1
|
Hernández-Chávez MJ, Martínez-Duncker I, Clavijo-Giraldo DM, López-Ramirez LA, Mora-Montes HM. Candida tropicalis PMT2 Is a Dispensable Gene for Viability but Required for Proper Interaction with the Host. J Fungi (Basel) 2024; 10:502. [PMID: 39057387 PMCID: PMC11277967 DOI: 10.3390/jof10070502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Candidemia is an opportunistic mycosis with high morbidity and mortality rates. Even though Candida albicans is the main causative agent, other Candida species, such as Candida tropicalis, are relevant etiological agents of candidiasis and candidemia. Compared with C. albicans, there is currently limited information about C. tropicalis' biological aspects, including those related to the cell wall and the interaction with the host. Currently, it is known that its cell wall contains O-linked mannans, and the contribution of these structures to cell fitness has previously been addressed using cells subjected to chemical treatments or in mutants where O-linked mannans and other wall components are affected. Here, we generated a C. tropicalis pmt2∆ null mutant, which was affected in the first step of the O-linked mannosylation pathway. The null mutant was viable, contrasting with C. albicans where this gene is essential. The phenotypical characterization showed that O-linked mannans were required for filamentation; proper cell wall integrity and organization; biofilm formation; protein secretion; and adhesion to extracellular matrix components, in particular to fibronectin; and type I and type II collagen. When interacting with human innate immune cells, it was found that this cell wall structure is dispensable for cytokine production, but mutant cells were more phagocytosed by monocyte-derived macrophages. Furthermore, the null mutant cells showed virulence attenuation in Galleria mellonella larvae. Thus, O-linked mannans are minor components of the cell wall that are involved in different aspects of C. tropicalis' biology.
Collapse
Affiliation(s)
- Marco J. Hernández-Chávez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P., Guanajuato 36050, GTO, Mexico; (M.J.H.-C.); (D.M.C.-G.); (L.A.L.-R.)
| | - Iván Martínez-Duncker
- Laboratorio de Glicobiología Humana y Diagnóstico Molecular, Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, MOR, Mexico;
| | - Diana M. Clavijo-Giraldo
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P., Guanajuato 36050, GTO, Mexico; (M.J.H.-C.); (D.M.C.-G.); (L.A.L.-R.)
| | - Luz A. López-Ramirez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P., Guanajuato 36050, GTO, Mexico; (M.J.H.-C.); (D.M.C.-G.); (L.A.L.-R.)
| | - Héctor M. Mora-Montes
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P., Guanajuato 36050, GTO, Mexico; (M.J.H.-C.); (D.M.C.-G.); (L.A.L.-R.)
| |
Collapse
|
2
|
Katsipoulaki M, Stappers MHT, Malavia-Jones D, Brunke S, Hube B, Gow NAR. Candida albicans and Candida glabrata: global priority pathogens. Microbiol Mol Biol Rev 2024; 88:e0002123. [PMID: 38832801 PMCID: PMC11332356 DOI: 10.1128/mmbr.00021-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
SUMMARYA significant increase in the incidence of Candida-mediated infections has been observed in the last decade, mainly due to rising numbers of susceptible individuals. Recently, the World Health Organization published its first fungal pathogen priority list, with Candida species listed in medium, high, and critical priority categories. This review is a synthesis of information and recent advances in our understanding of two of these species-Candida albicans and Candida glabrata. Of these, C. albicans is the most common cause of candidemia around the world and is categorized as a critical priority pathogen. C. glabrata is considered a high-priority pathogen and has become an increasingly important cause of candidemia in recent years. It is now the second most common causative agent of candidemia in many geographical regions. Despite their differences and phylogenetic divergence, they are successful as pathogens and commensals of humans. Both species can cause a broad variety of infections, ranging from superficial to potentially lethal systemic infections. While they share similarities in certain infection strategies, including tissue adhesion and invasion, they differ significantly in key aspects of their biology, interaction with immune cells, host damage strategies, and metabolic adaptations. Here we provide insights on key aspects of their biology, epidemiology, commensal and pathogenic lifestyles, interactions with the immune system, and antifungal resistance.
Collapse
Affiliation(s)
- Myrto Katsipoulaki
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Mark H. T. Stappers
- MRC Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Dhara Malavia-Jones
- MRC Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Neil A. R. Gow
- MRC Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
3
|
Clavijo-Giraldo DM, Pérez-García LA, Hernández-Chávez MJ, Martínez-Duncker I, Mora-Montes HM. Contribution of N-Linked Mannosylation Pathway to Candida parapsilosis and Candida tropicalis Biofilm Formation. Infect Drug Resist 2023; 16:6843-6857. [PMID: 37908782 PMCID: PMC10614665 DOI: 10.2147/idr.s431745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/18/2023] [Indexed: 11/02/2023] Open
Abstract
Background Mycoses are a growing threat to human health, and systemic candidiasis caused by Candida parapsilosis and Candida tropicalis is frequent in immunocompromised patients. Biofilm formation is a virulence factor found in these organisms, as sessile cells adhere to surfaces, the stratification and production of extracellular matrix provides protection and resistance to antifungal drugs. Previous evidence indicated that the N-linked mannosylation pathway is relevant to C. albicans biofilms, but its contribution to other species remains unknown. Methods C. parapsilosis and C. tropicalis och1∆ mutants, which have a disrupted N-linked mannosylation pathway, were used to form biofilms. In addition, wild-type and mutant cells were also treated to remove N-linked mannans or block this pathway. Biofilms were analyzed by quantifying the included fungal biomass, and extracellular matrix components. Moreover, gene expression and secreted hydrolytic enzymes were also quantified in these biofilms. Results The och1∆ mutants showed a reduced ability to form biofilms in both fungal species when compared to the wild-type and control strains. This observation was confirmed by trimming N-linked mannans from walls or blocking the pathway with tunicamycin B. According to this observation, mutant, and treated cells showed an altered composition of the extracellular matrix and increased susceptibility to antifungal drugs when compared to control or untreated cells. The gene expression of secreted virulence factors, such as aspartyl proteinases and phospholipases, was normal in all the tested cells but the secreted activity was reduced, suggesting a defect in the secretory pathway, which was later confirmed by treating cells with brefeldin A. Conclusion Proper N-linked mannosylation is required for biofilm formation in both C. parapsilosis and C. tropicalis. Disruption of this posttranslational modification affected the secretory pathway, offering a link between glycosylation and biofilm formation.
Collapse
Affiliation(s)
| | - Luis A Pérez-García
- Departamento de Biología, Universidad de Guanajuato, Guanajuato, Gto., México
- Facultad de Estudios Profesionales Zona Huasteca, Universidad Autónoma de San Luis Potosí, Ciudad Valles, San Luis Potosí, México
| | | | - Iván Martínez-Duncker
- Laboratorio de Glicobiología Humana y Diagnóstico Molecular; Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | | |
Collapse
|
4
|
Heinzl GC, Eriksen DB, Johnsen PR, Scarafoni A, Frøkiær H. Protein Concentration Affects the Food Allergen γ-Conglutin Uptake and Bacteria-Induced Cytokine Production in Dendritic Cells. Biomolecules 2023; 13:1531. [PMID: 37892213 PMCID: PMC10605286 DOI: 10.3390/biom13101531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/08/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
γ-Conglutin (γ-C) from lupin seeds has been identified as a potent allergen with cross reactivity to peanuts. Here, we investigated how γ-C affected the response in bone marrow-derived dendritic cells (DCs) to bacterial stimuli. γ-C enhanced L. acidophilus NCFM (LaNCFM)-induced IL-12, IL-10, and IL-23 dose-dependently. In contrast, together with E. coli Nissle or LPS, γ-C reduced the production of IL-12 but not of IL-23 and IL-10. Enzyme-hydrolyzed γ-C also enhanced LaNCFM-induced IL-12 and IL-23 production. All preparations induced ROS production in the DCs. The mannose receptor ligands mannan and dextran and the clathrin inhibitor monodansylcadaverine partly inhibited the endocytosis of γ-C. Kunitz trypsin inhibitor and the scavenger receptor ligand polyG also enhanced LaNCFM-induced IL-12, indicating the involvement of receptors other than C-type lectin receptors. The endocytosis of labeled γ-C increased dose-dependently by addition of unlabeled γ-C, which coincided with γ-C's tendency to aggregate. Taken together, γ-C aggregation affects endocytosis and affects the cytokine production induced by gram-positive and gram-negative bacteria differently. We suggest that γ-C is taken up by the same mechanism as other food proteins but due to aggregation is present in higher concentration in the DCs. This could influence the resulting T-cell response in a microbial stimuli-dependent way.
Collapse
Affiliation(s)
- Giuditta C Heinzl
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy
- Department of Veterinary and Animal Sciences, University of Copenhagen, Ridebanevej 9, 1871 Frederiksberg, Denmark
| | - Danny Blichfeldt Eriksen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Ridebanevej 9, 1871 Frederiksberg, Denmark
| | - Peter Riber Johnsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Ridebanevej 9, 1871 Frederiksberg, Denmark
| | - Alessio Scarafoni
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy
| | - Hanne Frøkiær
- Department of Veterinary and Animal Sciences, University of Copenhagen, Ridebanevej 9, 1871 Frederiksberg, Denmark
| |
Collapse
|
5
|
Galván-Hernández AK, Gómez-Gaviria M, Martínez-Duncker I, Martínez-Álvarez JA, Mora-Montes HM. Differential Recognition of Clinically Relevant Sporothrix Species by Human Granulocytes. J Fungi (Basel) 2023; 9:986. [PMID: 37888242 PMCID: PMC10607474 DOI: 10.3390/jof9100986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/28/2023] Open
Abstract
Sporotrichosis is a cutaneous mycosis that affects humans and animals and has a worldwide distribution. This infection is mainly caused by Sporothrix schenckii, Sporothrix brasiliensis, and Sporothrix globosa. Current research about anti-Sporothrix immunity has been mainly focused on S. schenckii and S. brasiliensis, using different types of human or animal immune cells. Granulocytes are a group of cells relevant for cytokine production, with the capacity for phagocytosis and the generation of neutrophil extracellular traps (NETs). Considering their importance, this study aimed to compare the capacity of human granulocytes to stimulate cytokines, uptake, and form NETs when interacting with different Sporothrix species. We found that conidia, germlings, and yeast-like cells from S. schenckii, S. brasiliensis, and S. globosa play an important role in the interaction with these immune cells, establishing morphology- and species-specific cytokine profiles. S. brasil-iensis tended to stimulate an anti-inflammatory cytokine profile, whilst the other two species had a proinflammatory one. S. globosa cells were the most phagocytosed cells, which occurred through a dectin-1-dependent mechanism, while the uptake of S. brasiliensis mainly occurred via TLR4 and CR3. Cell wall N-linked and O-linked glycans, along with β-1,3-glucan, played a significant role in the interaction of these Sporothrix species with human granulocytes. Finally, this study indicates that conidia and yeast-like cells are capable of inducing NETs, with the latter being a better stimulant. To the best of our knowledge, this is the first study that reports the cytokine profiles produced by human granulocytes interacting with Sporothrix cells.
Collapse
Affiliation(s)
- Ana K. Galván-Hernández
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P., Guanajuato Gto. 36050, Mexico; (A.K.G.-H.); (M.G.-G.); (J.A.M.-Á.)
| | - Manuela Gómez-Gaviria
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P., Guanajuato Gto. 36050, Mexico; (A.K.G.-H.); (M.G.-G.); (J.A.M.-Á.)
| | - Iván Martínez-Duncker
- Laboratorio de Glicobiología Humana y Diagnóstico Molecular, Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca Mor. 62209, Mexico;
| | - José A. Martínez-Álvarez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P., Guanajuato Gto. 36050, Mexico; (A.K.G.-H.); (M.G.-G.); (J.A.M.-Á.)
| | - Héctor M. Mora-Montes
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P., Guanajuato Gto. 36050, Mexico; (A.K.G.-H.); (M.G.-G.); (J.A.M.-Á.)
| |
Collapse
|
6
|
López-Ramírez LA, Martínez-Duncker I, Márquez-Márquez A, Vargas-Macías AP, Mora-Montes HM. Silencing of ROT2, the Encoding Gene of the Endoplasmic Reticulum Glucosidase II, Affects the Cell Wall and the Sporothrix schenckii-Host Interaction. J Fungi (Basel) 2022; 8:1220. [PMID: 36422041 PMCID: PMC9692468 DOI: 10.3390/jof8111220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 08/01/2023] Open
Abstract
Sporothrix schenckii is a member of the Sporothrix pathogenic clade and one of the most common etiological agents of sporotrichosis, a subcutaneous fungal infection that affects both animal and human beings. Like other fungal pathogens, the Sporothrix cell wall is composed of structural polysaccharides and glycoproteins that are covalently modified with both N-linked and O-linked glycans. Thus far, little is known about the N-linked glycosylation pathway in this organism or its contribution to cell wall composition and interaction with the host. Here, we silenced ROT2, which encodes the catalytic subunit of the endoplasmic reticulum α-glucosidase II, a processing enzyme key for the N-linked glycan core processing. Silencing of ROT2 led to the accumulation of the Glc2Man9GlcNAC2 glycan core at the cell wall and a reduction in the total content of N-linked glycans found in the wall. However, the highly silenced mutants showed a compensatory mechanism with increased content of cell wall O-linked glycans. The phenotype of mutants with intermediate levels of ROT2 silencing was more informative, as they showed changes in the cell wall composition and exposure of β-1.3-glucans and chitin at the cell surface. Furthermore, the ability to stimulate cytokine production by human mononuclear cells was affected, along with the phagocytosis by human monocyte-derived macrophages, in a mannose receptor-, complement receptor 3-, and TLR4-dependent stimulation. In an insect model of experimental sporotrichosis, these mutant cells showed virulence attenuation. In conclusion, S. schenckii ROT2 is required for proper N-linked glycosylation, cell wall organization and composition, and interaction with the host.
Collapse
Affiliation(s)
- Luz A. López-Ramírez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P., Guanajuato 36050, Mexico
| | - Iván Martínez-Duncker
- Laboratorio de Glicobiología Humana y Diagnóstico Molecular, Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico
| | - Anayeli Márquez-Márquez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P., Guanajuato 36050, Mexico
| | - Ana P. Vargas-Macías
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P., Guanajuato 36050, Mexico
| | - Héctor M. Mora-Montes
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P., Guanajuato 36050, Mexico
| |
Collapse
|
7
|
Mentrup T, Stumpff-Niggemann AY, Leinung N, Schlosser C, Schubert K, Wehner R, Tunger A, Schatz V, Neubert P, Gradtke AC, Wolf J, Rose-John S, Saftig P, Dalpke A, Jantsch J, Schmitz M, Fluhrer R, Jacobsen ID, Schröder B. Phagosomal signalling of the C-type lectin receptor Dectin-1 is terminated by intramembrane proteolysis. Nat Commun 2022; 13:1880. [PMID: 35388002 PMCID: PMC8987071 DOI: 10.1038/s41467-022-29474-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/14/2022] [Indexed: 11/23/2022] Open
Abstract
Sensing of pathogens by pattern recognition receptors (PRR) is critical to initiate protective host defence reactions. However, activation of the immune system has to be carefully titrated to avoid tissue damage necessitating mechanisms to control and terminate PRR signalling. Dectin-1 is a PRR for fungal β-glucans on immune cells that is rapidly internalised after ligand-binding. Here, we demonstrate that pathogen recognition by the Dectin-1a isoform results in the formation of a stable receptor fragment devoid of the ligand binding domain. This fragment persists in phagosomal membranes and contributes to signal transduction which is terminated by the intramembrane proteases Signal Peptide Peptidase-like (SPPL) 2a and 2b. Consequently, immune cells lacking SPPL2b demonstrate increased anti-fungal ROS production, killing capacity and cytokine responses. The identified mechanism allows to uncouple the PRR signalling response from delivery of the pathogen to degradative compartments and identifies intramembrane proteases as part of a regulatory circuit to control anti-fungal immune responses. Dectin-1 is a critical component of the innate sensing repertoire which is involved in pattern based recognition of fungal pathogens. Here the authors show that intramembrane proteolysis is involved in the regulation of the antifungal host response by termination of the phagosomal signalling of Dectin-1.
Collapse
Affiliation(s)
- Torben Mentrup
- Institute of Physiological Chemistry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | | | - Nadja Leinung
- Institute of Physiological Chemistry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Christine Schlosser
- Biochemistry and Molecular Biology, Institute of Theoretical Medicine, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Katja Schubert
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Rebekka Wehner
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Antje Tunger
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany
| | - Valentin Schatz
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg and University of Regensburg, Regensburg, Germany
| | - Patrick Neubert
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg and University of Regensburg, Regensburg, Germany
| | - Ann-Christine Gradtke
- Institute of Physiological Chemistry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Janina Wolf
- Biochemical Institute, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Stefan Rose-John
- Biochemical Institute, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Paul Saftig
- Biochemical Institute, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Alexander Dalpke
- Institute of Medical Microbiology and Virology, University Hospital Carl Gustav Carus, Medical Faculty, Technische Universität Dresden, Dresden, Germany
| | - Jonathan Jantsch
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg and University of Regensburg, Regensburg, Germany
| | - Marc Schmitz
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Regina Fluhrer
- Biochemistry and Molecular Biology, Institute of Theoretical Medicine, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Ilse D Jacobsen
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany.,Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Bernd Schröder
- Institute of Physiological Chemistry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
8
|
Patten DA, Wilkinson AL, O'Keeffe A, Shetty S. Scavenger Receptors: Novel Roles in the Pathogenesis of Liver Inflammation and Cancer. Semin Liver Dis 2022; 42:61-76. [PMID: 34553345 PMCID: PMC8893982 DOI: 10.1055/s-0041-1733876] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The scavenger receptor superfamily represents a highly diverse collection of evolutionarily-conserved receptors which are known to play key roles in host homeostasis, the most prominent of which is the clearance of unwanted endogenous macromolecules, such as oxidized low-density lipoproteins, from the systemic circulation. Members of this family have also been well characterized in their binding and internalization of a vast range of exogenous antigens and, consequently, are generally considered to be pattern recognition receptors, thus contributing to innate immunity. Several studies have implicated scavenger receptors in the pathophysiology of several inflammatory diseases, such as Alzheimer's and atherosclerosis. Hepatic resident cellular populations express a diverse complement of scavenger receptors in keeping with the liver's homeostatic functions, but there is gathering interest in the contribution of these receptors to hepatic inflammation and its complications. Here, we review the expression of scavenger receptors in the liver, their functionality in liver homeostasis, and their role in inflammatory liver disease and cancer.
Collapse
Affiliation(s)
- Daniel A. Patten
- National Institute for Health Research Birmingham Liver Biomedical Research Unit, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Alex L. Wilkinson
- National Institute for Health Research Birmingham Liver Biomedical Research Unit, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Ayla O'Keeffe
- National Institute for Health Research Birmingham Liver Biomedical Research Unit, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Shishir Shetty
- National Institute for Health Research Birmingham Liver Biomedical Research Unit, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
9
|
Tamez-Castrellón AK, van der Beek SL, López-Ramírez LA, Martínez-Duncker I, Lozoya-Pérez NE, van Sorge NM, Mora-Montes HM. Disruption of protein rhamnosylation affects the Sporothrix schenckii-host interaction. Cell Surf 2021; 7:100058. [PMID: 34308006 PMCID: PMC8258688 DOI: 10.1016/j.tcsw.2021.100058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 11/24/2022] Open
Abstract
Sporotrichosis is a fungal disease caused by the members of the Sporothrix pathogenic clade, and one of the etiological agents is Sporothrix schenckii. The cell wall of this organism has been previously analyzed and thus far is known to contain an inner layer composed of chitin and β -glucans, and an outer layer of glycoproteins, which are decorated with mannose and rhamnose-containing oligosaccharides. The L-rhamnose biosynthesis pathway is common in bacteria but rare in members of the Fungi kingdom. Therefore, in this study, we aimed to disrupt this metabolic route to assess the contribution of rhamnose during the S. schenckii-host interaction. We identified and silenced in S. schenckii a functional ortholog of the bacterial rmlD gene, which encodes for an essential reductase for the synthesis of nucleotide-activated L-rhamnose. RmlD silencing did not affect fungal growth or morphology but decreased cell wall rhamnose content. Compensatory, the β-1,3-glucan levels increased and were more exposed at the cell surface. Moreover, when incubated with human peripheral blood mononuclear cells, the RmlD silenced mutants differentially stimulated cytokine production when compared with the wild-type strain, reducing TNFα and IL-6 levels and increasing IL-1 β and IL-10 production. Upon incubation with human monocyte-derived macrophages, the silenced strains were more efficiently phagocytosed than the wild-type strain. In both cases, our data suggest that rhamnose-based oligosaccharides are ligands that interact with TLR4. Finally, our findings showed that cell wall rhamnose is required for the S. schenckii virulence in the G. mellonella model of infection.
Collapse
Affiliation(s)
- Alma K. Tamez-Castrellón
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P. 36050 Guanajuato, Gto., Mexico
| | - Samantha L. van der Beek
- University Medical Center Utrecht, Medical Microbiology, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Luz A. López-Ramírez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P. 36050 Guanajuato, Gto., Mexico
| | - Iván Martínez-Duncker
- Laboratorio de Glicobiología Humana y Diagnóstico Molecular, Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca Mor. 62209, Mexico
| | - Nancy E. Lozoya-Pérez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P. 36050 Guanajuato, Gto., Mexico
| | - Nina M. van Sorge
- University Medical Center Utrecht, Medical Microbiology, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Héctor M. Mora-Montes
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P. 36050 Guanajuato, Gto., Mexico
| |
Collapse
|
10
|
Germination of a Field: Women in Candida albicans Research. CURRENT CLINICAL MICROBIOLOGY REPORTS 2021. [DOI: 10.1007/s40588-021-00169-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Fu YL, Harrison RE. Microbial Phagocytic Receptors and Their Potential Involvement in Cytokine Induction in Macrophages. Front Immunol 2021; 12:662063. [PMID: 33995386 PMCID: PMC8117099 DOI: 10.3389/fimmu.2021.662063] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/30/2021] [Indexed: 11/13/2022] Open
Abstract
Phagocytosis is an essential process for the uptake of large (>0.5 µm) particulate matter including microbes and dying cells. Specialized cells in the body perform phagocytosis which is enabled by cell surface receptors that recognize and bind target cells. Professional phagocytes play a prominent role in innate immunity and include macrophages, neutrophils and dendritic cells. These cells display a repertoire of phagocytic receptors that engage the target cells directly, or indirectly via opsonins, to mediate binding and internalization of the target into a phagosome. Phagosome maturation then proceeds to cause destruction and recycling of the phagosome contents. Key subsequent events include antigen presentation and cytokine production to alert and recruit cells involved in the adaptive immune response. Bridging the innate and adaptive immunity, macrophages secrete a broad selection of inflammatory mediators to orchestrate the type and magnitude of an inflammatory response. This review will focus on cytokines produced by NF-κB signaling which is activated by extracellular ligands and serves a master regulator of the inflammatory response to microbes. Macrophages secrete pro-inflammatory cytokines including TNFα, IL1β, IL6, IL8 and IL12 which together increases vascular permeability and promotes recruitment of other immune cells. The major anti-inflammatory cytokines produced by macrophages include IL10 and TGFβ which act to suppress inflammatory gene expression in macrophages and other immune cells. Typically, macrophage cytokines are synthesized, trafficked intracellularly and released in response to activation of pattern recognition receptors (PRRs) or inflammasomes. Direct evidence linking the event of phagocytosis to cytokine production in macrophages is lacking. This review will focus on cytokine output after engagement of macrophage phagocytic receptors by particulate microbial targets. Microbial receptors include the PRRs: Toll-like receptors (TLRs), scavenger receptors (SRs), C-type lectin and the opsonic receptors. Our current understanding of how macrophage receptor stimulation impacts cytokine production is largely based on work utilizing soluble ligands that are destined for endocytosis. We will instead focus this review on research examining receptor ligation during uptake of particulate microbes and how this complex internalization process may influence inflammatory cytokine production in macrophages.
Collapse
Affiliation(s)
- Yan Lin Fu
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| | - Rene E. Harrison
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| |
Collapse
|
12
|
Bain JM, Alonso MF, Childers DS, Walls CA, Mackenzie K, Pradhan A, Lewis LE, Louw J, Avelar GM, Larcombe DE, Netea MG, Gow NAR, Brown GD, Erwig LP, Brown AJP. Immune cells fold and damage fungal hyphae. Proc Natl Acad Sci U S A 2021; 118:e2020484118. [PMID: 33876755 PMCID: PMC8053999 DOI: 10.1073/pnas.2020484118] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Innate immunity provides essential protection against life-threatening fungal infections. However, the outcomes of individual skirmishes between immune cells and fungal pathogens are not a foregone conclusion because some pathogens have evolved mechanisms to evade phagocytic recognition, engulfment, and killing. For example, Candida albicans can escape phagocytosis by activating cellular morphogenesis to form lengthy hyphae that are challenging to engulf. Through live imaging of C. albicans-macrophage interactions, we discovered that macrophages can counteract this by folding fungal hyphae. The folding of fungal hyphae is promoted by Dectin-1, β2-integrin, VASP, actin-myosin polymerization, and cell motility. Folding facilitates the complete engulfment of long hyphae in some cases and it inhibits hyphal growth, presumably tipping the balance toward successful fungal clearance.
Collapse
Affiliation(s)
- Judith M Bain
- Aberdeen Fungal Group, Institute of Medical Sciences, Foresterhill, AB25 2ZD Aberdeen, United Kingdom
| | - M Fernanda Alonso
- Aberdeen Fungal Group, Institute of Medical Sciences, Foresterhill, AB25 2ZD Aberdeen, United Kingdom
| | - Delma S Childers
- Aberdeen Fungal Group, Institute of Medical Sciences, Foresterhill, AB25 2ZD Aberdeen, United Kingdom
| | - Catriona A Walls
- Aberdeen Fungal Group, Institute of Medical Sciences, Foresterhill, AB25 2ZD Aberdeen, United Kingdom
| | - Kevin Mackenzie
- Microscopy and Histology Facility, Institute of Medical Sciences, Foresterhill, AB25 2ZD Aberdeen, United Kingdom
| | - Arnab Pradhan
- Aberdeen Fungal Group, Institute of Medical Sciences, Foresterhill, AB25 2ZD Aberdeen, United Kingdom
- Medical Research Council Centre for Medical Mycology, University of Exeter, EX4 4QD Exeter, United Kingdom
| | - Leanne E Lewis
- Aberdeen Fungal Group, Institute of Medical Sciences, Foresterhill, AB25 2ZD Aberdeen, United Kingdom
| | - Johanna Louw
- Aberdeen Fungal Group, Institute of Medical Sciences, Foresterhill, AB25 2ZD Aberdeen, United Kingdom
| | - Gabriela M Avelar
- Aberdeen Fungal Group, Institute of Medical Sciences, Foresterhill, AB25 2ZD Aberdeen, United Kingdom
| | - Daniel E Larcombe
- Aberdeen Fungal Group, Institute of Medical Sciences, Foresterhill, AB25 2ZD Aberdeen, United Kingdom
- Medical Research Council Centre for Medical Mycology, University of Exeter, EX4 4QD Exeter, United Kingdom
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6500HB Nijmegen, The Netherlands
- Department for Immunology and Metabolism, Life and Medical Sciences Institute, University of Bonn, 53115 Bonn, Germany
| | - Neil A R Gow
- Aberdeen Fungal Group, Institute of Medical Sciences, Foresterhill, AB25 2ZD Aberdeen, United Kingdom
- Medical Research Council Centre for Medical Mycology, University of Exeter, EX4 4QD Exeter, United Kingdom
| | - Gordon D Brown
- Aberdeen Fungal Group, Institute of Medical Sciences, Foresterhill, AB25 2ZD Aberdeen, United Kingdom
- Medical Research Council Centre for Medical Mycology, University of Exeter, EX4 4QD Exeter, United Kingdom
| | - Lars P Erwig
- Aberdeen Fungal Group, Institute of Medical Sciences, Foresterhill, AB25 2ZD Aberdeen, United Kingdom
- Johnson-Johnson Innovation, Europe, Middle East and Africa Innovation Centre, London W1G 0BG, United Kingdom
| | - Alistair J P Brown
- Aberdeen Fungal Group, Institute of Medical Sciences, Foresterhill, AB25 2ZD Aberdeen, United Kingdom;
- Medical Research Council Centre for Medical Mycology, University of Exeter, EX4 4QD Exeter, United Kingdom
| |
Collapse
|
13
|
Influences of the Culturing Media in the Virulence and Cell Wall of Sporothrix schenckii, Sporothrix brasiliensis, and Sporothrix globosa. J Fungi (Basel) 2020; 6:jof6040323. [PMID: 33260702 PMCID: PMC7712150 DOI: 10.3390/jof6040323] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/17/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023] Open
Abstract
Sporothrix schenckii, Sporothrix brasiliensis, and Sporothrix globosa are etiological agents of sporotrichosis, a human subcutaneous mycosis. Although the protocols to evaluate Sporothrix virulence in animal models are well described, the cell preparation before inoculation is not standardized, and several culturing media are used to grow yeast-like cells. Here, we found that carbon or nitrogen limitation during fungal cell preparation negatively impacted the ability of S. schenckii and S. brasiliensis to kill Galleria mellonella larvae, but not S. globosa. The fungal growth conditions associated with the short median survival of animals were accompanied by increased hemocyte countings, phenoloxidase activity, and cytotoxicity. The fungal growth under carbon or nitrogen limitation also affected the cell wall composition of both S. schenckii and S. brasiliensis and showed increased exposure of β-1,3-glucan at the cell surface, while those growing conditions had a minimal impact on the S.globosa wall, which had higher levels of this polysaccharide exposed on the wall regardless of the culture condition. This polysaccharide exposure was linked to the increased ability of insect hemocytes to uptake fungal cells, suggesting that this is one of the mechanisms behind the lower virulence of S.globosa or cells from the other species grown in carbon or nitrogen limitation.
Collapse
|
14
|
Gómez-Gaviria M, Lozoya-Pérez NE, Staniszewska M, Franco B, Niño-Vega GA, Mora-Montes HM. Loss of Kex2 Affects the Candida albicans Cell Wall and Interaction with Innate Immune Cells. J Fungi (Basel) 2020; 6:jof6020057. [PMID: 32365492 PMCID: PMC7344602 DOI: 10.3390/jof6020057] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/18/2022] Open
Abstract
The secretory pathway in Candida albicans involves the protein translocation into the lumen of the endoplasmic reticulum and transport to the Golgi complex, where proteins undergo posttranslational modifications, including glycosylation and proteolysis. The Golgi-resident Kex2 protease is involved in such processing and disruption of its encoding gene affected virulence and dimorphism. These previous studies were performed using cells without URA3 or with URA3 ectopically placed into the KEX2 locus. Since these conditions are known to affect the cellular fitness and the host-fungus interaction, here we generated a kex2Δ null mutant strain with URA3 placed into the neutral locus RPS1. The characterization of this strain showed defects in the cell wall composition, with a reduction in the N-linked mannan content, and the increment in the levels of O-linked mannans, chitin, and β-glucans. The defects in the mannan content are likely linked to changes in Golgi-resident enzymes, as the α-1,2-mannosyltransferase and α-1,6-mannosyltransferase activities were incremented and reduced, respectively. The mutant cells also showed reduced ability to stimulate cytokine production and phagocytosis by human mononuclear cells and macrophages, respectively. Collectively, these data showed that loss of Kex2 affected the cell wall composition, the protein glycosylation pathways, and interaction with innate immune cells.
Collapse
Affiliation(s)
- Manuela Gómez-Gaviria
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Guanajuato Gto 36050, Mexico; (M.G.-G.); (N.E.L.-P.); (B.F.); (G.A.N.-V.)
| | - Nancy E. Lozoya-Pérez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Guanajuato Gto 36050, Mexico; (M.G.-G.); (N.E.L.-P.); (B.F.); (G.A.N.-V.)
| | - Monika Staniszewska
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland;
| | - Bernardo Franco
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Guanajuato Gto 36050, Mexico; (M.G.-G.); (N.E.L.-P.); (B.F.); (G.A.N.-V.)
| | - Gustavo A. Niño-Vega
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Guanajuato Gto 36050, Mexico; (M.G.-G.); (N.E.L.-P.); (B.F.); (G.A.N.-V.)
| | - Hector M. Mora-Montes
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Guanajuato Gto 36050, Mexico; (M.G.-G.); (N.E.L.-P.); (B.F.); (G.A.N.-V.)
- Correspondence: ; Tel.: +52-473-732-0006 (ext. 8193)
| |
Collapse
|
15
|
Hu Y, Lu S, Xi L. Murine Macrophage Requires CD11b to Recognize Talaromyces marneffei. Infect Drug Resist 2020; 13:911-920. [PMID: 32273736 PMCID: PMC7108879 DOI: 10.2147/idr.s237401] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/10/2020] [Indexed: 01/17/2023] Open
Abstract
Introduction Talaromyces marneffei (T. marneffei) is an emerging pathogenic fungus. Macrophage-1 antigen (Mac-1, CR3, CD11b/CD18) is an important receptor on innate immune cells and can recognize pathogens. However, the importance of CR3 in phagocytosis of T. marneffei by macrophages and their responses to T. marneffei have not been clarified. Methods We show that interaction of mouse peritoneal macrophages (pMacs) or RAW264.7 macrophages with T. marneffei of its conidia spores and yeast cells enhances CR3 expression on macrophages. The phagocytosis rate was determined using flow cytometry, RT-PCR and Western blotting were used to detect CD11b expression, and the levels of IFN-γ, TNF-α, IL-2, IL-4, IL-6 and IL-10 in the co-culture supernatants were determined by ELISA. Results Incubation of mouse macrophages with T. marneffei promoted phagocytosis of T. marneffei, which was dramatically mitigated by pretreatment with anti-CD11b antibody or knockdown of CR3 expression on macrophages. Then, interferon γ, tumor necrosis factor α, IL-4, IL-10 and IL-12 production in macrophages incubation with heat-killed T. marneffei was detected. CD11b expression on mouse macrophages was upregulated by T. marneffei. Incubation of T. marneffei promoted phagocytosis of T. marneffei by macrophages and high levels of pro-inflammatory and anti-inflammatory cytokine production by macrophages, which were mitigated and abrogated by pre-treatment with anti-CD11b or knockdown of CD11b expression. Conclusion These data indicated that murine macrophage requires CD11b to recognize Talaromyces marneffei and their cytokine responses to heat-killed T. marneffei in vitro.
Collapse
Affiliation(s)
- Yongxuan Hu
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China.,Department of Dermatology and Venereology, The 3rd Affiliated Hospital of Southern Medical University, Guangzhou, People's Republic of China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, People's Republic of China
| | - Sha Lu
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Liyan Xi
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China.,Dermatology Hospital of Southern Medical University, Guangzhou, People's Republic of China.,Department of Dermatology, Guangzhou First People's Hospital, The Second Affiliated Hospital of South China University of Technology, Guangzhou, People's Republic of China
| |
Collapse
|
16
|
C-Type Lectin Receptors in Antifungal Immunity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1204:1-30. [PMID: 32152941 DOI: 10.1007/978-981-15-1580-4_1] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Most fungal species are harmless to humans and some exist as commensals on mucocutaneous surfaces. Yet many fungi are opportunistic pathogens, causing life-threatening invasive infections when the immune system becomes compromised. The fungal cell wall contains conserved pathogen-associated molecular patterns (PAMPs), which allow the immune system to distinguish between self (endogenous molecular patterns) and foreign material. Sensing of invasive microbial pathogens is achieved through recognition of PAMPs by pattern recognition receptors (PRRs). One of the predominant fungal-sensing PRRs is the C-type lectin receptor (CLR) family. These receptors bind to structures present on the fungal cell wall, eliciting various innate immune responses as well as shaping adaptive immunity. In this chapter, we specifically focus on the four major human fungal pathogens, Candida albicans, Aspergillus fumigatus, Cryptococcus neoformans and Pneumocystis jirovecii, reviewing our current understanding of the CLRs that are involved in their recognition and protection of the host.
Collapse
|
17
|
Höft MA, Hoving JC, Brown GD. Signaling C-Type Lectin Receptors in Antifungal Immunity. Curr Top Microbiol Immunol 2020; 429:63-101. [PMID: 32936383 DOI: 10.1007/82_2020_224] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We are all exposed to fungal organisms daily, and although many of these organisms are not harmful, billions of people a year contract a fungal infection. Most of these infections are not fatal and can be cleared by the host immune response. However, due to an increase in high-risk populations, the global fungal burden has increased, with more than 1.5 million deaths per year caused by invasive fungal infections. The fungal cell wall is an important surface for interacting with the host immune system as it contains pathogen-associated molecular patterns (PAMPs) which are detected as being foreign by the host pattern recognition receptors (PRRs). C-type lectin receptors are a group of PRRs that play a central role in the protection against invasive fungal infections. Following the recognition of fungal PAMPs, CLRs trigger various innate and adaptive immune responses. In this chapter, we specifically focus on C-type lectin receptors capable of activating downstream signaling pathways, resulting in protective antifungal immune responses. The current roles that these signaling CLRs play in protection against four of the most prevalent fungal infections affecting humans are reviewed. These include Candida albicans, Aspergillus fumigatus, Cryptococcus neoformans and Pneumocystis jirovecii.
Collapse
Affiliation(s)
- Maxine A Höft
- AFGrica Medical Mycology Research Unit, Institute of Infectious Disease and Molecular Medicine (IDM) at the University of Cape Town, Werner & Beit South Building, Anzio Road, Observatory, 7925, Cape Town, South Africa
| | - J Claire Hoving
- AFGrica Medical Mycology Research Unit, Institute of Infectious Disease and Molecular Medicine (IDM) at the University of Cape Town, Werner & Beit South Building, Anzio Road, Observatory, 7925, Cape Town, South Africa
| | - Gordon D Brown
- Medical Research Council Centre for Medical Mycology at the University of Exeter, Geoffrey Pope Building, Stocker Road, EX4 4QD, Exeter, UK.
| |
Collapse
|
18
|
Hatinguais R, Willment JA, Brown GD. PAMPs of the Fungal Cell Wall and Mammalian PRRs. Curr Top Microbiol Immunol 2020; 425:187-223. [PMID: 32180018 DOI: 10.1007/82_2020_201] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Fungi are opportunistic pathogens that infect immunocompromised patients and are responsible for an estimated 1.5 million deaths every year. The antifungal innate immune response is mediated through the recognition of pathogen-associated molecular patterns (PAMPs) by the host's pattern recognition receptors (PRRs). PRRs are immune receptors that ensure the internalisation and the killing of fungal pathogens. They also mount the inflammatory response, which contributes to initiate and polarise the adaptive response, controlled by lymphocytes. Both the innate and adaptive immune responses are required to control fungal infections. The immune recognition of fungal pathogen primarily occurs at the interface between the membrane of innate immune cells and the fungal cell wall, which contains a number of PAMPs. This chapter will focus on describing the main mammalian PRRs that have been shown to bind to PAMPs from the fungal cell wall of the four main fungal pathogens: Candida albicans, Aspergillus fumigatus, Cryptococcus neoformans and Pneumocystis jirovecii. We will describe these receptors, their functions and ligands to provide the reader with an overview of how the immune system recognises fungal pathogens and responds to them.
Collapse
Affiliation(s)
- Remi Hatinguais
- MRC Centre for Medical Mycology at University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, UK
| | - Janet A Willment
- MRC Centre for Medical Mycology at University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, UK
| | - Gordon D Brown
- MRC Centre for Medical Mycology at University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, UK.
| |
Collapse
|
19
|
Querol Cano L, Tagit O, Dolen Y, van Duffelen A, Dieltjes S, Buschow SI, Niki T, Hirashima M, Joosten B, van den Dries K, Cambi A, Figdor CG, van Spriel AB. Intracellular Galectin-9 Controls Dendritic Cell Function by Maintaining Plasma Membrane Rigidity. iScience 2019; 22:240-255. [PMID: 31786520 PMCID: PMC6906692 DOI: 10.1016/j.isci.2019.11.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 10/17/2019] [Accepted: 11/11/2019] [Indexed: 12/24/2022] Open
Abstract
Endogenous extracellular Galectins constitute a novel mechanism of membrane protein organization at the cell surface. Although Galectins are also highly expressed intracellularly, their cytosolic functions are poorly understood. Here, we investigated the role of Galectin-9 in dendritic cell (DC) surface organization and function. By combining functional, super-resolution and atomic force microscopy experiments to analyze membrane stiffness, we identified intracellular Galectin-9 to be indispensable for plasma membrane integrity and structure in DCs. Galectin-9 knockdown studies revealed intracellular Galectin-9 to directly control cortical membrane structure by modulating Rac1 activity, providing the underlying mechanism of Galectin-9-dependent actin cytoskeleton organization. Consequent to its role in maintaining plasma membrane structure, phagocytosis studies revealed that Galectin-9 was essential for C-type-lectin receptor-mediated pathogen uptake by DCs. This was confirmed by the impaired phagocytic capacity of Galectin-9-null murine DCs. Together, this study demonstrates a novel role for intracellular Galectin-9 in modulating DC function, which may be evolutionarily conserved.
Collapse
Affiliation(s)
- Laia Querol Cano
- Department of Tumour Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 26-28, Nijmegen 6525 GA, The Netherlands
| | - Oya Tagit
- Department of Tumour Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 26-28, Nijmegen 6525 GA, The Netherlands
| | - Yusuf Dolen
- Department of Tumour Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 26-28, Nijmegen 6525 GA, The Netherlands
| | - Anne van Duffelen
- Department of Tumour Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 26-28, Nijmegen 6525 GA, The Netherlands
| | - Shannon Dieltjes
- Department of Tumour Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 26-28, Nijmegen 6525 GA, The Netherlands
| | - Sonja I Buschow
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Wytemaweg 80, Rotterdam 3015 CN, The Netherlands
| | - Toshiro Niki
- GalPharma Co., Ltd., Takamatsu, Kagawa 761-0301, Japan; Department of Immunology and Immunopathology, Faculty of Medicine, Kagawa University, Takamatsu, Kagawa, 761-0793, Japan
| | - Mitsuomi Hirashima
- GalPharma Co., Ltd., Takamatsu, Kagawa 761-0301, Japan; Department of Immunology and Immunopathology, Faculty of Medicine, Kagawa University, Takamatsu, Kagawa, 761-0793, Japan
| | - Ben Joosten
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 26-28, 6525 GA Nijmegen, The Netherlands
| | - Koen van den Dries
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 26-28, 6525 GA Nijmegen, The Netherlands
| | - Alessandra Cambi
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 26-28, 6525 GA Nijmegen, The Netherlands
| | - Carl G Figdor
- Department of Tumour Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 26-28, Nijmegen 6525 GA, The Netherlands
| | - Annemiek B van Spriel
- Department of Tumour Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 26-28, Nijmegen 6525 GA, The Netherlands.
| |
Collapse
|
20
|
Mathiesen R, Eld HMS, Sørensen J, Fuglsang E, Lund LD, Taverniti V, Frøkiær H. Mannan Enhances IL-12 Production by Increasing Bacterial Uptake and Endosomal Degradation in L. acidophilus and S. aureus Stimulated Dendritic Cells. Front Immunol 2019; 10:2646. [PMID: 31803184 PMCID: PMC6873232 DOI: 10.3389/fimmu.2019.02646] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 10/25/2019] [Indexed: 01/04/2023] Open
Abstract
The mannose receptor (MR) is a C-type lectin involved in endocytosis and with a poorly defined ability to modulate cellular activation. We investigated the effect of mannan treatment prior to stimulation of murine bone marrow-derived dendritic cells with the Gram-positive bacteria Lactobacillus acidophilus NCFM (L. acidophilus) on the induction of Interleukin (IL)-12. Mannan enhanced the IL-12 production induced by L. acidophilus in a dose dependent manner (up to 230% enhancement). Additionally, mannan-enhanced IL-12 induction was also demonstrated with another Gram-positive bacteria, Staphylococcus aureus (S. aureus), while an IL-12 reducing effect was seen on Escherichia coli stimulated cells. Furthermore, the expression of Interferon β (Ifnb) was increased in cells treated with mannan prior to stimulation with L. acidophilus. The addition of mannan but not of bacteria led to endocytosis of MR, while addition of mannan prior to L. acidophilus or S. aureus resulted in increased endocytosis of bacteria, a faster killing of endocytosed bacteria, and increased reactive oxygen species production. Expression of signaling lymphocytic activation molecule (SLAMF)1 shown previously to be involved in the facilitation of endosomal degradation was upregulated by mannan but not by L. acidophilus and S. aureus. The IL-12 enhancement by mannan but not the IL-12 induced by the bacteria was abrogated by addition of inhibitors of clathrin coated pits (chlorpromazine and monodansylcadaverine). Furthermore, the addition of acid sphingomyelinase, a facilitator of ceramide raft formation, prior to addition of L. acidophilus enhanced the IL-12 production and the endocytosis of bacteria. In summary, our results show that mannan increases the IL-12 production induced by some Gram-positive bacteria through MR-endocytosis, which increases bacterial endocytosis and endosomal killing. The differential effect of MR activation on the IL-12 production induced by Gram-positive and Gram-negative bacteria may influence the immune response toward allergens and other glycoproteins.
Collapse
Affiliation(s)
- Ronja Mathiesen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Helene M S Eld
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Juliane Sørensen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Eva Fuglsang
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lisbeth Drozd Lund
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Valentina Taverniti
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Food, Environmental and Nutritional Science, Università degli Studi di Milano, Milan, Italy
| | - Hanne Frøkiær
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
21
|
Hernández-Chávez MJ, Franco B, Clavijo-Giraldo DM, Hernández NV, Estrada-Mata E, Mora-Montes HM. Role of protein phosphomannosylation in the Candida tropicalis-macrophage interaction. FEMS Yeast Res 2019; 18:4989128. [PMID: 29718196 DOI: 10.1093/femsyr/foy053] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 04/26/2018] [Indexed: 12/16/2022] Open
Abstract
Candida tropicalis is an opportunistic fungal pathogen responsible for mucosal and systemic infections. The cell wall is the initial contact point between a fungal cell and the host immune system, and mannoproteins are important components that play key roles when interacting with host cells. In Candida albicans, mannans are modified by mannosyl-phosphate moieties, named phosphomannans, which can work as molecular scaffolds to synthesize β1,2-mannooligosaccharides, and MNN4 is a positive regulator of the phosphomannosylation pathway. Here, we showed that C. tropicalis also displays phosphomannans on the cell surface, but the amount of this cell wall component varies depending on the fungal strain. We also identified a functional ortholog of CaMNN4 in C. tropicalis. Disruption of this gene caused depletion of phosphomannan content. The C. tropicalis mnn4Δ did not show defects in the ability to stimulate cytokine production by human mononuclear cells but displayed virulence attenuation in an insect model of candidiasis. When the mnn4Δ-macrophage interaction was analyzed, results showed that presence of cell wall phosphomannan was critical for C. tropicalis phagocytosis. Finally, our results strongly suggest a differential role for phosphomannans during phagocytosis of C. albicans and C. tropicalis.
Collapse
Affiliation(s)
- Marco J Hernández-Chávez
- Departamento de Biología, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P. 36050, Guanajuato, Gto., México
| | - Bernardo Franco
- Departamento de Biología, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P. 36050, Guanajuato, Gto., México
| | - Diana M Clavijo-Giraldo
- Departamento de Biología, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P. 36050, Guanajuato, Gto., México
| | - Nahúm V Hernández
- Departamento de Biología, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P. 36050, Guanajuato, Gto., México
| | - Eine Estrada-Mata
- Departamento de Biología, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P. 36050, Guanajuato, Gto., México
| | - Héctor Manuel Mora-Montes
- Departamento de Biología, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P. 36050, Guanajuato, Gto., México
| |
Collapse
|
22
|
Tamai R, Kiyoura Y. Heat-killed Candida albicans augments synthetic bacterial component-induced proinflammatory cytokine production. Folia Microbiol (Praha) 2019; 64:555-566. [PMID: 30656591 DOI: 10.1007/s12223-019-00679-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 01/07/2019] [Indexed: 12/23/2022]
Abstract
Candida albicans can enhance the invasion of oral epithelial cells by Porphyromonas gingivalis, although the fungus is not a periodontal pathogen. In this study, we investigated whether C. albicans augments proinflammatory cytokine production by mouse macrophage-like J774.1 cells incubated with synthetic bacterial components. Mouse macrophage-like J774.1 cells, mouse primary splenocytes, human THP-1 cells, and A549 cells were pretreated with or without heat-killed C. albicans (HKCA) or substitutes for C. albicans cell wall components in 96-well flat-bottomed plates. Cells were then washed and incubated with Pam3CSK4, a Toll-like receptor (TLR) 2 ligand, or lipid A, a TLR4 ligand. Culture supernatants were analyzed by ELISA for secreted IL-6, MCP-1, TNF-α, and IL-8. HKCA augmented TLR ligand-induced proinflammatory cytokine production by J774.1 cells, mouse splenocytes, and THP-1 cells, but not A549 cells. However, IL-6, MCP-1, and TNF-α production induced by Pam3CSK4 or lipid A was not augmented when cells were pretreated with curdlan, a dectin-1 ligand, or mannan, a dectin-2 ligand. In contrast, pretreatment of cells with TLR ligands upregulated the production of IL-6 and TNF-α, but not MCP-1, induced by Pam3CSK4 or lipid A. The results suggest that C. albicans augments synthetic bacterial component-induced cytokine production by J774.1 cells via the TLR pathway, but not the dectin-1 or dectin-2 pathway.
Collapse
Affiliation(s)
- Riyoko Tamai
- Department of Oral Medical Science, Ohu University School of Dentistry, 31-1 Misumido, Tomitamachi, Koriyama, Fukushima, 963-8611, Japan.
| | - Yusuke Kiyoura
- Department of Oral Medical Science, Ohu University School of Dentistry, 31-1 Misumido, Tomitamachi, Koriyama, Fukushima, 963-8611, Japan
| |
Collapse
|
23
|
Goyal S, Castrillón-Betancur JC, Klaile E, Slevogt H. The Interaction of Human Pathogenic Fungi With C-Type Lectin Receptors. Front Immunol 2018; 9:1261. [PMID: 29915598 PMCID: PMC5994417 DOI: 10.3389/fimmu.2018.01261] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/18/2018] [Indexed: 01/19/2023] Open
Abstract
Fungi, usually present as commensals, are a major cause of opportunistic infections in immunocompromised patients. Such infections, if not diagnosed or treated properly, can prove fatal. However, in most cases healthy individuals are able to avert the fungal attacks by mounting proper antifungal immune responses. Among the pattern recognition receptors (PRRs), C-type lectin receptors (CLRs) are the major players in antifungal immunity. CLRs can recognize carbohydrate ligands, such as β-glucans and mannans, which are mainly found on fungal cell surfaces. They induce proinflammatory immune reactions, including phagocytosis, oxidative burst, cytokine, and chemokine production from innate effector cells, as well as activation of adaptive immunity via Th17 responses. CLRs such as Dectin-1, Dectin-2, Mincle, mannose receptor (MR), and DC-SIGN can recognize many disease-causing fungi and also collaborate with each other as well as other PRRs in mounting a fungi-specific immune response. Mutations in these receptors affect the host response and have been linked to a higher risk in contracting fungal infections. This review focuses on how CLRs on various immune cells orchestrate the antifungal response and on the contribution of single nucleotide polymorphisms in these receptors toward the risk of developing such infections.
Collapse
Affiliation(s)
- Surabhi Goyal
- Institute for Microbiology and Hygiene, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Septomics Research Center, Jena University Hospital, Jena, Germany
| | - Juan Camilo Castrillón-Betancur
- Septomics Research Center, Jena University Hospital, Jena, Germany.,International Leibniz Research School for Microbial and Biomolecular Interactions, Leibniz Institute for Natural Product Research and Infection Biology/Hans Knöll Institute, Jena, Germany
| | - Esther Klaile
- Septomics Research Center, Jena University Hospital, Jena, Germany
| | - Hortense Slevogt
- Septomics Research Center, Jena University Hospital, Jena, Germany
| |
Collapse
|
24
|
Kalia N, Kaur M, Sharma S, Singh J. A Comprehensive in Silico Analysis of Regulatory SNPs of Human CLEC7A Gene and Its Validation as Genotypic and Phenotypic Disease Marker in Recurrent Vulvovaginal Infections. Front Cell Infect Microbiol 2018; 8:65. [PMID: 29616193 PMCID: PMC5869923 DOI: 10.3389/fcimb.2018.00065] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 02/26/2018] [Indexed: 01/25/2023] Open
Abstract
Recurrent Vulvovaginal infections (RVVI) are the commonly reported microbiological syndrome affecting millions of women globally. Various molecules of innate immune system are instrumental in clearance of these microbial pathogens, thus suggested as one of the most important contributing factor in determining the disease outcome. Dendritic cell-associated C-type lectin-1 (Dectin-1) is an important molecule of innate immunity that is primarily known for its role in antifungal defenses. However, role of dectin-1 in recognition of other pathogens is also documented. The intracellular expression of dectin-1 was shown to be up-regulated by Mannose Binding Lectin (MBL)-mediated opsonophagocytosis of pathogens. Dectin-1 is encoded by CLEC7A, postulated to be a candidate gene in modulating risk of developing RVVI. In this study, we identified CLEC7A causal variants using in silico analysis. To assess their impact on susceptibility to RVVI, these causal variants along with serum dectin-1 levels (sDectin-1) were investigated using polymerase chain reaction-restriction fragment length polymorphism (PCR–RFLP) and Enzyme Linked Immnosorbent Assay (ELISA) respectively, under a case-control design. Furthermore, effect of these polymorphisms was also assessed on sMBL levels. In silico analysis revealed 9 putative functional conserved SNPs of CLEC7A. Association analysis revealed a significantly lower risk of developing RVVI and its types in carriers of CLEC7A rs3901533 G allele and its homozygous genotypes (p < 0.05). The heterozygous genotype was associated with significant protection against RVVI (p = 0.004). Haplotypes GGG and GTA showed significant protection against RVVI (p < 0.0001; p = 0.0003), Bacterial Vaginosis (p = 0.03; p = 0.002), Vulvovaginal Candidiasis (p = 0.03; p = 0.01) and Mixed Infections (p = 0.007; p = 0.04). Mean sDectin-1 levels were significantly high in RVVI and its types compared to controls (p < 0.05). Further, genotype-phenotype stratification showed significant differences within/between cases groups and controls. The CLEC7A rs3901533 polymorphism was also found to be associated with sMBL levels. The present study contributed novel insights into the role of dectin-1 in RVVI. CLEC7A rs3901533 polymorphism and high sDectin-1 levels along with low sMBL levels were found to be associated with RVVI susceptibility. Thus, screening of women with RVVI for these novel associations may lead to better diagnosis and treatment. Also genotyping method used in this study constitutes a simple and reliable assay, which can be confidently, used as a cheaper alternative for genotyping these variants in clinical settings. Finally, new restorative markers for other infectious diseases might be found by exploring nine functionally identified CLEC7A SNPs.
Collapse
Affiliation(s)
- Namarta Kalia
- Department of Molecular Biology & Biochemistry, Guru Nanak Dev University, Amritsar, India
| | - Manpreet Kaur
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, India
| | - Sujata Sharma
- Department of Gynaecology & Obstetrics, Bebe Nanki Mother and Child Care Centre, Government Medical College, Amritsar, India
| | - Jatinder Singh
- Department of Molecular Biology & Biochemistry, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|
25
|
Campuzano A, Wormley FL. Innate Immunity against Cryptococcus, from Recognition to Elimination. J Fungi (Basel) 2018. [PMID: 29518906 PMCID: PMC5872336 DOI: 10.3390/jof4010033] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cryptococcus species, the etiological agents of cryptococcosis, are encapsulated fungal yeasts that predominantly cause disease in immunocompromised individuals, and are responsible for 15% of AIDS-related deaths worldwide. Exposure follows the inhalation of the yeast into the lung alveoli, making it incumbent upon the pattern recognition receptors (PRRs) of pulmonary phagocytes to recognize highly conserved pathogen-associated molecular patterns (PAMPS) of fungi. The main challenges impeding the ability of pulmonary phagocytes to effectively recognize Cryptococcus include the presence of the yeast's large polysaccharide capsule, as well as other cryptococcal virulence factors that mask fungal PAMPs and help Cryptococcus evade detection and subsequent activation of the immune system. This review will highlight key phagocyte cell populations and the arsenal of PRRs present on these cells, such as the Toll-like receptors (TLRs), C-type lectin receptors, NOD-like receptors (NLRs), and soluble receptors. Additionally, we will highlight critical cryptococcal PAMPs involved in the recognition of Cryptococcus. The question remains as to which PRR-ligand interaction is necessary for the recognition, phagocytosis, and subsequent killing of Cryptococcus.
Collapse
Affiliation(s)
- Althea Campuzano
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX 78249, USA.
- South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX 78249, USA.
| | - Floyd L Wormley
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX 78249, USA.
- South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX 78249, USA.
| |
Collapse
|
26
|
Davidson L, Netea MG, Kullberg BJ. Patient Susceptibility to Candidiasis-A Potential for Adjunctive Immunotherapy. J Fungi (Basel) 2018; 4:E9. [PMID: 29371502 PMCID: PMC5872312 DOI: 10.3390/jof4010009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/15/2017] [Accepted: 12/30/2017] [Indexed: 12/11/2022] Open
Abstract
Candida spp. are colonizing fungi of human skin and mucosae of the gastrointestinal and genitourinary tract, present in 30-50% of healthy individuals in a population at any given moment. The host defense mechanisms prevent this commensal fungus from invading and causing disease. Loss of skin or mucosal barrier function, microbiome imbalances, or defects of immune defense mechanisms can lead to an increased susceptibility to severe mucocutaneous or invasive candidiasis. A comprehensive understanding of the immune defense against Candida is essential for developing adjunctive immunotherapy. The important role of underlying genetic susceptibility to Candida infections has become apparent over the years. In most patients, the cause of increased susceptibility to fungal infections is complex, based on a combination of immune regulation gene polymorphisms together with other non-genetic predisposing factors. Identification of patients with an underlying genetic predisposition could help determine which patients could benefit from prophylactic antifungal treatment or adjunctive immunotherapy. This review will provide an overview of patient susceptibility to mucocutaneous and invasive candidiasis and the potential for adjunctive immunotherapy.
Collapse
Affiliation(s)
- Linda Davidson
- Department of Internal Medicine and Radboud Center for Infectious diseases (RCI), Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands.
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious diseases (RCI), Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands.
| | - Bart Jan Kullberg
- Department of Internal Medicine and Radboud Center for Infectious diseases (RCI), Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands.
| |
Collapse
|
27
|
González-Hernández RJ, Jin K, Hernández-Chávez MJ, Díaz-Jiménez DF, Trujillo-Esquivel E, Clavijo-Giraldo DM, Tamez-Castrellón AK, Franco B, Gow NAR, Mora-Montes HM. Phosphomannosylation and the Functional Analysis of the Extended Candida albicans MNN4-Like Gene Family. Front Microbiol 2017; 8:2156. [PMID: 29163439 PMCID: PMC5681524 DOI: 10.3389/fmicb.2017.02156] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 10/20/2017] [Indexed: 11/21/2022] Open
Abstract
Phosphomannosylation is a modification of cell wall proteins that occurs in some species of yeast-like organisms, including the human pathogen Candida albicans. These modified mannans confer a negative charge to the wall, which is important for the interactions with phagocytic cells of the immune systems and cationic antimicrobial peptides. In Saccharomyces cerevisiae, the synthesis of phosphomannan relies on two enzymes, the phosphomannosyltransferase Ktr6 and its positive regulator Mnn4. However, in C. albicans, at least three phosphomannosyltransferases, Mnn4, Mnt3 and Mnt5, participate in the addition of phosphomannan. In addition to MNN4, C. albicans has a MNN4-like gene family composed of seven other homologous members that have no known function. Here, using the classical mini-Ura-blaster approach and the new gene knockout CRISPR-Cas9 system for gene disruption, we generated mutants lacking single and multiple genes of the MNN4 family; and demonstrate that, although Mnn4 has a major impact on the phosphomannan content, MNN42 was also required for full protein phosphomannosylation. The reintroduction of MNN41, MNN42, MNN46, or MNN47 in a genetic background lacking MNN4 partially restored the phenotype associated with the mnn4Δ null mutant, suggesting that there is partial redundancy of function between some family members and that the dominant effect of MNN4 over other genes could be due to its relative abundance within the cell. We observed that additional copies of alleles number of any of the other family members, with the exception of MNN46, restored the phosphomannan content in cells lacking both MNT3 and MNT5. We, therefore, suggest that phosphomannosylation is achieved by three groups of proteins: [i] enzymes solely activated by Mnn4, [ii] enzymes activated by the dual action of Mnn4 and any of the products of other MNN4-like genes, with exception of MNN46, and [iii] activation of Mnt3 and Mnt5 by Mnn4 and Mnn46. Therefore, although the MNN4-like genes have the potential to functionally redundant with Mnn4, they apparently do not play a major role in cell wall mannosylation under most in vitro growth conditions. In addition, our phenotypic analyses indicate that several members of this gene family influence the ability of macrophages to phagocytose C. albicans cells.
Collapse
Affiliation(s)
| | - Kai Jin
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Marco J. Hernández-Chávez
- División de Ciencias Naturales y Exactas, Departamento de Biología, Universidad de Guanajuato, Guanajuato, Mexico
| | - Diana F. Díaz-Jiménez
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Guanajuato, Mexico
| | - Elías Trujillo-Esquivel
- División de Ciencias Naturales y Exactas, Departamento de Biología, Universidad de Guanajuato, Guanajuato, Mexico
| | - Diana M. Clavijo-Giraldo
- División de Ciencias Naturales y Exactas, Departamento de Biología, Universidad de Guanajuato, Guanajuato, Mexico
| | - Alma K. Tamez-Castrellón
- División de Ciencias Naturales y Exactas, Departamento de Biología, Universidad de Guanajuato, Guanajuato, Mexico
| | - Bernardo Franco
- División de Ciencias Naturales y Exactas, Departamento de Biología, Universidad de Guanajuato, Guanajuato, Mexico
| | - Neil A. R. Gow
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Héctor M. Mora-Montes
- División de Ciencias Naturales y Exactas, Departamento de Biología, Universidad de Guanajuato, Guanajuato, Mexico
| |
Collapse
|
28
|
Dos Santos AG, Mendes ÉA, de Oliveira RP, Faria AMC, de Sousa AO, Pirovani CP, de Araújo FF, de Carvalho AT, Costa MC, Assis Santos D, Montoya QV, Rodrigues A, Dos Santos JL. Trichoderma asperelloides Spores Downregulate dectin1/2 and TLR2 Receptors of Mice Macrophages and Decrease Candida parapsilosis Phagocytosis Independent of the M1/M2 Polarization. Front Microbiol 2017; 8:1681. [PMID: 28936201 PMCID: PMC5594820 DOI: 10.3389/fmicb.2017.01681] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 08/21/2017] [Indexed: 12/29/2022] Open
Abstract
The intensive use of pesticides to control pests in agriculture has promoted several issues relating to environment. As chemical pesticides remain controversial, biocontrol agents originating from fungi could be an alternative. Among them, we highlight biocontrol agents derived from the fungi genus Trichoderma, which have been documented in limiting the growth of other phytopathogenic fungus in the roots and leaves of several plant species. An important member of this genus is Trichoderma asperelloides, whose biocontrol agents have been used to promote plant growth while also treating soil diseases caused by microorganisms in both greenhouses and outdoor crops. To evaluate the safety of fungal biological agents for human health, tests to detect potentially adverse effects, such as allergenicity, toxicity, infectivity and pathogenicity, are crucial. In addition, identifying possible immunomodulating properties of fungal biocontrol agents merits further investigation. Thus, the aim of this study was to evaluate the effects of T. asperelloides spores in the internalization of Candida parapsilosis yeast by mice phagocytes, in order to elucidate the cellular and molecular mechanism of this interaction, as a model to understand possible in vivo effects of this fungus. For this, mice were exposed to a fungal spore suspension through-intraperitoneal injection, euthanized and cells from the peripheral blood and peritoneal cavity were collected for functional, quantitative and phenotypic analysis, throughout analysis of membrane receptors gene expression, phagocytosis ability and cells immunophenotyping M1 (CCR7 and CD86) and M2 (CCR2 and CD206). Our analyses showed that phagocytes exposed to fungal spores had reduced phagocytic capacity, as well as a decrease in the quantity of neutrophils and monocytes in the peripheral blood and peritoneal cavity. Moreover, macrophages exposed to T. asperelloides spores did not display the phenotypic profile M1/M2, and had reduced expression of pattern recognition receptors, such as TLR2, dectin-1 and dectin-2, all involved in the first line of defense against clinically important yeasts. Our data could infer that T. asperelloides spores may confer susceptibility to infection by C. parapsilosis.
Collapse
Affiliation(s)
- Andréa G Dos Santos
- Programa de Pós-Graduação em Biologia e Biotecnologia de Microrganismos, Universidade Estadual de Santa CruzIlhéus, Brazil
| | - Érica A Mendes
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade de São PauloSão Paulo, Brazil
| | | | - Ana M C Faria
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Belo HorizonteBelo Horizonte, Brazil
| | | | - Carlos P Pirovani
- Departamento de Ciências Biológicas, Universidade Estadual de Santa CruzIlhéus, Brazil
| | - Fernanda F de Araújo
- Grupo Integrado de Pesquisas em Biomarcadores, Centro de Pesquisas René Rachou, Fundação Oswaldo CruzBelo Horizonte, Brazil.,Programa de Pós-Graduação em Sanidade e Produção Animal nos Trópicos, Universidade de UberabaUberaba, Brazil
| | - Andréa T de Carvalho
- Grupo Integrado de Pesquisas em Biomarcadores, Centro de Pesquisas René Rachou, Fundação Oswaldo CruzBelo Horizonte, Brazil
| | - Marliete Carvalho Costa
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Belo HorizonteBelo Horizonte, Brazil
| | - Daniel Assis Santos
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Belo HorizonteBelo Horizonte, Brazil
| | - Quimi V Montoya
- Departamento de Bioquímica e Microbiologia, Instituto de Biociências, Universidade Estadual de São PauloRio Claro, Brazil
| | - Andre Rodrigues
- Departamento de Bioquímica e Microbiologia, Instituto de Biociências, Universidade Estadual de São PauloRio Claro, Brazil
| | - Jane L Dos Santos
- Departamento de Ciências Biológicas, Universidade Estadual de Santa CruzIlhéus, Brazil
| |
Collapse
|
29
|
Mukaremera L, Lee KK, Mora-Montes HM, Gow NAR. Candida albicans Yeast, Pseudohyphal, and Hyphal Morphogenesis Differentially Affects Immune Recognition. Front Immunol 2017. [PMID: 28638380 PMCID: PMC5461353 DOI: 10.3389/fimmu.2017.00629] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Candida albicans is a human opportunist pathogen that can grow as yeast, pseudohyphae, or true hyphae in vitro and in vivo, depending on environmental conditions. Reversible cellular morphogenesis is an important virulence factor that facilitates invasion of host tissues, escape from phagocytes, and dissemination in the blood stream. The innate immune system is the first line of defense against C. albicans infections and is influenced by recognition of wall components that vary in composition in different morphological forms. However, the relationship between cellular morphogenesis and immune recognition of this fungus is not fully understood. We therefore studied various vegetative cell types of C. albicans, singly and in combination, to assess the consequences of cellular morphogenesis on selected immune cytokine outputs from human monocytes. Hyphae stimulated proportionally lower levels of certain cytokines from monocytes per unit of cell surface area than yeast cells, but did not suppress cytokine response when copresented with yeast cells. Pseudohyphal cells induced intermediate cytokine responses. Yeast monomorphic mutants had elevated cytokine responses under conditions that otherwise supported filamentous growth and mutants of yeast and hyphal cells that were defective in cell wall mannosylation or lacking certain hypha-specific cell wall proteins could variably unmask or deplete the surface of immunostimulatory ligands. These observations underline the critical importance of C. albicans morphology and morphology-associated changes in the cell wall composition that affect both immune recognition and pathogenesis.
Collapse
Affiliation(s)
- Liliane Mukaremera
- Aberdeen Fungal Group, Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen, United Kingdom.,Department of Microbiology and Immunology, Medical School, University of Minnesota, Minneapolis, MN, United States
| | - Keunsook K Lee
- Aberdeen Fungal Group, Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen, United Kingdom
| | - Hector M Mora-Montes
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Mexico
| | - Neil A R Gow
- Aberdeen Fungal Group, Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
30
|
Martínez-Álvarez JA, Pérez-García LA, Mellado-Mojica E, López MG, Martínez-Duncker I, Lópes-Bezerra LM, Mora-Montes HM. Sporothrix schenckii sensu stricto and Sporothrix brasiliensis Are Differentially Recognized by Human Peripheral Blood Mononuclear Cells. Front Microbiol 2017; 8:843. [PMID: 28539922 PMCID: PMC5423980 DOI: 10.3389/fmicb.2017.00843] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 04/25/2017] [Indexed: 12/17/2022] Open
Abstract
Sporothrix schenckii sensu stricto and S. brasiliensis are usually associated to sporotrichosis, a subcutaneous mycosis worldwide distributed. Comparative analyses between these two species indicate they contain genetic and physiological differences that are likely to impact the interaction with host cells. Here, we study the composition of the cell wall from conidia, yeast-like cells and germlings of both species and found they contained the same sugar composition. The carbohydrate proportion in the S. schenckii sensu stricto wall was similar across the three cell morphologies, with exception in the chitin content, which was significantly different in the three morphologies. The cell wall from germlings showed lower rhamnose content and higher glucose levels than other cell morphologies. In S. brasiliensis, the wall sugars were constant in the three morphologies, but glucose was lower in yeast-like cells. In S. schenckii sensu stricto cells most of chitin and β1,3-glucan were underneath wall components, but in S. brasiliensis germlings, chitin was exposed at the cell surface, and β1,3-glucan was found in the outer part of the conidia wall. We also compared the ability of these cells to stimulate cytokine production by human peripheral blood mononuclear cells. The three S. schenckii sensu stricto morphologies stimulated increased levels of pro-inflammatory cytokines, when compared to S. brasiliensis cells; while the latter, with exception of conidia, stimulated higher IL-10 levels. Dectin-1 was a key receptor for cytokine production during stimulation with the three morphologies of S. schenckii sensu stricto, but dispensable for cytokine production stimulated by S. brasiliensis germlings. TLR2 and TLR4 were also involved in the sensing of Sporothrix cells, with a major role for the former during cytokine stimulation. Mannose receptor had a minor contribution during cytokine stimulation by S. schenckii sensu stricto yeast-like cells and germlings, but S. schenckii sensu stricto conidia and S. brasiliensis yeast-like cells stimulated pro-inflammatory cytokines via this receptor. In conclusion, S. brasiliensis and S. schenckii sensu stricto, have similar wall composition, which undergoes changes depending on the cell morphology. These differences in the cell wall composition, are likely to influence the contribution of immune receptors during cytokine stimulation by human monocytes.
Collapse
Affiliation(s)
- José A Martínez-Álvarez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de GuanajuatoGuanajuato, Mexico
| | - Luis A Pérez-García
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de GuanajuatoGuanajuato, Mexico
| | - Erika Mellado-Mojica
- Centro de Investigacion y de Estudios Avanzados del Instituto Politécnico NacionalIrapuato, Mexico
| | - Mercedes G López
- Centro de Investigacion y de Estudios Avanzados del Instituto Politécnico NacionalIrapuato, Mexico
| | - Iván Martínez-Duncker
- Laboratorio de Glicobiología Humana y Diagnóstico Molecular, Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicada, Universidad Autónoma del Estado de MorelosCuernavaca, Mexico
| | - Leila M Lópes-Bezerra
- Laboratory of Cellular Mycology and Proteomics, Biology Institute, University of Rio de Janeiro StateRio de Janeiro, Brazil
| | - Héctor M Mora-Montes
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de GuanajuatoGuanajuato, Mexico
| |
Collapse
|
31
|
Martins PR, de Campos Soares ÂMV, da Silva Pinto Domeneghini AV, Golim MA, Kaneno R. Agaricus brasiliensis polysaccharides stimulate human monocytes to capture Candida albicans, express toll-like receptors 2 and 4, and produce pro-inflammatory cytokines. J Venom Anim Toxins Incl Trop Dis 2017; 23:17. [PMID: 28344593 PMCID: PMC5364684 DOI: 10.1186/s40409-017-0102-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 02/21/2017] [Indexed: 01/16/2023] Open
Abstract
Background Agaricus brasiliensis is a medicinal mushroom with immunomodulatory and antitumor activities attributed to the β-glucans presented in the polysaccharide fraction of its fruiting body. Since β-glucans enhance cellular immunoresponsiveness, in this study we aimed to evaluate the effect of an acid-treated polysaccharide-rich fraction (ATF) of A. brasiliensis on the ability of human monocytes to adhere/phagocyte C. albicans yeast cells, their expression of pattern recognition receptors and their ability to produce cytokines. Methods Adhesion/phagocytosis of FITC-labeled C. albicans was evaluated by flow cytometry. Cells were incubated with specific fluorochrome-labeled antibodies for TLR2 and 4, βGR and MR and also evaluated by flow cytometry. Monocytes were cultured with ATF, and culture supernatants were collected for analysis of in vitro cytokine production by ELISA (TNF-α, IL-1β, IL-12 and IL-10). Results ATF significantly increased the adherence/phagocytosis of C. albicans by monocytes and this was associated with enhanced expression of TLR2 and TLR4, while no effect was observed on βGR or MR. Moreover, expression of TLR4 and TLR2 was associated with higher levels of in vitro production of TNF-α and IL-1, respectively. Production of IL-10 was also increased by ATF treatment, but we found no association between its production and the expression of Toll-like receptors. Conclusion Our results provided us with evidence that A. brasiliensis polysaccharides affect human monocytes probably through the modulation of Toll-like receptors.
Collapse
Affiliation(s)
- Priscila Raquel Martins
- Department of Microbiology and Immunology, Botucatu Biosciences Institute, São Paulo State University (UNESP - Univ Estadual Paulista), Botucatu, SP Brazil.,Department of Pathology, Botucatu Medical School, São Paulo State University (UNESP - Univ Estadual Paulista), Botucatu, SP Brazil
| | | | | | - Márjorie Assis Golim
- Blood Bank Division, Botucatu Medical School, São Paulo State University (UNESP - Univ Estadual Paulista), Botucatu, SP Brazil
| | - Ramon Kaneno
- Department of Microbiology and Immunology, Botucatu Biosciences Institute, São Paulo State University (UNESP - Univ Estadual Paulista), Botucatu, SP Brazil
| |
Collapse
|
32
|
Bercusson A, de Boer L, Armstrong-James D. Endosomal sensing of fungi: current understanding and emerging concepts. Med Mycol 2017; 55:10-15. [PMID: 27596144 DOI: 10.1093/mmy/myw072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 05/01/2016] [Accepted: 07/08/2016] [Indexed: 12/25/2022] Open
Abstract
Endosomal sensing represents a key strategy by which mammalian cells detect parasitization by invading pathogens. This is critical for the control of fungal pathogens, which are for the most part phagocytosed by effector cells of the innate immune system. Despite rapid overall progress in our understanding of endosomal responses in recent times, relatively little is known about how the endosomal sensing system detects fungi and the ensuing immunological consequences. Considering that many fungal pathogens must overcome and evade endosomal killing in order to survive in the host, understanding this key area of the early innate response is crucial for our understanding of fungal infection. In this review we present a summary of our current knowledge of endosomal sensing within the context of fungal pathogens, with a focus on the myeloid compartment.
Collapse
Affiliation(s)
- Amelia Bercusson
- Fungal Pathogens Laboratory, National Heart and Lung Institute, Imperial College London, London UK SW7 6NP
| | - Leon de Boer
- Fungal Pathogens Laboratory, National Heart and Lung Institute, Imperial College London, London UK SW7 6NP
| | - Darius Armstrong-James
- Fungal Pathogens Laboratory, National Heart and Lung Institute, Imperial College London, London UK SW7 6NP
| |
Collapse
|
33
|
Heinsbroek SEM, Squadrito ML, Schilderink R, Hilbers FW, Verseijden C, Hofmann M, Helmke A, Boon L, Wildenberg ME, Roelofs JJTH, Ponsioen CY, Peters CP, Te Velde AA, Gordon S, De Palma M, de Jonge WJ. miR-511-3p, embedded in the macrophage mannose receptor gene, contributes to intestinal inflammation. Mucosal Immunol 2016; 9:960-73. [PMID: 26530135 DOI: 10.1038/mi.2015.113] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 09/19/2015] [Indexed: 02/04/2023]
Abstract
MiR-511-3p is embedded in intron 5 of the CD206/MRC1 gene Mrc1, expressed by macrophage and dendritic cell populations. CD206 and miR-511-3p expression are co-regulated, and their contribution to intestinal inflammation is unclear. We investigated their roles in intestinal inflammation in both mouse and human systems. Colons of CD206-deficient mice displayed normal numbers of monocytes, macrophage, and dendritic cells. In experimental colitis, CD206-deficient mice had attenuated inflammation compared with wild-type (WT) mice. However, neither a CD206 antagonist nor a blocking antibody reproduced this phenotype, suggesting that CD206 was not involved in this response. Macrophages isolated from CD206-deficient mice had reduced levels of miR-511-3p and Tlr4 compared with WT, which was associated with reduced pro-inflammatory cytokine production upon lipopolysaccharides (LPS) and fecal supernatant stimulation. Macrophages overexpressing miR-511-3p showed 50% increase of Tlr4 mRNA, whereas knockdown of miR-511-3p reduced Tlr4 mRNA levels by 60%, compared with scrambled microRNA (miRNA)-transduced cells. Response to anti-tumor necrosis factor (TNF) treatment has been associated with elevated macrophage CD206 expression in the mucosa. However, in colon biopsies no statistically significant change in miR-511-3p was detected. Taken together, our data show that miR-511-3p controls macrophage-mediated microbial responses and is involved in the regulation of intestinal inflammation.
Collapse
Affiliation(s)
- S E M Heinsbroek
- Academic Medical Center, Tytgat Institute for Liver and Intestinal Research, University of Amsterdam, AMC, Amsterdam, The Netherlands
| | - M L Squadrito
- The Swiss Institute for Experimental Cancer Research (ISREC), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - R Schilderink
- Academic Medical Center, Tytgat Institute for Liver and Intestinal Research, University of Amsterdam, AMC, Amsterdam, The Netherlands
| | - F W Hilbers
- Academic Medical Center, Tytgat Institute for Liver and Intestinal Research, University of Amsterdam, AMC, Amsterdam, The Netherlands
| | - C Verseijden
- Academic Medical Center, Tytgat Institute for Liver and Intestinal Research, University of Amsterdam, AMC, Amsterdam, The Netherlands
| | - M Hofmann
- Academic Medical Center, Tytgat Institute for Liver and Intestinal Research, University of Amsterdam, AMC, Amsterdam, The Netherlands
| | - A Helmke
- Academic Medical Center, Tytgat Institute for Liver and Intestinal Research, University of Amsterdam, AMC, Amsterdam, The Netherlands
| | - L Boon
- EPIRUS Biopharmaceuticals Netherlands BV, Utrecht, The Netherlands
| | - M E Wildenberg
- Academic Medical Center, Tytgat Institute for Liver and Intestinal Research, University of Amsterdam, AMC, Amsterdam, The Netherlands
| | - J J T H Roelofs
- Department of Pathology, Academic Medical Center, University of Amsterdam, AMC, Amsterdam, The Netherlands
| | - C Y Ponsioen
- Academic Medical Center, Tytgat Institute for Liver and Intestinal Research, University of Amsterdam, AMC, Amsterdam, The Netherlands
| | - C P Peters
- Academic Medical Center, Tytgat Institute for Liver and Intestinal Research, University of Amsterdam, AMC, Amsterdam, The Netherlands
| | - A A Te Velde
- Academic Medical Center, Tytgat Institute for Liver and Intestinal Research, University of Amsterdam, AMC, Amsterdam, The Netherlands
| | - S Gordon
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - M De Palma
- The Swiss Institute for Experimental Cancer Research (ISREC), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - W J de Jonge
- Academic Medical Center, Tytgat Institute for Liver and Intestinal Research, University of Amsterdam, AMC, Amsterdam, The Netherlands
| |
Collapse
|
34
|
Soltész B, Tóth B, Sarkadi AK, Erdős M, Maródi L. The Evolving View of IL-17-Mediated Immunity in Defense Against Mucocutaneous Candidiasis in Humans. Int Rev Immunol 2016; 34:348-63. [PMID: 26154078 DOI: 10.3109/08830185.2015.1049345] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The discovery of interleukin (IL)-17-mediated immunity has provided a robust framework upon which our current understanding of the mechanism involved in host defense against mucocutaneous candidiasis (CMC) has been built. Studies have shed light on how pattern recognition receptors expressed by innate immune cells recognize various components of Candida cell wall. Inborn errors of immunity affecting IL-17+ T cell differentiation have recently been defined, such as deficiencies of signal transducer and activator of transcription (STAT)3, STAT1, IL-12Rβ1 and IL-12p40, and caspase recruitment domain 9. Impaired receptor-ligand coupling was identified in patients with IL-17F and IL-17 receptor A (IL17RA) deficiency and autoimmune polyendocrine syndrome (APS) type 1. Mutation in the nuclear factor kappa B activator (ACT) 1 was described as a cause of impaired IL-17R-mediated signaling. CMC may be part of a complex clinical phenotype like in patients with deficiencies of STAT3, IL-12Rβ1/IL-12p40 and APS-1 or may be the only or dominant phenotypic manifestation of disease which is referred to as CMC disease. CMCD may result from deficiencies of STAT1, IL-17F, IL-17RA and ACT1. In this review we discuss how recent research on IL-17-mediated immunity shed light on host defense against mucocutaneous infection by Candida and how the discovery of various germ-line mutations and the characterization of associated clinical phenotypes have provided insights into the role of CD4+IL-17+ lymphocytes in the regulation of anticandidal defense of body surfaces.
Collapse
Affiliation(s)
- Beáta Soltész
- Department of Infectious Diseases and Pediatric Immunology, Faculty of Medicine, University of Debrecen , Debrecen , Hungary
| | | | | | | | | |
Collapse
|
35
|
Qin Y, Zhang L, Xu Z, Zhang J, Jiang YY, Cao Y, Yan T. Innate immune cell response upon Candida albicans infection. Virulence 2016; 7:512-26. [PMID: 27078171 DOI: 10.1080/21505594.2016.1138201] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Candida albicans is a polymorphic fungus which is the predominant cause of superficial and deep tissue fungal infections. This microorganism has developed efficient strategies to invade the host and evade host defense systems. However, the host immune system will be prepared for defense against the microbe by recognition of receptors, activation of signal transduction pathways and cooperation of immune cells. As a consequence, C. albicans could either be eliminated by immune cells rapidly or disseminate hematogenously, leading to life-threatening systemic infections. The interplay between Candida albicans and the host is complex, requiring recognition of the invaded pathogens, activation of intricate pathways and collaboration of various immune cells. In this review, we will focus on the effects of innate immunity that emphasize the first line protection of host defense against invaded C. albicans including the basis of receptor-mediated recognition and the mechanisms of cell-mediated immunity.
Collapse
Affiliation(s)
- Yulin Qin
- a Research and Develop Center of New Drug, School of Pharmacy, Second Military Medical University , Shanghai , China
| | - Lulu Zhang
- a Research and Develop Center of New Drug, School of Pharmacy, Second Military Medical University , Shanghai , China
| | - Zheng Xu
- a Research and Develop Center of New Drug, School of Pharmacy, Second Military Medical University , Shanghai , China
| | - Jinyu Zhang
- a Research and Develop Center of New Drug, School of Pharmacy, Second Military Medical University , Shanghai , China
| | - Yuan-Ying Jiang
- a Research and Develop Center of New Drug, School of Pharmacy, Second Military Medical University , Shanghai , China
| | - Yongbing Cao
- a Research and Develop Center of New Drug, School of Pharmacy, Second Military Medical University , Shanghai , China
| | - Tianhua Yan
- b Department of Pharmacology , School of Pharmacy, China Pharmaceutical University , Nanjing , China
| |
Collapse
|
36
|
Loke I, Kolarich D, Packer NH, Thaysen-Andersen M. Emerging roles of protein mannosylation in inflammation and infection. Mol Aspects Med 2016; 51:31-55. [PMID: 27086127 DOI: 10.1016/j.mam.2016.04.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/05/2016] [Accepted: 04/10/2016] [Indexed: 02/07/2023]
Abstract
Proteins are frequently modified by complex carbohydrates (glycans) that play central roles in maintaining the structural and functional integrity of cells and tissues in humans and lower organisms. Mannose forms an essential building block of protein glycosylation, and its functional involvement as components of larger and diverse α-mannosidic glycoepitopes in important intra- and intercellular glycoimmunological processes is gaining recognition. With a focus on the mannose-rich asparagine (N-linked) glycosylation type, this review summarises the increasing volume of literature covering human and non-human protein mannosylation, including their structures, biosynthesis and spatiotemporal expression. The review also covers their known interactions with specialised host and microbial mannose-recognising C-type lectin receptors (mrCLRs) and antibodies (mrAbs) during inflammation and pathogen infection. Advances in molecular mapping technologies have recently revealed novel immuno-centric mannose-terminating truncated N-glycans, termed paucimannosylation, on human proteins. The cellular presentation of α-mannosidic glycoepitopes on N-glycoproteins appears tightly regulated; α-mannose determinants are relative rare glycoepitopes in physiological extracellular environments, but may be actively secreted or leaked from cells to transmit potent signals when required. Simultaneously, our understanding of the molecular basis on the recognition of mannosidic epitopes by mrCLRs including DC-SIGN, mannose receptor, mannose binding lectin and mrAb is rapidly advancing, together with the functional implications of these interactions in facilitating an effective immune response during physiological and pathophysiological conditions. Ultimately, deciphering these complex mannose-based receptor-ligand interactions at the detailed molecular level will significantly advance our understanding of immunological disorders and infectious diseases, promoting the development of future therapeutics to improve patient clinical outcomes.
Collapse
Affiliation(s)
- Ian Loke
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Daniel Kolarich
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Nicolle H Packer
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Morten Thaysen-Andersen
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| |
Collapse
|
37
|
Bojarczuk A, Miller KA, Hotham R, Lewis A, Ogryzko NV, Kamuyango AA, Frost H, Gibson RH, Stillman E, May RC, Renshaw SA, Johnston SA. Cryptococcus neoformans Intracellular Proliferation and Capsule Size Determines Early Macrophage Control of Infection. Sci Rep 2016; 6:21489. [PMID: 26887656 PMCID: PMC4757829 DOI: 10.1038/srep21489] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 01/26/2016] [Indexed: 01/02/2023] Open
Abstract
Cryptococcus neoformans is a significant fungal pathogen of immunocompromised patients. Many questions remain regarding the function of macrophages in normal clearance of cryptococcal infection and the defects present in uncontrolled cryptococcosis. Two current limitations are: 1) The difficulties in interpreting studies using isolated macrophages in the context of the progression of infection, and 2) The use of high resolution imaging in understanding immune cell behavior during animal infection. Here we describe a high-content imaging method in a zebrafish model of cryptococcosis that permits the detailed analysis of macrophage interactions with C. neoformans during infection. Using this approach we demonstrate that, while macrophages are critical for control of C. neoformans, a failure of macrophage response is not the limiting defect in fatal infections. We find phagocytosis is restrained very early in infection and that increases in cryptococcal number are driven by intracellular proliferation. We show that macrophages preferentially phagocytose cryptococci with smaller polysaccharide capsules and that capsule size is greatly increased over twenty-four hours of infection, a change that is sufficient to severely limit further phagocytosis. Thus, high-content imaging of cryptococcal infection in vivo demonstrates how very early interactions between macrophages and cryptococci are critical in the outcome of cryptococcosis.
Collapse
Affiliation(s)
- Aleksandra Bojarczuk
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, UK.,Bateson Centre, University of Sheffield, Sheffield, UK
| | - Katie A Miller
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, UK.,Bateson Centre, University of Sheffield, Sheffield, UK
| | - Richard Hotham
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, UK.,Bateson Centre, University of Sheffield, Sheffield, UK
| | - Amy Lewis
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, UK.,Bateson Centre, University of Sheffield, Sheffield, UK
| | - Nikolay V Ogryzko
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, UK.,Bateson Centre, University of Sheffield, Sheffield, UK
| | - Alfred A Kamuyango
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, UK.,Bateson Centre, University of Sheffield, Sheffield, UK
| | - Helen Frost
- Institute of Microbiology and Infection and School of Biosciences, University of Birmingham, Birmingham, UK
| | - Rory H Gibson
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, UK.,Bateson Centre, University of Sheffield, Sheffield, UK
| | - Eleanor Stillman
- School of Mathematics and Statistics, University of Sheffield, Sheffield, UK
| | - Robin C May
- Institute of Microbiology and Infection and School of Biosciences, University of Birmingham, Birmingham, UK.,NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospitals of Birmingham NHS Foundation Trust, Queen Elizabeth Hospital, Birmingham, UK
| | - Stephen A Renshaw
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, UK.,Bateson Centre, University of Sheffield, Sheffield, UK
| | - Simon A Johnston
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, UK.,Bateson Centre, University of Sheffield, Sheffield, UK
| |
Collapse
|
38
|
Khan NS, Kasperkovitz PV, Timmons AK, Mansour MK, Tam JM, Seward MW, Reedy JL, Puranam S, Feliu M, Vyas JM. Dectin-1 Controls TLR9 Trafficking to Phagosomes Containing β-1,3 Glucan. THE JOURNAL OF IMMUNOLOGY 2016; 196:2249-61. [PMID: 26829985 DOI: 10.4049/jimmunol.1401545] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 01/03/2016] [Indexed: 12/23/2022]
Abstract
Dectin-1 and TLR9 play distinct roles in the recognition and induction of innate immune responses to Aspergillus fumigatus and Candida albicans. Dectin-1 is a receptor for the major fungal cell wall carbohydrate β-1,3 glucan that induces inflammatory cytokines and controls phagosomal maturation through spleen tyrosine kinase activation. TLR9 is an endosomal TLR that also modulates the inflammatory cytokine response to fungal pathogens. In this study, we demonstrate that β-1,3 glucan beads are sufficient to induce dynamic redistribution and accumulation of cleaved TLR9 to phagosomes. Trafficking of TLR9 to A. fumigatus and C. albicans phagosomes requires Dectin-1 recognition. Inhibition of phagosomal acidification blocks TLR9 accumulation on phagosomes containing β-1,3 glucan beads. Dectin-1-mediated spleen tyrosine kinase activation is required for TLR9 trafficking to β-1,3 glucan-, A. fumigatus-, and C. albicans-containing phagosomes. In addition, Dectin-1 regulates TLR9-dependent gene expression. Collectively, our study demonstrates that recognition of β-1,3 glucan by Dectin-1 triggers TLR9 trafficking to β-1,3 glucan-containing phagosomes, which may be critical in coordinating innate antifungal defense.
Collapse
Affiliation(s)
- Nida S Khan
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114; Biomedical Engineering and Biotechnology, University of Massachusetts, Lowell, MA 01854
| | | | - Allison K Timmons
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114
| | - Michael K Mansour
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114; Department of Medicine, Harvard Medical School, Boston, MA 02115
| | - Jenny M Tam
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114
| | - Michael W Seward
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114
| | - Jennifer L Reedy
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114; Department of Medicine, Harvard Medical School, Boston, MA 02115
| | - Sravanthi Puranam
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114
| | - Marianela Feliu
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114; Nutrition and Metabolism, Boston University, Boston, MA 02118; and
| | - Jatin M Vyas
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114; Department of Medicine, Harvard Medical School, Boston, MA 02115; Program in Immunology, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
39
|
Estrada-Mata E, Navarro-Arias MJ, Pérez-García LA, Mellado-Mojica E, López MG, Csonka K, Gacser A, Mora-Montes HM. Members of the Candida parapsilosis Complex and Candida albicans are Differentially Recognized by Human Peripheral Blood Mononuclear Cells. Front Microbiol 2016; 6:1527. [PMID: 26793173 PMCID: PMC4710749 DOI: 10.3389/fmicb.2015.01527] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 12/18/2015] [Indexed: 01/30/2023] Open
Abstract
The systemic infections caused by members of the Candida parapsilosis complex are currently associated to high morbility and mortality rates, and are considered as relevant as those caused by Candida albicans. Since the fungal cell wall is the first point of contact with the host cells, here we performed a comparison of this organelle in members of the C. parapsilosis complex, and its relevance during interaction with human peripheral blood mononuclear cells (PBMCs). We found that the wall of the C. parapsilosis complex members is similar in composition, but differs to that from C. albicans, with less mannan content and more β-glucan and porosity levels. Furthermore, lectin-based analysis showed increased chitin and β1,3-glucan exposure at the surface of C. parapsilosis sensu lato when compared to C. albicans. Yeast cells of members of the C. parapsilosis complex stimulated more cytokine production by human PBMCs than C. albicans cells; and this significantly changed upon removal of O-linked mannans, indicating this wall component plays a significant role in cytokine stimulation by C. parapsilosis sensu lato. When inner wall components were exposed on the wall surface, C. parapsilosis sensu stricto and C. metapsilosis, but not C. orthopsilosis, stimulated higher cytokine production. Moreover, we found a strong dependency on β1,3-glucan recognition for the members of the C. parapsilosis complex, but not for live C. albicans cells; whereas TLR4 was required for TNFα production by the three members of the complex, and stimulation of IL-6 by C. orthopsilosis. Mannose receptor had a significant role during TNFα and IL-1β stimulation by members of the complex. Finally, we demonstrated that purified N- and O-mannans from either C. parapsilosis sensu lato or C. albicans are capable to block the recognition of these pathogens by human PBMCs. Together; our results suggest that the innate immune recognition of the members of the C. parapsilosis complex is differential of that reported for C. albicans. In addition, we propose that purified cell wall mannans can be used as antagonist to block specific receptors on innate immune cells.
Collapse
Affiliation(s)
- Eine Estrada-Mata
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato Guanajuato, México
| | - María J Navarro-Arias
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato Guanajuato, México
| | - Luis A Pérez-García
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato Guanajuato, México
| | - Erika Mellado-Mojica
- Centro de Investigacion y de Estudios Avanzados del Instituto Politécnico Nacional Irapuato, México
| | - Mercedes G López
- Centro de Investigacion y de Estudios Avanzados del Instituto Politécnico Nacional Irapuato, México
| | - Katalin Csonka
- Department of Microbiology, University of Szeged Szeged, Hungary
| | - Attila Gacser
- Department of Microbiology, University of Szeged Szeged, Hungary
| | - Héctor M Mora-Montes
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato Guanajuato, México
| |
Collapse
|
40
|
|
41
|
Interleukin-18 increases TLR4 and mannose receptor expression and modulates cytokine production in human monocytes. Mediators Inflamm 2015; 2015:236839. [PMID: 25873755 PMCID: PMC4383410 DOI: 10.1155/2015/236839] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 09/02/2014] [Accepted: 09/03/2014] [Indexed: 12/13/2022] Open
Abstract
Interleukin-18 is a proinflammatory cytokine belonging to the interleukin-1 family of cytokines. This cytokine exerts many unique biological and immunological effects. To explore the role of IL-18 in inflammatory innate immune responses, we investigated its impact on expression of two toll-like receptors (TLR2 and TLR4) and mannose receptor (MR) by human peripheral blood monocytes and its effect on TNF-α, IL-12, IL-15, and IL-10 production. Monocytes from healthy donors were stimulated or not with IL-18 for 18 h, and then the TLR2, TLR4, and MR expression and intracellular TNF-α, IL-12, and IL-10 production were assessed by flow cytometry and the levels of TNF-α, IL-12, IL-15, and IL-10 in culture supernatants were measured by ELISA. IL-18 treatment was able to increase TLR4 and MR expression by monocytes. The production of TNF-α and IL-10 was also increased by cytokine treatment. However, IL-18 was unable to induce neither IL-12 nor IL-15 production by these cells. Taken together, these results show an important role of IL-18 on the early phase of inflammatory response by promoting the expression of some pattern recognition receptors (PRRs) that are important during the microbe recognition phase and by inducing some important cytokines such as TNF-α and IL-10.
Collapse
|
42
|
Smeekens SP, Gresnigt MS, Becker KL, Cheng SC, Netea SA, Jacobs L, Jansen T, van de Veerdonk FL, Williams DL, Joosten LAB, Dinarello CA, Netea MG. An anti-inflammatory property of Candida albicans β-glucan: Induction of high levels of interleukin-1 receptor antagonist via a Dectin-1/CR3 independent mechanism. Cytokine 2014; 71:215-22. [PMID: 25461401 DOI: 10.1016/j.cyto.2014.10.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 09/02/2014] [Accepted: 10/28/2014] [Indexed: 12/18/2022]
Abstract
BACKGROUND Candida albicans is an opportunistic fungal pathogen that induces strong proinflammatory responses, such as IL-1β production. Much less is known about the induction of immune modulatory cytokines, such as the IL-1 receptor antagonist (IL-1Ra) that is the main natural antagonist of IL-1, by C. albicans. METHODS Peripheral blood mononuclear cells (PBMC) of healthy individuals were stimulated with C. albicans and different components of the fungal cell wall. The role of pathogen recognition receptors (PRRs) for the induction of IL-1β and IL-1Ra was investigated by using specific blockers or in PBMC from Dectin-1 deficient patients. RESULTS C. albicans induced a strong IL-1Ra response, and this induction was primarily induced by the cell-wall component β-glucan. Blocking IL-1Ra significantly increased C. albicans β-glucan hyphae induced IL-1β and IL-6 production. Surprisingly, blocking the β-glucan receptor Dectin-1 or the downstream Syk or Raf-1 pathways only marginally reduced C. albicans-induced IL-1Ra production, while blocking of the complement receptor 3 (CR3), TLR2 or TLR4 had no effect. In line with this, blocking MAP kinases had little effect on Candida-induced IL-1Ra production. PBMC isolated from Dectin-1 deficient patients produced normal IL-1Ra amounts in response to C. albicans stimulation. Interestingly, the IL-1Ra synthesis induced by β-glucan was blocked by inhibitors of the Akt/PI3K pathway. CONCLUSIONS β-glucan of C. albicans induces a strong IL-1Ra response, which is independent of the β-glucan receptors dectin-1 and CR3. These data strongly argue for the existence of an unknown β-glucan receptor that specifically induces an Akt/PI3K-dependent anti-inflammatory IL-1Ra response upon recognition of C. albicans.
Collapse
Affiliation(s)
- Sanne P Smeekens
- Department of Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands; Nijmegen Institute for Infection, Inflammation, and Immunity (N4i), Nijmegen, The Netherlands
| | - Mark S Gresnigt
- Department of Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands; Nijmegen Institute for Infection, Inflammation, and Immunity (N4i), Nijmegen, The Netherlands
| | - Katharina L Becker
- Department of Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands; Nijmegen Institute for Infection, Inflammation, and Immunity (N4i), Nijmegen, The Netherlands
| | - Shih-Chin Cheng
- Department of Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands; Nijmegen Institute for Infection, Inflammation, and Immunity (N4i), Nijmegen, The Netherlands
| | - Stejara A Netea
- Department of Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands; Nijmegen Institute for Infection, Inflammation, and Immunity (N4i), Nijmegen, The Netherlands
| | - Liesbeth Jacobs
- Department of Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands; Nijmegen Institute for Infection, Inflammation, and Immunity (N4i), Nijmegen, The Netherlands
| | - Trees Jansen
- Department of Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands; Nijmegen Institute for Infection, Inflammation, and Immunity (N4i), Nijmegen, The Netherlands
| | - Frank L van de Veerdonk
- Department of Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands; Nijmegen Institute for Infection, Inflammation, and Immunity (N4i), Nijmegen, The Netherlands
| | - David L Williams
- Department of Surgery, Quillen College of Medicine, East Tennessee State University, TN, USA
| | - Leo A B Joosten
- Department of Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands; Nijmegen Institute for Infection, Inflammation, and Immunity (N4i), Nijmegen, The Netherlands
| | - Charles A Dinarello
- Department of Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands; Department of Medicine, University of Colorado, Denver, CO, USA
| | - Mihai G Netea
- Department of Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands; Nijmegen Institute for Infection, Inflammation, and Immunity (N4i), Nijmegen, The Netherlands.
| |
Collapse
|
43
|
Drummond RA, Gaffen SL, Hise AG, Brown GD. Innate Defense against Fungal Pathogens. Cold Spring Harb Perspect Med 2014; 5:cshperspect.a019620. [PMID: 25384766 DOI: 10.1101/cshperspect.a019620] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Human fungal infections have been on the rise in recent years and proved increasingly difficult to treat as a result of the lack of diagnostics, effective antifungal therapies, and vaccines. Most pathogenic fungi do not cause disease unless there is a disturbance in immune homeostasis, which can be caused by modern medical interventions, disease-induced immunosuppression, and naturally occurring human mutations. The innate immune system is well equipped to recognize and destroy pathogenic fungi through specialized cells expressing a broad range of pattern recognition receptors (PRRs). This review will outline the cells and PRRs required for effective antifungal immunity, with a special focus on the major antifungal cytokine IL-17 and recently characterized antifungal inflammasomes.
Collapse
Affiliation(s)
- Rebecca A Drummond
- Aberdeen Fungal Group, University of Aberdeen, Aberdeen AB25 2ZD, United Kingdom
| | - Sarah L Gaffen
- Department of Medicine, Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Amy G Hise
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106 Department of Medicine, Louis Stokes Veterans Affairs Medical Centre, Cleveland, Ohio 44106
| | - Gordon D Brown
- Aberdeen Fungal Group, University of Aberdeen, Aberdeen AB25 2ZD, United Kingdom
| |
Collapse
|
44
|
Jia XM, Tang B, Zhu LL, Liu YH, Zhao XQ, Gorjestani S, Hsu YMS, Yang L, Guan JH, Xu GT, Lin X. CARD9 mediates Dectin-1-induced ERK activation by linking Ras-GRF1 to H-Ras for antifungal immunity. ACTA ACUST UNITED AC 2014; 211:2307-21. [PMID: 25267792 PMCID: PMC4203953 DOI: 10.1084/jem.20132349] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
CARD9 is dispensable for NF-κB activation induced by Dectin-1 ligands in mice. However, Dectin-1–induced H-Ras activation is mediated by a complex with CARD9, which leads to ERK activation for host innate immune responses to Candida albicans infection. Dectin-1 functions as a pattern recognition receptor for sensing fungal infection. It has been well-established that Dectin-1 induces innate immune responses through caspase recruitment domain-containing protein 9 (CARD9)–mediated NF-κB activation. In this study, we find that CARD9 is dispensable for NF-κB activation induced by Dectin-1 ligands, such as curdlan or Candida albicans yeast. In contrast, we find that CARD9 regulates H-Ras activation by linking Ras-GRF1 to H-Ras, which mediates Dectin-1–induced extracellular signal-regulated protein kinase (ERK) activation and proinflammatory responses when stimulated by their ligands. Mechanistically, Dectin-1 engagement initiates spleen tyrosine kinase (Syk)–dependent Ras-GRF1 phosphorylation, and the phosphorylated Ras-GRF1 recruits and activates H-Ras through forming a complex with CARD9, which leads to activation of ERK downstream. Finally, we show that inhibiting ERK activation significantly accelerates the death of C. albicans–infected mice, and this inhibitory effect is dependent on CARD9. Together, our studies reveal a molecular mechanism by which Dectin-1 induces H-Ras activation that leads to ERK activation for host innate immune responses against fungal infection.
Collapse
Affiliation(s)
- Xin-Ming Jia
- Research Center for Translational Medicine, Shanghai East Hospital, and Department of Immunology, Tongji University School of Medicine, Shanghai 200120, China
| | - Bing Tang
- Department of Burns, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Le-Le Zhu
- Research Center for Translational Medicine, Shanghai East Hospital, and Department of Immunology, Tongji University School of Medicine, Shanghai 200120, China
| | - Yan-Hui Liu
- Research Center for Translational Medicine, Shanghai East Hospital, and Department of Immunology, Tongji University School of Medicine, Shanghai 200120, China
| | - Xue-Qiang Zhao
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Sara Gorjestani
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Yen-Michael S Hsu
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Long Yang
- Research Center for Translational Medicine, Shanghai East Hospital, and Department of Immunology, Tongji University School of Medicine, Shanghai 200120, China
| | - Jian-Hong Guan
- Research Center for Translational Medicine, Shanghai East Hospital, and Department of Immunology, Tongji University School of Medicine, Shanghai 200120, China
| | - Guo-Tong Xu
- Research Center for Translational Medicine, Shanghai East Hospital, and Department of Immunology, Tongji University School of Medicine, Shanghai 200120, China
| | - Xin Lin
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| |
Collapse
|
45
|
Abstract
The human pathogenic fungus Candida albicans is the predominant cause of both superficial and invasive forms of candidiasis. C. albicans primarily infects immunocompromised individuals as a result of either immunodeficiency or intervention therapy, which highlights the importance of host immune defences in preventing fungal infections. The host defence system utilises a vast communication network of cells, proteins, and chemical signals distributed in blood and tissues, which constitute innate and adaptive immunity. Over the last decade the identity of many key molecules mediating host defence against C. albicans has been identified. This review will discuss how the host recognises this fungus, the events induced by fungal cells, and the host innate and adaptive immune defences that ultimately resolve C. albicans infections during health.
Collapse
|
46
|
Itano MS, Graus MS, Pehlke C, Wester MJ, Liu P, Lidke KA, Thompson NL, Jacobson K, Neumann AK. Super-resolution imaging of C-type lectin spatial rearrangement within the dendritic cell plasma membrane at fungal microbe contact sites. FRONTIERS IN PHYSICS 2014; 2:46. [PMID: 25506589 PMCID: PMC4262399 DOI: 10.3389/fphy.2014.00046] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Dendritic cells express DC-SIGN and CD206, C-type lectins (CTLs) that bind a variety of pathogens and may facilitate pathogen uptake for subsequent antigen presentation. Both proteins form punctate membrane nanodomains (∼80 nm) on naïve cells. We analyzed the spatiotemporal distribution of CTLs following host-fungal particle contact using confocal microscopy and three distinct methods of cluster identification and measurement of receptor clusters in super-resolution datasets: DBSCAN, Pair Correlation and a custom implementation of the Getis spatial statistic. Quantitative analysis of confocal and super-resolution images demonstrated that CTL nanodomains become concentrated in the contact site relative to non-contact membrane after the first hour of exposure and established that this recruitment is sustained out to 4 h. DC-SIGN nanodomains in fungal contact sites exhibit a 70% area increase and a 38% decrease in interdomain separation. Contact site CD206 nanodomains possess 90% greater area and 42% lower interdomain separation relative to non-contact regions. Contact site CTL clusters appear as disk-shaped domains of approximately 150-175 nm in diameter. The increase in length scale of CTL nanostructure in contact sites suggests that the smaller nanodomains on resting membranes may merge during fungal recognition, or that they become packed closely enough to achieve sub-resolution inter-domain edge separations of <30 nm. This study provides evidence of local receptor spatial rearrangements on the nanoscale that occur in the plasma membrane upon pathogen binding and may direct important signaling interactions required to recognize and respond to the presence of a relatively large pathogen.
Collapse
Affiliation(s)
- Michelle S. Itano
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Matthew S. Graus
- Department of Pathology, Spatiotemporal Modeling Center, University of New Mexico, Albuquerque, NM, USA
| | - Carolyn Pehlke
- Spatiotemporal Modeling Center, University of New Mexico, Albuquerque, NM, USA
| | - Michael J. Wester
- Department of Mathematics and Statistics, Spatiotemporal Modeling Center, University of New Mexico, Albuquerque, NM, USA
| | - Ping Liu
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Keith A. Lidke
- Department of Physics, Spatiotemporal Modeling Center, University of New Mexico, Albuquerque, NM, USA
| | - Nancy L. Thompson
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ken Jacobson
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Aaron K. Neumann
- Department of Pathology, Spatiotemporal Modeling Center, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
47
|
Trichinella spiralis excretory-secretory products protect against polymicrobial sepsis by suppressing MyD88 via mannose receptor. BIOMED RESEARCH INTERNATIONAL 2014; 2014:898646. [PMID: 25054155 PMCID: PMC4098621 DOI: 10.1155/2014/898646] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 06/10/2014] [Accepted: 06/15/2014] [Indexed: 12/31/2022]
Abstract
Trichinella spiralis (T. spiralis) or its excretory-secretory products (TsES) protect hosts from autoimmune diseases, which depend on inducing host T helper (Th) 2 immune response and inhibiting inflammatory factors. Sepsis is a systemic inflammatory response syndrome (SIRS) evoked by infection. Little is known about the effects of helminths or their excretory-secretory products on sepsis. Here, we investigated the effects of TsES in a mice model of polymicrobial sepsis. TsES improved survival, reduced organ injury, and enhanced bacterial clearance in septic mice. To investigate the molecular mechanism, macrophages from septic patients or the control group were incubated with TsES. TsES reduced sepsis-inducing inflammatory cytokines mediated by Toll-like receptors (TLR) in vitro by suppressing TLR adaptor-transducer myeloid differentiation factor 88 (MyD88) and nuclear factor- (NF-)-κB. Furthermore, TsES upregulated mannose receptor (MR) expression during sepsis. MR blocking attenuated the effects of TsES on MyD88 and NF-κB expression. In vivo, MR RNAi reduced the survival rate of septic mice treated with TsES, suggesting that TsES-mediated protection against polymicrobial sepsis is dependent on MR. Thus, TsES administration might be a potential therapeutic strategy for treating sepsis.
Collapse
|
48
|
Graus MS, Pehlke C, Wester MJ, Davidson LB, Steinberg SL, Neumann AK. A new tool to quantify receptor recruitment to cell contact sites during host-pathogen interaction. PLoS Comput Biol 2014; 10:e1003639. [PMID: 24874253 PMCID: PMC4038466 DOI: 10.1371/journal.pcbi.1003639] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 04/08/2014] [Indexed: 11/18/2022] Open
Abstract
To understand the process of innate immune fungal recognition, we developed computational tools for the rigorous quantification and comparison of receptor recruitment and distribution at cell-cell contact sites. We used these tools to quantify pattern recognition receptor spatiotemporal distributions in contacts between primary human dendritic cells and the fungal pathogens C. albicans, C. parapsilosis and the environmental yeast S. cerevisiae, imaged using 3D multichannel laser scanning confocal microscopy. The detailed quantitative analysis of contact sites shows that, despite considerable biochemical similarity in the composition and structure of these species' cell walls, the receptor spatiotemporal distribution in host-microbe contact sites varies significantly between these yeasts. Our findings suggest a model where innate immune cells discriminate fungal microorganisms based on differential mobilization and coordination of receptor networks. Our analysis methods are also broadly applicable to a range of cell-cell interactions central to many biological problems.
Collapse
Affiliation(s)
- Matthew S. Graus
- Department of Pathology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Carolyn Pehlke
- Center for Spatiotemporal Modeling of Cell Signaling, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Michael J. Wester
- Center for Spatiotemporal Modeling of Cell Signaling and Department of Mathematics and Statistics, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Lisa B. Davidson
- Department of Pathology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Stanly L. Steinberg
- Center for Spatiotemporal Modeling of Cell Signaling and Department of Mathematics and Statistics, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Aaron K. Neumann
- Department of Pathology, University of New Mexico, Albuquerque, New Mexico, United States of America
| |
Collapse
|
49
|
Neither dectin-2 nor the mannose receptor is required for resistance to Coccidioides immitis in mice. Infect Immun 2013; 82:1147-56. [PMID: 24379281 DOI: 10.1128/iai.01355-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We investigated the roles of the mannose receptor (MR) and Dectin-2 in resistance to pulmonary coccidioidomycosis in C57BL/6 (B6) mice and in the interaction of myeloid cells with spherules, using B6 mice with targeted mutations in Mrc1 and Clec4n. Spherules are the tissue form of Coccidioides, and we determined that the MR on bone marrow-derived dendritic cells (BMDC) was important for recognition of spherules (formalin-killed spherules [FKS]) and for secretion of interleukin 10 (IL-10) and proinflammatory cytokines in response to FKS by both elicited macrophages and BMDC. Infected MR knockout (KO) mice produced more IL-10 in their lungs than did B6 mice, and MR KO mice also made more protective Th-17 cytokines. In contrast to the MR, Dectin-2 was not required for recognition of FKS by BMDC or for the production of cytokines by BMDC in response to FKS. However, Dectin-2 KO was required for stimulation of elicited peritoneal macrophages. Despite that, lung cytokine levels were not significantly different in Dectin-2 KO mice and B6 mice 14 days after infection, except for IL-1β, which was higher in Dectin-2 KO lungs. Although both Dectin-2(-/-) and MR(-/-) myeloid cells had reduced proinflammatory cytokine responses to FKS in vitro, neither MR nor Dectin-2 deficiency reduced the resistance of B6 mice to pulmonary coccidioidomycosis.
Collapse
|
50
|
Vaginal epithelial cell-derived S100 alarmins induced by Candida albicans via pattern recognition receptor interactions are sufficient but not necessary for the acute neutrophil response during experimental vaginal candidiasis. Infect Immun 2013; 82:783-92. [PMID: 24478092 DOI: 10.1128/iai.00861-13] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Vulvovaginal candidiasis (VVC), caused by Candida albicans, affects women worldwide. Animal and clinical studies suggest that the immunopathogenic inflammatory condition of VVC is initiated by S100 alarmins in response to C. albicans, which stimulate polymorphonuclear neutrophil (PMN) migration to the vagina. The purpose of this study was to extend previous in vitro data and determine the requirement for the alarmin S100A8 in the PMN response and to evaluate pattern recognition receptors (PRRs) that initiate the response. For the former, PMN migration was evaluated in vitro or in vivo in the presence or absence of S100 alarmins initiated by several approaches. For the latter, vaginal epithelial cells were evaluated for PRR expression and C. albicans-induced S100A8 and S100A9 mRNAs, followed by evaluation of the PMN response in inoculated PRR-deficient mice. Results revealed that, consistent with previously reported in vitro data, eukaryote-derived S100A8, but not prokaryote-derived recombinant S100A8, induced significant PMN chemotaxis in vivo. Conversely, a lack of biologically active S100A8 alarmin, achieved by antibody neutralization or by using S100A9(-/-) mice, had no effect on the PMN response in vivo. In PRR analyses, whereas Toll-like receptor 4 (TLR4)- and SIGNR1-deficient vaginal epithelial cells showed a dramatic reduction in C. albicans-induced S100A8/S100A9 mRNAs in vitro, inoculated mice deficient in these PRRs showed PMN migration similar to that in wild-type controls. These results suggest that S100A8 alarmin is sufficient, but not necessary, to induce PMN migration during VVC and that the vaginal PMN response to C. albicans involves PRRs in addition to SIGNR1 and TLR4, or other induction pathways.
Collapse
|