruses, EBV adopts a persistent latent infection in vivo and only rarely reactivates into replicative lytic cycle. Although latency is associated with restricted patterns of gene expression, genes are never expressed in isolation; always in groups. Here, we discuss (1) the ways in which the latent genes of EBV are known to modulate cell death, (2) how these mechanisms relate to growth transformation and lymphomagenesis, and (3) how EBV genes cooperate to coordinately regulate key cell death pathways in BL and lymphoblastoid cell lines (LCLs). Since manipulation of the cell death machinery is critical in EBV pathogenesis, understanding the mechanisms that underpin EBV regulation of apoptosis therefore provides opportunities for novel therapeutic interventions.
Collapse
Affiliation(s)
- Leah Fitzsimmons
- Institute of Cancer and Genomic Sciences and Centre for Human Virology, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Gemma L Kelly
- Molecular Genetics of Cancer Division, The Walter and Eliza Hall Institute for Medical Research, Parkville, Melbourne, VIC 3052, Australia.
- Department of Medical Biology, The University of Melbourne, Parkville, Melbourne, VIC 3052, Australia.
| |
Collapse
|
36
|
Structural and Functional Insight into Canarypox Virus CNP058 Mediated Regulation of Apoptosis. Viruses 2017; 9:v9100305. [PMID: 29053589 PMCID: PMC5691656 DOI: 10.3390/v9100305] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 10/15/2017] [Accepted: 10/18/2017] [Indexed: 12/21/2022] Open
Abstract
Programmed cell death or apoptosis is an important component of host defense systems against viral infection. The B-cell lymphoma 2 (Bcl-2) proteins family is the main arbiter of mitochondrially mediated apoptosis, and viruses have evolved sequence and structural mimics of Bcl-2 to subvert premature host cell apoptosis in response to viral infection. The sequencing of the canarypox virus genome identified a putative pro-survival Bcl-2 protein, CNP058. However, a role in apoptosis inhibition for CNP058 has not been identified to date. Here, we report that CNP058 is able to bind several host cell pro-death Bcl-2 proteins, including Bak and Bax, as well as several BH3 only-proteins including Bim, Bid, Bmf, Noxa, Puma, and Hrk with high to moderate affinities. We then defined the structural basis for CNP058 binding to pro-death Bcl-2 proteins by determining the crystal structure of CNP058 bound to Bim BH3. CNP058 adopts the conserved Bcl-2 like fold observed in cellular pro-survival Bcl-2 proteins, and utilizes the canonical ligand binding groove to bind Bim BH3. We then demonstrate that CNP058 is a potent inhibitor of ultraviolet (UV) induced apoptosis in a cell culture model. Our findings suggest that CNP058 is a potent inhibitor of apoptosis that is able to bind to BH3 domain peptides from a broad range of pro-death Bcl-2 proteins, and may play a key role in countering premature host apoptosis.
Collapse
|
37
|
The Bcl-2 Family in Host-Virus Interactions. Viruses 2017; 9:v9100290. [PMID: 28984827 PMCID: PMC5691641 DOI: 10.3390/v9100290] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 10/01/2017] [Accepted: 10/03/2017] [Indexed: 12/13/2022] Open
Abstract
Members of the B cell lymphoma-2 (Bcl-2) family are pivotal arbiters of mitochondrially mediated apoptosis, a process of fundamental importance during tissue development, homeostasis, and disease. At the structural and mechanistic level, the mammalian members of the Bcl-2 family are increasingly well understood, with their interplay ultimately deciding the fate of a cell. Dysregulation of Bcl-2-mediated apoptosis underlies a plethora of diseases, and numerous viruses have acquired homologs of Bcl-2 to subvert host cell apoptosis and autophagy to prevent premature death of an infected cell. Here we review the structural biology, interactions, and mechanisms of action of virus-encoded Bcl-2 proteins, and how they impact on host-virus interactions to ultimately enable successful establishment and propagation of viral infections.
Collapse
|
38
|
Nichols DB, De Martini W, Cottrell J. Poxviruses Utilize Multiple Strategies to Inhibit Apoptosis. Viruses 2017; 9:v9080215. [PMID: 28786952 PMCID: PMC5580472 DOI: 10.3390/v9080215] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/31/2017] [Accepted: 08/02/2017] [Indexed: 12/11/2022] Open
Abstract
Cells have multiple means to induce apoptosis in response to viral infection. Poxviruses must prevent activation of cellular apoptosis to ensure successful replication. These viruses devote a substantial portion of their genome to immune evasion. Many of these immune evasion products expressed during infection antagonize cellular apoptotic pathways. Poxvirus products target multiple points in both the extrinsic and intrinsic apoptotic pathways, thereby mitigating apoptosis during infection. Interestingly, recent evidence indicates that poxviruses also hijack cellular means of eliminating apoptotic bodies as a means to spread cell to cell through a process called apoptotic mimicry. Poxviruses are the causative agent of many human and veterinary diseases. Further, there is substantial interest in developing these viruses as vectors for a variety of uses including vaccine delivery and as oncolytic viruses to treat certain human cancers. Therefore, an understanding of the molecular mechanisms through which poxviruses regulate the cellular apoptotic pathways remains a top research priority. In this review, we consider anti-apoptotic strategies of poxviruses focusing on three relevant poxvirus genera: Orthopoxvirus, Molluscipoxvirus, and Leporipoxvirus. All three genera express multiple products to inhibit both extrinsic and intrinsic apoptotic pathways with many of these products required for virulence.
Collapse
Affiliation(s)
- Daniel Brian Nichols
- Department of Biological Sciences, Seton Hall University, South Orange, NJ 07039, USA.
| | - William De Martini
- Department of Biological Sciences, Seton Hall University, South Orange, NJ 07039, USA.
| | - Jessica Cottrell
- Department of Biological Sciences, Seton Hall University, South Orange, NJ 07039, USA.
| |
Collapse
|
39
|
Khatiwada S, Delhon G, Nagendraprabhu P, Chaulagain S, Luo S, Diel DG, Flores EF, Rock DL. A parapoxviral virion protein inhibits NF-κB signaling early in infection. PLoS Pathog 2017; 13:e1006561. [PMID: 28787456 PMCID: PMC5560748 DOI: 10.1371/journal.ppat.1006561] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 08/17/2017] [Accepted: 07/31/2017] [Indexed: 12/16/2022] Open
Abstract
Poxviruses have evolved unique proteins and mechanisms to counteract the nuclear factor κB (NF-κB) signaling pathway, which is an essential regulatory pathway of host innate immune responses. Here, we describe a NF-κB inhibitory virion protein of orf virus (ORFV), ORFV073, which functions very early in infected cells. Infection with ORFV073 gene deletion virus (OV-IA82Δ073) led to increased accumulation of NF-κB essential modulator (NEMO), marked phosphorylation of IκB kinase (IKK) subunits IKKα and IKKβ, IκBα and NF-κB subunit p65 (NF-κB-p65), and to early nuclear translocation of NF-κB-p65 in virus-infected cells (≤ 30 min post infection). Expression of ORFV073 alone was sufficient to inhibit TNFα induced activation of the NF-κB signaling in uninfected cells. Consistent with observed inhibition of IKK complex activation, ORFV073 interacted with the regulatory subunit of the IKK complex NEMO. Infection of sheep with OV-IA82Δ073 led to virus attenuation, indicating that ORFV073 is a virulence determinant in the natural host. Notably, ORFV073 represents the first poxviral virion-associated NF-κB inhibitor described, highlighting the significance of viral inhibition of NF-κB signaling very early in infection.
Collapse
Affiliation(s)
- Sushil Khatiwada
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Gustavo Delhon
- School of Veterinary Medicine and Biomedical Science, Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Ponnuraj Nagendraprabhu
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Sabal Chaulagain
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Shuhong Luo
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Diego G. Diel
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Eduardo F. Flores
- Departamento de Medicina Veterinária Preventiva, Centro de Ciências Rurais, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Daniel L. Rock
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| |
Collapse
|
40
|
Distinct Roles of Vaccinia Virus NF-κB Inhibitor Proteins A52, B15, and K7 in the Immune Response. J Virol 2017; 91:JVI.00575-17. [PMID: 28424281 DOI: 10.1128/jvi.00575-17] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 04/11/2017] [Indexed: 01/09/2023] Open
Abstract
Poxviruses use a complex strategy to escape immune control, by expressing immunomodulatory proteins that could limit their use as vaccine vectors. To test the role of poxvirus NF-κB pathway inhibitors A52, B15, and K7 in immunity, we deleted their genes in an NYVAC (New York vaccinia virus) strain that expresses HIV-1 clade C antigens. After infection of mice, ablation of the A52R, B15R, and K7R genes increased dendritic cell, natural killer cell, and neutrophil migration as well as chemokine/cytokine expression. Revertant viruses with these genes confirmed their role in inhibiting the innate immune system. To different extents, enhanced innate immune responses correlated with increased HIV Pol- and Gag-specific polyfunctional CD8 T cell and HIV Env-specific IgG responses induced by single-, double-, and triple-deletion mutants. These poxvirus proteins thus influence innate and adaptive cell-mediated and humoral immunity, and their ablation offers alternatives for design of vaccine vectors that regulate immune responses distinctly.IMPORTANCE Poxvirus vectors are used in clinical trials as candidate vaccines for several pathogens, yet how these vectors influence the immune system is unknown. We developed distinct poxvirus vectors that express heterologous antigens but lack different inhibitors of the central host-cell signaling pathway. Using mice, we studied the capacity of these viruses to induce innate and adaptive immune responses and showed that these vectors can distinctly regulate the magnitude and quality of these responses. These findings provide important insights into the mechanism of poxvirus-induced immune response and alternative strategies for vaccine vector design.
Collapse
|
41
|
Veyer DL, Carrara G, Maluquer de Motes C, Smith GL. Vaccinia virus evasion of regulated cell death. Immunol Lett 2017; 186:68-80. [PMID: 28366525 DOI: 10.1016/j.imlet.2017.03.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/21/2017] [Accepted: 03/28/2017] [Indexed: 12/17/2022]
Abstract
Regulated cell death is a powerful anti-viral mechanism capable of aborting the virus replicative cycle and alerting neighbouring cells to the threat of infection. The biological importance of regulated cell death is illustrated by the rich repertoire of host signalling cascades causing cell death and by the multiple strategies exhibited by viruses to block death signal transduction and preserve cell viability. Vaccinia virus (VACV), a poxvirus and the vaccine used to eradicate smallpox, encodes multiple proteins that interfere with apoptotic, necroptotic and pyroptotic signalling. Here the current knowledge on cell death pathways and how VACV proteins interact with them is reviewed. Studying the mechanisms evolved by VACV to counteract host programmed cell death has implications for its successful use as a vector for vaccination and as an oncolytic agent against cancer.
Collapse
Affiliation(s)
- David L Veyer
- Laboratoire de Virologie, Hôpital Européen Georges Pompidou, 20 Rue Leblanc, 75015 Paris, France
| | - Guia Carrara
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
| | | | - Geoffrey L Smith
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom.
| |
Collapse
|
42
|
Teferi WM, Desaulniers MA, Noyce RS, Shenouda M, Umer B, Evans DH. The vaccinia virus K7 protein promotes histone methylation associated with heterochromatin formation. PLoS One 2017; 12:e0173056. [PMID: 28257484 PMCID: PMC5336242 DOI: 10.1371/journal.pone.0173056] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 02/14/2017] [Indexed: 12/12/2022] Open
Abstract
It has been well established that many vaccinia virus proteins suppress host antiviral pathways by targeting the transcription of antiviral proteins, thus evading the host innate immune system. However, whether viral proteins have an effect on the host’s overall cellular transcription is less understood. In this study we investigated the regulation of heterochromatin during vaccinia virus infection. Heterochromatin is a highly condensed form of chromatin that is less transcriptionally active and characterized by methylation of histone proteins. We examined the change in methylation of two histone proteins, H3 and H4, which are major markers of heterochromatin, during the course of viral infection. Using immunofluorescence microscopy and flow cytometry we were able to track the overall change in the methylated levels of H3K9 and H4K20. Our results suggest that there is significant increase in methylation of H3K9 and H4K20 during Orthopoxviruses infection compared to mock-infected cells. However, this effect was not seen when we infected cells with Leporipoxviruses. We further screened several vaccinia virus single and multi-gene deletion mutant and identified the vaccinia virus gene K7R as a contributor to the increase in cellular histone methylation during infection.
Collapse
Affiliation(s)
- Wondimagegnehu M. Teferi
- Department of Medical Microbiology & Immunology, Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| | - Megan A. Desaulniers
- Department of Medical Microbiology & Immunology, Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| | - Ryan S. Noyce
- Department of Medical Microbiology & Immunology, Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| | - Mira Shenouda
- Department of Medical Microbiology & Immunology, Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| | - Brittany Umer
- Department of Medical Microbiology & Immunology, Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| | - David H. Evans
- Department of Medical Microbiology & Immunology, Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
43
|
Fedosyuk S, Bezerra GA, Radakovics K, Smith TK, Sammito M, Bobik N, Round A, Ten Eyck LF, Djinović-Carugo K, Usón I, Skern T. Vaccinia Virus Immunomodulator A46: A Lipid and Protein-Binding Scaffold for Sequestering Host TIR-Domain Proteins. PLoS Pathog 2016; 12:e1006079. [PMID: 27973613 PMCID: PMC5156371 DOI: 10.1371/journal.ppat.1006079] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 11/19/2016] [Indexed: 12/17/2022] Open
Abstract
Vaccinia virus interferes with early events of the activation pathway of the transcriptional factor NF-kB by binding to numerous host TIR-domain containing adaptor proteins. We have previously determined the X-ray structure of the A46 C-terminal domain; however, the structure and function of the A46 N-terminal domain and its relationship to the C-terminal domain have remained unclear. Here, we biophysically characterize residues 1-83 of the N-terminal domain of A46 and present the X-ray structure at 1.55 Å. Crystallographic phases were obtained by a recently developed ab initio method entitled ARCIMBOLDO_BORGES that employs tertiary structure libraries extracted from the Protein Data Bank; data analysis revealed an all β-sheet structure. This is the first such structure solved by this method which should be applicable to any protein composed entirely of β-sheets. The A46(1-83) structure itself is a β-sandwich containing a co-purified molecule of myristic acid inside a hydrophobic pocket and represents a previously unknown lipid-binding fold. Mass spectrometry analysis confirmed the presence of long-chain fatty acids in both N-terminal and full-length A46; mutation of the hydrophobic pocket reduced the lipid content. Using a combination of high resolution X-ray structures of the N- and C-terminal domains and SAXS analysis of full-length protein A46(1-240), we present here a structural model of A46 in a tetrameric assembly. Integrating affinity measurements and structural data, we propose how A46 simultaneously interferes with several TIR-domain containing proteins to inhibit NF-κB activation and postulate that A46 employs a bipartite binding arrangement to sequester the host immune adaptors TRAM and MyD88.
Collapse
Affiliation(s)
- Sofiya Fedosyuk
- Max F. Perutz Laboratories, Medical University of Vienna, Vienna Biocenter, Dr. Bohr-Gasse 9/3, Vienna, Austria
| | - Gustavo Arruda Bezerra
- Max F. Perutz Laboratories, Medical University of Vienna, Vienna Biocenter, Dr. Bohr-Gasse 9/3, Vienna, Austria
| | - Katharina Radakovics
- Max F. Perutz Laboratories, Medical University of Vienna, Vienna Biocenter, Dr. Bohr-Gasse 9/3, Vienna, Austria
| | - Terry K. Smith
- Biomedical Sciences Research Complex, University of St. Andrews, North Haugh, St. Andrews, Fife Scotland, United Kingdom
| | - Massimo Sammito
- Structural Biology, IBMB-CSIC, Baldiri Reixach, 13–15, Barcelona, Spain
- Georg August University of Göttingen, Department of Structural Chemistry, Tammannstr. 4, Göttingen, Germany
| | - Nina Bobik
- Max F. Perutz Laboratories, Medical University of Vienna, Vienna Biocenter, Dr. Bohr-Gasse 9/3, Vienna, Austria
| | - Adam Round
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS, Grenoble, France
- European XFEL GmbH, Notkestraße 85, Hamburg, Germany
| | - Lynn F. Ten Eyck
- San Diego Supercomputer Center, University of California, San Diego, La Jolla, California, United States of America
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, California, United States of America
| | - Kristina Djinović-Carugo
- Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter, Dept. of Structural and Computational Biology, Campus Vienna Biocenter 5, Vienna, Austria
- Department of Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, Ljubljana, Slovenia
| | - Isabel Usón
- Structural Biology, IBMB-CSIC, Baldiri Reixach, 13–15, Barcelona, Spain
- ICREA, Pg. Lluis Companys 23, Barcelona, Spain
| | - Tim Skern
- Max F. Perutz Laboratories, Medical University of Vienna, Vienna Biocenter, Dr. Bohr-Gasse 9/3, Vienna, Austria
| |
Collapse
|
44
|
Stuart JH, Sumner RP, Lu Y, Snowden JS, Smith GL. Vaccinia Virus Protein C6 Inhibits Type I IFN Signalling in the Nucleus and Binds to the Transactivation Domain of STAT2. PLoS Pathog 2016; 12:e1005955. [PMID: 27907166 PMCID: PMC5131898 DOI: 10.1371/journal.ppat.1005955] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 09/26/2016] [Indexed: 12/17/2022] Open
Abstract
The type I interferon (IFN) response is a crucial innate immune signalling pathway required for defense against viral infection. Accordingly, the great majority of mammalian viruses possess means to inhibit this important host immune response. Here we show that vaccinia virus (VACV) strain Western Reserve protein C6, is a dual function protein that inhibits the cellular response to type I IFNs in addition to its published function as an inhibitor of IRF-3 activation, thereby restricting type I IFN production from infected cells. Ectopic expression of C6 inhibits the induction of interferon stimulated genes (ISGs) in response to IFNα treatment at both the mRNA and protein level. C6 inhibits the IFNα-induced Janus kinase/signal transducer and activator of transcription (JAK/STAT) signalling pathway at a late stage, downstream of STAT1 and STAT2 phosphorylation, nuclear translocation and binding of the interferon stimulated gene factor 3 (ISGF3) complex to the interferon stimulated response element (ISRE). Mechanistically, C6 associates with the transactivation domain of STAT2 and this might explain how C6 inhibits the type I IFN signalling very late in the pathway. During virus infection C6 reduces ISRE-dependent gene expression despite the presence of the viral protein phosphatase VH1 that dephosphorylates STAT1 and STAT2. The ability of a cytoplasmic replicating virus to dampen the immune response within the nucleus, and the ability of viral immunomodulators such as C6 to inhibit multiple stages of the innate immune response by distinct mechanisms, emphasizes the intricacies of host-pathogen interactions and viral immune evasion. In response to a viral infection, infected host cells mount an early, innate immune response to limit viral replication and spread. Type I interferons (IFNs) are produced by a cell when a viral infection is detected and are a crucial aspect of this early immune response. IFNs are released from the infected cell and can act on the infected cell itself or neighbouring cells to initiate a signalling pathway that results in the production of hundreds of anti-viral proteins. In this work we investigated a vaccinia virus protein called C6, a known inhibitor of type I IFN production. Here we show that C6 also inhibits signalling initiated in response to type I IFNs, therefore providing a dual defence against this essential immune response. The results show that, unlike the majority of viral inhibitors of IFN signalling, C6 inhibits the signalling pathway at a late stage once the proteins required for IFN-stimulated gene transcription have reached the nucleus and bound to the DNA. This work illustrates the complex relationship between infecting viruses and the host immune response and further investigation of the mechanism by which C6 inhibits this important immune pathway will likely increase our knowledge of the pathway itself.
Collapse
Affiliation(s)
- Jennifer H. Stuart
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Rebecca P. Sumner
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Yongxu Lu
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Joseph S. Snowden
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Geoffrey L. Smith
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
45
|
Increased attenuation but decreased immunogenicity by deletion of multiple vaccinia virus immunomodulators. Vaccine 2016; 34:4827-34. [PMID: 27544585 PMCID: PMC5022402 DOI: 10.1016/j.vaccine.2016.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 07/30/2016] [Accepted: 08/01/2016] [Indexed: 12/18/2022]
Abstract
Vaccinia virus-derived vaccine vectors are being engineered to improve immunogenicity. Deleting genes with immunomodulatory function can increase immunogenicity and decrease virulence. Deletion of N1L, C6L or K7R individually improves immunogenicity, but not in combination. A virus lacking all three genes induces poorer CD8+ T cell and neutralising antibody responses.
Vaccinia virus (VACV)-derived vectors are popular candidates for vaccination against diseases such as HIV-1, malaria and tuberculosis. However, their genomes encode a multitude of proteins with immunomodulatory functions, several of which reduce the immunogenicity of these vectors. Hitherto only limited studies have investigated whether the removal of these immunomodulatory genes in combination can increase vaccine efficacy further. To this end we constructed viruses based on VACV strain Western Reserve (WR) lacking up to three intracellular innate immunomodulators (N1, C6 and K7). These genes were selected because the encoded proteins had known functions in innate immunity and the deletion of each gene individually had caused a decrease in virus virulence in the murine intranasal and intradermal models of infection and an increase in immunogenicity. Data presented here demonstrate that deletion of two, or three of these genes in combination attenuated the virus further in an incremental manner. However, when vaccinated mice were challenged with VACV WR the double and triple gene deletion viruses provided weaker protection against challenge. This was accompanied by inferior memory CD8+ T cell responses and lower neutralising antibody titres. This study indicates that, at least for the three genes studied in the context of VACV WR, the single gene deletion viruses are the best vaccine vectors, and that increased attenuation induced by deletion of additional genes decreased immunogenicity. These data highlight the fine balance and complex relationship between viral attenuation and immunogenicity. Given that the proteins encoded by the genes examined in this study are known to affect specific aspects of innate immunity, the set of viruses constructed here are interesting tools to probe the role of the innate immune response in influencing immune memory and vaccine efficacy.
Collapse
|
46
|
Torres AA, Albarnaz JD, Bonjardim CA, Smith GL. Multiple Bcl-2 family immunomodulators from vaccinia virus regulate MAPK/AP-1 activation. J Gen Virol 2016; 97:2346-2351. [PMID: 27312213 PMCID: PMC5042131 DOI: 10.1099/jgv.0.000525] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Vaccinia virus (VACV) is a poxvirus and encodes many proteins that modify the host cell metabolism or inhibit the host response to infection. For instance, it is known that VACV infection can activate the mitogen-activated protein kinase (MAPK)/activator protein 1 (AP-1) pathway and inhibit activation of the pro-inflammatory transcription factor NF-κB. Since NF-κB and MAPK/AP-1 share common upstream activators we investigated whether six different VACV Bcl-2-like NF-κB inhibitors can also influence MAPK/AP-1 activation. Data presented show that proteins A52, B14 and K7 each contribute to AP-1 activation during VACV infection, and when expressed individually outwith infection. B14 induced the greatest stimulation of AP-1 and further investigation showed B14 activated mainly the MAPKs ERK (extracellular signal-regulated kinase) and JNK (Jun N-terminal kinase), and their substrate c-Jun (a component of AP-1). These data indicate that the same viral protein can have different effects on distinct signalling pathways, in blocking NF-κB activation whilst leading to MAPK/AP-1 activation.
Collapse
Affiliation(s)
- Alice A Torres
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Pampulha, CEP 31270-901, Belo Horizonte, MG, Brazil.,Department of Pathology, University of Cambridge, Cambridge, UK
| | | | - Cláudio A Bonjardim
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Pampulha, CEP 31270-901, Belo Horizonte, MG, Brazil
| | | |
Collapse
|
47
|
Abstract
The mitochondrion descends from a bacterium that, about two billion years ago, became endosymbiotic. This organelle represents a Pandora’s box whose opening triggers cytochrome-c release and apoptosis of cells from multicellular animals, which evolved much later, about six hundred million years ago. BCL-2 proteins, which are critical apoptosis regulators, were recruited at a certain time point in evolution to either lock or unlock this mitochondrial Pandora’s box. Hence, particularly intriguing is the issue of when and how the “BCL-2 proteins–mitochondria–apoptosis” triptych emerged. This chapter explains what it takes from an evolutionary perspective to evolve a BCL-2-regulated apoptotic pathway, by focusing on the events occurring upstream of mitochondria.
Collapse
|
48
|
Kvansakul M, Hinds MG. The Bcl-2 family: structures, interactions and targets for drug discovery. Apoptosis 2015; 20:136-50. [PMID: 25398535 DOI: 10.1007/s10495-014-1051-7] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Two phylogenetically and structurally distinct groups of proteins regulate stress induced intrinsic apoptosis, the programmed disassembly of cells. Together they form the B cell lymphoma-2 (Bcl-2) family. Bcl-2 proteins appeared early in metazoan evolution and are identified by the presence of up to four short conserved sequence blocks known as Bcl-2 homology (BH) motifs, or domains. The simple BH3-only proteins bear only a BH3-motif and are intrinsically disordered proteins and antagonize or activate the other group, the multi-motif Bcl-2 proteins that have up to four BH motifs, BH1-BH4. Multi-motif Bcl-2 proteins are either pro-survival or pro-apoptotic in action and have remarkably similar α-helical bundle structures that provide a binding groove formed from the BH1, BH2, and BH3-motifs for their BH3-bearing antagonists. In mammals a network of interactions between Bcl-2 members regulates mitochondrial outer membrane permeability (MOMP) and efflux of cytochrome c and other death inducing factors from mitochondria to initiate the apoptotic caspase cascade, but the molecular events leading to MOMP are uncertain. Dysregulation of the Bcl-2 family occurs in many diseases and pathogenic viruses have assimilated pro-survival Bcl-2 proteins to evade immune responses. Their role in disease has made the Bcl-2 family the focus of drug design attempts and clinical trials are showing promise for 'BH3-mimics', drugs that mimic the ability of BH3-only proteins to neutralize selected pro-survival proteins to induce cell death in tumor cells. This review focuses on the structural biology of Bcl-2 family proteins, their interactions and attempts to harness them as targets for drug design.
Collapse
Affiliation(s)
- Marc Kvansakul
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, 3086, Australia,
| | | |
Collapse
|
49
|
Strategies of NF-κB signaling modulation by ectromelia virus in BALB/3T3 murine fibroblasts. Microb Pathog 2015; 87:59-68. [PMID: 26232502 DOI: 10.1016/j.micpath.2015.07.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 07/25/2015] [Accepted: 07/27/2015] [Indexed: 12/22/2022]
Abstract
Nuclear factor κB (NF-κB) is a pleiotropic transcription factor that regulates the expression of immune response genes. NF-κB signaling can be disrupted by pathogens that prevent host immune response. In this work, we examined the influence of ectromelia (mousepox) virus (ECTV) on NF-κB signaling in murine BALB/3T3 fibroblasts. Activation of NF-κB via tumor necrosis factor (TNF) receptor 1 (TNFR1) in these cells induces proinflammatory cytokine secretion. We show that ECTV does not recruit NF-κB to viral factories or induce NF-κB nuclear translocation in BALB/3T3 cells. Additionally, ECTV counteracts TNF-α-induced p65 NF-κB nuclear translocation during the course of infection. Inhibition of TNF-α-induced p65 nuclear translocation was also observed in neighboring cells that underwent fusion with ECTV-infected cells. ECTV inhibits the key step of NF-κB activation, i.e. Ser32 phosphorylation and degradation of inhibitor κBα (IκBα) induced by TNF-α. We also observed that ECTV prevents TNF-α-induced Ser536 of p65 phosphorylation in BALB/3T3 cells. Studying TNFR1 signaling provides information about regulation of inflammatory response and cell survival. Unraveling poxviral immunomodulatory strategies may be helpful in drug target identification as well as in vaccine development.
Collapse
|
50
|
Burton DR, Caria S, Marshall B, Barry M, Kvansakul M. Structural basis of Deerpox virus-mediated inhibition of apoptosis. ACTA ACUST UNITED AC 2015; 71:1593-603. [PMID: 26249341 DOI: 10.1107/s1399004715009402] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 05/18/2015] [Indexed: 01/21/2023]
Abstract
Apoptosis is a key innate defence mechanism to eliminate virally infected cells. To counteract premature host-cell apoptosis, poxviruses have evolved numerous molecular strategies, including the use of Bcl-2 proteins, to ensure their own survival. Here, it is reported that the Deerpox virus inhibitor of apoptosis, DPV022, only engages a highly restricted set of death-inducing Bcl-2 proteins, including Bim, Bax and Bak, with modest affinities. Structural analysis reveals that DPV022 adopts a Bcl-2 fold with a dimeric domain-swapped topology and binds pro-death Bcl-2 proteins via two conserved ligand-binding grooves found on opposite sides of the dimer. Structures of DPV022 bound to Bim, Bak and Bax BH3 domains reveal that a partial obstruction of the binding groove is likely to be responsible for the modest affinities of DPV022 for BH3 domains. These findings reveal that domain-swapped dimeric Bcl-2 folds are not unusual and may be found more widely in viruses. Furthermore, the modest affinities of DPV022 for pro-death Bcl-2 proteins suggest that two distinct classes of anti-apoptotic viral Bcl-2 proteins exist: those that are monomeric and tightly bind a range of death-inducing Bcl-2 proteins, and others such as DPV022 that are dimeric and only bind a very limited number of death-inducing Bcl-2 proteins with modest affinities.
Collapse
Affiliation(s)
- Denis R Burton
- Department of Biochemistry, La Trobe University, Melbourne, VIC 3058, Australia
| | - Sofia Caria
- Department of Biochemistry, La Trobe University, Melbourne, VIC 3058, Australia
| | - Bevan Marshall
- Department of Biochemistry, La Trobe University, Melbourne, VIC 3058, Australia
| | - Michele Barry
- Li Ka Shing Institute for Virology, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - Marc Kvansakul
- Department of Biochemistry, La Trobe University, Melbourne, VIC 3058, Australia
| |
Collapse
|