1
|
Olson AT, Kang Y, Ladha AM, Zhu S, Lim CB, Nabet B, Lagunoff M, Gujral TS, Geballe AP. Polypharmacology-based kinome screen identifies new regulators of KSHV reactivation. PLoS Pathog 2023; 19:e1011169. [PMID: 37669313 PMCID: PMC10503724 DOI: 10.1371/journal.ppat.1011169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 09/15/2023] [Accepted: 08/16/2023] [Indexed: 09/07/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) causes several human diseases including Kaposi's sarcoma (KS), a leading cause of cancer in Africa and in patients with AIDS. KS tumor cells harbor KSHV predominantly in a latent form, while typically <5% contain lytic replicating virus. Because both latent and lytic stages likely contribute to cancer initiation and progression, continued dissection of host regulators of this biological switch will provide insights into fundamental pathways controlling the KSHV life cycle and related disease pathogenesis. Several cellular protein kinases have been reported to promote or restrict KSHV reactivation, but our knowledge of these signaling mediators and pathways is incomplete. We employed a polypharmacology-based kinome screen to identify specific kinases that regulate KSHV reactivation. Those identified by the screen and validated by knockdown experiments included several kinases that enhance lytic reactivation: ERBB2 (HER2 or neu), ERBB3 (HER3), ERBB4 (HER4), MKNK2 (MNK2), ITK, TEC, and DSTYK (RIPK5). Conversely, ERBB1 (EGFR1 or HER1), MKNK1 (MNK1) and FRK (PTK5) were found to promote the maintenance of latency. Mechanistic characterization of ERBB2 pro-lytic functions revealed a signaling connection between ERBB2 and the activation of CREB1, a transcription factor that drives KSHV lytic gene expression. These studies provided a proof-of-principle application of a polypharmacology-based kinome screen for the study of KSHV reactivation and enabled the discovery of both kinase inhibitors and specific kinases that regulate the KSHV latent-to-lytic replication switch.
Collapse
Affiliation(s)
- Annabel T. Olson
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Yuqi Kang
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Anushka M. Ladha
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Songli Zhu
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Chuan Bian Lim
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Behnam Nabet
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Michael Lagunoff
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Taranjit S. Gujral
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Department of Pharmacology, University of Washington, Seattle, Washington, United States of America
| | - Adam P. Geballe
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
2
|
Rajendren S, Ye X, Dunker W, Richardson A, Karijolich J. The cellular and KSHV A-to-I RNA editome in primary effusion lymphoma and its role in the viral lifecycle. Nat Commun 2023; 14:1367. [PMID: 36914661 PMCID: PMC10011561 DOI: 10.1038/s41467-023-37105-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 03/02/2023] [Indexed: 03/16/2023] Open
Abstract
Adenosine-to-inosine RNA editing is a major contributor to transcriptome diversity in animals with far-reaching biological consequences. Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiological agent of several human malignancies including primary effusion lymphoma (PEL). The extent of RNA editing within the KSHV transcriptome is unclear as is its contribution to the viral lifecycle. Here, we leverage a combination of biochemical and genomic approaches to determine the RNA editing landscape in host- and KSHV transcriptomes during both latent and lytic replication in PEL. Analysis of RNA editomes reveals it is dynamic, with increased editing upon reactivation and the potential to deregulate pathways critical for latency and tumorigenesis. In addition, we identify conserved RNA editing events within a viral microRNA and discover their role in miRNA biogenesis as well as viral infection. Together, these results describe the editome of PEL cells as well as a critical role for A-to-I editing in the KSHV lifecycle.
Collapse
Affiliation(s)
- Suba Rajendren
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232-2363, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Nashville, TN, 37232-2363, USA
- Vanderbilt Center for Immunobiology, Nashville, TN, 37232-2363, USA
| | - Xiang Ye
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232-2363, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Nashville, TN, 37232-2363, USA
- Vanderbilt Center for Immunobiology, Nashville, TN, 37232-2363, USA
| | - William Dunker
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232-2363, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Nashville, TN, 37232-2363, USA
- Vanderbilt Center for Immunobiology, Nashville, TN, 37232-2363, USA
| | - Antiana Richardson
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232-2363, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Nashville, TN, 37232-2363, USA
- Vanderbilt Center for Immunobiology, Nashville, TN, 37232-2363, USA
| | - John Karijolich
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232-2363, USA.
- Vanderbilt Institute for Infection, Immunology and Inflammation, Nashville, TN, 37232-2363, USA.
- Vanderbilt Center for Immunobiology, Nashville, TN, 37232-2363, USA.
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-2363, USA.
- Vanderbilt-Ingram Cancer Center, Nashville, TN, 37232-2363, USA.
| |
Collapse
|
3
|
Olson AT, Kang Y, Ladha AM, Lim CB, Lagunoff M, Gujral TS, Geballe AP. Polypharmacology-based kinome screen identifies new regulators of KSHV reactivation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.01.526589. [PMID: 36778430 PMCID: PMC9915688 DOI: 10.1101/2023.02.01.526589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) causes several human diseases including Kaposi's sarcoma (KS), a leading cause of cancer in Africa and in patients with AIDS. KS tumor cells harbor KSHV predominantly in a latent form, while typically <5% contain lytic replicating virus. Because both latent and lytic stages likely contribute to cancer initiation and progression, continued dissection of host regulators of this biological switch will provide insights into fundamental pathways controlling the KSHV life cycle and related disease pathogenesis. Several cellular protein kinases have been reported to promote or restrict KSHV reactivation, but our knowledge of these signaling mediators and pathways is incomplete. We employed a polypharmacology-based kinome screen to identifiy specific kinases that regulate KSHV reactivation. Those identified by the screen and validated by knockdown experiments included several kinases that enhance lytic reactivation: ERBB2 (HER2 or neu ), ERBB3 (HER3), ERBB4 (HER4), MKNK2 (MNK2), ITK, TEC, and DSTYK (RIPK5). Conversely, ERBB1 (EGFR1 or HER1), MKNK1 (MNK1) and FRK (PTK5) were found to promote the maintenance of latency. Mechanistic characterization of ERBB2 pro-lytic functions revealed a signaling connection between ERBB2 and the activation of CREB1, a transcription factor that drives KSHV lytic gene expression. These studies provided a proof-of-principle application of a polypharmacology-based kinome screen for the study of KSHV reactivation and enabled the discovery of both kinase inhibitors and specific kinases that regulate the KSHV latent-to-lytic replication switch. Author Summary Kaposi's sarcoma-associated herpesvirus (KSHV) causes Kaposi's sarcoma, a cancer particularly prevalent in Africa. In cancer cells, the virus persists in a quiescent form called latency, in which only a few viral genes are made. Periodically, the virus switches into an active replicative cycle in which most of the viral genes are made and new virus is produced. What controls the switch from latency to active replication is not well understood, but cellular kinases, enzymes that control many cellular processes, have been implicated. Using a cell culture model of KSHV reactivation along with an innovative screening method that probes the effects of many cellular kinases simultaneously, we identified drugs that significantly limit KSHV reactivation, as well as specific kinases that either enhance or restrict KSHV replicative cycle. Among these were the ERBB kinases which are known to regulate growth of cancer cells. Understanding how these and other kinases contribute to the switch leading to production of more infectious virus helps us understand the mediators and mechanisms of KSHV diseases. Additionally, because kinase inhibitors are proving to be effective for treating other diseases including some cancers, identifying ones that restrict KSHV replicative cycle may lead to new approaches to treating KSHV-related diseases.
Collapse
Affiliation(s)
- Annabel T. Olson
- Division of Human Biology, Fred Hutchinson Cancer Center, University of Washington, Seattle, WA, USA
| | - Yuqi Kang
- Division of Human Biology, Fred Hutchinson Cancer Center, University of Washington, Seattle, WA, USA
| | - Anushka M. Ladha
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Chuan Bian Lim
- Division of Human Biology, Fred Hutchinson Cancer Center, University of Washington, Seattle, WA, USA
| | - Michael Lagunoff
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Taran S. Gujral
- Division of Human Biology, Fred Hutchinson Cancer Center, University of Washington, Seattle, WA, USA
- Department of Pharmacology, University of Washington, Seattle, WA, USA
| | - Adam P. Geballe
- Division of Human Biology, Fred Hutchinson Cancer Center, University of Washington, Seattle, WA, USA
- Division of Clinical Research, Fred Hutchinson Cancer Center, University of Washington, Seattle, WA, USA
- Department of Microbiology, University of Washington, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
4
|
Abstract
Viruses have evolved diverse strategies to hijack the cellular gene expression system for their replication. The poly(A) binding proteins (PABPs), a family of critical gene expression factors, are viruses' common targets. PABPs act not only as a translation factor but also as a key factor of mRNA metabolism. During viral infections, the activities of PABPs are manipulated by various viruses, subverting the host translation machinery or evading the cellular antiviral defense mechanism. Viruses harness PABPs by modifying their stability, complex formation with other translation initiation factors, or subcellular localization to promote viral mRNAs translation while shutting off or competing with host protein synthesis. For the past decade, many studies have demonstrated the PABPs' roles during viral infection. This review summarizes a comprehensive perspective of PABPs' roles during viral infection and how viruses evade host antiviral defense through the manipulations of PABPs.
Collapse
Affiliation(s)
- Jie Gao
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yan-Dong Tang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Wei Hu
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Chunfu Zheng
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Alberta, Canada
| |
Collapse
|
5
|
Burgess HM, Vink EI, Mohr I. Minding the message: tactics controlling RNA decay, modification, and translation in virus-infected cells. Genes Dev 2022; 36:108-132. [PMID: 35193946 PMCID: PMC8887129 DOI: 10.1101/gad.349276.121] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
With their categorical requirement for host ribosomes to translate mRNA, viruses provide a wealth of genetically tractable models to investigate how gene expression is remodeled post-transcriptionally by infection-triggered biological stress. By co-opting and subverting cellular pathways that control mRNA decay, modification, and translation, the global landscape of post-transcriptional processes is swiftly reshaped by virus-encoded factors. Concurrent host cell-intrinsic countermeasures likewise conscript post-transcriptional strategies to mobilize critical innate immune defenses. Here we review strategies and mechanisms that control mRNA decay, modification, and translation in animal virus-infected cells. Besides settling infection outcomes, post-transcriptional gene regulation in virus-infected cells epitomizes fundamental physiological stress responses in health and disease.
Collapse
Affiliation(s)
- Hannah M Burgess
- Department of Microbial Sciences, School of Biosciences and Medicine, University of Surrey, Guildford GU2 7XH, United Kingdom
| | - Elizabeth I Vink
- Department of Microbiology, New York University School of Medicine, New York, New York 10016, USA
| | - Ian Mohr
- Department of Microbiology, New York University School of Medicine, New York, New York 10016, USA
- Laura and Isaac Perlmutter Cancer Institute, New York University School of Medicine, New York, New York 10016, USA
| |
Collapse
|
6
|
Méndez-Solís O, Bendjennat M, Naipauer J, Theodoridis PR, Ho JJD, Verdun RE, Hare JM, Cesarman E, Lee S, Mesri EA. Kaposi's sarcoma herpesvirus activates the hypoxia response to usurp HIF2α-dependent translation initiation for replication and oncogenesis. Cell Rep 2021; 37:110144. [PMID: 34965440 PMCID: PMC9121799 DOI: 10.1016/j.celrep.2021.110144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/19/2021] [Accepted: 11/29/2021] [Indexed: 12/19/2022] Open
Abstract
Kaposi's sarcoma herpesvirus (KSHV) is an angiogenesis-inducing oncovirus whose ability to usurp the oxygen-sensing machinery is central to its oncogenicity. By upregulating the hypoxia-inducible factors (HIFs), KSHV reprograms infected cells to a hypoxia-like state, triggering angiogenesis. Here we identify a link between KSHV replicative biology and oncogenicity by showing that KSHV's ability to regulate HIF2α levels and localization to the endoplasmic reticulum (ER) in normoxia enables translation of viral lytic mRNAs through the HIF2α-regulated eIF4E2 translation-initiation complex. This mechanism of translation in infected cells is critical for lytic protein synthesis and contributes to KSHV-induced PDGFRA activation and VEGF secretion. Thus, KSHV regulation of the oxygen-sensing machinery allows virally infected cells to initiate translation via the mTOR-dependent eIF4E1 or the HIF2α-dependent, mTOR-independent, eIF4E2. This "translation initiation plasticity" (TRIP) is an oncoviral strategy used to optimize viral protein expression that links molecular strategies of viral replication to angiogenicity and oncogenesis.
Collapse
Affiliation(s)
- Omayra Méndez-Solís
- Tumor Biology Program, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Miami Center for AIDS Research, Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Mourad Bendjennat
- Tumor Biology Program, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Miami Center for AIDS Research, Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Julian Naipauer
- Tumor Biology Program, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Miami Center for AIDS Research, Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Phaedra R Theodoridis
- Tumor Biology Program, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - J J David Ho
- Tumor Biology Program, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Ramiro E Verdun
- Cancer Epigenetics Program, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Joshua M Hare
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Ethel Cesarman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Stephen Lee
- Tumor Biology Program, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Enrique A Mesri
- Tumor Biology Program, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Miami Center for AIDS Research, Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
7
|
Brackett K, Mungale A, Lopez-Isidro M, Proctor DA, Najarro G, Arias C. CRISPR Interference Efficiently Silences Latent and Lytic Viral Genes in Kaposi's Sarcoma-Associated Herpesvirus-Infected Cells. Viruses 2021; 13:783. [PMID: 33924938 PMCID: PMC8146339 DOI: 10.3390/v13050783] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/22/2021] [Accepted: 04/22/2021] [Indexed: 12/28/2022] Open
Abstract
Uncovering viral gene functions requires the modulation of gene expression through overexpression or loss-of-function. CRISPR interference (CRISPRi), a modification of the CRISPR-Cas9 gene editing technology, allows specific and efficient transcriptional silencing without genetic ablation. CRISPRi has been used to silence eukaryotic and prokaryotic genes at the single-gene and genome-wide levels. Here, we report the use of CRISPRi to silence latent and lytic viral genes, with an efficiency of ~80-90%, in epithelial and B-cells carrying multiple copies of the Kaposi's sarcoma-associated herpesvirus (KSHV) genome. Our results validate CRISPRi for the analysis of KSHV viral elements, providing a functional genomics tool for studying virus-host interactions.
Collapse
Affiliation(s)
- Kevin Brackett
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, USA; (K.B.); (A.M.); (M.L.-I.); (D.A.P.); (G.N.)
| | - Ameera Mungale
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, USA; (K.B.); (A.M.); (M.L.-I.); (D.A.P.); (G.N.)
| | - Mary Lopez-Isidro
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, USA; (K.B.); (A.M.); (M.L.-I.); (D.A.P.); (G.N.)
| | - Duncan A. Proctor
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, USA; (K.B.); (A.M.); (M.L.-I.); (D.A.P.); (G.N.)
| | - Guillermo Najarro
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, USA; (K.B.); (A.M.); (M.L.-I.); (D.A.P.); (G.N.)
| | - Carolina Arias
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, USA; (K.B.); (A.M.); (M.L.-I.); (D.A.P.); (G.N.)
- Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA
- Center for Stem Cell Biology and Engineering, University of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
8
|
Gabaev I, Williamson JC, Crozier TW, Schulz TF, Lehner PJ. Quantitative Proteomics Analysis of Lytic KSHV Infection in Human Endothelial Cells Reveals Targets of Viral Immune Modulation. Cell Rep 2020; 33:108249. [PMID: 33053346 PMCID: PMC7567700 DOI: 10.1016/j.celrep.2020.108249] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 07/13/2020] [Accepted: 09/17/2020] [Indexed: 12/11/2022] Open
Abstract
Kaposi's sarcoma herpesvirus (KSHV) is an oncogenic human virus and the leading cause of mortality in HIV infection. KSHV reactivation from latent- to lytic-stage infection initiates a cascade of viral gene expression. Here we show how these changes remodel the host cell proteome to enable viral replication. By undertaking a systematic and unbiased analysis of changes to the endothelial cell proteome following KSHV reactivation, we quantify >7,000 cellular proteins and 71 viral proteins and provide a temporal profile of protein changes during the course of lytic KSHV infection. Lytic KSHV induces >2-fold downregulation of 291 cellular proteins, including PKR, the key cellular sensor of double-stranded RNA. Despite the multiple episomes per cell, CRISPR-Cas9 efficiently targets KSHV genomes. A complementary KSHV genome-wide CRISPR genetic screen identifies K5 as the viral gene responsible for the downregulation of two KSHV targets, Nectin-2 and CD155, ligands of the NK cell DNAM-1 receptor.
Collapse
Affiliation(s)
- Ildar Gabaev
- Department of Medicine, University of Cambridge, Hills Road, Cambridge CB2 0QQ, UK; Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK.
| | - James C. Williamson
- Department of Medicine, University of Cambridge, Hills Road, Cambridge CB2 0QQ, UK,Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Thomas W.M. Crozier
- Department of Medicine, University of Cambridge, Hills Road, Cambridge CB2 0QQ, UK,Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Thomas F. Schulz
- Institute of Virology, Hannover Medical School, Carl-Neuberg-Straße 1, Hannover 30625, Germany,German Center for Infection Research, Hannover-Braunschweig, Germany
| | - Paul J. Lehner
- Department of Medicine, University of Cambridge, Hills Road, Cambridge CB2 0QQ, UK,Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK,Corresponding author
| |
Collapse
|
9
|
Kaposi's Sarcoma-Associated Herpesvirus Lytic Replication Interferes with mTORC1 Regulation of Autophagy and Viral Protein Synthesis. J Virol 2019; 93:JVI.00854-19. [PMID: 31375594 PMCID: PMC6803247 DOI: 10.1128/jvi.00854-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/30/2019] [Indexed: 12/20/2022] Open
Abstract
All viruses require host cell machinery to synthesize viral proteins. A host cell protein complex known as mechanistic target of rapamycin complex 1 (mTORC1) is a master regulator of protein synthesis. Under nutrient-rich conditions, mTORC1 is active and promotes protein synthesis to meet cellular anabolic demands. Under nutrient-poor conditions or under stress, mTORC1 is rapidly inhibited, global protein synthesis is arrested, and a cellular catabolic process known as autophagy is activated. Kaposi’s sarcoma-associated herpesvirus (KSHV) stimulates mTORC1 activity and utilizes host machinery to synthesize viral proteins. However, we discovered that mTORC1 activity was largely dispensable for viral protein synthesis, genome replication, and the release of infectious progeny. Likewise, during lytic replication, mTORC1 was no longer able to control autophagy. These findings suggest that KSHV undermines mTORC1-dependent cellular processes during the lytic cycle to ensure efficient viral replication. Mechanistic target of rapamycin complex 1 (mTORC1) is a master regulator of cellular metabolism. In nutrient-rich environments, mTORC1 kinase activity stimulates protein synthesis to meet cellular anabolic demands. Under nutrient-poor conditions or under stress, mTORC1 is rapidly inhibited, global protein synthesis is arrested, and a cellular catabolic process known as autophagy is activated. Kaposi’s sarcoma-associated herpesvirus (KSHV) encodes multiple proteins that stimulate mTORC1 activity or subvert autophagy, but precise roles for mTORC1 in different stages of KSHV infection remain incompletely understood. Here, we report that during latent and lytic stages of KSHV infection, chemical inhibition of mTORC1 caused eukaryotic initiation factor 4F (eIF4F) disassembly and diminished global protein synthesis, which indicated that mTORC1-mediated control of translation initiation was largely intact. We observed that mTORC1 was required for synthesis of the replication and transcription activator (RTA) lytic switch protein and reactivation from latency, but once early lytic gene expression had begun, mTORC1 was not required for genome replication, late gene expression, or the release of infectious progeny. Moreover, mTORC1 control of autophagy was dysregulated during lytic replication, whereby chemical inhibition of mTORC1 prevented ULK1 phosphorylation but did not affect autophagosome formation or rates of autophagic flux. Together, these findings suggest that mTORC1 is dispensable for viral protein synthesis and viral control of autophagy during lytic infection and that KSHV undermines mTORC1-dependent cellular processes during the lytic cycle to ensure efficient viral replication. IMPORTANCE All viruses require host cell machinery to synthesize viral proteins. A host cell protein complex known as mechanistic target of rapamycin complex 1 (mTORC1) is a master regulator of protein synthesis. Under nutrient-rich conditions, mTORC1 is active and promotes protein synthesis to meet cellular anabolic demands. Under nutrient-poor conditions or under stress, mTORC1 is rapidly inhibited, global protein synthesis is arrested, and a cellular catabolic process known as autophagy is activated. Kaposi’s sarcoma-associated herpesvirus (KSHV) stimulates mTORC1 activity and utilizes host machinery to synthesize viral proteins. However, we discovered that mTORC1 activity was largely dispensable for viral protein synthesis, genome replication, and the release of infectious progeny. Likewise, during lytic replication, mTORC1 was no longer able to control autophagy. These findings suggest that KSHV undermines mTORC1-dependent cellular processes during the lytic cycle to ensure efficient viral replication.
Collapse
|
10
|
Butnaru M, Gaglia MM. Transcriptional and post-transcriptional regulation of viral gene expression in the gamma-herpesvirus Kaposi's sarcoma-associated herpesvirus. CURRENT CLINICAL MICROBIOLOGY REPORTS 2019; 5:219-228. [PMID: 30854283 DOI: 10.1007/s40588-018-0102-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Purpose of review Kaposi's sarcoma-associated herpesvirus (KSHV), the etiological agent of the AIDS-associated tumor Kaposi's sarcoma, is a complex virus that expresses ~90 proteins in a regulated temporal cascade during its replication cycle. Although KSHV relies on cellular machinery for gene expression, it also uses specialized regulators to control nearly every step of the process. In this review we discuss the current understanding of KSHV gene regulation. Recent findings High-throughput sequencing and a new robust system to mutate KSHV have paved the way for comprehensive studies of KSHV gene expression, leading to the characterization of new viral factors that control late gene expression and post-transcriptional steps of gene regulation. They have also revealed key aspects of chromatin-based control of gene expression in the latent and lytic cycle. Summary The combination of mutant analysis and high-throughput sequencing will continue to expand our model of KSHV gene regulation and point to potential new targets for anti-KSHV drugs.
Collapse
Affiliation(s)
- Matthew Butnaru
- Graduate Program in Biochemistry, Sackler School of Biomedical Sciences, Tufts University, Boston, MA, USA
- Department of Molecular Biology and Microbiology, School of Medicine, Tufts University, Boston, MA, USA
| | - Marta M Gaglia
- Department of Molecular Biology and Microbiology, School of Medicine, Tufts University, Boston, MA, USA
| |
Collapse
|
11
|
Stern-Ginossar N, Thompson SR, Mathews MB, Mohr I. Translational Control in Virus-Infected Cells. Cold Spring Harb Perspect Biol 2019; 11:a033001. [PMID: 29891561 PMCID: PMC6396331 DOI: 10.1101/cshperspect.a033001] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
As obligate intracellular parasites, virus reproduction requires host cell functions. Despite variations in genome size and configuration, nucleic acid composition, and their repertoire of encoded functions, all viruses remain unconditionally dependent on the protein synthesis machinery resident within their cellular hosts to translate viral messenger RNAs (mRNAs). A complex signaling network responsive to physiological stress, including infection, regulates host translation factors and ribosome availability. Furthermore, access to the translation apparatus is patrolled by powerful host immune defenses programmed to restrict viral invaders. Here, we review the tactics and mechanisms used by viruses to appropriate control over host ribosomes, subvert host defenses, and dominate the infected cell translational landscape. These not only define aspects of infection biology paramount for virus reproduction, but continue to drive fundamental discoveries into how cellular protein synthesis is controlled in health and disease.
Collapse
Affiliation(s)
- Noam Stern-Ginossar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sunnie R Thompson
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Michael B Mathews
- Department of Medicine, Rutgers New Jersey Medical School, Newark, New Jersey 07103
| | - Ian Mohr
- Department of Microbiology, New York University School of Medicine, New York, New York 10016
| |
Collapse
|
12
|
Gao Q, Hou B, Yang H, Jiang X. Distinct role of 4E-BP1 and S6K1 in regulating autophagy and hepatitis B virus (HBV) replication. Life Sci 2019; 220:1-7. [DOI: 10.1016/j.lfs.2019.01.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 01/13/2019] [Accepted: 01/25/2019] [Indexed: 02/08/2023]
|
13
|
Pheasant K, Möller-Levet CS, Jones J, Depledge D, Breuer J, Elliott G. Nuclear-cytoplasmic compartmentalization of the herpes simplex virus 1 infected cell transcriptome is co-ordinated by the viral endoribonuclease vhs and cofactors to facilitate the translation of late proteins. PLoS Pathog 2018; 14:e1007331. [PMID: 30475899 PMCID: PMC6283614 DOI: 10.1371/journal.ppat.1007331] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 12/06/2018] [Accepted: 11/02/2018] [Indexed: 11/19/2022] Open
Abstract
HSV1 encodes an endoribonuclease termed virion host shutoff (vhs) that is produced late in infection and packaged into virions. Paradoxically, vhs is active against not only host but also virus transcripts, and is involved in host shutoff and the temporal expression of the virus transcriptome. Two other virus proteins-VP22 and VP16 -are proposed to regulate vhs to prevent uncontrolled and lethal mRNA degradation but their mechanism of action is unknown. We have performed dual transcriptomic analysis and single-cell mRNA FISH of human fibroblasts, a cell type where in the absence of VP22, HSV1 infection results in extreme translational shutoff. In Wt infection, host mRNAs exhibited a wide range of susceptibility to vhs ranging from resistance to 1000-fold reduction, a variation that was independent of their relative abundance or transcription rate. However, vhs endoribonuclease activity was not found to be overactive against any of the cell transcriptome in Δ22-infected cells but rather was delayed, while its activity against the virus transcriptome and in particular late mRNA was minimally enhanced. Intriguingly, immediate-early and early transcripts exhibited vhs-dependent nuclear retention later in Wt infection but late transcripts were cytoplasmic. However, in the absence of VP22, not only early but also late transcripts were retained in the nucleus by a vhs-dependent mechanism, a characteristic that extended to cellular transcripts that were not efficiently degraded by vhs. Moreover, the ability of VP22 to bind VP16 enhanced but was not fundamental to the rescue of vhs-induced nuclear retention of late transcripts. Hence, translational shutoff in HSV1 infection is primarily a result of vhs-induced nuclear retention and not degradation of infected cell mRNA. We have therefore revealed a new mechanism whereby vhs and its co-factors including VP22 elicit a temporal and spatial regulation of the infected cell transcriptome, thus co-ordinating efficient late protein production.
Collapse
Affiliation(s)
- Kathleen Pheasant
- Section of Virology, Department of Microbial Sciences, Faculty of Health & Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Carla Sofia Möller-Levet
- Section of Virology, Department of Microbial Sciences, Faculty of Health & Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Juliet Jones
- Section of Virology, Department of Microbial Sciences, Faculty of Health & Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Daniel Depledge
- Division of Infection and Immunity, UCL, London, United Kingdom
| | - Judith Breuer
- Division of Infection and Immunity, UCL, London, United Kingdom
| | - Gillian Elliott
- Section of Virology, Department of Microbial Sciences, Faculty of Health & Medical Sciences, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
14
|
Multiple Posttranscriptional Strategies To Regulate the Herpes Simplex Virus 1 vhs Endoribonuclease. J Virol 2018; 92:JVI.00818-18. [PMID: 29925667 PMCID: PMC6096803 DOI: 10.1128/jvi.00818-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 06/08/2018] [Indexed: 12/15/2022] Open
Abstract
The herpes simplex virus 1 (HSV-1) virion host shutoff (vhs) protein is an endoribonuclease that binds to the cellular translation initiation machinery and degrades associated mRNAs, resulting in the shutoff of host protein synthesis. Hence, its unrestrained activity is considered lethal, and it has been proposed that vhs is regulated by two other virus proteins, VP22 and VP16. We have found that during infection, translation of vhs requires VP22 but not the VP22-VP16 complex. Moreover, in the absence of VP22, vhs is not overactive against cellular or viral transcripts. In transfected cells, vhs was also poorly translated, correlating with the aberrant localization of its mRNA. Counterintuitively, vhs mRNA was predominantly nuclear in cells where vhs protein was detected. Likewise, transcripts from cotransfected plasmids were also retained in the same nuclei where vhs mRNA was located, while poly(A) binding protein (PABP) was relocalized to the nucleus in a vhs-dependent manner, implying a general block to mRNA export. Coexpression of VP16 and VP22 rescued the cytoplasmic localization of vhs mRNA but failed to rescue vhs translation. We identified a 230-nucleotide sequence in the 5' region of vhs that blocked its translation and, when transferred to a heterologous green fluorescent protein transcript, reduced translation without altering mRNA levels or localization. We propose that expression of vhs is tightly regulated by a combination of inherent untranslatability and autoinduced nuclear retention of its mRNA that results in a negative feedback loop, with nuclear retention but not translation of vhs mRNA being the target of rescue by the vhs-VP16-VP22 complex.IMPORTANCE A myriad of gene expression strategies has been discovered through studies carried out on viruses. This report concerns the regulation of the HSV-1 vhs endoribonuclease, a virus factor that is important for counteracting host antiviral responses by degrading their mRNAs but that must be regulated during infection to ensure that it does not act against and inhibit the virus itself. We show that regulation of vhs involves multifaceted posttranscriptional cellular and viral processes, including aberrant mRNA localization and a novel, autoregulated negative feedback loop to target its own and coexpressed mRNAs for nuclear retention, an activity that is relieved by coexpression of two other virus proteins, VP22 and VP16. These studies reveal the interplay of strategies by which multiple virus-encoded factors coordinate gene expression at the time that they are needed. These findings are broadly relevant to both virus and cellular gene expression.
Collapse
|
15
|
Battling for Ribosomes: Translational Control at the Forefront of the Antiviral Response. J Mol Biol 2018; 430:1965-1992. [PMID: 29746850 DOI: 10.1016/j.jmb.2018.04.040] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/24/2018] [Accepted: 04/27/2018] [Indexed: 01/05/2023]
Abstract
In the early stages of infection, gaining control of the cellular protein synthesis machinery including its ribosomes is the ultimate combat objective for a virus. To successfully replicate, viruses unequivocally need to usurp and redeploy this machinery for translation of their own mRNA. In response, the host triggers global shutdown of translation while paradoxically allowing swift synthesis of antiviral proteins as a strategy to limit collateral damage. This fundamental conflict at the level of translational control defines the outcome of infection. As part of this special issue on molecular mechanisms of early virus-host cell interactions, we review the current state of knowledge regarding translational control during viral infection with specific emphasis on protein kinase RNA-activated and mammalian target of rapamycin-mediated mechanisms. We also describe recent technological advances that will allow unprecedented insight into how viruses and host cells battle for ribosomes.
Collapse
|
16
|
Santana AL, Oldenburg DG, Kirillov V, Malik L, Dong Q, Sinayev R, Marcu KB, White DW, Krug LT. RTA Occupancy of the Origin of Lytic Replication during Murine Gammaherpesvirus 68 Reactivation from B Cell Latency. Pathogens 2017; 6:pathogens6010009. [PMID: 28212352 PMCID: PMC5371897 DOI: 10.3390/pathogens6010009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 02/10/2017] [Indexed: 02/06/2023] Open
Abstract
RTA, the viral Replication and Transcription Activator, is essential for rhadinovirus lytic gene expression upon de novo infection and reactivation from latency. Lipopolysaccharide (LPS)/toll-like receptor (TLR)4 engagement enhances rhadinovirus reactivation. We developed two new systems to examine the interaction of RTA with host NF-kappaB (NF-κB) signaling during murine gammaherpesvirus 68 (MHV68) infection: a latent B cell line (HE-RIT) inducible for RTA-Flag expression and virus reactivation; and a recombinant virus (MHV68-RTA-Bio) that enabled in vivo biotinylation of RTA in BirA transgenic mice. LPS acted as a second stimulus to drive virus reactivation from latency in the context of induced expression of RTA-Flag. ORF6, the gene encoding the single-stranded DNA binding protein, was one of many viral genes that were directly responsive to RTA induction; expression was further increased upon treatment with LPS. However, NF-κB sites in the promoter of ORF6 did not influence RTA transactivation in response to LPS in HE-RIT cells. We found no evidence for RTA occupancy of the minimal RTA-responsive region of the ORF6 promoter, yet RTA was found to complex with a portion of the right origin of lytic replication (oriLyt-R) that contains predicted RTA recognition elements. RTA occupancy of select regions of the MHV-68 genome was also evaluated in our novel in vivo RTA biotinylation system. Streptavidin isolation of RTA-Bio confirmed complex formation with oriLyt-R in LPS-treated primary splenocytes from BirA mice infected with MHV68 RTA-Bio. We demonstrate the utility of reactivation-inducible B cells coupled with in vivo RTA biotinylation for mechanistic investigations of the interplay of host signaling with RTA.
Collapse
Affiliation(s)
- Alexis L Santana
- The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, NY 10016, USA.
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794, USA.
| | | | - Varvara Kirillov
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Laraib Malik
- Department of Computer Science, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Qiwen Dong
- Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Roman Sinayev
- Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Kenneth B Marcu
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794, USA.
- Biomedical Research Foundation Academy of Athens (BRFAA), Athens 115 27, Greece.
- Biochemistry and Cell Biology Dept., Stony Brook University, Stony Brook, NY 11794, USA.
- Department of Pathology, Health Sciences Center, Stony Brook University, Stony Brook, NY 11794, USA.
| | | | - Laurie T Krug
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
17
|
Abstract
RNA-binding proteins are often multifunctional, interact with a variety of protein partners and display complex localizations within cells. Mammalian cytoplasmic poly(A)-binding proteins (PABPs) are multifunctional RNA-binding proteins that regulate multiple aspects of mRNA translation and stability. Although predominantly diffusely cytoplasmic at steady state, they shuttle through the nucleus and can be localized to a variety of cytoplasmic foci, including those associated with mRNA storage and localized translation. Intriguingly, PABP sub-cellular distribution can alter dramatically in response to cellular stress or viral infection, becoming predominantly nuclear and/or being enriched in induced cytoplasmic foci. However, relatively little is known about the mechanisms that govern this distribution/relocalization and in many cases PABP functions within specific sites remain unclear. Here we discuss the emerging evidence with respect to these questions in mammals.
Collapse
|
18
|
Jan E, Mohr I, Walsh D. A Cap-to-Tail Guide to mRNA Translation Strategies in Virus-Infected Cells. Annu Rev Virol 2016; 3:283-307. [PMID: 27501262 DOI: 10.1146/annurev-virology-100114-055014] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although viruses require cellular functions to replicate, their absolute dependence upon the host translation machinery to produce polypeptides indispensable for their reproduction is most conspicuous. Despite their incredible diversity, the mRNAs produced by all viruses must engage cellular ribosomes. This has proven to be anything but a passive process and has revealed a remarkable array of tactics for rapidly subverting control over and dominating cellular regulatory pathways that influence translation initiation, elongation, and termination. Besides enforcing viral mRNA translation, these processes profoundly impact host cell-intrinsic immune defenses at the ready to deny foreign mRNA access to ribosomes and block protein synthesis. Finally, genome size constraints have driven the evolution of resourceful strategies for maximizing viral coding capacity. Here, we review the amazing strategies that work to regulate translation in virus-infected cells, highlighting both virus-specific tactics and the tremendous insight they provide into fundamental translational control mechanisms in health and disease.
Collapse
Affiliation(s)
- Eric Jan
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada;
| | - Ian Mohr
- Department of Microbiology and New York University Cancer Institute, New York University School of Medicine, New York, NY 10016;
| | - Derek Walsh
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611;
| |
Collapse
|
19
|
Liem J, Liu J. Stress Beyond Translation: Poxviruses and More. Viruses 2016; 8:v8060169. [PMID: 27314378 PMCID: PMC4926189 DOI: 10.3390/v8060169] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/24/2016] [Accepted: 06/08/2016] [Indexed: 02/06/2023] Open
Abstract
Poxviruses are large double-stranded DNA viruses that form viral factories in the cytoplasm of host cells. These viruses encode their own transcription machinery, but rely on host translation for protein synthesis. Thus, poxviruses have to cope with and, in most cases, reprogram host translation regulation. Granule structures, called antiviral granules (AVGs), have been observed surrounding poxvirus viral factories. AVG formation is associated with abortive poxvirus infection, and AVGs contain proteins that are typically found in stress granules (SGs). With certain mutant poxviruses lack of immunoregulatory factor(s), we can specifically examine the mechanisms that drive the formation of these structures. In fact, cytoplasmic macromolecular complexes form during many viral infections and contain sensing molecules that can help reprogram transcription. More importantly, the similarity between AVGs and cytoplasmic structures formed during RNA and DNA sensing events prompts us to reconsider the cause and consequence of these AVGs. In this review, we first summarize recent findings regarding how poxvirus manipulates host translation. Next, we compare and contrast SGs and AVGs. Finally, we review recent findings regarding RNA- and especially DNA-sensing bodies observed during viral infection.
Collapse
Affiliation(s)
- Jason Liem
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas.
| | - Jia Liu
- Department of Microbiology and Immunology, Center for Microbial Pathogenesis and Host Inflammatory Responses, University of Arkansas for Medical Sciences, Little Rock, Arkansas.
| |
Collapse
|
20
|
Abstract
Herpesviral mRNAs are produced and translated by cellular machinery, rendering them susceptible to the network of regulatory events that impact translation. In response, these viruses have evolved to infiltrate and hijack translational control pathways as well as to integrate specialized host translation strategies into their own repertoire. They are robust systems to dissect mechanisms of mammalian translational regulation and continue to offer insight into cis-acting mRNA features that impact assembly and activity of the translation apparatus. Here, I discuss recent advances revealing the extent to which the three herpesvirus subfamilies regulate both host and viral translation, thereby dramatically impacting the landscape of protein synthesis in infected cells.
Collapse
Affiliation(s)
- Britt A Glaunsinger
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720;
| |
Collapse
|
21
|
Emerging roles for RNA degradation in viral replication and antiviral defense. Virology 2015; 479-480:600-8. [PMID: 25721579 PMCID: PMC4424162 DOI: 10.1016/j.virol.2015.02.007] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 01/29/2015] [Accepted: 02/06/2015] [Indexed: 11/23/2022]
Abstract
Viral replication significantly alters the gene expression landscape of infected cells. Many of these changes are driven by viral manipulation of host transcription or translation machinery. Several mammalian viruses encode factors that broadly dampen gene expression by directly targeting messenger RNA (mRNA). Here, we highlight how these factors promote mRNA degradation to globally regulate both host and viral gene expression. Although these viral factors are not homologous and use distinct mechanisms to target mRNA, many of them display striking parallels in their strategies for executing RNA degradation and invoke key features of cellular RNA quality control pathways. In some cases, there is a lack of selectivity for degradation of host versus viral mRNA, indicating that the purposes of virus-induced mRNA degradation extend beyond redirecting cellular resources towards viral gene expression. In addition, several antiviral pathways use RNA degradation as a viral restriction mechanism, and we will summarize new findings related to how these host-encoded ribonucleases target and destroy viral RNA.
Collapse
|
22
|
Tahiri-Alaoui A, Zhao Y, Sadigh Y, Popplestone J, Kgosana L, Smith LP, Nair V. Poly(A) binding protein 1 enhances cap-independent translation initiation of neurovirulence factor from avian herpesvirus. PLoS One 2014; 9:e114466. [PMID: 25503397 PMCID: PMC4263670 DOI: 10.1371/journal.pone.0114466] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Accepted: 11/07/2014] [Indexed: 11/19/2022] Open
Abstract
Poly(A) binding protein 1 (PABP1) plays a central role in mRNA translation and stability and is a target by many viruses in diverse manners. We report a novel viral translational control strategy involving the recruitment of PABP1 to the 5' leader internal ribosome entry site (5L IRES) of an immediate-early (IE) bicistronic mRNA that encodes the neurovirulence protein (pp14) from the avian herpesvirus Marek's disease virus serotype 1 (MDV1). We provide evidence for the interaction between an internal poly(A) sequence within the 5L IRES and PABP1 which may occur concomitantly with the recruitment of PABP1 to the poly(A) tail. RNA interference and reverse genetic mutagenesis results show that a subset of virally encoded-microRNAs (miRNAs) targets the inhibitor of PABP1, known as paip2, and therefore plays an indirect role in PABP1 recruitment strategy by increasing the available pool of active PABP1. We propose a model that may offer a mechanistic explanation for the cap-independent enhancement of the activity of the 5L IRES by recruitment of a bona fide initiation protein to the 5' end of the message and that is, from the affinity binding data, still compatible with the formation of 'closed loop' structure of mRNA.
Collapse
Affiliation(s)
- Abdessamad Tahiri-Alaoui
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, United Kingdom
- * E-mail: (ATA); (VN)
| | - Yuguang Zhao
- The Division of Structural Biology, The Wellcome Trust Centre for Human Genetics, Oxford University, Oxford, United Kingdom
| | - Yashar Sadigh
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, United Kingdom
| | - James Popplestone
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, United Kingdom
| | - Lydia Kgosana
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, United Kingdom
| | - Lorraine P. Smith
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, United Kingdom
| | - Venugopal Nair
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, United Kingdom
- * E-mail: (ATA); (VN)
| |
Collapse
|
23
|
Au HHT, Jan E. Novel viral translation strategies. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 5:779-801. [PMID: 25045163 PMCID: PMC7169809 DOI: 10.1002/wrna.1246] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 05/03/2014] [Accepted: 05/08/2014] [Indexed: 01/06/2023]
Abstract
Viral genomes are compact and encode a limited number of proteins. Because they do not encode components of the translational machinery, viruses exhibit an absolute dependence on the host ribosome and factors for viral messenger RNA (mRNA) translation. In order to recruit the host ribosome, viruses have evolved unique strategies to either outcompete cellular transcripts that are efficiently translated by the canonical translation pathway or to reroute translation factors and ribosomes to the viral genome. Furthermore, viruses must evade host antiviral responses and escape immune surveillance. This review focuses on some recent major findings that have revealed unconventional strategies that viruses utilize, which include usurping the host translational machinery, modulating canonical translation initiation factors to specifically enhance or repress overall translation for the purpose of viral production, and increasing viral coding capacity. The discovery of these diverse viral strategies has provided insights into additional translational control mechanisms and into the viral host interactions that ensure viral protein synthesis and replication. WIREs RNA 2014, 5:779–801. doi: 10.1002/wrna.1246 This article is categorized under:
Translation > Translation Mechanisms Translation > Translation Regulation
Collapse
Affiliation(s)
- Hilda H T Au
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
24
|
Arias C, Weisburd B, Stern-Ginossar N, Mercier A, Madrid AS, Bellare P, Holdorf M, Weissman JS, Ganem D. KSHV 2.0: a comprehensive annotation of the Kaposi's sarcoma-associated herpesvirus genome using next-generation sequencing reveals novel genomic and functional features. PLoS Pathog 2014; 10:e1003847. [PMID: 24453964 PMCID: PMC3894221 DOI: 10.1371/journal.ppat.1003847] [Citation(s) in RCA: 241] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 10/20/2013] [Indexed: 01/08/2023] Open
Abstract
Productive herpesvirus infection requires a profound, time-controlled remodeling of the viral transcriptome and proteome. To gain insights into the genomic architecture and gene expression control in Kaposi's sarcoma-associated herpesvirus (KSHV), we performed a systematic genome-wide survey of viral transcriptional and translational activity throughout the lytic cycle. Using mRNA-sequencing and ribosome profiling, we found that transcripts encoding lytic genes are promptly bound by ribosomes upon lytic reactivation, suggesting their regulation is mainly transcriptional. Our approach also uncovered new genomic features such as ribosome occupancy of viral non-coding RNAs, numerous upstream and small open reading frames (ORFs), and unusual strategies to expand the virus coding repertoire that include alternative splicing, dynamic viral mRNA editing, and the use of alternative translation initiation codons. Furthermore, we provide a refined and expanded annotation of transcription start sites, polyadenylation sites, splice junctions, and initiation/termination codons of known and new viral features in the KSHV genomic space which we have termed KSHV 2.0. Our results represent a comprehensive genome-scale image of gene regulation during lytic KSHV infection that substantially expands our understanding of the genomic architecture and coding capacity of the virus. Kaposi's sarcoma-associated herpesvirus (KSHV) is a cancer-causing agent in immunocompromised patients that establishes long-lasting infections in its hosts. Initially described in 1994 and extensively studied ever since, KSHV molecular biology is understood in broad outline, but many detailed questions are still to be resolved. After almost two decades, specific aspects pertaining to the organization of the KSHV genome as well as the fate of the viral transcripts during the productive stages of infection remain unexplored. Here we use a systematic genome-wide approach to investigate changes in gene and protein expression during the productive stage of infection known as the lytic cycle. We found that the viral genome has a large coding capacity, capable of generating at least 45% more products than initially anticipated by bioinformatic analyses alone, and that it uses multiple strategies to expand its coding capacity well beyond what is determined solely by the DNA sequence of its genome. We also provide an expanded and highly detailed annotation of known and new genomic features in KSHV. We have termed this new architectural and functional annotation KSHV 2.0. Our results indicate that viral genomes are more complex than anticipated, and that they are subject to tight mechanisms of regulation to ensure correct gene expression.
Collapse
Affiliation(s)
- Carolina Arias
- Novartis Institute for Biomedical Research, Department of Infectious Diseases, Emeryville, California, United States of America
- * E-mail:
| | - Ben Weisburd
- Novartis Vaccines and Diagnostics, Bioinformatics, Emeryville, California, United States of America
| | - Noam Stern-Ginossar
- Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, California, United States of America
| | - Alexandre Mercier
- Novartis Institute for Biomedical Research, Department of Infectious Diseases, Emeryville, California, United States of America
| | - Alexis S. Madrid
- Novartis Institute for Biomedical Research, Department of Infectious Diseases, Emeryville, California, United States of America
| | - Priya Bellare
- Novartis Institute for Biomedical Research, Department of Infectious Diseases, Emeryville, California, United States of America
| | - Meghan Holdorf
- Novartis Institute for Biomedical Research, Department of Infectious Diseases, Emeryville, California, United States of America
| | - Jonathan S. Weissman
- Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, California, United States of America
| | - Don Ganem
- Novartis Institute for Biomedical Research, Department of Infectious Diseases, Emeryville, California, United States of America
| |
Collapse
|
25
|
Bekerman E, Jeon D, Ardolino M, Coscoy L. A role for host activation-induced cytidine deaminase in innate immune defense against KSHV. PLoS Pathog 2013; 9:e1003748. [PMID: 24244169 PMCID: PMC3820765 DOI: 10.1371/journal.ppat.1003748] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 09/20/2013] [Indexed: 12/04/2022] Open
Abstract
Activation-induced cytidine deaminase (AID) is specifically induced in germinal center B cells to carry out somatic hypermutation and class-switch recombination, two processes responsible for antibody diversification. Because of its mutagenic potential, AID expression and activity are tightly regulated to minimize unwanted DNA damage. Surprisingly, AID expression has been observed ectopically during pathogenic infections. However, the function of AID outside of the germinal centers remains largely uncharacterized. In this study, we demonstrate that infection of human primary naïve B cells with Kaposi's sarcoma-associated herpesvirus (KSHV) rapidly induces AID expression in a cell intrinsic manner. We find that infected cells are marked for elimination by Natural Killer cells through upregulation of NKG2D ligands via the DNA damage pathway, a pathway triggered by AID. Moreover, without having a measurable effect on KSHV latency, AID impinges directly on the viral fitness by inhibiting lytic reactivation and reducing infectivity of KSHV virions. Importantly, we uncover two KSHV-encoded microRNAs that directly regulate AID abundance, further reinforcing the role for AID in the antiviral response. Together our findings reveal additional functions for AID in innate immune defense against KSHV with implications for a broader involvement in innate immunity to other pathogens. Immune responses to pathogens rely heavily on the ability of B cells to generate a unique set of antibodies that can bind and eliminate the pathogen. Activation-induced cytidine deaminase (AID) is the enzyme specifically upregulated in activated B cells to diversify the antibody repertoire by introducing mutations within the antibody coding genes. Curiously, AID expression has been observed outside of activated B cells upon infection with a number of viral and bacterial pathogens. However, in such cases AID function is poorly characterized and often deemed inappropriate since its mutagenic activity can put the cell at risk for oncogenic transformation. In this study, we investigate the expression of AID in response to infection with an oncogenic human pathogen Kaposi's sarcoma-associated herpesvirus (KSHV) and the antibody-independent immune defense it exerts. We show that AID marks infected cells for elimination by natural killer (NK) cells and directly impinges on viral fitness. Furthermore, we uncover novel viral immune evasion strategies employed by KSHV to counteract AID. Together, our findings demonstrate a protective role for AID in the response to infection with an oncogenic virus such as KSHV and suggest that AID may actually limit transformation rather than serve as its culprit.
Collapse
Affiliation(s)
- Elena Bekerman
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
| | | | | | | |
Collapse
|
26
|
Comprehensive mapping and analysis of Kaposi's sarcoma-associated herpesvirus 3' UTRs identify differential posttranscriptional control of gene expression in lytic versus latent infection. J Virol 2013; 87:12838-49. [PMID: 24067953 DOI: 10.1128/jvi.02374-13] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
3' untranslated regions (UTRs) are known to play an important role in posttranscriptional regulation of gene expression. Here we map the 3' UTRs of Kaposi's sarcoma-associated herpesvirus (KSHV) using next-generation RNA sequencing, 3' rapid amplification of cDNA ends (RACE), and tiled microarray analyses. Chimeric reporters containing the KSHV 3' UTRs show a general trend toward reduced gene expression under conditions of latent infection. Those 3' UTRs with a higher GC content are more likely to be associated with reduced gene expression. KSHV transcripts display an extensive use of shared polyadenylation sites allowing for partially overlapping 3' UTRs and regulatory activities. In addition, a subset of KSHV 3' UTRs is sufficient to convey increased gene expression under conditions of lytic infection. These results suggest a role for viral 3' UTRs in contributing to differential gene expression during latent versus lytic infection.
Collapse
|
27
|
Gallaher AM, Das S, Xiao Z, Andresson T, Kieffer-Kwon P, Happel C, Ziegelbauer J. Proteomic screening of human targets of viral microRNAs reveals functions associated with immune evasion and angiogenesis. PLoS Pathog 2013; 9:e1003584. [PMID: 24039573 PMCID: PMC3764211 DOI: 10.1371/journal.ppat.1003584] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 07/14/2013] [Indexed: 01/11/2023] Open
Abstract
Kaposi's sarcoma (KS) is caused by infection with Kaposi's sarcoma-associated herpesvirus (KSHV). The virus expresses unique microRNAs (miRNAs), but the targets and functions of these miRNAs are not completely understood. In order to identify human targets of viral miRNAs, we measured protein expression changes caused by multiple KSHV miRNAs using pulsed stable labeling with amino acids in cell culture (pSILAC) in primary endothelial cells. This led to the identification of multiple human genes that are repressed at the protein level, but not at the miRNA level. Further analysis also identified that KSHV miRNAs can modulate activity or expression of upstream regulatory factors, resulting in suppressed activation of a protein involved in leukocyte recruitment (ICAM1) following lysophosphatidic acid treatment, as well as up-regulation of a pro-angiogenic protein (HIF1α), and up-regulation of a protein involved in stimulating angiogenesis (HMOX1). This study aids in our understanding of miRNA mechanisms of repression and miRNA contributions to viral pathogenesis.
Collapse
MESH Headings
- HEK293 Cells
- Herpesvirus 8, Human/genetics
- Herpesvirus 8, Human/metabolism
- Human Umbilical Vein Endothelial Cells
- Humans
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Neovascularization, Pathologic/virology
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Sarcoma, Kaposi/genetics
- Sarcoma, Kaposi/metabolism
- Sarcoma, Kaposi/pathology
- Sarcoma, Kaposi/virology
- Tumor Escape
Collapse
Affiliation(s)
- Amelia M. Gallaher
- HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sudipto Das
- Laboratory of Proteomics and Analytical Technologies, Advanced Technology Program, SAIC-Frederick Inc., National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Zhen Xiao
- Laboratory of Proteomics and Analytical Technologies, Advanced Technology Program, SAIC-Frederick Inc., National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Thorkell Andresson
- Laboratory of Proteomics and Analytical Technologies, Advanced Technology Program, SAIC-Frederick Inc., National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Philippe Kieffer-Kwon
- HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Christine Happel
- HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Joseph Ziegelbauer
- HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
28
|
Kim S, Ishida H, Yamane D, Yi M, Swinney DC, Foung S, Lemon SM. Contrasting roles of mitogen-activated protein kinases in cellular entry and replication of hepatitis C virus: MKNK1 facilitates cell entry. J Virol 2013; 87:4214-24. [PMID: 23365451 PMCID: PMC3624358 DOI: 10.1128/jvi.00954-12] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 01/24/2013] [Indexed: 12/12/2022] Open
Abstract
The human kinome comprises over 800 individual kinases. These contribute in multiple ways to regulation of cellular metabolism and may have direct and indirect effects on virus replication. Kinases are tempting therapeutic targets for drug development, but achieving sufficient specificity is often a challenge for chemical inhibitors. While using inhibitors to assess whether c-Jun N-terminal (JNK) kinases regulate hepatitis C virus (HCV) replication, we encountered unexpected off-target effects that led us to discover a role for a mitogen-activated protein kinase (MAPK)-related kinase, MAPK interacting serine/threonine kinase 1 (MKNK1), in viral entry. Two JNK inhibitors, AS601245 and SP600125, as well as RNA interference (RNAi)-mediated knockdown of JNK1 and JNK2, enhanced replication of HCV replicon RNAs as well as infectious genome-length RNA transfected into Huh-7 cells. JNK knockdown also enhanced replication following infection with cell-free virus, suggesting that JNK actively restricts HCV replication. Despite this, AS601245 and SP600125 both inhibited viral entry. Screening of a panel of inhibitors targeting kinases that may be modulated by off-target effects of AS601245 and SP600125 led us to identify MKNK1 as a host factor involved in HCV entry. Chemical inhibition or siRNA knockdown of MKNK1 significantly impaired entry of genotype 1a HCV and HCV-pseudotyped lentiviral particles (HCVpp) in Huh-7 cells but had only minimal impact on viral RNA replication or cell proliferation and viability. We propose a model by which MKNK1 acts to facilitate viral entry downstream of the epidermal growth factor receptor (EGFR) and extracellular signal-regulated kinase (ERK), both of which have been implicated in the entry process.
Collapse
Affiliation(s)
- Seungtaek Kim
- Division of Infectious Diseases, Department of Medicine, and the Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Hisashi Ishida
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Daisuke Yamane
- Division of Infectious Diseases, Department of Medicine, and the Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - MinKyung Yi
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - David C. Swinney
- Biochemical Pharmacology, Virology DBA, Roche Palo Alto, Palo Alto, California, USA
| | - Steven Foung
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Stanley M. Lemon
- Division of Infectious Diseases, Department of Medicine, and the Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
29
|
Dual short upstream open reading frames control translation of a herpesviral polycistronic mRNA. PLoS Pathog 2013; 9:e1003156. [PMID: 23382684 PMCID: PMC3561293 DOI: 10.1371/journal.ppat.1003156] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 12/11/2012] [Indexed: 12/21/2022] Open
Abstract
The Kaposi's sarcoma-associated herpesvirus (KSHV) protein kinase, encoded by ORF36, functions to phosphorylate cellular and viral targets important in the KSHV lifecycle and to activate the anti-viral prodrug ganciclovir. Unlike the vast majority of mapped KSHV genes, no viral transcript has been identified with ORF36 positioned as the 5′-proximal gene. Here we report that ORF36 is robustly translated as a downstream cistron from the ORF35–37 polycistronic transcript in a cap-dependent manner. We identified two short, upstream open reading frames (uORFs) within the 5′ UTR of the polycistronic mRNA. While both uORFs function as negative regulators of ORF35, unexpectedly, the second allows for the translation of the downstream ORF36 gene by a termination-reinitiation mechanism. Positional conservation of uORFs within a number of related viruses suggests that this may be a common γ-herpesviral adaptation of a host translational regulatory mechanism. Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiologic agent of multicentric Castleman's disease, primary effusion lymphoma and Kaposi's sarcoma. KSHV expresses a number of transcripts with the potential to generate multiple proteins, yet relies on the cellular translation machinery that is primed to synthesize only one protein per mRNA. Here we report that the viral transcript encompassing ORF35–37 is able to direct synthesis of two proteins and that the translational switch is regulated by two short upstream open reading frames (uORFs) in the native 5′ untranslated region. uORFs are elements commonly found upstream of mammalian genes that function to interfere with unrestrained ribosomal scanning and thus repress translation of the major ORF. The sequence of the viral uORF appears unimportant, and instead functions to position the translation machinery in a location that favors translation of the downstream major ORF, via a reinitiation mechanism. Thus, KSHV uses a host strategy generally reserved to repress translation to instead allow for the expression of an internal gene.
Collapse
|
30
|
Darst RP, Haecker I, Pardo CE, Renne R, Kladde MP. Epigenetic diversity of Kaposi's sarcoma-associated herpesvirus. Nucleic Acids Res 2013; 41:2993-3009. [PMID: 23361465 PMCID: PMC3597696 DOI: 10.1093/nar/gkt033] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Spontaneous lytic reactivation of Kaposi’s sarcoma–associated herpesvirus (KSHV) occurs at a low rate in latently infected cells in disease and culture. This suggests imperfect epigenetic maintenance of viral transcription programs, perhaps due to variability in chromatin structure at specific loci across the population of KSHV episomal genomes. To characterize this locus-specific chromatin structural diversity, we used MAPit single-molecule footprinting, which simultaneously maps endogenous CG methylation and accessibility to M.CviPI at GC sites. Diverse chromatin structures were detected at the LANA, RTA and vIL6 promoters. At each locus, chromatin ranged from fully closed to fully open across the population. This diversity has not previously been reported in a virus. Phorbol ester and RTA transgene induction were used to identify chromatin conformations associated with reactivation of lytic transcription, which only a fraction of episomes had. Moreover, certain chromatin conformations correlated with CG methylation patterns at the RTA and vIL6 promoters. This indicated that some of the diverse chromatin conformations at these loci were epigenetically distinct. Finally, by comparing chromatin structures from a cell line infected with constitutively latent virus, we identified products of lytic replication. Our findings show that epigenetic drift can restrict viral propagation by chromatin compaction at latent and lytic promoters.
Collapse
Affiliation(s)
- Russell P Darst
- Department of Biochemistry and Molecular Biology, 2033 Mowry Road, Box 103633, University of Florida College of Medicine, Gainesville, FL, 32610, USA
| | | | | | | | | |
Collapse
|
31
|
Walsh D, Mathews MB, Mohr I. Tinkering with translation: protein synthesis in virus-infected cells. Cold Spring Harb Perspect Biol 2013; 5:a012351. [PMID: 23209131 DOI: 10.1101/cshperspect.a012351] [Citation(s) in RCA: 190] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Viruses are obligate intracellular parasites, and their replication requires host cell functions. Although the size, composition, complexity, and functions encoded by their genomes are remarkably diverse, all viruses rely absolutely on the protein synthesis machinery of their host cells. Lacking their own translational apparatus, they must recruit cellular ribosomes in order to translate viral mRNAs and produce the protein products required for their replication. In addition, there are other constraints on viral protein production. Crucially, host innate defenses and stress responses capable of inactivating the translation machinery must be effectively neutralized. Furthermore, the limited coding capacity of the viral genome needs to be used optimally. These demands have resulted in complex interactions between virus and host that exploit ostensibly virus-specific mechanisms and, at the same time, illuminate the functioning of the cellular protein synthesis apparatus.
Collapse
Affiliation(s)
- Derek Walsh
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA.
| | | | | |
Collapse
|
32
|
Chien KY, Blackburn K, Liu HC, Goshe MB. Proteomic and phosphoproteomic analysis of chicken embryo fibroblasts infected with cell culture-attenuated and vaccine strains of Marek's disease virus. J Proteome Res 2012; 11:5663-77. [PMID: 23106611 DOI: 10.1021/pr300471y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Vaccination is an effective strategy to reduce the loss of chickens in the poultry industry caused by Marek's Disease (MD), an avian lymphoproliferative disease. The vaccines currently used are from attenuated serotype 1 Marek's disease virus (MDV) or naturally nononcogenic MDV strains. To prepare for future immunity breaks, functional genomic and proteomic studies have been used to better understand the underlying mechanisms of MDV pathogenicity and the effects induced by the vaccine viruses. In this study, a combined approach of quantitative GeLC-MSE and qualitative ERLIC/IMAC/LC-MS/MS analysis were used to identify abundance changes of proteins and the variations of phosphorylation status resulting from the perturbations due to infection with an attenuated oncogenic virus strain (Md11/75C) and several nononcogenic virus strains (CVI988, FC126 and 301B) in vitro. Using this combined approach, several signal transduction pathways mapped by the identified proteins were found to be altered at both the level of protein abundance and phosphorylation. On the basis of this study, a kinase-dependent pathway to regulate phosphorylation of 4E-BP1 to modulate assembly of the protein translation initiation complex was revealed. The differences of 4E-BP1 phosphorylation patterns as well as the measured abundance changes among several other proteins that regulate host transcriptional and translational activities across the virus strains used in this study provide new insight for future functional and biochemical characterization of specific proteins involved in MDV pathogenesis.
Collapse
Affiliation(s)
- Ko-yi Chien
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh North Carolina 27695, United States
| | | | | | | |
Collapse
|
33
|
Interplay between polyadenylate-binding protein 1 and Kaposi's sarcoma-associated herpesvirus ORF57 in accumulation of polyadenylated nuclear RNA, a viral long noncoding RNA. J Virol 2012; 87:243-56. [PMID: 23077296 DOI: 10.1128/jvi.01693-12] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Polyadenylate-binding protein cytoplasmic 1 (PABPC1) is a cytoplasmic-nuclear shuttling protein important for protein translation initiation and both RNA processing and stability. We report that PABPC1 forms a complex with the Kaposi's sarcoma-associated herpesvirus (KSHV) ORF57 protein, which allows ORF57 to interact with a 9-nucleotide (nt) core element of KSHV polyadenylated nuclear (PAN) RNA, a viral long noncoding RNA (lncRNA), and increase PAN stability. The N-terminal RNA recognition motifs (RRMs) of PABPC1 are necessary for the direct interaction with ORF57. During KSHV lytic infection, the expression of viral ORF57 leads to a substantial decrease in overall PABPC1 expression, along with a shift in the cellular distribution of the remaining PABPC1 to the nucleus. Interestingly, PABPC1 and ORF57 have opposing functions in modulating PAN steady-state accumulation. The suppressive effect of PABPC1 specific to PAN expression is alleviated by small interfering RNA knockdown of PABPC1 or by overexpression of ORF57. Conversely, ectopic PABPC1 reduces ORF57 steady-state protein levels and induces aberrant polyadenylation of PAN and thereby indirectly inhibits ORF57-mediated PAN accumulation. However, E1B-AP5 (heterogeneous nuclear ribonucleoprotein U-like 1), which interacts with a region outside the 9-nt core to stimulate PAN expression, does not interact or even colocalize with ORF57. Unlike PABPC1, the nuclear distribution of E1B-AP5 remains unchanged by viral lytic infection or overexpression of ORF57. Together, these data indicate that PABPC1 is an important cellular target of viral ORF57 to directly upregulate PAN accumulation during viral lytic infection, and the ability of host PABPC1 to disrupt ORF57 expression is a strategic host counterbalancing mechanism.
Collapse
|
34
|
Herdy B, Jaramillo M, Svitkin YV, Rosenfeld AB, Kobayashi M, Walsh D, Alain T, Sean P, Robichaud N, Topisirovic I, Furic L, Dowling RJO, Sylvestre A, Rong L, Colina R, Costa-Mattioli M, Fritz JH, Olivier M, Brown E, Mohr I, Sonenberg N. Translational control of the activation of transcription factor NF-κB and production of type I interferon by phosphorylation of the translation factor eIF4E. Nat Immunol 2012; 13:543-550. [PMID: 22544393 DOI: 10.1038/ni.2291] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 03/19/2012] [Indexed: 12/17/2022]
Abstract
Type I interferon is an integral component of the antiviral response, and its production is tightly controlled at the levels of transcription and translation. The eukaryotic translation-initiation factor eIF4E is a rate-limiting factor whose activity is regulated by phosphorylation of Ser209. Here we found that mice and fibroblasts in which eIF4E cannot be phosphorylated were less susceptible to virus infection. More production of type I interferon, resulting from less translation of Nfkbia mRNA (which encodes the inhibitor IκBα), largely explained this phenotype. The lower abundance of IκBα resulted in enhanced activity of the transcription factor NF-κB, which promoted the production of interferon-β (IFN-β). Thus, regulated phosphorylation of eIF4E has a key role in antiviral host defense by selectively controlling the translation of an mRNA that encodes a critical suppressor of the innate antiviral response.
Collapse
Affiliation(s)
- Barbara Herdy
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Maritza Jaramillo
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Yuri V Svitkin
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Amy B Rosenfeld
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Mariko Kobayashi
- Department of Microbiology and NYU Cancer Institute, New York University School of Medicine, New York, New York, USA
| | - Derek Walsh
- National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
| | - Tommy Alain
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Polen Sean
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Nathaniel Robichaud
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Ivan Topisirovic
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Luc Furic
- Monash University, Clayton, Australia
| | - Ryan J O Dowling
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Annie Sylvestre
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Liwei Rong
- McGill AIDS Center, Lady Davis Institute of the Jewish General Hospital, Montreal, Canada
| | - Rodney Colina
- Laboratorio de Virologia Molecular, Regional Norte-Salto, Universidad de la República, Salto, Uruguay
| | | | - Jörg H Fritz
- Complex Traits Group and Department of Microbiology and Immunology, McGill University, Montreal, Canada
| | - Martin Olivier
- The Research Institute of the McGill University Health Centre, Centre for the Study of Host Resistance, Departments of Medicine, Microbiology and Immunology, McGill University, Montreal, Canada
| | - Earl Brown
- Department of Biochemistry, Microbiology and Immunology, and Emerging Pathogens Research Centre, University of Ottawa, Ottawa, Canada
| | - Ian Mohr
- Department of Microbiology and NYU Cancer Institute, New York University School of Medicine, New York, New York, USA
| | - Nahum Sonenberg
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
35
|
Poly(A) binding protein abundance regulates eukaryotic translation initiation factor 4F assembly in human cytomegalovirus-infected cells. Proc Natl Acad Sci U S A 2012; 109:5627-32. [PMID: 22431630 DOI: 10.1073/pnas.1202829109] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
By commandeering cellular translation initiation factors, or destroying those dispensable for viral mRNA translation, viruses often suppress host protein synthesis. In contrast, cellular protein synthesis proceeds in human cytomegalovirus (HCMV)-infected cells, forcing viral and cellular mRNAs to compete for limiting translation initiation factors. Curiously, inactivating the host translational repressor 4E-BP1 in HCMV-infected cells stimulates synthesis of the cellular poly(A) binding protein (PABP), significantly increasing PABP abundance. Here, we establish that new PABP synthesis is translationally controlled by the HCMV-encoded UL38 mammalian target of rapamycin complex 1-activator. The 5' UTR within the mRNA encoding PABP contains a terminal oligopyrimidine (TOP) element found in mRNAs, the translation of which is stimulated in response to mitogenic, growth, and nutritional stimuli, and proteins encoded by TOP-containing mRNAs accumulated in HCMV-infected cells. Furthermore, UL38 expression was necessary and sufficient to regulate expression of a PABP TOP-containing reporter. Remarkably, preventing the rise in PABP abundance by RNAi impaired eIF4E binding to eIF4G, thereby reducing assembly of the multisubunit initiation factor eIF4F, viral protein production, and replication. This finding demonstrates that viruses can increase host translation initiation factor concentration to foster their replication and defines a unique mechanism whereby control of PABP abundance regulates eIF4F assembly.
Collapse
|
36
|
Zaborowska I, Kellner K, Henry M, Meleady P, Walsh D. Recruitment of host translation initiation factor eIF4G by the Vaccinia Virus ssDNA-binding protein I3. Virology 2012; 425:11-22. [PMID: 22280895 DOI: 10.1016/j.virol.2011.12.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 12/09/2011] [Accepted: 12/23/2011] [Indexed: 11/15/2022]
Abstract
Poxviruses are large double-stranded DNA viruses that replicate exclusively in the cytoplasm of infected cells within discrete compartments termed viral factories. Recent work has shown that the prototypical poxvirus, Vaccinia Virus (VacV) sequesters components of the eukaryotic translation initiation complex eIF4F within viral factories while also stimulating formation of eIF4F complexes. However, the forces that govern these events remain unknown. Here, we show that maximal eIF4F formation requires viral DNA replication and the formation of viral factories, suggesting that sequestration functions to promote eIF4F assembly, and identify the ssDNA-binding protein, I3 as a viral factor that interacts and co-localizes with the eIF4F scaffold protein, eIF4G. Although it did not adversely affect host or viral protein synthesis, I3 specifically mediated the binding of eIF4G to ssDNA. Combined, our findings offer an explanation for the specific pattern and temporal process of eIF4G redistribution and eIF4F complex assembly within VacV-infected cells.
Collapse
Affiliation(s)
- Izabela Zaborowska
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
| | | | | | | | | |
Collapse
|
37
|
Dunn EF, Connor JH. HijAkt: The PI3K/Akt pathway in virus replication and pathogenesis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 106:223-50. [PMID: 22340720 PMCID: PMC7149925 DOI: 10.1016/b978-0-12-396456-4.00002-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
As obligate parasites of cellular processes, viruses must take over cellular macromolecular machinery. It is also becoming clear that viruses routinely control intracellular signaling pathways through the direct or indirect control of kinases and phosphatases. This control of cellular phosphoproteins is important to promote a variety of viral processes, from control of entry to nuclear function to the stimulation of viral protein synthesis. This review focuses on the takeover of the cellular phosphatidylinositol-3-kinase (PI3K)/Akt signaling pathway by a variety of retroviruses, DNA viruses, and RNA viruses, highlighting the functions ascribed to virus activation of PI3K and Akt activity. This review also describes the role that the PI3K/Akt pathway plays in the host response, noting that it that can trigger anti- as well as proviral functions.
Collapse
Affiliation(s)
- Ewan F Dunn
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, USA
| | | |
Collapse
|
38
|
Abstract
Although viruses encode many of the functions that are required for viral replication, they are completely reliant on the protein synthesis machinery that is present in their host cells. Recruiting cellular ribosomes to translate viral mRNAs represents a crucial step in the replication of all viruses. To ensure translation of their mRNAs, viruses use a diverse collection of strategies (probably pirated from their cellular hosts) to commandeer key translation factors that are required for the initiation, elongation and termination steps of translation. Viruses also neutralize host defences that seek to incapacitate the translation machinery in infected cells.
Viruses rely on the translation machinery of the host cell to produce the proteins that are essential for their replication. Here, Walsh and Mohr discuss the diverse strategies by which viruses subvert the host protein synthesis machinery and regulate the translation of viral mRNAs. Viruses are fully reliant on the translation machinery of their host cells to produce the polypeptides that are essential for viral replication. Consequently, viruses recruit host ribosomes to translate viral mRNAs, typically using virally encoded functions to seize control of cellular translation factors and the host signalling pathways that regulate their activity. This not only ensures that viral proteins will be produced, but also stifles innate host defences that are aimed at inhibiting the capacity of infected cells for protein synthesis. Remarkably, nearly every step of the translation process can be targeted by virally encoded functions. This Review discusses the diverse strategies that viruses use to subvert host protein synthesis functions and regulate mRNA translation in infected cells.
Collapse
|
39
|
Borah S, Darricarrère N, Darnell A, Myoung J, Steitz JA. A viral nuclear noncoding RNA binds re-localized poly(A) binding protein and is required for late KSHV gene expression. PLoS Pathog 2011; 7:e1002300. [PMID: 22022268 PMCID: PMC3192849 DOI: 10.1371/journal.ppat.1002300] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2011] [Accepted: 08/19/2011] [Indexed: 01/01/2023] Open
Abstract
During the lytic phase of infection, the gamma herpesvirus Kaposi's Sarcoma-Associated Herpesvirus (KSHV) expresses a highly abundant, 1.1 kb nuclear noncoding RNA of unknown function. We observe that this polyadenylated nuclear (PAN) RNA avidly binds host poly(A)-binding protein C1 (PABPC1), which normally functions in the cytoplasm to bind the poly(A) tails of mRNAs, regulating mRNA stability and translation efficiency. During the lytic phase of KSHV infection, PABPC1 is re-localized to the nucleus as a consequence of expression of the viral shutoff exonuclease (SOX) protein; SOX also mediates the host shutoff effect in which host mRNAs are downregulated while viral mRNAs are selectively expressed. We show that whereas PAN RNA is not required for the host shutoff effect or for PABPC1 re-localization, SOX strongly upregulates the levels of PAN RNA in transient transfection experiments. This upregulation is destroyed by the same SOX mutation that ablates the host shutoff effect and PABPC1 nuclear re-localization or by removal of the poly(A) tail of PAN. In cells induced into the KSHV lytic phase, depletion of PAN RNA using RNase H-targeting antisense oligonucleotides reveals that it is necessary for the production of late viral proteins from mRNAs that are themselves polyadenylated. Our results add to the repertoire of functions ascribed to long noncoding RNAs and suggest a mechanism of action for nuclear noncoding RNAs in gamma herpesvirus infection. Almost all eukaryotic messenger RNAs (mRNAs) have a string of 150–200 adenylates at the 3′ end. This poly(A) tail has been implicated as important for regulating mRNA translation, stability and export. During the lytic phase of infection of Kaposi's Sarcoma-Associated Herpesvirus (KSHV), a noncoding viral RNA is synthesized that resembles an mRNA in that it is transcribed by RNA polymerase II, is methyl-G capped at the 5′ end, and is polyadenylated at the 3′ end; yet this RNA is never exported to the cytoplasm for translation. Rather, it builds up in the nucleus to exceedingly high levels. We present evidence that the function of this abundant, polyadenylated nuclear (PAN) RNA is to bind poly(A) binding protein, which normally binds poly(A) tails of mRNAs in the cytoplasm but is re-localized into the nucleus during lytic KSHV infection. The interaction between PAN RNA and re-localized poly(A) binding protein is important for formation of new virus, in particular for the synthesis of proteins made late in infection. Our study provides new insight into the function of this noncoding RNA during KSHV infection and expands recent discoveries regarding re-localization of poly(A) binding protein during many viral infections.
Collapse
Affiliation(s)
- Sumit Borah
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University, New Haven, Connecticut, United States of America
| | - Nicole Darricarrère
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Alicia Darnell
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University, New Haven, Connecticut, United States of America
| | - Jinjong Myoung
- Department of Microbiology and Immunology, Howard Hughes Medical Institute, University of California, San Francisco, California, United States of America
| | - Joan A. Steitz
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
40
|
Kuang E, Fu B, Liang Q, Myoung J, Zhu F. Phosphorylation of eukaryotic translation initiation factor 4B (EIF4B) by open reading frame 45/p90 ribosomal S6 kinase (ORF45/RSK) signaling axis facilitates protein translation during Kaposi sarcoma-associated herpesvirus (KSHV) lytic replication. J Biol Chem 2011; 286:41171-41182. [PMID: 21994950 DOI: 10.1074/jbc.m111.280982] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Open reading frame 45 (ORF45) of Kaposi sarcoma-associated herpesvirus (KSHV) causes sustained activation of p90 ribosomal S6 kinase (RSK), which is crucial for KSHV lytic replication, but the exact functional roles remain to be determined. To characterize the biological consequence of persistent RSK activation by ORF45, we screened known cellular substrates of RSK. We found that ORF45 induced phosphorylation of eukaryotic translation initiation factor 4B (eIF4B), increased its assembly into translation initiation complex, and subsequently facilitated protein translation. The ORF45/RSK-mediated eIF4B phosphorylation was distinguishable from that caused by the canonical AKT/mammalian target of rapamycin/ribosomal S6 kinase and MEK/ERK/RSK pathways because it was resistant to both rapamycin (an mammalian target of rapamycin inhibitor) and U1026 (an MEK inhibitor). The rapamycin and U1026 doubly insensitive eIF4B phosphorylation was induced during KSHV reactivation but was abolished if either ORF45 or RSK1/2 were ablated by siRNA, a pattern that is correlated with reduced lytic gene expression as we observed previously. Ectopic expression of eIF4B but not its phosphorylation-deficient mutant form increased KSHV lytic gene expression and production of progeny viruses. Together, these results indicated that ORF45/RSK axis-induced eIF4B phosphorylation is involved in translational regulation and is required for optimal KSHV lytic replication.
Collapse
Affiliation(s)
- Ersheng Kuang
- Department of Biological Science, The Florida State University, Tallahassee, Florida 32306-4370
| | - Bishi Fu
- Department of Biological Science, The Florida State University, Tallahassee, Florida 32306-4370
| | - Qiming Liang
- Department of Biological Science, The Florida State University, Tallahassee, Florida 32306-4370
| | - Jinjong Myoung
- Novartis Institutes for Biomedical Research, Emeryville, California 94608-2916
| | - Fanxiu Zhu
- Department of Biological Science, The Florida State University, Tallahassee, Florida 32306-4370.
| |
Collapse
|
41
|
Shuda M, Kwun HJ, Feng H, Chang Y, Moore PS. Human Merkel cell polyomavirus small T antigen is an oncoprotein targeting the 4E-BP1 translation regulator. J Clin Invest 2011; 121:3623-34. [PMID: 21841310 DOI: 10.1172/jci46323] [Citation(s) in RCA: 289] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 06/29/2011] [Indexed: 12/11/2022] Open
Abstract
Merkel cell polyomavirus (MCV) is the recently discovered cause of most Merkel cell carcinomas (MCCs), an aggressive form of nonmelanoma skin cancer. Although MCV is known to integrate into the tumor cell genome and to undergo mutation, the molecular mechanisms used by this virus to cause cancer are unknown. Here, we show that MCV small T (sT) antigen is expressed in most MCC tumors, where it is required for tumor cell growth. Unlike the closely related SV40 sT, MCV sT transformed rodent fibroblasts to anchorage- and contact-independent growth and promoted serum-free proliferation of human cells. These effects did not involve protein phosphatase 2A (PP2A) inhibition. MCV sT was found to act downstream in the mammalian target of rapamycin (mTOR) signaling pathway to preserve eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1) hyperphosphorylation, resulting in dysregulated cap-dependent translation. MCV sT-associated 4E-BP1 serine 65 hyperphosphorylation was resistant to mTOR complex (mTORC1) and mTORC2 inhibitors. Steady-state phosphorylation of other downstream Akt-mTOR targets, including S6K and 4E-BP2, was also increased by MCV sT. Expression of a constitutively active 4E-BP1 that could not be phosphorylated antagonized the cell transformation activity of MCV sT. Taken together, these experiments showed that 4E-BP1 inhibition is required for MCV transformation. Thus, MCV sT is an oncoprotein, and its effects on dysregulated cap-dependent translation have clinical implications for the prevention, diagnosis, and treatment of MCV-related cancers.
Collapse
Affiliation(s)
- Masahiro Shuda
- Cancer Virology Program, University of Pittsburgh Cancer Institute, 5117 Centre Avenue, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | |
Collapse
|
42
|
Chuluunbaatar U, Mohr I. A herpesvirus kinase that masquerades as Akt: you don't have to look like Akt, to act like it. Cell Cycle 2011; 10:2064-8. [PMID: 21606676 DOI: 10.4161/cc.10.13.16242] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The cellular protein synthesis machinery is tightly regulated and capable of rapid reaction to a variety of physiological inputs critical in stress-response, cell cycle control, cancer biology, and virus infection. One important strategy for stimulating protein synthesis involves the ser/thr kinase Akt, which subsequently triggers inactivation of the cap-dependent translational repressor 4E-BP1 by an mTOR-containing protein complex (mTORC1). A recent paper demonstrated that herpes simplex virus utilizes a remarkable tactic to activate mTOR in infected cells. Instead of using the cellular Akt, the virus produces a ser / thr kinase called Us3 that doesn't look like Akt, but masquerades as Akt. By making the Akt-like protein unrecognizable, this disguise allows it to bypass the strict limits normally imposed on the real cellular Akt. Importantly, preventing the virus Akt-imposter from triggering mTORC1 inhibited viral growth, suggesting a new way to block herpes simplex virus. This study also raises the possibility that other Akt-impersonators may lurk hidden in our own genomes, possibly contributing to diseases ranging from diabetes to cancer.
Collapse
Affiliation(s)
- Uyanga Chuluunbaatar
- Department of Microbiology, New York University School of Medicine, New York, NY, USA
| | | |
Collapse
|
43
|
Expanding the role of Drosha to the regulation of viral gene expression. Proc Natl Acad Sci U S A 2011; 108:11229-34. [PMID: 21690333 DOI: 10.1073/pnas.1105799108] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
It is well-appreciated that viruses use host effectors for macromolecular synthesis and as regulators of viral gene expression. Viruses can encode their own regulators, but often use host-encoded factors to optimize replication. Here, we show that Drosha, an endoribonuclease best known for its role in the biogenesis of microRNAs (miRNAs), can also function to directly regulate viral gene expression. Kaposi's Sarcoma-associated Herpesvirus (KSHV) is associated with various tumors, and like all herpesviruses, has two modes of infection, latent and lytic, which are characterized by differential expression of viral gene products. Kaposin B (KapB) is a KSHV-encoded protein associated with cytokine production and cytotoxicity. We demonstrate that in addition to previously known transcriptional mechanisms, differences in Drosha levels contribute to low levels of KapB expression in latency and robust increases in expression during lytic replication. Thus, surprisingly, KSHV modulates Drosha activity differentially depending on the mode of replication. This regulation is dependent on Drosha-mediated cleavage, and KapB transcripts lacking the Drosha cleavage sites express higher levels of KapB, resulting in increased cell death. This work increases the known functions of Drosha and implies that tying viral gene expression to Drosha activity is advantageous for viruses.
Collapse
|
44
|
Manipulation of the host translation initiation complex eIF4F by DNA viruses. Biochem Soc Trans 2011; 38:1511-6. [PMID: 21118117 DOI: 10.1042/bst0381511] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the absence of their own translational machinery, all viruses must gain access to host cell ribosomes to synthesize viral proteins and replicate. Ribosome recruitment and scanning of capped host mRNAs is facilitated by the multisubunit eIF (eukaryotic initiation factor) 4F, which consists of a cap-binding protein, eIF4E and an RNA helicase, eIF4A, assembled on a large scaffolding protein, eIF4G. Although inactivated by many viruses to inhibit host translation, a growing number of DNA viruses are being found to employ diverse strategies to stimulate eIF4F activity in infected cells and maximize viral protein synthesis. These strategies include stimulation of cellular mTOR (mammalian target of rapamycin) signalling to inactivate 4E-BPs (eIF4E-binding proteins), a family of translational repressors that limit eIF4E availability and eIF4F complex formation, together with modulating the activity of the eIF4E kinase Mnk (mitogen-activated protein kinase signal-integrating kinase) in a variety of manners to regulate both host and viral mRNA translation. In some cases, specific viral proteins that mediate these signalling events have been identified, whereas others have been shown to interact with host translation initiation factors or complexes and modify their activity and/or subcellular localization. The present review outlines current understanding of the role of eIF4F in the life cycle of various DNA viruses and discusses its potential as a therapeutic target to suppress viral infection.
Collapse
|
45
|
Clyde K, Glaunsinger BA. Getting the message direct manipulation of host mRNA accumulation during gammaherpesvirus lytic infection. Adv Virus Res 2011; 78:1-42. [PMID: 21040830 DOI: 10.1016/b978-0-12-385032-4.00001-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The Gammaherpesvirinae subfamily of herpesviruses comprises lymphotropic viruses, including the oncogenic human pathogens Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus. During lytic infection, gammaherpesviruses manipulate host gene expression to optimize the cellular environment for viral replication and to evade the immune response. Additionally, although a lytically infected cell will itself be killed in the process of viral replication, lytic infection can contribute to pathogenesis by inducing the secretion of paracrine factors with functions in cell survival and proliferation, and angiogenesis. The mechanisms by which these viruses manipulate host gene expression are varied and target the accumulation of cellular mRNAs and their translation, signaling pathways, and protein stability. Here, we discuss how gammaherpesviral proteins directly influence host mRNA biogenesis and stability, either selectively or globally, in order to fine-tune the cellular environment to the advantage of the virus. Appreciation of the mechanisms by which these viruses interface with and adapt normal cellular processes continues to inform our understanding of gammaherpesviral biology and the regulation of mRNA accumulation and turnover in our own cells.
Collapse
Affiliation(s)
- Karen Clyde
- Department of Plant and Microbial Biology, University of California, Berkeley, USA
| | | |
Collapse
|
46
|
Nichols LA, Adang LA, Kedes DH. Rapamycin blocks production of KSHV/HHV8: insights into the anti-tumor activity of an immunosuppressant drug. PLoS One 2011; 6:e14535. [PMID: 21264294 PMCID: PMC3021514 DOI: 10.1371/journal.pone.0014535] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Accepted: 12/15/2010] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Infection with Kaposi's sarcoma-associated herpesvirus (KSHV/HHV8) often results in the development of fatal tumors in immunocompromised patients. Studies of renal transplant recipients show that use of the immunosuppressant drug rapamycin, an mTOR inhibitor, both prevents and can induce the regression of Kaposi's sarcoma (KS), an opportunistic tumor that arises within a subset of this infected population. In light of rapamycin's marked anti-KS activity, we tested whether the drug might directly inhibit the KSHV life cycle. We focused on the molecular switch that triggers this predominantly latent virus to enter the lytic (productive) replication phase, since earlier work links this transition to viral persistence and tumorigenesis. METHODS AND FINDINGS In latently infected human B cell lines, we found that rapamycin inhibited entry of the virus into the lytic replication cycle, marked by a loss of expression of the lytic switch protein, replication and transcription activator (RTA). To test for viral-specific effects of rapamycin, we focused our studies on a B cell line with resistance to rapamycin-mediated growth inhibition. Using this line, we found that the drug had minimal effect on cell cycle profiles, cellular proliferation, or the expression of other cellular or latent viral proteins, indicating that the RTA suppression was not a result of global cellular dysregulation. Finally, treatment with rapamycin blocked the production of progeny virions. CONCLUSIONS These results indicate that mTOR plays a role in the regulation of RTA expression and, therefore, KSHV production, providing a potential molecular explanation for the marked clinical success of rapamycin in the treatment and prevention of post-transplant Kaposi's sarcoma. The striking inhibition of rapamycin on KSHV lytic replication, thus, helps explain the apparent paradox of an immunosuppressant drug suppressing the pathogenesis of an opportunistic viral infection.
Collapse
Affiliation(s)
- Lisa A. Nichols
- Myles H. Thaler Center for AIDS and Human Retrovirus Research, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Microbiology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Laura A. Adang
- Myles H. Thaler Center for AIDS and Human Retrovirus Research, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Microbiology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Dean H. Kedes
- Myles H. Thaler Center for AIDS and Human Retrovirus Research, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Microbiology, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Medicine, University of Virginia, Charlottesville, Virginia, United States of America
| |
Collapse
|
47
|
Constitutive mTORC1 activation by a herpesvirus Akt surrogate stimulates mRNA translation and viral replication. Genes Dev 2010; 24:2627-39. [PMID: 21123650 DOI: 10.1101/gad.1978310] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
All viruses require cellular ribosomes to translate their mRNAs. Viruses producing methyl-7 (m⁷) GTP-capped mRNAs, like Herpes Simplex Virus-1 (HSV-1), stimulate cap-dependent translation by activating mTORC1 to inhibit the translational repressor 4E-binding protein 1 (4E-BP1). Here, we establish that the HSV-1 kinase Us3 masquerades as Akt to activate mTORC1. Remarkably, Us3 displays no sequence homology with the cellular kinase Akt, yet directly phosphorylates tuberous sclerosis complex 2 (TSC2) on the same sites as Akt. TSC2 depletion rescued Us3-deficient virus replication, establishing that Us3 enhances replication by phosphorylating TSC2 to constitutively activate mTORC1, effectively bypassing S6K-mediated feedback inhibition. Moreover, Us3 stimulated Akt substrate phosphorylation in infected cells, including FOXO1 and GSK3. Thus, HSV-1 encodes an Akt surrogate with overlapping substrate specificity to activate mTORC1, stimulating translation and virus replication. This establishes Us3 as a unique viral kinase with promising drug development potential.
Collapse
|
48
|
Noncytotoxic inhibition of viral infection through eIF4F-independent suppression of translation by 4EGi-1. J Virol 2010; 85:853-64. [PMID: 21068241 DOI: 10.1128/jvi.01873-10] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The eukaryotic initiation factor eIF4F recruits ribosomes to capped mRNAs while eIF2 mediates start codon recognition to initiate protein synthesis. Increasing interest in targeting translation to suppress tumor growth has led to the development of new classes of inhibitors, including 4EGi-1, which disrupts eIF4F complexes. However, the full effects of this inhibitor and its potential uses in the treatment of other disease states remain unclear. Here, we show that overall rates of protein synthesis in primary human cells were affected only modestly by eIF4F disruption using the mTOR inhibitor Torin1, yet were highly sensitive to 4EGi-1. Translational suppression occurred even at concentrations of 4EGi-1 that were below those required to significantly alter eIF4F levels but were instead found to increase the association of ribosomal complexes containing inactive eIF2α. Although highly stable in culture, the effects of 4EGi-1 on both cellular protein synthesis and ribosome association were readily reversible upon inhibitor removal. In addition, despite potently inhibiting translation, prolonged exposure to 4EGi-1 had only modest effects on cell morphology and protein abundance without affecting viability or stress tolerance to any significant degree, although differential effects on heat shock protein (hsp) expression highlighted distinct 4EGi-1-sensitive modes of hsp induction. In contrast, 4EGi-1 potently suppressed poxvirus replication as well as both reactivation and lytic phases of herpesvirus infection. These findings identify a novel way in which 4EGi-1 affects the host cell's protein synthesis machinery and demonstrate its potential as a noncytotoxic inhibitor of diverse forms of viral infection.
Collapse
|
49
|
Kumar GR, Glaunsinger BA. Nuclear import of cytoplasmic poly(A) binding protein restricts gene expression via hyperadenylation and nuclear retention of mRNA. Mol Cell Biol 2010; 30:4996-5008. [PMID: 20823266 PMCID: PMC2953054 DOI: 10.1128/mcb.00600-10] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Revised: 07/08/2010] [Accepted: 08/26/2010] [Indexed: 12/19/2022] Open
Abstract
Poly(A) tail length is emerging as an important marker of mRNA fate, where deviations from the canonical length can signal degradation or nuclear retention of transcripts. Pathways regulating polyadenylation thus have the potential to broadly influence gene expression. Here we demonstrate that accumulation of cytoplasmic poly(A) binding protein (PABPC) in the nucleus, which can occur during viral infection or other forms of cellular stress, causes mRNA hyperadenylation and nuclear accumulation of poly(A) RNA. This inhibits gene expression but does not affect mRNA stability. Unexpectedly, PABPC-induced hyperadenylation can occur independently of mRNA 3'-end processing yet requires the canonical mRNA poly(A) polymerase II. We find that nuclear PABPC-induced hyperadenylation is triggered by multiple divergent viral factors, suggesting that altering the subcellular localization of PABPC may be a commonly used mechanism to regulate cellular gene expression in a polyadenylation-linked manner.
Collapse
Affiliation(s)
- G. Renuka Kumar
- Department of Plant & Microbial Biology, University of California, Berkeley, California 94720-3102
| | - Britt A. Glaunsinger
- Department of Plant & Microbial Biology, University of California, Berkeley, California 94720-3102
| |
Collapse
|
50
|
Translational control of the abundance of cytoplasmic poly(A) binding protein in human cytomegalovirus-infected cells. J Virol 2010; 85:156-64. [PMID: 20980505 DOI: 10.1128/jvi.01778-10] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Irrespective of their effects on ongoing host protein synthesis, productive replication of the representative alphaherpesvirus herpes simplex virus type 1, the representative gammaherpesvirus Kaposi's sarcoma herpesvirus, and the representative betaherpesvirus human cytomegalovirus [HCMV] stimulates the assembly of the multisubunit, cap-binding translation factor eIF4F. However, only HCMV replication is associated with an increased abundance of eIF4F core components (eIF4E, eIF4G, eIF4A) and the eIF4F-associated factor poly(A) binding protein (PABP). Here, we demonstrate that the increase in translation factor concentration was readily detected in an asynchronous population of HCMV-infected primary human fibroblasts, abolished by prior UV inactivation of virus, and genetically dependent upon viral immediate-early genes. Strikingly, while increased mRNA steady-state levels accompanied the rise in eIF4E and eIF4G protein levels, the overall abundance of PABP mRNA, together with the half-life of the polypeptide it encodes, remained relatively unchanged by HCMV infection. Instead, HCMV-induced PABP accumulation resulted from new protein synthesis and was sensitive to the mTORC1-selective inhibitor rapamycin, which interferes with phosphorylation of the mTORC1 substrate p70 S6K and the translational repressor 4E-BP1. While virus-induced PABP accumulation did not require p70 S6K, it was inhibited by the expression of a dominant-acting 4E-BP1 variant unable to be inactivated by mTORC1. Finally, unlike the situation in alpha- or gammaherpesvirus-infected cells, where PABP is redistributed to nuclei, PABP accumulated in the cytoplasm of HCMV-infected cells. Thus, cytoplasmic PABP accumulation is translationally controlled in HCMV-infected cells via a mechanism requiring mTORC1-mediated inhibition of the cellular 4E-BP1 translational repressor.
Collapse
|