1
|
Wu-Chuang A, Laukaitis-Yousey HJ, Butnaru M, Mohr SE, Perrimon N, Pedra JHF. Decoding arthropod vector immunology through bona fide pathogens. Trends Parasitol 2025; 41:351-360. [PMID: 40133119 DOI: 10.1016/j.pt.2025.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/20/2025] [Accepted: 03/04/2025] [Indexed: 03/27/2025]
Abstract
The interrelationship between the microbiota, metabolism, and the arthropod immune system has evolved to maintain physiological equilibrium. Arthropods rely on this delicate balance when encountering fitness challenges. The understanding of life history traits in arthropod vectors has been hampered by technological difficulties compounded by limited scientific knowledge compared to established model organisms. Here, we posit that using emerging technologies to study environmental pathogens that cause greater fitness disadvantages to disease vectors (i.e., bona fide pathogens) in contrast to coevolved microbes will enable meaningful insights into arthropod immunophysiology. We propose a conceptual framework whereby understanding immunophysiology through the lens of bona fide pathogens, as opposed to coevolved microbes, should be useful for the management of vector-borne illnesses.
Collapse
Affiliation(s)
- Alejandra Wu-Chuang
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Hanna J Laukaitis-Yousey
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Matthew Butnaru
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Stephanie E Mohr
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Joao H F Pedra
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
2
|
Khan MK, Rolff J. Insect immunity in the Anthropocene. Biol Rev Camb Philos Soc 2025; 100:698-723. [PMID: 39500735 PMCID: PMC11885697 DOI: 10.1111/brv.13158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 03/08/2025]
Abstract
Anthropogenic activities result in global change, including climate change, landscape degradation and pollution, that can alter insect physiology and immune defences. These changes may have contributed to global insect decline and the dynamics of insect-transmitted diseases. The ability of insects to mount immune responses upon infection is crucial for defence against pathogens and parasites. Suppressed immune defences reduce fitness by causing disease-driven mortality and elevated immune responses reduce energy available to invest in other fitness traits such as reproduction. Understanding the impact of anthropogenic factors on insect-pathogen interactions is therefore key to determining the contribution of anthropogenic global change to pathogen-driven global insect decline and the emergence and transmission of insect-borne diseases. Here, we synthesise evidence of the impact of anthropogenic factors on insect immunity. We found evidence that anthropogenic factors, such as insecticides and heavy metals, directly impacting insect immune responses by inhibiting immune activation pathways. Alternatively, factors such as global warming, heatwaves, elevated CO2 and landscape degradation can indirectly reduce insect immune responses via reducing the energy available for immune function. We further review how anthropogenic factors impact pathogen clearance and contribute to an increase in vector-borne diseases. We discuss the fitness cost of anthropogenic factors via pathogen-driven mortality and reduced reproductive output and how this can contribute to species extinction. We found that most research has determined the impact of a single anthropogenic factor on insect immune responses or pathogen resistance. We recommend studying the combined impact of multiple stressors on immune response and pathogen resistance to understand better how anthropogenic factors affect insect immunity. We conclude by highlighting the importance of initiatives to mitigate the impact of anthropogenic factors on insect immunity, to reduce the spread of vector-borne diseases, and to protect vulnerable ecosystems from emerging diseases.
Collapse
Affiliation(s)
- Md Kawsar Khan
- Institute of BiologyFreie Universität BerlinKönigin‐Luise‐Str. 1‐3Berlin14195Germany
- School of Natural SciencesMacquarie University18 Wally's Walk, North Ryde‐2109SydneyNSWAustralia
| | - Jens Rolff
- Institute of BiologyFreie Universität BerlinKönigin‐Luise‐Str. 1‐3Berlin14195Germany
| |
Collapse
|
3
|
Dong Y, Kang S, Sandiford SL, Pike A, Simões ML, Ubalee R, Kobylinski K, Dimopoulos G. Targeting the mosquito prefoldin-chaperonin complex blocks Plasmodium transmission. Nat Microbiol 2025; 10:841-854. [PMID: 40050397 DOI: 10.1038/s41564-025-01947-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 01/27/2025] [Indexed: 03/16/2025]
Abstract
The Plasmodium infection cycle in mosquitoes relies on numerous host factors in the vector midgut, which can be targeted with therapeutics. The mosquito prefoldin complex is needed to fold proteins and macromolecular complexes properly. Here we show that the conserved Anopheles mosquito prefoldin (PFDN)-chaperonin system is a potent transmission-blocking target for multiple Plasmodium species. Silencing any prefoldin subunit or its CCT/TRiC partner via RNA interference reduces Plasmodium falciparum oocyst loads in the mosquito midgut, as does co-feeding mosquitoes with PFDN6-specific antibody and gametocytes. Inhibition of the PFDN-CCT/TRiC chaperonin complex results in the loss of epithelial and extracellular matrix integrity, which triggers microorganism-mediated anti-Plasmodium immune priming and compromises the parasite's laminin-based immune evasion. Mouse malaria transmission-blocking vaccine and antibody co-feeding assays support its potential as a multispecies transmission-blocking target for P. falciparum and Plasmodium vivax. Further study is needed to determine the potential of this system as a transmission-blocking vaccine target.
Collapse
Affiliation(s)
- Yuemei Dong
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Seokyoung Kang
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Simone L Sandiford
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Andrew Pike
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Maria L Simões
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
- Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| | - Ratawan Ubalee
- Department of Entomology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Kevin Kobylinski
- Department of Entomology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
4
|
Camacho E, Dong Y, Chrissian C, Cordero RJ, Saraiva RG, Anglero-Rodriguez Y, Smith DF, Jacobs E, Hartshorn I, Patiño-Medina JA, DePasquale M, Dziedzic A, Jedlicka A, Smith B, Mlambo G, Tripathi A, Broderick NA, Stark RE, Dimopoulos G, Casadevall A. Dietary L-3,4-dihydroxyphenylalanine (L-DOPA) augments cuticular melanization in Anopheles mosquitos while reducing their lifespan and malaria parasite burden. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.09.30.615839. [PMID: 40166253 PMCID: PMC11956902 DOI: 10.1101/2024.09.30.615839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
L-3,4-dihydroxyphenylalanine (L-DOPA), a naturally occurring tyrosine derivative, is prevalent in environments that include mosquito habitats, potentially serving as part of their diet. Given its role as a precursor for melanin synthesis we investigate the effect of dietary L-DOPA on mosquito physiology and immunity to Plasmodium falciparum and Cryptococcus neoformans infection. Dietary L-DOPA is incorporated into mosquito melanin via a non-canonical pathway and has a profound transcriptional effect associated with enhanced immunity, increased pigmentation, and reduced lifespan. Increased melanization results in an enhanced capacity to absorb electromagnetic radiation that affects mosquito temperatures. Bacteria in the mosquito microbiome act as sources of dopamine, a substrate for melanization. Our results illustrate how an environmentally abundant amino acid analogue can affect mosquito physiology and suggest its potential usefulness as an environmentally friendly vector control agent to reduce malaria transmission, warranting further research and field studies.
Collapse
|
5
|
Saab SA, Cardoso-Jaime V, Kefi M, Dimopoulos G. Advances in the dissection of Anopheles-Plasmodium interactions. PLoS Pathog 2025; 21:e1012965. [PMID: 40163471 PMCID: PMC11957333 DOI: 10.1371/journal.ppat.1012965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025] Open
Abstract
Malaria is a life-threatening mosquito-borne disease caused by the Plasmodium parasite, responsible for more than half a million deaths annually and principally involving children. The successful transmission of malaria by Anopheles mosquitoes relies on complex successive interactions between the parasite and various mosquito organs, host factors, and restriction factors. This review summarizes our current understanding of the mechanisms regulating Plasmodium infection of the mosquito vector at successive plasmodial developmental stages and highlights potential transmission-blocking targets and strategies.
Collapse
Affiliation(s)
- Sally A. Saab
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States America
| | - Victor Cardoso-Jaime
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States America
| | - Mary Kefi
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States America
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States America
| |
Collapse
|
6
|
Zhong Y, Wang Q, Sun F, Yu X, Liu Y, Shentu X. Effects of tebuconazole on insecticidal activity and symbionts in brown planthopper, Nilaparvata lugens (Hemiptera: Delphacidae). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 208:106283. [PMID: 40015875 DOI: 10.1016/j.pestbp.2024.106283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/25/2024] [Accepted: 12/30/2024] [Indexed: 03/01/2025]
Abstract
Harnessing symbionts as targets for pest management is an emerging and promising strategy that can contribute to sustainable agriculture and environmental protection. Brown planthopper (BPH), a major rice pest, significantly threatens crop yields and quality. In this study, we discovered that BPHs exhibited a significant increase in mortality after consuming the fungicide tebuconazole, indicating its direct toxic effect. Tebuconazole negatively impacts the body weight, digestive enzyme activity, and reproductive capacity in BPHs, and it also leads to a significant downregulation of the expression levels of the ecdysteroid biosynthetic genes. The number of symbionts and the expression level of Noda in the BPH treated with tebuconazole was significantly reduced. Sequencing results showed that tebuconazole had a significant effect on the richness of symbiotic fungi and bacteria in BPH. As a fungicide, tebuconazole can offer new approaches and insights for managing resistance and integrated pest control.
Collapse
Affiliation(s)
- Yuqing Zhong
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China
| | - Qian Wang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China
| | - Fan Sun
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China
| | - Yipeng Liu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China.
| | - Xuping Shentu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China.
| |
Collapse
|
7
|
Haider K, Abbas D, Galian J, Ghafar MA, Kabir K, Ijaz M, Hussain M, Khan KA, Ghramh HA, Raza A. The multifaceted roles of gut microbiota in insect physiology, metabolism, and environmental adaptation: implications for pest management strategies. World J Microbiol Biotechnol 2025; 41:75. [PMID: 40011281 DOI: 10.1007/s11274-025-04288-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 02/05/2025] [Indexed: 02/28/2025]
Abstract
Similar to many other organisms, insects like Drosophila melanogaster, Hypothenemus hampei, and Cockroaches harbor diverse bacterial communities in their gastrointestinal systems. These bacteria, along with other microorganisms like fungi and archaea, are essential to the physiology of their insect hosts, forming intricate symbiotic relationships. These gut-associated microorganisms contribute to various vital functions, including digestion, nutrient absorption, immune regulation, and behavioral modulation. Notably, gut microbiota facilitates the breakdown of complex plant materials, synthesizes essential vitamins and amino acids, and detoxifies harmful substances, including pesticides. Furthermore, these microorganisms are integral to modulating host immune responses and enhancing disease resistance. This review examines the multifaceted roles of gut microbiota in insect physiology, with particular emphasis on their contributions to digestion, detoxification, reproduction, and environmental adaptability. The potential applications of gut microbiota in integrated pest management (IPM) are also explored. Understanding the microbial dynamics within insect pest species opens new avenues for pest control, including developing microbial biocontrol agents, microbial modifications to reduce pesticide resistance, and implementing microbiome-based genetic strategies. In particular, manipulating gut microbiota presents a promising approach to pest management, offering a sustainable and eco-friendly alternative to conventional chemical pesticides.
Collapse
Affiliation(s)
- Kamran Haider
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Horticultural Plant Biology (MOE), China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| | - Dilawar Abbas
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jose Galian
- Department of Zoology and Physical Anthropology, University of Murcia, Campus Mare Nostrum, 30100, Murcia, Spain.
- ArthropoTech S.L, Ed. Vitalis, 2ª Floor, Office 2.15, Campus de Espinardo, 30100, Murcia, Spain.
| | - Muhammad Adeel Ghafar
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Bio Pesticide and Chemical Biology, MOE, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Kamil Kabir
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Horticultural Plant Biology (MOE), China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Muhammad Ijaz
- Department of Zoology and Physical Anthropology, University of Murcia, Campus Mare Nostrum, 30100, Murcia, Spain
- ArthropoTech S.L, Ed. Vitalis, 2ª Floor, Office 2.15, Campus de Espinardo, 30100, Murcia, Spain
| | - Mehboob Hussain
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
| | - Khalid Ali Khan
- Center of Bee Research and Its Products (CBRP), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
- Applied College, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Hamed A Ghramh
- Center of Bee Research and Its Products (CBRP), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
- Biology Department, College of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Abbas Raza
- Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Pakistan
| |
Collapse
|
8
|
Cardoso-Jaime V, Dimopoulos G. Anopheles gambiae phagocytic hemocytes promote Plasmodium falciparum infection by regulating midgut epithelial integrity. Nat Commun 2025; 16:1465. [PMID: 39920122 PMCID: PMC11805967 DOI: 10.1038/s41467-025-56313-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 01/15/2025] [Indexed: 02/09/2025] Open
Abstract
For successful transmission, the malaria parasite must traverse tissue epithelia and survive attack from the insect's innate immune system. Hemocytes play a multitude of roles in mosquitoes, including defense against invading pathogens. Here, we show that hemocytes of the major malaria vector Anopheles gambiae promote Plasmodium falciparum infection by maintaining midgut epithelial integrity by controlling cell proliferation upon blood feeding. The mosquito's hemocytes also control the midgut microbiota and immune gene expression. Our study unveils novel hemocyte functions that are exploited by the human malaria parasite to evade the mosquito's immune system.
Collapse
Affiliation(s)
- Victor Cardoso-Jaime
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
9
|
Kumar V, Garg S, Sisodia D, Gupta L, Kumar S, Saxena V. Midgut immune profiling and functional characterization of Aedes aegypti ABC transporter gene(s) using systemic and local bacterial challenges. Parasit Vectors 2025; 18:34. [PMID: 39891271 PMCID: PMC11786363 DOI: 10.1186/s13071-025-06658-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 01/01/2025] [Indexed: 02/03/2025] Open
Abstract
BACKGROUND The mosquito midgut is crucial for digestion and immune interactions. It produces several immune factors that protect the organ from invading pathogens and can limit their propagation. Studies on mosquito midgut transcriptome following pathogen exposure have revealed the presence of non-canonical immune genes, such as ABC transporters, whose function in insect immunity remains unexplored. Therefore, this study focuses on identifying and characterising the immune role of ABC transporters in the midgut of Aedes aegypti, a primary arboviral vector. METHODS To identify the midgut-expressed ABC transporters, the mosquitoes were challenged with a mixture of gram-negative (Escherichia coli) and gram-positive (Micrococcus luteus) bacteria, and the expression of all ABC transporters was analysed with PCR using gene-specific primers. Furthermore, the transcriptional alterations of midgut ABC transporters were explored at different time points upon a thoracic nano-injection (systemic challenge) or infectious blood meal (local challenge) of the bacterial mixture through quantitative real-time PCR (qPCR), and one gene was selected for RNAi-mediated gene silencing and its role assessment in midgut immune responses. RESULTS The expression of all 48 microbial-induced midgut-expressing Ae. aegypti ABC transporter genes upon systemic or local bacterial challenges was analyzed. Based on the transcriptomic data and potential immune expression similar to the well-known immune gene defensin, AaeABCG3 was selected for RNAi-mediated gene silencing and characterization. The AaeABCG3 gene silencing exhibited a significant reduction of midgut bacterial load through the induction of nitric oxide synthase (NOS) in sugar-fed and systemic bacterial-challenged mosquitoes. In contrast, midgut bacterial load was significantly regulated by induction of defensin A and cecropin G in the late hours of local bacterial challenges in AaeABCG3-silenced mosquitoes. CONCLUSIONS The silencing of AaeABCG3 modulated the mosquito midgut immune response and disturbed the midgut microbiota homeostasis. The systemic immune responses of AaeABCG3-silenced mosquitoes were influenced by the JAK-STAT pathway with no induction of Toll and IMD immune pathways. Interestingly, Toll and IMD immune pathways actively participated in the late hours of local bacterial challenges, suggesting that the route of infection influences these immune responses; however, the molecular mechanism behind these phenomena still needs to be explored. Overall, this work provides significant insight into the importance of ABC transporters in mosquito immunity.
Collapse
Affiliation(s)
- Vikas Kumar
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, 333031, Rajasthan, India
| | - Shilpi Garg
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, 333031, Rajasthan, India
| | - Diksha Sisodia
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, 333031, Rajasthan, India
| | - Lalita Gupta
- Department of Zoology, Chaudhary Bansi Lal University, Bhiwani, Haryana, India
| | - Sanjeev Kumar
- Department of Biotechnology, Chaudhary Bansi Lal University, Bhiwani, Haryana, India.
| | - Vishal Saxena
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, 333031, Rajasthan, India.
| |
Collapse
|
10
|
Chavarria X, Choi JH, Oh S, Kim M, Kang D, Lee IY, Jang YS, Yi MH, Yong TS, Kim JY. Metabarcoding for the Monitoring of the Microbiome and Parasitome of Medically Important Mosquito Species in Two Urban and Semi-urban Areas of South Korea. Curr Microbiol 2025; 82:102. [PMID: 39865193 DOI: 10.1007/s00284-025-04081-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 01/10/2025] [Indexed: 01/28/2025]
Abstract
Interactions between microbial communities and the host can modulate mosquito biology, including vector competence. Therefore, future vector biocontrol measures will utilize these interactions and require extensive monitoring of the mosquito microbiome. Metabarcoding strategies will be useful for conducting vector monitoring on a large scale. We used 16S and 18S rRNA gene metabarcoding through iSeq100 sequencing to characterize the microbiome and eukaryome of Aedes albopictus (Skuse 1894) and Culex pipiens (Linnaeus 1758), two globally important vectors present in South Korea. Mosquitoes were collected from an urban and a semi-urban location in South Korea. Bacterial alpha and beta diversities varied by population. Pseudomonadota dominated the microbiomes of both species. The microbiome composition varied by population and was dominated by different taxa. At the genus level, Wolbachia sp. was the most enriched genus in Cx. pipiens, followed by Aeromonas sp. In Ae. Albopictus, the most abundant group was Enterococcus sp. The gregarine parasite Ascogregarina taiwanensis was highly prevalent in Ae. Albopictus and its absence was marked by the presence of seven bacterial taxa. To our knowledge, this is the first characterization of the microbiome of Ae. albopictus and Cx. pipiens in these regions of South Korea and contributes to the current information on the microbiome of mosquito species, which can be used in further studies to assess pathogen-microbiome and microbiome-microbiome interactions.
Collapse
Affiliation(s)
- Xavier Chavarria
- Department of Tropical Medicine, Institute of Tropical Medicine, Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Yonsei-Ro 50-1, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - Jun Ho Choi
- Department of Tropical Medicine, Institute of Tropical Medicine, Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Yonsei-Ro 50-1, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - Singeun Oh
- Department of Tropical Medicine, Institute of Tropical Medicine, Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Yonsei-Ro 50-1, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - Myungjun Kim
- Department of Tropical Medicine, Institute of Tropical Medicine, Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Yonsei-Ro 50-1, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - Dongjun Kang
- Department of Tropical Medicine, Institute of Tropical Medicine, Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Yonsei-Ro 50-1, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - In-Yong Lee
- Department of Tropical Medicine, Institute of Tropical Medicine, Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Yonsei-Ro 50-1, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - Yun Soo Jang
- Department of Tropical Medicine, Institute of Tropical Medicine, Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Yonsei-Ro 50-1, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - Myung-Hee Yi
- Department of Tropical Medicine, Institute of Tropical Medicine, Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Yonsei-Ro 50-1, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - Tai-Soon Yong
- Department of Tropical Medicine, Institute of Tropical Medicine, Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Yonsei-Ro 50-1, Seodaemun-Gu, Seoul, 03722, Republic of Korea
- Faculty of Medicine, Eswatini Medical Christian University, Lomkiri Portion 69 of Farm 73 Zone 4, Mbabane, Eswatini
| | - Ju Yeong Kim
- Department of Tropical Medicine, Institute of Tropical Medicine, Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Yonsei-Ro 50-1, Seodaemun-Gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
11
|
Yin Y, Liu Y, Fan J, Yu L, Nie M, Zhang Z, Han Q, Liao C. Analysis of Midgut Bacterial Communities in Larvae and Adult Mosquitoes of Aedes aegypti Invaded by Three Different Microorganisms. Microorganisms 2025; 13:248. [PMID: 40005615 PMCID: PMC11857585 DOI: 10.3390/microorganisms13020248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/18/2025] [Accepted: 01/21/2025] [Indexed: 02/27/2025] Open
Abstract
The midgut microbiota of Aedes aegypti is crucial for the mosquito's development, nutrition, and immunity. However, its communities are also distinctively influenced by the colonization of different microorganisms, influencing its susceptibility to pathogens and transmission capacity. In this study, we investigated the effects of infections with Escherichia coli, Staphylococcus aureus, and Beauveria bassiana on the midgut microbial composition of Ae. aegypti. These microorganisms were inoculated into the midguts of third-instar larvae using a soaking method. Midgut samples were then analyzed through high-throughput 16S rDNA sequencing to assess bacterial load and microbiota composition of fourth-instar larvae and female adult mosquitoes. The results reveal that E. coli-colonized fourth-instar larvae (CO_4W) exhibited 20 unique genera, whereas the S. aureus-colonized group (S_4W) had operational taxonomic units assigned to 194 bacterial taxa, including a notable decrease in Elizabethkingia. In addition, B. bassiana infection led to a significant reduction of Elizabethkingia meningoseptica in larvae, decreasing from 42.9% in the control group (CK_4W) to 0.9% in the B. bassiana-infected group (B_4W). Distinct microbial profiles were also compared between adult mosquitoes and fourth-instar larvae. Significant abundance changes were found in Firmicutes, Bacteroidota, and Proteobacteria among different groups. Metabolic pathway predictions using PICRUSt suggested that microorganism invasion enriched the pathways involved in carbohydrate metabolism and amino acid metabolism. This enrichment suggests that the microbiota may undergo specific adaptive responses to pathogen presence. Overall, our results provide new insights into the relationship between the invasion of microorganisms and midgut bacterial communities in mosquitoes.
Collapse
Affiliation(s)
- Yanan Yin
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; (Y.Y.); (Y.L.); (J.F.); (L.Y.); (M.N.); (Z.Z.); (Q.H.)
- Hainan International One Health Institute, Hainan University, Haikou 570228, China
| | - Yanhui Liu
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; (Y.Y.); (Y.L.); (J.F.); (L.Y.); (M.N.); (Z.Z.); (Q.H.)
- Hainan International One Health Institute, Hainan University, Haikou 570228, China
| | - Jieli Fan
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; (Y.Y.); (Y.L.); (J.F.); (L.Y.); (M.N.); (Z.Z.); (Q.H.)
- Hainan International One Health Institute, Hainan University, Haikou 570228, China
| | - Lingling Yu
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; (Y.Y.); (Y.L.); (J.F.); (L.Y.); (M.N.); (Z.Z.); (Q.H.)
- Hainan International One Health Institute, Hainan University, Haikou 570228, China
| | - Meng Nie
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; (Y.Y.); (Y.L.); (J.F.); (L.Y.); (M.N.); (Z.Z.); (Q.H.)
- Hainan International One Health Institute, Hainan University, Haikou 570228, China
| | - Zhiqi Zhang
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; (Y.Y.); (Y.L.); (J.F.); (L.Y.); (M.N.); (Z.Z.); (Q.H.)
- Hainan International One Health Institute, Hainan University, Haikou 570228, China
| | - Qian Han
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; (Y.Y.); (Y.L.); (J.F.); (L.Y.); (M.N.); (Z.Z.); (Q.H.)
- Hainan International One Health Institute, Hainan University, Haikou 570228, China
| | - Chenghong Liao
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; (Y.Y.); (Y.L.); (J.F.); (L.Y.); (M.N.); (Z.Z.); (Q.H.)
- Hainan International One Health Institute, Hainan University, Haikou 570228, China
| |
Collapse
|
12
|
Rajendran D, Vinayagam S, Sekar K, Bhowmick IP, Sattu K. Symbiotic Bacteria: Wolbachia, Midgut Microbiota in Mosquitoes and Their Importance for Vector Prevention Strategies. MICROBIAL ECOLOGY 2024; 87:154. [PMID: 39681734 PMCID: PMC11649735 DOI: 10.1007/s00248-024-02444-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/02/2024] [Indexed: 12/18/2024]
Abstract
Mosquito-borne illnesses pose a significant threat to eradication under existing vector management measures. Chemo-based vector control strategies (use of insecticides) raise a complication of resistance and environmental pollution. Biological control methods are an alternative approach to overcoming this complication arising from insecticides. The mosquito gut microbiome is essential to supporting the factors that involve metabolic regulation and metamorphic development (from juvenile to adult), as well as the induction of an immune response. The induced immune response includes the JAK-STAT, IMD, and Toll pathways due to the microbial interaction with the midgut cells (MG cells) that prevent disease transmission to humans. The aforementioned sequel to the review provides information about endosymbiont Wolbachia, which contaminates insect cells, including germline and somatic cytoplasm, and inhibits disease-causing pathogen development and transmission by competing for resources within the cell. Moreover, it reduces the host population via cytoplasmic incompatibility (CI), feminization, male killing, and parthenogenesis. Furthermore, the Cif factor in Wolbachia is responsible for CI induction that produces inviable cells with the translocating systems and the embryonic defect-causing protein factor, WalE1 (WD0830), which manipulates the host actin. This potential of Wolbachia can be used to design a paratransgenic system to control vectors in the field. An extracellular symbiotic bacterium such as Asaia, which is grown in the growth medium, is used to transfer lethal genes within itself. Besides, the genetically transferred symbiotic bacteria infect the wild mosquito population and are easily manifold. So, it might be suitable for vector control strategies in the future.
Collapse
Affiliation(s)
- Devianjana Rajendran
- Department of Biotechnology, Periyar University, Centre for Postgraduate and Research Studies, Dharmapuri, Tamil Nadu, 635205, India
| | - Sathishkumar Vinayagam
- Department of Biotechnology, Periyar University, Centre for Postgraduate and Research Studies, Dharmapuri, Tamil Nadu, 635205, India
| | - Kathirvel Sekar
- Department of Biotechnology, Periyar University, Centre for Postgraduate and Research Studies, Dharmapuri, Tamil Nadu, 635205, India
| | - Ipsita Pal Bhowmick
- Department of Malariology, ICMR-RMRCNE Region, Dibrugarh, Assam, 786010, India
| | - Kamaraj Sattu
- Department of Biotechnology, Periyar University, Centre for Postgraduate and Research Studies, Dharmapuri, Tamil Nadu, 635205, India.
| |
Collapse
|
13
|
Vinayagam S, Sekar K, Rajendran D, Meenakshisundaram K, Panigrahi A, Arumugam DK, Bhowmick IP, Sattu K. The genetic composition of Anopheles mosquitoes and the diverse population of gut-microbiota within the Anopheles subpictus and Anopheles vagus mosquitoes in Tamil Nadu, India. Acta Trop 2024; 260:107439. [PMID: 39477048 DOI: 10.1016/j.actatropica.2024.107439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 10/21/2024] [Indexed: 11/11/2024]
Abstract
In recent days, in tropical and subtropical regions, secondary vectors of Anopheles mosquitoes are becoming more important in transmitting diseases to humans as primary vectors. Various molecular techniques have separated closely related Anopheles subpictus and Anopheles vagus mosquitoes based on their diversity with other mosquito species. Despite their widespread distribution, the An. subpictus and An. vagus mosquitoes, which carry Plasmodium in their salivary glands, were not considered primary malaria vectors in India. An. vagus mosquitoes are zoophilic and physically similar to An. subpictus. We intend to identify An. subpictus and An. vagus mosquito's sister species based on their Interspaced Transcribed Region-2 (ITS2). We isolated the midgut gDNA from each mosquito and used ITS2-PCR and Sanger sequencing to characterize the mosquito species. BioEdit software aligned the sequences, and MEGA7 built a phylogenetic tree from them. According to this study, the information gathered from these mosquito samples fits the An. subpictus species A form and the An. vagus Indian form. Furthermore, gut microbiome plays an important role in providing nutrients, immunity, and food processing, whereas mosquitoes' midgut microbiota changes their hosts and spreads illnesses. So, we used the Illumina sequencer to look at the gut microbiome diversity of An. subpictus and An. vagus mosquitoes using 16S rRNA-based metagenomic sequencing. Both mosquito species had an abundant phylum of Pseudomonadota (Proteobacteria), Bacillota, Bacteroidota, and Actinomycetota in their gut microbiomes. Notably, both mosquito species had the genus Serratia in their gut. In the subpictus midgut, the genus of Haematosprillum bacteria was dominant, whereas in the vagus mosquito, the genus of Salmonella was dominant. Notably, current research has observed the Sodalis spp. Bacterial genus for the first time.
Collapse
Affiliation(s)
- Sathishkumar Vinayagam
- Department of Biotechnology, Periyar University Centre for Postgraduate and Research Studies, Dharmapuri, Tamil Nadu 635 205, India
| | - Kathirvel Sekar
- Department of Biotechnology, Periyar University Centre for Postgraduate and Research Studies, Dharmapuri, Tamil Nadu 635 205, India
| | - Devianjana Rajendran
- Department of Biotechnology, Periyar University Centre for Postgraduate and Research Studies, Dharmapuri, Tamil Nadu 635 205, India
| | | | | | - Dhanush Kumar Arumugam
- Department of Biotechnology, Periyar University Centre for Postgraduate and Research Studies, Dharmapuri, Tamil Nadu 635 205, India
| | - Ipsita Pal Bhowmick
- ICMR-Regional Medical Research Centre North East Region, Dibrugarh, Assam 786010, India
| | - Kamaraj Sattu
- Department of Biotechnology, Periyar University Centre for Postgraduate and Research Studies, Dharmapuri, Tamil Nadu 635 205, India.
| |
Collapse
|
14
|
Tatsinkou Maffo CG, Sandeu MM, Tchoupo M, Dondji Kamga FM, Mugenzi LMJ, Njiokou F, Hughes GL, Wondji CS. Contrasting patterns of Asaia association with Plasmodium falciparum between field-collected Anopheles gambiae and Anopheles coluzzii from Cameroon. Microbiol Spectr 2024; 12:e0056724. [PMID: 39530680 PMCID: PMC11619320 DOI: 10.1128/spectrum.00567-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 09/13/2024] [Indexed: 11/16/2024] Open
Abstract
The widespread prevalence of Asaia in mosquitoes makes it a potential candidate for paratrangenic control in Anopheles. To better understand whether this bacterium could be used for malaria control, we quantified Asaia in An. gambiae s.l populations in malaria endemic regions examining co-infection with Plasmodium falciparum. Adult Anopheles mosquitoes were collected across two different eco-geographical localities in Cameroon, during both the dry and wet seasons. DNA was extracted from whole individual mosquitoes, and real time-qPCR amplification of the 16S ribosomal RNA was used to quantify Asaia in both An. gambiae and An. coluzzii samples. We also detected and quantified P. falciparum infection in the same mosquitoes. The density of Asaia was successfully quantified in a total of 864 field mosquitoes, comprising of 439 An. gambiae from Bankeng and 424 An. coluzii collected from Gounougou. Interestingly, a higher prevalence of Asaia in An. gambiae (88.3%) compared to An. coluzzii (80.9%) was observed. Moreover, the density of Asaia in both species was significantly affected by seasonal changes in the two localities. Furthermore, a significant difference between the infection densities of Asaia and the Plasmodium infection status in the two species was recorded. However, no correlation was observed between the number of Asaia and P. falciparum infections. This study provides evidence that naturally occurring Asaia infection is not correlated to P. falciparum development within An. gambiae and An. coluzzii. Nevertheless, further studies incorporating experimental infections are required to better investigate the correlation between Anopheles mosquitoes, Asaia, and Plasmodium.IMPORTANCEThe symbiont Asaia has emerged as a promising candidate for paratransgenic control of malaria, but further analysis of its biology and genetics across Africa is necessary. In this study, we investigated and quantified the influence of Asaia in naturally infected An. gambiae s.l. populations with the malaria parasite Plasmodium falciparum. Genomic DNA was extracted from whole individual mosquitoes collected from two localities, and Asaia was quantified using real-time qPCR by amplification of the 16S ribosomal RNA gene. We also detected and quantified Plasmodium falciparum infection in the same mosquitoes and established the correlation between Asaia and Plasmodium coinfection. This study provides evidence that naturally occurring Asaia infection is not correlated with P. falciparum development within An. gambiae and An. coluzzii mosquitoes.
Collapse
Affiliation(s)
- Claudine Grâce Tatsinkou Maffo
- Department of Medical Entomology, Centre for Research in Infectious Diseases (CRID), LSTM Research Unit, Yaoundé, Cameroon
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé 1, Yaoundé, Cameroon
| | - Maurice Marcel Sandeu
- Department of Medical Entomology, Centre for Research in Infectious Diseases (CRID), LSTM Research Unit, Yaoundé, Cameroon
- Department of Microbiology and Infectious Diseases, School of Veterinary Medicine and Sciences, University of Ngaoundéré, Ngaoundéré, Cameroon
| | - Micareme Tchoupo
- Department of Medical Entomology, Centre for Research in Infectious Diseases (CRID), LSTM Research Unit, Yaoundé, Cameroon
| | - Fleuriane Metissa Dondji Kamga
- Department of Medical Entomology, Centre for Research in Infectious Diseases (CRID), LSTM Research Unit, Yaoundé, Cameroon
| | - Leon M. J. Mugenzi
- Department of Medical Entomology, Centre for Research in Infectious Diseases (CRID), LSTM Research Unit, Yaoundé, Cameroon
| | - Flobert Njiokou
- Department of Medical Entomology, Centre for Research in Infectious Diseases (CRID), LSTM Research Unit, Yaoundé, Cameroon
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé 1, Yaoundé, Cameroon
| | - Grant L. Hughes
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Diseases, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Charles S. Wondji
- Department of Medical Entomology, Centre for Research in Infectious Diseases (CRID), LSTM Research Unit, Yaoundé, Cameroon
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| |
Collapse
|
15
|
Onchuru TO, Makhulu EE, Ronnie PC, Mandere S, Otieno FG, Gichuhi J, Herren JK. The Plasmodium transmission-blocking symbiont, Microsporidia MB, is vertically transmitted through Anopheles arabiensis germline stem cells. PLoS Pathog 2024; 20:e1012340. [PMID: 39527638 PMCID: PMC11581390 DOI: 10.1371/journal.ppat.1012340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 11/21/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Microsporidia MB is a promising candidate for developing a symbiont-based strategy for malaria control because it disrupts the capacity of An. arabiensis to transmit the Plasmodium parasite. The symbiont is predominantly localized in the reproductive organs and is transmitted vertically from mother to offspring and horizontally (sexually) during mating. Due to the contribution of both transmission routes, Microsporidia MB has the potential to spread through target vector populations and become established at high prevalence. Stable and efficient vertical transmission of Microsporidia MB is important for its sustainable use for malaria control, however, the vertical transmission efficiency of Microsporidia MB can vary. In this study, we investigate the mechanistic basis of Microsporidia MB vertical transmission in An. arabiensis. We show that vertical transmission occurs through the acquisition of Microsporidia MB by Anopheles cystocyte progenitors following the division of germline stem cells. We also show that Microsporidia MB replicates to increase infection intensity in the oocyte of developing eggs when mosquitoes take a blood meal suggesting that symbiont proliferation in the ovary is coordinated with egg development. The rate of Microsporidia MB transmission to developing eggs is on average higher than the recorded (mother to adult offspring) vertical transmission rate. This likely indicates that a significant proportion of An. arabiensis offspring lose their Microsporidia MB symbionts during development. The stability of germline stem cell infections, coordination of symbiont proliferation, and very high rate of transmission from germline stem cells to developing eggs indicate that Microsporidia MB has a highly specialized vertical transmission strategy in An. arabiensis, which may explain host specificity.
Collapse
Affiliation(s)
- Thomas Ogao Onchuru
- International Centre of Insect Physiology and Ecology (ICIPE), Kasarani, Nairobi, Kenya
- Department of Physical and Biological Sciences, Bomet University College, Bomet, Kenya
| | - Edward Edmond Makhulu
- International Centre of Insect Physiology and Ecology (ICIPE), Kasarani, Nairobi, Kenya
- Wits Research Institute for Malaria, University of the Witwatersrand, Witwatersrand, South Africa
| | | | - Stancy Mandere
- International Centre of Insect Physiology and Ecology (ICIPE), Kasarani, Nairobi, Kenya
| | - Fidel Gabriel Otieno
- International Centre of Insect Physiology and Ecology (ICIPE), Kasarani, Nairobi, Kenya
| | - Joseph Gichuhi
- International Centre of Insect Physiology and Ecology (ICIPE), Kasarani, Nairobi, Kenya
| | - Jeremy Keith Herren
- International Centre of Insect Physiology and Ecology (ICIPE), Kasarani, Nairobi, Kenya
| |
Collapse
|
16
|
Camacho E, Dong Y, Chrissian C, Cordero RJ, Saravia RG, Anglero-Rodriguez Y, Smith DF, Jacobs E, Hartshorn I, Patiño-Medina JA, DePasquale M, Dziedzic A, Jedlicka A, Smith B, Mlambo G, Tripathi A, Broderick NA, Stark RE, Dimopoulos G, Casadevall A. Dietary L-3,4-dihydroxyphenylalanine (L-DOPA) augments cuticular melanization in Anopheles mosquitos while reducing their lifespan and malaria parasite burden. RESEARCH SQUARE 2024:rs.3.rs-5167892. [PMID: 39483913 PMCID: PMC11527263 DOI: 10.21203/rs.3.rs-5167892/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
L-3,4-dihydroxyphenylalanine (L-DOPA), a naturally occurring tyrosine derivative, is prevalent in environments that include mosquito habitats, potentially serving as part of their diet. Given its role as a precursor for melanin synthesis we investigated the effect of dietary L-DOPA on mosquito physiology and immunity to Plasmodium falciparum and Cryptococcus neoformans infection. Dietary L-DOPA was incorporated into mosquito melanin via a non-canonical pathway and had profound transcriptional effects that were associated with enhanced immunity, increased pigmentation, and reduced lifespan. Increased melanization resulted in an enhanced capacity to absorb electromagnetic radiation that affected mosquito temperatures. Bacteria in the mosquito microbiome were sources of dopamine, which is a substrate for melanization. Our results illustrate how an environmentally abundant amino acid analogue can affect mosquito physiology and suggest its potential usefulness as an environmentally friendly vector control agent to reduce malaria transmission, warranting further research and field studies.
Collapse
|
17
|
Agrawal A, Barik TK, Patel AK. Characterization of Leclercia adecarboxylata isolated from field collected Anopheles subpictus in Berhampur, Odisha, India. J Vector Borne Dis 2024; 61:622-625. [PMID: 39051869 DOI: 10.4103/jvbd.jvbd_22_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/27/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND OBJECTIVES Malaria, a vector-borne disease, is caused by Plasmodium species and transmitted by Anopheles species. Among these vectors, Anopheles subpictus has emerged as a potent malarial vector in coastal areas of India. Numerous studies have highlighted that bacterial communities within mosquito influence vector competence. The present study was designed to isolate and characterize bacterial microbiota from An. subpictus larvae. METHODS Isolation and purification of the predominant bacterial strain (ALl) was carried out. Morphological, biochemical, antibiotic susceptibility and molecular characterization of the isolated bacteria was performed. RESULTS Bacterial isolate (AL1) was found to be rod, gram negative, catalase positive and oxidase negative. AL1 was identified as Leclercia adecarboxylata (Accession number: OR649235) through 16S rRNA ribotyping. Further, the leaf extract of Nyctanthes arbortristis showed inhibitory effect against ALl. INTERPRETATION CONCLUSION The study provided the first report on the isolation of symbiotic bacteria (L. adecarboxylata) from An. subpictus and its control by leaf extract of Nyctanthes arbortristis. Isolated gram-negative bacterial strain might inhibit the development of mosquito vectors and can be implemented for various biological control strategies to combat malaria transmission.
Collapse
Affiliation(s)
- Ankita Agrawal
- Department of Biotechnology and Bioinformatics, Sambalpur University, Odisha, India
| | | | - Amiya Kumar Patel
- Department of Biotechnology and Bioinformatics, Sambalpur University, Odisha, India
| |
Collapse
|
18
|
Barreto C, Cardoso-Jaime V, Dimopoulos G. A novel broad-spectrum antibacterial and anti-malarial Anopheles gambiae Cecropin promotes microbial clearance during pupation. PLoS Pathog 2024; 20:e1012652. [PMID: 39441862 PMCID: PMC11554196 DOI: 10.1371/journal.ppat.1012652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/11/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024] Open
Abstract
Anophelinae mosquitoes are exposed to a variety of microbes including Plasmodium parasites that cause malaria. When infected, mosquitoes mount versatile immune responses, including the production of antimicrobial peptides. Cecropins are one of the most widely distributed families of antimicrobial peptides in insects and all previously studied Anopheles members are playing roles in adult mosquito immunity. We have identified and characterized a novel member of the Anopheles gambiae cecropin family, cecropin D (CecD), that is uniquely expressed and immune-responsive at late larval stages to promote microbial clearance through its broad-spectrum antibacterial activity during larval-pupal developmental transition. Interestingly, Cecropin D also exhibited highly potent activity against Plasmodium falciparum sporozoites, the malaria parasite stage that is transmitted from mosquitoes and infects humans and thereby holds promise as a malaria transmission-blocking agent. Finally, we have defined unequivocal cecropin-specific molecular signatures to systematically organize the diversity of the cecropin family in malaria vectors.
Collapse
Affiliation(s)
- Cairé Barreto
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Victor Cardoso-Jaime
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
19
|
Han S, Akhtar MR, Xia X. Functions and regulations of insect gut bacteria. PEST MANAGEMENT SCIENCE 2024; 80:4828-4840. [PMID: 38884497 DOI: 10.1002/ps.8261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/18/2024]
Abstract
The insect gut is a complicated ecosystem that inhabits a large number of symbiotic bacteria. As an important organ of the host insect, the symbiotic bacteria of the insect gut play very important roles in regulating physiological and metabolic processes. Recently, much progress has been made in the study of symbiotic bacteria in insect guts with the development of high-throughput sequencing technology and molecular biology. This review summarizes the primary functions of symbiotic bacteria in insect guts, such as enhancing insecticide resistance, facilitating food digestion, promoting detoxification, and regulating mating behavior and egg hatching. It also addresses some possible pathways of gut bacteria symbiont regulation governed by external habitats, physiological conditions and immunity of the host insect. This review provides solid foundations for further studies on novel theories, new technologies and practical applications of symbiotic bacteria in insect guts. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shuncai Han
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Youxi-Yangzhong Vegetable Pest Prevention and Control, Fujian Observation and Research Station, Fuzhou, China
| | - Muhammad Rehan Akhtar
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Youxi-Yangzhong Vegetable Pest Prevention and Control, Fujian Observation and Research Station, Fuzhou, China
| | - Xiaofeng Xia
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Youxi-Yangzhong Vegetable Pest Prevention and Control, Fujian Observation and Research Station, Fuzhou, China
| |
Collapse
|
20
|
Hafsia S, Barbar T, Alout H, Baudino F, Lebon C, Gomard Y, Wilkinson DA, Fourié T, Mavingui P, Atyame C. Vector competence of Aedes albopictus field populations from Reunion Island exposed to local epidemic dengue viruses. PLoS One 2024; 19:e0310635. [PMID: 39298440 DOI: 10.1371/journal.pone.0310635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/04/2024] [Indexed: 09/21/2024] Open
Abstract
Dengue virus (DENV) is the most prevalent mosquito-borne Flavivirus that affects humans worldwide. Aedes albopictus, which is naturally infected with the bacteria Wolbachia, is considered to be a secondary vector of DENV. However, it was responsible for a recent DENV outbreak of unprecedented magnitude in Reunion Island, a French island in the South West Indian Ocean. Moreover, the distribution of the cases during this epidemic showed a spatially heterogeneous pattern across the island, leading to questions about the differential vector competence of mosquito populations from different geographic areas. The aim of this study was to gain a better understanding of the vector competence of the Ae. albopictus populations from Reunion Island for local DENV epidemic strains, while considering their infection by Wolbachia. Experimental infections were conducted using ten populations of Ae. albopictus sampled across Reunion Island and exposed to three DENV strains: one strain of DENV serotype 1 (DENV-1) and two strains of DENV serotype 2 (DENV-2). We analyzed three vector competence parameters including infection rate, dissemination efficiency and transmission efficiency, at different days post-exposition (dpe). We also assessed whether there was a correlation between the density of Wolbachia and viral load/vector competence parameters. Our results show that the Ae. albopictus populations tested were not able to transmit the two DENV-2 strains, while transmission efficiencies up to 40.79% were observed for the DENV-1 strain, probably due to difference in viral titres. Statistical analyses showed that the parameters mosquito population, generation, dpe and area of sampling significantly affect the transmission efficiencies of DENV-1. Although the density of Wolbachia varied according to mosquito population, no significant correlation was found between Wolbachia density and either viral load or vector competence parameters for DENV-1. Our results highlight the importance of using natural mosquito populations for a better understanding of transmission patterns of dengue.
Collapse
Affiliation(s)
- Sarah Hafsia
- Université de La Réunion, UMR PIMIT (Processus Infectieux en Milieu Insulaire Tropical), CNRS 9192, INSERM 1187, IRD 249, La Réunion, France
| | - Tatiana Barbar
- Université de La Réunion, UMR PIMIT (Processus Infectieux en Milieu Insulaire Tropical), CNRS 9192, INSERM 1187, IRD 249, La Réunion, France
| | - Haoues Alout
- Unité Mixte de Recherche Animal Santé Territoires Risques Écosystèmes, F-34398, CIRAD/INRAE/Université de Montpellier, Université de Montpellier, Montpellier, France
| | - Fiona Baudino
- Université de La Réunion, UMR PIMIT (Processus Infectieux en Milieu Insulaire Tropical), CNRS 9192, INSERM 1187, IRD 249, La Réunion, France
| | - Cyrille Lebon
- Université de La Réunion, UMR PIMIT (Processus Infectieux en Milieu Insulaire Tropical), CNRS 9192, INSERM 1187, IRD 249, La Réunion, France
| | - Yann Gomard
- Université de La Réunion, UMR PIMIT (Processus Infectieux en Milieu Insulaire Tropical), CNRS 9192, INSERM 1187, IRD 249, La Réunion, France
| | - David A Wilkinson
- Université de La Réunion, UMR PIMIT (Processus Infectieux en Milieu Insulaire Tropical), CNRS 9192, INSERM 1187, IRD 249, La Réunion, France
| | - Toscane Fourié
- Université de La Réunion, UMR PIMIT (Processus Infectieux en Milieu Insulaire Tropical), CNRS 9192, INSERM 1187, IRD 249, La Réunion, France
| | - Patrick Mavingui
- Université de La Réunion, UMR PIMIT (Processus Infectieux en Milieu Insulaire Tropical), CNRS 9192, INSERM 1187, IRD 249, La Réunion, France
| | - Célestine Atyame
- Université de La Réunion, UMR PIMIT (Processus Infectieux en Milieu Insulaire Tropical), CNRS 9192, INSERM 1187, IRD 249, La Réunion, France
| |
Collapse
|
21
|
Mandal S, Mondal C, Lyndem LM. Probiotics: an alternative anti-parasite therapy. J Parasit Dis 2024; 48:409-423. [PMID: 39145362 PMCID: PMC11319687 DOI: 10.1007/s12639-024-01680-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 04/27/2024] [Indexed: 08/16/2024] Open
Abstract
This paper review about probiotic effects and mechanism of action against the gut and non-gut helminths and protozoan parasites. Gastrointestinal parasitic infections are considered a serious health problem and are widely distributed globally. The disease process which emanates from this parasite infection provides some of the many public and veterinary health problems in the tropical and sub-tropical countries. Prevention and control of the parasite disease is through antihelmintic and anti-protozoan drugs, but, due to the increasing emergence of such drug resistance, eradication of parasite infestation in human and livestock still lingers a challenge, which requires the development of new alternative strategies. The use of beneficial microorganisms i.e. probiotics is becoming interesting due to their prophylactic application against several diseases including parasite infections. Recent studies on the interactions between probiotics, parasites and host immune cells using animal models and in vitro culture systems has increased considerably and draw much attention, yet the mechanisms of actions mediating the positive effects of these beneficial microorganisms on the hosts remain unexplored. Therefore, the aim of the present review is to summarize the latest findings on the probiotic research against the gut and non-gut parasites of significance.
Collapse
Affiliation(s)
- Sudeshna Mandal
- Visva-Bharati, Parasitology Research Laboratory, Department of Zoology, Santiniketan, 731235 West Bengal India
| | - Chandrani Mondal
- Visva-Bharati, Parasitology Research Laboratory, Department of Zoology, Santiniketan, 731235 West Bengal India
| | - Larisha M. Lyndem
- Visva-Bharati, Parasitology Research Laboratory, Department of Zoology, Santiniketan, 731235 West Bengal India
| |
Collapse
|
22
|
Mousavi Shafi ZS, Firouz ZM, Pirahmadi S. Gene expression analysis of Anopheles Meigen, 1818 (Diptera: Culicidae) innate immunity after Plasmodium Marchiafava & Celli, 1885 (Apicomplexa) infection: Toward developing new malaria control strategies. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 123:105650. [PMID: 39089500 DOI: 10.1016/j.meegid.2024.105650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/27/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024]
Abstract
Despite the critical role of the Anopheles innate immune system in defending against Plasmodium infection, there is still limited information about the key immune mechanisms in Anopheles. This review assesses recent findings on the expression characteristics of immune-related genes in Anopheles following exposure to Plasmodium. A literature review, unrestricted by publication date, was conducted to evaluate immune-related gene expression in different organs of Anopheles after Plasmodium infection. Mosquito immune responses in the midgut are essential for reducing parasite populations. Additionally, innate immune responses in the salivary glands and hemocytes circulating in the hemocoel play key roles in defense against the parasite. Transcriptomic analysis of the mosquito's innate immune response to Plasmodium infection provides valuable insights into key immune mechanisms in mosquito defense. A deeper understanding of immune mechanisms in different organs of Anopheles following Plasmodium infection will aid in discovering critical targets for designing novel control strategies.
Collapse
Affiliation(s)
- Zahra Sadat Mousavi Shafi
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Zeinab Mohammadi Firouz
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Sakineh Pirahmadi
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
23
|
Kumar T, Maitra S, Rai R, Priyanka, Maitra S, Tirkey NN, Kumari R. The dichotomy between probiotic lactic acid bacteria and Plasmodium: A promising therapeutic avenue. Acta Trop 2024; 257:107284. [PMID: 38857820 DOI: 10.1016/j.actatropica.2024.107284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/02/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024]
Abstract
Our understanding of gut microbial populations and their immense influence on host immunity, health, and diseases has increased deeply in recent years. Numerous reports have identified the role of mosquito and mammalian gut microbiota in the modulation of host susceptibility to Plasmodium infection. Artemisinin resistance in malaria-endemic regions necessitates the development of new, safer, and more affordable treatments to supplement existing therapies. In this review, we compiled a colossal amount of data from numerous studies that have assessed the roles played by gut microbial communities in Plasmodium infection, progression, transmission, and severity. Most interestingly, our study points to the overwhelming evidence from experimental studies in mural malaria to human trials, suggesting that the presence of lactic acid bacteria in the gut microbiota of mammalian hosts provides a great degree of protection against malaria. Therefore, our study provides a compelling narrative for probiotic administration as an adjunct therapy for combatting malaria.
Collapse
Affiliation(s)
- Tarkeshwar Kumar
- Department of Zoology, Panch Pargana Kisan College, Ranchi University, Ranchi, Jharkhand, 835204, India.
| | - Satarupa Maitra
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Richa Rai
- Department of Zoology, Allahabad University, Prayagraj, Uttar Pradesh, India
| | - Priyanka
- Department of Zoology, Allahabad University, Prayagraj, Uttar Pradesh, India
| | - Satwat Maitra
- Noida International Institute of Medical Sciences, Greater Noida, Uttar Pradesh, India
| | | | - Rajesh Kumari
- Department of Zoology, Allahabad University, Prayagraj, Uttar Pradesh, India
| |
Collapse
|
24
|
Schinkel M, Bousema T, van Rij RP. Tripartite interactions between viruses, parasites, and mosquitoes. CURRENT OPINION IN INSECT SCIENCE 2024; 64:101222. [PMID: 38908822 DOI: 10.1016/j.cois.2024.101222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 06/24/2024]
Abstract
Mosquito-borne diseases have a major impact on global human health. Biological agents that colonize the mosquito vector are increasingly explored as an intervention strategy to prevent vector-borne disease transmission. For instance, the release of mosquitoes carrying the endosymbiotic bacterium Wolbachia effectively reduced dengue virus incidence and disease. Insect-specific viruses are likewise considered as biocontrol agents against vector-borne diseases. While most studies focused on insect-specific viruses as an intervention against arthropod-borne viruses, we here consider whether mosquito-specific viruses may affect the transmission of the malaria-causing Plasmodium parasite by Anopheles mosquitoes. Although there is no direct experimental evidence addressing this question, we found that viral infections in dipteran insects activate some of the immune pathways that are antiparasitic in Anopheles. These findings suggest that indirect virus-parasite interactions could occur and that insect-specific viruses may modulate malaria transmission. Tripartite interactions between viruses, parasites, and Anopheles mosquitoes thus merit further investigation.
Collapse
Affiliation(s)
- Michelle Schinkel
- Department of Medical Microbiology, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Teun Bousema
- Department of Medical Microbiology, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Ronald P van Rij
- Department of Medical Microbiology, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, the Netherlands.
| |
Collapse
|
25
|
Hathnagoda R, Gunathilake P, Buddhinee T, Welgama P, Gunarathna H, Perera H, Ranasinghe K. Diversity and Species Composition of Midgut Symbiotic Bacteria in Culex quinquefasciatus Mosquitoes in Gampaha District, Sri Lanka. J Trop Med 2024; 2024:1832200. [PMID: 39376799 PMCID: PMC11458302 DOI: 10.1155/2024/1832200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 05/31/2024] [Accepted: 06/11/2024] [Indexed: 10/09/2024] Open
Abstract
Mosquitoes, notorious for their deadly impact as disease vectors, also hold economic value owing to their roles in disease transmission. The present study focuses on the importance of understanding mosquito gut microbiota for implementing innovative vector control strategies, thereby mitigating disease transmission. The study was conducted in the Gampaha Medical Office of Health (MOH) area of Sri Lanka with the focus of elucidating the microbial diversity within the midgut of Culex quinquefasciatus, a crucial step to support ongoing paratransgenesis efforts. Sampling was performed by utilizing standard mosquito sampling techniques and their midgut homogenates were plated on Plate Count Agar to isolate bacteria, which were then identified through biochemical tests. Subsequently, the most abundant bacterial families were subjected to DNA extraction, PCR amplification, and gene sequencing for species identification. The study revealed the presence of four bacterial families (Staphylococcaceae, Streptococcaceae, Neisseriaceae, and Moraxellaceae) in adult mosquitoes, while larvae harbored an additional family, Micrococcaceae. Interestingly, the relative distribution of midgut bacteria varied significantly among field-caught larval and adult strains from different study areas (chi-square = 1.673; P < 0.05), indicating similar bacterial flora across mosquito life stages and geographical locations. Of particular interest is the identification of Lysinibacillus sphaericus, a bacterium with potential for paratransgenesis applications. Given the high mosquito density in the study area, leveraging paratransgenesis for Cx. quinquefasciatus control is recommended. Furthermore, insights into gut microbes could inform the integration of gut microflora from modified strains into existing Sterile Insect Technique (SIT) and Incompatible Insect Technique (IIT) approaches in Sri Lanka.
Collapse
Affiliation(s)
- Randi Hathnagoda
- Department of Biomedical Sciences, Faculty of Health Sciences, CINEC Campus, Malabe, Sri Lanka
| | - Pinidi Gunathilake
- Department of Biomedical Sciences, Faculty of Health Sciences, CINEC Campus, Malabe, Sri Lanka
| | - Thilini Buddhinee
- Department of Biomedical Sciences, Faculty of Health Sciences, CINEC Campus, Malabe, Sri Lanka
| | - Pabasara Welgama
- Department of Biomedical Sciences, Faculty of Health Sciences, CINEC Campus, Malabe, Sri Lanka
| | - Hasini Gunarathna
- Department of Biomedical Sciences, Faculty of Health Sciences, CINEC Campus, Malabe, Sri Lanka
| | - Harshani Perera
- Department of Biomedical Sciences, Faculty of Health Sciences, CINEC Campus, Malabe, Sri Lanka
| | - Koshila Ranasinghe
- Department of Zoology and Environmental Management, Faculty of Science, University of Kelaniya, Dalugama, Kelaniya GQ 11600, Sri Lanka
| |
Collapse
|
26
|
Adedeji EO, Beder T, Damiani C, Cappelli A, Accoti A, Tapanelli S, Ogunlana OO, Fatumo S, Favia G, Koenig R, Adebiyi E. Combination of computational techniques and RNAi reveal targets in Anopheles gambiae for malaria vector control. PLoS One 2024; 19:e0305207. [PMID: 38968330 PMCID: PMC11226046 DOI: 10.1371/journal.pone.0305207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/25/2024] [Indexed: 07/07/2024] Open
Abstract
Increasing reports of insecticide resistance continue to hamper the gains of vector control strategies in curbing malaria transmission. This makes identifying new insecticide targets or alternative vector control strategies necessary. CLassifier of Essentiality AcRoss EukaRyote (CLEARER), a leave-one-organism-out cross-validation machine learning classifier for essential genes, was used to predict essential genes in Anopheles gambiae and selected predicted genes experimentally validated. The CLEARER algorithm was trained on six model organisms: Caenorhabditis elegans, Drosophila melanogaster, Homo sapiens, Mus musculus, Saccharomyces cerevisiae and Schizosaccharomyces pombe, and employed to identify essential genes in An. gambiae. Of the 10,426 genes in An. gambiae, 1,946 genes (18.7%) were predicted to be Cellular Essential Genes (CEGs), 1716 (16.5%) to be Organism Essential Genes (OEGs), and 852 genes (8.2%) to be essential as both OEGs and CEGs. RNA interference (RNAi) was used to validate the top three highly expressed non-ribosomal predictions as probable vector control targets, by determining the effect of these genes on the survival of An. gambiae G3 mosquitoes. In addition, the effect of knockdown of arginase (AGAP008783) on Plasmodium berghei infection in mosquitoes was evaluated, an enzyme we computationally inferred earlier to be essential based on chokepoint analysis. Arginase and the top three genes, AGAP007406 (Elongation factor 1-alpha, Elf1), AGAP002076 (Heat shock 70kDa protein 1/8, HSP), AGAP009441 (Elongation factor 2, Elf2), had knockdown efficiencies of 91%, 75%, 63%, and 61%, respectively. While knockdown of HSP or Elf2 significantly reduced longevity of the mosquitoes (p<0.0001) compared to control groups, Elf1 or arginase knockdown had no effect on survival. However, arginase knockdown significantly reduced P. berghei oocytes counts in the midgut of mosquitoes when compared to LacZ-injected controls. The study reveals HSP and Elf2 as important contributors to mosquito survival and arginase as important for parasite development, hence placing them as possible targets for vector control.
Collapse
Affiliation(s)
- Eunice O. Adedeji
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State, Nigeria
- Department of Biochemistry, Covenant University, Ota, Ogun State, Nigeria
- School of Biosciences & Veterinary Medicine, University of Camerino, Camerino, Italy
- Department of Biology, University of York, York, United Kingdom
| | - Thomas Beder
- Medical Department II, Hematology and Oncology, University Medical Center Schleswig-Holstein, Kiel, Germany
- University Cancer Center Schleswig-Holstein, University Medical Center Schleswig-Holstein, Kiel and Lübeck, Germany
- Institute for Infectious Diseases and Infection Control (IIMK, RG Systemsbiology), Jena University Hospital, Jena, Germany
| | - Claudia Damiani
- School of Biosciences & Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Alessia Cappelli
- School of Biosciences & Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Anastasia Accoti
- School of Biosciences & Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Sofia Tapanelli
- Department of Life Sciences, Imperial College, London, United Kingdom
| | - Olubanke O. Ogunlana
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State, Nigeria
- Department of Biochemistry, Covenant University, Ota, Ogun State, Nigeria
- African Center of Excellence in Bioinformatics & Data Intensive Science, Makerere University, Kampala, Uganda
| | - Segun Fatumo
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Guido Favia
- School of Biosciences & Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Rainer Koenig
- Institute for Infectious Diseases and Infection Control (IIMK, RG Systemsbiology), Jena University Hospital, Jena, Germany
| | - Ezekiel Adebiyi
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State, Nigeria
- African Center of Excellence in Bioinformatics & Data Intensive Science, Makerere University, Kampala, Uganda
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
27
|
Akintola AA, Hwang UW. Microbiome profile of South Korean vector mosquitoes. Acta Trop 2024; 255:107213. [PMID: 38608996 DOI: 10.1016/j.actatropica.2024.107213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/09/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
This research offers a comprehensive exploration of the microbial communities associated with vector mosquitoes from South Korea. Aedes albopictus, Anopheles sinensis, and Culex molestus are vectors of pathogens, and understanding the intricacies of their microbiome profile is paramount for unraveling their roles in disease transmission dynamics. In this study, we characterized the microbiome of the midguts of adult female vector mosquitoes collected from different locations in South Korea. After DNA extraction from dissected mosquito midguts, we used the Illumina MiSeq next-generation sequencing to obtain sequences spanning the V4 hypervariable region of the bacteria 16S rRNA. Morphological and molecular characterization using 506-bp mitochondrial 16S rRNA was used to identify the mosquito species before amplicon sequencing. Across the three vector mosquitoes surveyed, 21 bacteria genera belonging to 20 families and 5 phyla were discovered. Proteobacteria and Bacteriodota were the major phyla of bacteria associated with the three mosquito species. There were significant differences in the gut microbiome genera composition between the species and little variation in the gut microbiome between individuals of the same mosquito species. Wolbachia is the most dominant genus in Aedes while Aeromonas, Acinetobacter, and unassigned taxa are the most common in An. sinensis. In addition to that, Chromobacterium, Chryseobacterium, and Aeromonas are dominant in Cx. molestus. This study sheds light on the complex interactions between mosquitoes and their microbiome, revealing potential implications for vector competence, disease transmission, and vector control strategies.
Collapse
Affiliation(s)
- Ashraf Akintayo Akintola
- Department of Biomedical Convergence Science and Technology, Kyungpook National University, Daegu, 41566, Republic of Korea; Department of Biology, Teachers College and Institute for Phylogenomics and Evolution, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Ui Wook Hwang
- Department of Biomedical Convergence Science and Technology, Kyungpook National University, Daegu, 41566, Republic of Korea; Department of Biology, Teachers College and Institute for Phylogenomics and Evolution, Kyungpook National University, Daegu, 41566, Republic of Korea; Institute for Korean Herb-Bio Convergence Promotion, Kyungpook National University, Daegu, 41566, Republic of Korea; Phylomics Inc., Daegu, 41910, Republic of Korea.
| |
Collapse
|
28
|
de Oliveira JC, de Melo Katak R, Muniz VA, de Oliveira MR, Rocha EM, da Silva WR, do Carmo EJ, Roque RA, Marinotti O, Terenius O, Astolfi-Filho S. Bacteria isolated from Aedes aegypti with potential vector control applications. J Invertebr Pathol 2024; 204:108094. [PMID: 38479456 DOI: 10.1016/j.jip.2024.108094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/13/2024] [Accepted: 03/10/2024] [Indexed: 03/27/2024]
Abstract
Highly anthropophilic and adapted to urban environments, Aedes aegypti mosquitoes are the main vectors of arboviruses that cause human diseases such as dengue, zika, and chikungunya fever, especially in countries with tropical and subtropical climates. Microorganisms with mosquitocidal and larvicidal activities have been suggested as environmentally safe alternatives to chemical or mechanical mosquito control methods. Here, we analyzed cultivable bacteria isolated from all stages of the mosquito life cycle for their larvicidal activity against Ae. aegypti. A total of 424 bacterial strains isolated from eggs, larvae, pupae, or adult Ae. aegypti were analyzed for the pathogenic potential of their crude cultures against larvae of this same mosquito species. Nine strains displayed larvicidal activity comparable to the strain AM65-52, reisolated from commercial BTi-based product VectoBac® WG. 16S rRNA gene sequencing revealed that the set of larvicidal strains contains two representatives of the genus Bacillus, five Enterobacter, and two Stenotrophomonas. This study demonstrates that some bacteria isolated from Ae. aegypti are pathogenic for the mosquito from which they were isolated. The data are promising for developing novel bioinsecticides for the control of these medically important mosquitoes.
Collapse
Affiliation(s)
| | | | | | - Marta Rodrigues de Oliveira
- Department of Entomology and Acarology, Escola Superior de Agricultura "Luiz de Queiroz", University of São Paulo - ESALQ - USP, Brazil
| | - Elerson Matos Rocha
- School of Agricultural Sciences, Department of Bioprocesses and Biotechnology, Central Multiuser Laboratory, Universidade Estadual Paulista (UNESP), Botucatu, Brazil
| | | | - Edson Júnior do Carmo
- Programa de Pós-Graduação em Biotecnologia - PPGBIOTEC/UFAM, Brazil; Instituto de Ciências Biológicas - ICB/UFAM, Brazil
| | | | - Osvaldo Marinotti
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Olle Terenius
- Department of Cell and Molecular Biology, Uppsala University, P.O. Box 596, SE-751 24 Uppsala, Sweden.
| | - Spartaco Astolfi-Filho
- Programa de Pós-Graduação em Biotecnologia - PPGBIOTEC/UFAM, Brazil; Instituto de Ciências Biológicas - ICB/UFAM, Brazil
| |
Collapse
|
29
|
Cai JA, Christophides GK. Immune interactions between mosquitoes and microbes during midgut colonization. CURRENT OPINION IN INSECT SCIENCE 2024; 63:101195. [PMID: 38552792 DOI: 10.1016/j.cois.2024.101195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/14/2024] [Accepted: 03/21/2024] [Indexed: 04/07/2024]
Abstract
Mosquitoes encounter diverse microbes during their lifetime, including symbiotic bacteria, shaping their midgut ecosystem. The organization of the midgut supports microbiota persistence while defending against potential pathogens. The influx of nutrients during blood feeding triggers bacterial proliferation, challenging host homeostasis. Immune responses, aimed at controlling bacterial overgrowth, impact blood-borne pathogens such as malaria parasites. However, parasites deploy evasion strategies against mosquito immunity. Leveraging these mechanisms could help engineer malaria-resistant mosquitoes, offering a transformative tool for malaria elimination.
Collapse
Affiliation(s)
- Julia A Cai
- Department of Life Sciences, Imperial College London, Exhibition Road, SW7 2AZ London, United Kingdom
| | - George K Christophides
- Department of Life Sciences, Imperial College London, Exhibition Road, SW7 2AZ London, United Kingdom.
| |
Collapse
|
30
|
Polycarpo CR, Walter-Nuno AB, Azevedo-Reis L, Paiva-Silva GO. The vector-symbiont affair: a relationship as (im)perfect as it can be. CURRENT OPINION IN INSECT SCIENCE 2024; 63:101203. [PMID: 38705385 DOI: 10.1016/j.cois.2024.101203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/07/2024]
Abstract
Vector-borne diseases are globally prevalent and represent a major socioeconomic problem worldwide. Blood-sucking arthropods transmit most pathogenic agents that cause these human infections. The pathogens transmission to their vertebrate hosts depends on how efficiently they infect their vector, which is particularly impacted by the microbiota residing in the intestinal lumen, as well as its cells or internal organs such as ovaries. The balance between costs and benefits provided by these interactions ultimately determines the outcome of the relationship. Here, we will explore aspects concerning the nature of microbe-vector interactions, including the adaptive traits required for their establishment, the varied outcomes of symbiotic interactions, as well as the factors influencing the transition of these relationships across a continuum from parasitism to mutualism.
Collapse
Affiliation(s)
- Carla R Polycarpo
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro 21941-902, Brazil
| | - Ana B Walter-Nuno
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro 21941-902, Brazil
| | - Leonan Azevedo-Reis
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro 21941-902, Brazil
| | - Gabriela O Paiva-Silva
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro 21941-902, Brazil.
| |
Collapse
|
31
|
Ruan M, Li Y, Ma C, Xie Y, Chen W, Luo L, Li X, Hu W, Hu B. Treatment of landfill leachate by black soldier fly (Hermetia illucens L.) larvae and the changes of intestinal microbial community. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121193. [PMID: 38772238 DOI: 10.1016/j.jenvman.2024.121193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/22/2024] [Accepted: 05/15/2024] [Indexed: 05/23/2024]
Abstract
Black soldier fly larvae (BSFL) (Hermetia illucens) are commonly used to treat organic waste. This work aims to evaluate the transformation effect, heavy metal migration, and alterations in the gut microbiota of BSFL in addition to treating landfill leachate (LL) with BSFL. We found that BSFL may grow in various landfill leachate concentrations without obvious toxicity and growth inhibition. In addition, the results indicated a significant increase in the content of ammonia nitrogen and the activity of urease and β-glucosidase (β-GC) in LL, increased from 2570.17 mg/L to 5853.67 mg/L, 1859.17 mg/(g·d) to 517,177.98 mg/(g·d), 313.73 μg/(g·h) to 441.91 μg/(g·h) respectively. Conversely, the content of total nitrogen (TN) and total organic carbon (TOC) decreased in LL, decreasing by 31.24% and 29.45% respectively. Heavy metals are accumulated in the leachate by the BSFL to differing degrees, the descending sequence of accumulation is Cd > As > Cu > Cr. As dropped by 26.0%, Cd increased by 22.6%, Cu reduced by 5.23%, and Cr increased by 317.1% in the remaining matrix. The concentration of heavy metals satisfies the organic fertilizers' limit index (NY/T1978). The diversity of intestinal microorganisms in BSFL decreased, from 2819 OTUs to 2338 OTUs, with Providencia and Morganella emerging as the core flora. The gene abundance of nitrogen metabolism in the microbiota increased significantly. The TOC, β-GC, and Copper (Cu) content in BSFL correlated significantly with the gut microbiota. In Summary, this study revealed the treatment effect of BSFL on LL, the migration of heavy metals, and changes in the intestinal microorganisms of BSFL. The content of heavy metals in BSFL was found to be much lower than the upper limit of feed protein raw materials, demonstrating that BSFL is a sustainable method to treat LL.
Collapse
Affiliation(s)
- Mingjun Ruan
- Laboratory of Applied Microbiology, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - You Li
- Everbright Environmental Technology (China) Co., Ltd., Nanjing, 211102, Jiangsu Province, China
| | - Chong Ma
- Bioforte Biotechnology (Shenzhen) Co., Ltd., Shenzhen, 518118, China
| | - Yingying Xie
- Laboratory of Applied Microbiology, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Wenying Chen
- Bioforte Biotechnology (Shenzhen) Co., Ltd., Shenzhen, 518118, China
| | - Limei Luo
- Laboratory of Applied Microbiology, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xueling Li
- Laboratory of Applied Microbiology, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Wenfeng Hu
- Laboratory of Applied Microbiology, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Bin Hu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, China.
| |
Collapse
|
32
|
Garrigós M, Garrido M, Morales-Yuste M, Martínez-de la Puente J, Veiga J. Survival effects of antibiotic exposure during the larval and adult stages in the West Nile virus vector Culex pipiens. INSECT SCIENCE 2024; 31:542-550. [PMID: 37559499 DOI: 10.1111/1744-7917.13259] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/26/2023] [Accepted: 07/15/2023] [Indexed: 08/11/2023]
Abstract
The ability of mosquitoes to transmit a pathogen is affected, among other factors, by their survival rate, which is partly modulated by their microbiota. Mosquito microbiota is acquired during the larval phase and modified during their development and adult feeding behavior, being highly dependent on environmental factors. Pharmaceutical residues including antibiotics are widespread pollutants potentially being present in mosquito breeding waters likely affecting their microbiota. Here, we used Culex pipiens mosquitoes to assess the impact of antibiotic exposure during the larval and adult stages on the survival rate of adult mosquitoes. Wild-collected larvae were randomly assigned to two treatments: larvae maintained in water supplemented with antibiotics and control larvae. Emerged adults were subsequently assigned to each of two treatments, fed with sugar solution with antibiotics and fed only with sugar solution (controls). Larval exposure to antibiotics significantly increased the survival rate of adult females that received a control diet. In addition, the effect of adult exposure to antibiotics on the survival rate of both male and female mosquitoes depended on the number of days that larvae fed ad libitum in the laboratory before emergence. In particular, shorter larval ad libitum feeding periods reduced the survival rate of antibiotic-treated adult mosquitoes compared with those that emerged after a longer larval feeding period. These differences were not found in control adult mosquitoes. Our results extend the current understanding of the impact of antibiotic exposure of mosquitoes on a key component of vectorial capacity, that is the vector survival rate.
Collapse
Affiliation(s)
- Marta Garrigós
- Faculty of Pharmacy, Department of Parasitology, University of Granada, Granada, Spain
| | - Mario Garrido
- Faculty of Pharmacy, Department of Parasitology, University of Granada, Granada, Spain
| | - Manuel Morales-Yuste
- Faculty of Pharmacy, Department of Parasitology, University of Granada, Granada, Spain
| | - Josué Martínez-de la Puente
- Faculty of Pharmacy, Department of Parasitology, University of Granada, Granada, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Jesús Veiga
- Faculty of Pharmacy, Department of Parasitology, University of Granada, Granada, Spain
| |
Collapse
|
33
|
Sollelis L, Howick VM, Marti M. Revisiting the determinants of malaria transmission. Trends Parasitol 2024; 40:302-312. [PMID: 38443304 DOI: 10.1016/j.pt.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/05/2024] [Accepted: 02/05/2024] [Indexed: 03/07/2024]
Abstract
Malaria parasites have coevolved with humans over thousands of years, mirroring their migration out of Africa. They persist to this day, despite continuous elimination efforts worldwide. These parasites can adapt to changing environments during infection of human and mosquito, and when expanding the geographical range by switching vector species. Recent studies in the human malaria parasite, Plasmodium falciparum, identified determinants governing the plasticity of sexual conversion rates, sex ratio, and vector competence. Here we summarize the latest literature revealing environmental, epigenetic, and genetic determinants of malaria transmission.
Collapse
Affiliation(s)
- Lauriane Sollelis
- Wellcome Center for Integrative Parasitology, Institute of Infection and Immunity University of Glasgow, Glasgow, UK; Institute of Parasitology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
| | - Virginia M Howick
- Institute of Parasitology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland; Institute of Biodiversity, Animal Health, and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Matthias Marti
- Wellcome Center for Integrative Parasitology, Institute of Infection and Immunity University of Glasgow, Glasgow, UK; Institute of Parasitology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
34
|
Ratcliffe NA, Mello CB, Castro HC, Dyson P, Figueiredo M. Immune Reactions of Vector Insects to Parasites and Pathogens. Microorganisms 2024; 12:568. [PMID: 38543619 PMCID: PMC10974449 DOI: 10.3390/microorganisms12030568] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 11/12/2024] Open
Abstract
This overview initially describes insect immune reactions and then brings together present knowledge of the interactions of vector insects with their invading parasites and pathogens. It is a way of introducing this Special Issue with subsequent papers presenting the latest details of these interactions in each particular group of vectors. Hopefully, this paper will fill a void in the literature since brief descriptions of vector immunity have now been brought together in one publication and could form a starting point for those interested and new to this important area. Descriptions are given on the immune reactions of mosquitoes, blackflies, sandflies, tsetse flies, lice, fleas and triatomine bugs. Cellular and humoral defences are described separately but emphasis is made on the co-operation of these processes in the completed immune response. The paper also emphasises the need for great care in extracting haemocytes for subsequent study as appreciation of their fragile nature is often overlooked with the non-sterile media, smearing techniques and excessive centrifugation sometimes used. The potential vital role of eicosanoids in the instigation of many of the immune reactions described is also discussed. Finally, the priming of the immune system, mainly in mosquitoes, is considered and one possible mechanism is presented.
Collapse
Affiliation(s)
- Norman Arthur Ratcliffe
- Department of Biosciences, Swansea University, Singleton Park, Swansea SA28PP, UK
- Biology Institute, Universidade Federal Fluminense, Niterói 24210-130, RJ, Brazil; (C.B.M.); (H.C.C.)
| | - Cicero Brasileiro Mello
- Biology Institute, Universidade Federal Fluminense, Niterói 24210-130, RJ, Brazil; (C.B.M.); (H.C.C.)
| | - Helena Carla Castro
- Biology Institute, Universidade Federal Fluminense, Niterói 24210-130, RJ, Brazil; (C.B.M.); (H.C.C.)
| | - Paul Dyson
- Institute of Life Science, Medical School, Swansea University, Singleton Park, Swansea SA28PP, UK; (P.D.); (M.F.)
| | - Marcela Figueiredo
- Institute of Life Science, Medical School, Swansea University, Singleton Park, Swansea SA28PP, UK; (P.D.); (M.F.)
| |
Collapse
|
35
|
El-Dougdoug NK, Magistrado D, Short SM. An obligate microsporidian parasite modulates defense against opportunistic bacterial infection in the yellow fever mosquito , Aedes aegypti. mSphere 2024; 9:e0067823. [PMID: 38323845 PMCID: PMC10900900 DOI: 10.1128/msphere.00678-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/21/2023] [Indexed: 02/08/2024] Open
Abstract
The ability of Aedes aegypti mosquitoes to transmit vertebrate pathogens depends on multiple factors, including the mosquitoes' life history traits, immune response, and microbiota (i.e., the microbes associated with the mosquito throughout its life). The microsporidium Edhazardia aedis is an obligate intracellular parasite that specifically infects Ae. aegypti mosquitoes and severely affects mosquito survival and other life history traits critical for pathogen transmission. In this work, we investigated how E. aedis impacts bacterial infection with Serratia marcescens in Ae. aegypti mosquitoes. We measured development, survival, and bacterial load in both larval and adult stages of mosquitoes. In larvae, E. aedis exposure was either horizontal or vertical and S. marcescens was introduced orally. Regardless of the route of transmission, E. aedis exposure resulted in significantly higher S. marcescens loads in larvae. E. aedis exposure also significantly reduced larval survival but subsequent exposure to S. marcescens had no effect. In adult females, E. aedis exposure was only horizontal and S. marcescens was introduced orally or via intrathoracic injection. In both cases, E. aedis infection significantly increased S. marcescens bacterial loads in adult female mosquitoes. In addition, females infected with E. aedis and subsequently injected with S. marcescens suffered 100% mortality which corresponded with a rapid increase in bacterial load. These findings suggest that exposure to E. aedis can influence the establishment and/or replication of other microbes in the mosquito. This has implications for understanding the ecology of mosquito immune defense and potentially disease transmission by mosquito vector species. IMPORTANCE The microsporidium Edhazardia aedis is a parasite of the yellow fever mosquito, Aedes aegypti. This mosquito transmits multiple viruses to humans in the United States and around the world, including dengue, yellow fever, and Zika viruses. Hundreds of millions of people worldwide will become infected with one of these viruses each year. E. aedis infection significantly reduces the lifespan of Ae. aegypti and is therefore a promising novel biocontrol agent. Here, we show that when the mosquito is infected with this parasite, it is also significantly more susceptible to infection by an opportunistic bacterial pathogen, Serratia marcescens. This novel discovery suggests the mosquito's ability to control infection by other microbes is impacted by the presence of the parasite.
Collapse
Affiliation(s)
- Noha K El-Dougdoug
- Department of Entomology, The Ohio State University, Columbus, Ohio, USA
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha, Egypt
| | - Dom Magistrado
- Department of Entomology, The Ohio State University, Columbus, Ohio, USA
| | - Sarah M Short
- Department of Entomology, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
36
|
Li M, Zhou Y, Cheng J, Wang Y, Lan C, Shen Y. Response of the mosquito immune system and symbiotic bacteria to pathogen infection. Parasit Vectors 2024; 17:69. [PMID: 38368353 PMCID: PMC10874582 DOI: 10.1186/s13071-024-06161-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/24/2024] [Indexed: 02/19/2024] Open
Abstract
Mosquitoes are the deadliest animal in the word, transmitting a variety of insect-borne infectious diseases, such as malaria, dengue fever, yellow fever, and Zika, causing more deaths than any other vector-borne pathogen. Moreover, in the absence of effective drugs and vaccines to prevent and treat insect-borne diseases, mosquito control is particularly important as the primary measure. In recent decades, due to the gradual increase in mosquito resistance, increasing attention has fallen on the mechanisms and effects associated with pathogen infection. This review provides an overview of mosquito innate immune mechanisms in terms of physical and physiological barriers, pattern recognition receptors, signalling pathways, and cellular and humoral immunity, as well as the antipathogenic effects of mosquito symbiotic bacteria. This review contributes to an in-depth understanding of the interaction process between mosquitoes and pathogens and provides a theoretical basis for biological defence strategies against mosquito-borne infectious diseases.
Collapse
Affiliation(s)
- Manjin Li
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, 214023, China
| | - Yang Zhou
- Nanjing Medical University, Nanjing, 211166, China
| | - Jin Cheng
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, 214023, China
| | - Yiqing Wang
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, 214023, China
| | - Cejie Lan
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, 214023, China.
| | - Yuan Shen
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, 214023, China.
- Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
37
|
Shetty V, Adelman ZN, Slotman MA. Effects of circadian clock disruption on gene expression and biological processes in Aedes aegypti. BMC Genomics 2024; 25:170. [PMID: 38347446 PMCID: PMC10863115 DOI: 10.1186/s12864-024-10078-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/01/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND This study explores the impact of disrupting the circadian clock through a Cycle gene knockout (KO) on the transcriptome of Aedes aegypti mosquitoes. The investigation aims to uncover the resulting alterations in gene expression patterns and physiological processes. RESULTS Transcriptome analysis was conducted on Cyc knockout (AeCyc-/-) and wild-type mosquitoes at four time points in a light-dark cycle. The study identified system-driven genes that exhibit rhythmic expression independently of the core clock machinery. Cyc disruption led to altered expression of essential clock genes, affecting metabolic processes, signaling pathways, stimulus responses and immune responses. Notably, gene ontology enrichment of odorant binding proteins, indicating the clock's role in sensory perception. The absence of Cyc also impacted various regulation of metabolic and cell cycle processes was observed in all time points. CONCLUSIONS The intricate circadian regulation in Ae. aegypti encompasses both core clock-driven and system-driven genes. The KO of Cyc gene instigated extensive gene expression changes, impacting various processes, thereby potentially affecting cellular and metabolic functions, immune responses, and sensory perception. The circadian clock's multifaceted involvement in diverse biological processes, along with its role in the mosquito's daily rhythms, forms a nexus that influences the vector's capacity to transmit diseases. These insights shed light on the circadian clock's role in shaping mosquito biology and behavior, opening new avenues for innovative disease control strategies.
Collapse
Affiliation(s)
- Vinaya Shetty
- Department of Entomology, Texas A&M University, College station, TX, 77843, USA.
| | - Zach N Adelman
- Department of Entomology, Texas A&M University, College station, TX, 77843, USA
| | - Michel A Slotman
- Department of Entomology, Texas A&M University, College station, TX, 77843, USA
| |
Collapse
|
38
|
Hajra D, Kirthivasan N, Chakravortty D. Symbiotic Synergy from Sponges to Humans: Microflora-Host Harmony Is Crucial for Ensuring Survival and Shielding against Invading Pathogens. ACS Infect Dis 2024; 10:317-336. [PMID: 38170903 DOI: 10.1021/acsinfecdis.3c00554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Gut microbiota plays several roles in the host organism's metabolism and physiology. This phenomenon holds across different species from different kingdoms and classes. Different species across various classes engage in continuous crosstalk via various mechanisms with their gut microbiota, ensuring homeostasis of the host. In this Review, the diversity of the microflora, the development of the microflora in the host, its regulations by the host, and its functional implications on the host, especially in the context of dysbiosis, are discussed across different organisms from sponges to humans. Overall, our review aims to address the indispensable nature of the microbiome in the host's survival, fitness, and protection against invading pathogens.
Collapse
Affiliation(s)
- Dipasree Hajra
- Department of Microbiology & Cell Biology, Indian Institute of Science, Bangalore, Karnataka-560012, India
| | - Nikhita Kirthivasan
- Undergraduate Programme, Indian Institute of Science, Bangalore, Karnataka-560012, India
| | - Dipshikha Chakravortty
- Department of Microbiology & Cell Biology, Indian Institute of Science, Bangalore, Karnataka-560012, India
| |
Collapse
|
39
|
Llergo JL, Garuti H, Lopez C, Sanchez J, Calvo D. Artificial nighttime lighting impacts Plasmodium falciparum mature stage V gametocytes infectivity in Anopheles stephensi. Malar J 2024; 23:42. [PMID: 38326842 PMCID: PMC10851600 DOI: 10.1186/s12936-024-04866-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/30/2024] [Indexed: 02/09/2024] Open
Abstract
BACKGROUND Malaria is one of the most important vector-borne diseases of humans with an estimated 241 million cases worldwide in 2020. As an urban and periurban mosquito species, Anopheles stephensi is exposed to artificial human stimuli like light that can alter many aspects of mosquito behaviour, physiology and metabolism. Therefore, fluctuations in the light environment may influence the host, parasite and/or mosquito biology and hence modulate risk for disease transmission. In this study, the effect of artifitial light at night on mosquito infectivity by Plasmodium falciparum during the first hours of blood digestion was tested. METHODS A total of three independent standard membrane feeding assays were performed to artificially fed septic and aseptic mosquitoes with P. falciparum infected blood. After blood feeding, females were transferred to incubators with different photoperiod cycles, so digestion occurred under day artificial light or dark. At 7 and 16 days post blood feeding, mosquitoes were dissected for midguts and salivary glands, respectively. Percentage of mosquitoes fed, percentage of prevalence and P. falciparum oocyst intensity between septic and aseptic mosquitoes in the two different photoperiod regimes, were compared using a Kruskal-Wallis test followed by a Dunn´s multiple comparison test . RESULTS The exposition of mosquitoes to light after they took an infected blood meal has a negative effect on the successful progression of P. falciparum in the mosquito midgut. Antibiotic treatment significantly incremented the number of oocysts per midgut. Photophase significantly reduced the median oocyst intensity in both septic and aseptic mosquitoes. The percentage of oocyst reduction, understood as the percentage of reduction in the mean oocyst intensity of the parasite in the mosquito midgut between photophase and scotophase, was 51% in the case of aseptic mosquitoes and 80% for septic mosquitoes, both in the photophase condition. CONCLUSION Although there are still many gaps in the understanding of parasite-mosquito interactions, these results support the idea that light can, not only, influence mosquito biting behaviour but also parasite success in the mosquito midgut. Hence, light can be considered an interesting additional mosquito-control strategy to reduce mosquito-borne diseases.
Collapse
Affiliation(s)
- Jose Luis Llergo
- Global Health Medicines R&D, GlaxoSmithKline, C/Severo Ochoa 2, Tres Cantos, 28760, Madrid, Spain
| | - Helena Garuti
- Global Health Medicines R&D, GlaxoSmithKline, C/Severo Ochoa 2, Tres Cantos, 28760, Madrid, Spain
| | - Celia Lopez
- Global Health Medicines R&D, GlaxoSmithKline, C/Severo Ochoa 2, Tres Cantos, 28760, Madrid, Spain
| | - Julia Sanchez
- In Vivo Science and Delivery (IVSD), GlaxoSmithKline, C/Severo Ochoa 2, Tres Cantos, 28760, Madrid, Spain
| | - David Calvo
- Global Health Medicines R&D, GlaxoSmithKline, C/Severo Ochoa 2, Tres Cantos, 28760, Madrid, Spain.
| |
Collapse
|
40
|
Zhang K, Wang S, Li Y, Yin Y, Zhang X, Zhang Q, Kong X, Liu W, Yao D, Zhang R, Zhang Z. Application of bacteria and bacteriophage cocktails for biological control of houseflies. Parasit Vectors 2024; 17:22. [PMID: 38233948 PMCID: PMC10795258 DOI: 10.1186/s13071-023-06082-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/04/2023] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND Houseflies, Musca domestica L., are an ubiquitous pest that can transmit numerous diseases and threaten human health. Increasing insecticide resistance shown by houseflies necessitates the develop new control alternatives. The housefly gut is densely colonized with microorganisms that interact with each other dynamically and benefit the host's health. However, the impact of multiple symbiotic bacteria on the composition of housefly gut microbiota and the host's activities remains unclear. METHODS We isolated and cultured 12 bacterial species from the intestines of housefly larvae. We also isolated seven bacteriophages to precisely target the regulation of certain bacterial species. Using 16S rRNA high-throughput gene sequencing, we analyzed the bacterial diversity after orally administering bacteria/phage cocktails to houseflies. RESULTS Our results showed that larval growth was promoted, the abundance of beneficial bacteria, such as Klebsiella and Enterobacter, was increased and the abundance of harmful bacteria, such as Providencia, Morganella and Pseudomonas, was decreased in housefly larvae fed with the beneficial bacteria cocktail. However, oral administration of both beneficial and harmful bacterial phage cocktails inhibited larval growth, probably due to the drastic alteration of gut flora. Untargeted metabolomics using liquid chromatography-mass spectrometry showed that disturbances in gut microbiota changed the larval metabolite profiles. Feeding experiments revealed that disrupting the intestinal flora suppressed the beneficial bacteria and increased the harmful bacteria, causing changes in the metabolites and inhibiting larval growth. CONCLUSIONS Based on our results, bacteria/phage cocktails are effective tools for regulating the intestinal flora of insects and have a high potential as a biological control agent for incorporation into an integrated pest management program.
Collapse
Affiliation(s)
- Kexin Zhang
- Hospital for Skin Diseases, Shandong First Medical University, Jinan, China
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, China
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Shumin Wang
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
- School of Life Science, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Ying Li
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
- School of Clinical and Basic Medical Science, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yansong Yin
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
- School of Clinical and Basic Medical Science, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xinyu Zhang
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qian Zhang
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
- School of Clinical and Basic Medical Science, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xinxin Kong
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
- School of Clinical and Basic Medical Science, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Wenjuan Liu
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
- Department of Laboratory Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Shanwei, China
| | - Dawei Yao
- Shandong Institute of Endocrine and Metabolic Diseases, Shandong First Medical University, Jinan, Shandong, China.
| | - Ruiling Zhang
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China.
- School of Clinical and Basic Medical Science, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.
| | - Zhong Zhang
- School of Life Science, Weifang Medical University, Weifang, China.
- Medical Science and Technology Innovation Center, The First Affiliated Hospital of Shandong First Medical University, Jinan, China.
| |
Collapse
|
41
|
Chuang YM, Stone H, Abouneameh S, Tang X, Fikrig E. Signaling between mammalian adiponectin and a mosquito adiponectin receptor reduces Plasmodium transmission. mBio 2024; 15:e0225723. [PMID: 38078744 PMCID: PMC10790699 DOI: 10.1128/mbio.02257-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/27/2023] [Indexed: 01/17/2024] Open
Abstract
IMPORTANCE When a female mosquito takes a blood meal from a mammalian host, components of the blood meal can affect mosquito fitness and indirectly influence pathogen infectivity. We identified a pathway involving an Anopheles gambiae adiponectin receptor, which, triggered by adiponectin from an incoming blood meal, decreases Plasmodium infection in the mosquito. Activation of this pathway negatively regulates lipophorin expression, an important lipid transporter that both enhances egg development and Plasmodium infection. This is an unrecognized cross-phyla interaction between a mosquito and its vertebrate host. These processes are critical to understanding the complex life cycle of mosquitoes and Plasmodium following a blood meal and may be applicable to other hematophagous arthropods and vector-borne infectious agents.
Collapse
Affiliation(s)
- Yu-Min Chuang
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Helen Stone
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Selma Abouneameh
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Xiaotian Tang
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
42
|
Peng S, Ye L, Li Y, Wang F, Sun T, Wang L, Zhao J, Dong Z. Metagenomic insights into jellyfish-associated microbiome dynamics during strobilation. ISME COMMUNICATIONS 2024; 4:ycae036. [PMID: 38571744 PMCID: PMC10988111 DOI: 10.1093/ismeco/ycae036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/08/2024] [Accepted: 03/13/2024] [Indexed: 04/05/2024]
Abstract
Host-associated microbiomes can play key roles in the metamorphosis of animals. Most scyphozoan jellyfish undergo strobilation in their life cycles, similar to metamorphosis in classic bilaterians. The exploration of jellyfish microbiomes may elucidate the ancestral mechanisms and evolutionary trajectories of metazoan-microbe associations and interactions during metamorphosis. However, current knowledge of the functional features of jellyfish microbiomes remains limited. Here, we performed a genome-centric analysis of associated microbiota across four successive life stages (polyp, early strobila, advanced strobila, and ephyra) during strobilation in the common jellyfish Aurelia coerulea. We observed shifts in taxonomic and functional diversity of microbiomes across distinct stages and proposed that the low microbial diversity in ephyra stage may be correlated with the high expression of the host-derived antimicrobial peptide aurelin. Furthermore, we recovered 43 high-quality metagenome-assembled genomes and determined the nutritional potential of the dominant Vibrio members. Interestingly, we observed increased abundances of genes related to the biosynthesis of amino acids, vitamins, and cofactors, as well as carbon fixation during the loss of host feeding ability, indicating the functional potential of Aurelia-associated microbiota to support the synthesis of essential nutrients. We also identified several potential mechanisms by which jellyfish-associated microbes establish stage-specific community structures and maintain stable colonization in dynamic host environments, including eukaryotic-like protein production, bacterial secretion systems, restriction-modification systems, and clustered regularly interspaced short palindromic repeats-Cas systems. Our study characterizes unique taxonomic and functional changes in jellyfish microbiomes during strobilation and provides foundations for uncovering the ancestral mechanism of host-microbe interactions during metamorphosis.
Collapse
Affiliation(s)
- Saijun Peng
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lijing Ye
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China
| | - Yongxue Li
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fanghan Wang
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tingting Sun
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China
| | - Lei Wang
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China
| | - Jianmin Zhao
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhijun Dong
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
43
|
Gao HH, Zhao S, Wang RJ, Qin DY, Chen P, Zhang AS, Zhuang QY, Zhai YF, Zhou XH. Gut bacterium promotes host fitness in special ecological niche by affecting sugar metabolism in Drosophila suzukii. INSECT SCIENCE 2023; 30:1713-1733. [PMID: 36810869 DOI: 10.1111/1744-7917.13189] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
As an important fruit pest of global significance, Drosophila suzukii occupies a special ecological niche, with the characteristics of high sugar and low protein contents. This niche differs from those occupied by other fruit-damaging Drosophila species. Gut bacteria substantially impact the physiology and ecology of insects. However, the contribution of gut microbes to the fitness of D. suzukii in their special ecological niche remains unclear. In this study, the effect of Klebsiella oxytoca on the development of D. suzukii was examined at physiological and molecular levels. The results showed that, after the removal of gut microbiota, the survival rate and longevity of axenic D. suzukii decreased significantly. Reintroduction of K. oxytoca to the midgut of D. suzukii advanced the development level of D. suzukii. The differentially expressed genes and metabolites between axenic and K. oxytoca-reintroduced D. suzukii were enriched in the pathways of carbohydrate metabolism. This advancement was achieved through an increased glycolysis rate and the regulation of the transcript level of key genes in the glycolysis/gluconeogenesis pathway. Klebsiella oxytoca is likely to play an important role in increasing host fitness in their high-sugar ecological niche by stimulating the glycolysis/gluconeogenesis pathway. As a protein source, bacteria can also provide direct nutrition for D. suzukii, which depends on the quantity or biomass of K. oxytoca. This result may provide a new target for controlling D. suzukii by inhibiting sugar metabolism through eliminating the effect of K. oxytoca and thus disrupting the balance of gut microbial communities.
Collapse
Affiliation(s)
- Huan-Huan Gao
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
- Shandong Academy of Grape, Jinan, China
| | - Shan Zhao
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Rui-Juan Wang
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Dong-Yun Qin
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Peng Chen
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
| | - An-Sheng Zhang
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Qian-Ying Zhuang
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yi-Fan Zhai
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xian-Hong Zhou
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
| |
Collapse
|
44
|
Swanson K, Blakeslee AMH, Fowler AE, Roozbehi S, Field EK. Microbial communities are indicators of parasite infection status. Environ Microbiol 2023; 25:3423-3434. [PMID: 37918974 DOI: 10.1111/1462-2920.16533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 10/20/2023] [Indexed: 11/04/2023]
Abstract
Growing evidence suggests that microbiomes have been shaping the evolutionary pathways of macroorganisms for millennia and that these tiny symbionts can influence, and possibly even control, species interactions like host-parasite relationships. Yet, while studies have investigated host-parasites and microbiomes separately, little has been done to understand all three groups synergistically. Here, we collected infected and uninfected Eurypanopeus depressus crab hosts from a coastal North Carolina oyster reef three times over 4 months. Infected crabs demonstrated an external stage of the rhizocephalan parasite, Loxothylacus panopaei. Community analyses revealed that microbial richness and diversity were significantly different among tissue types (uninfected crab, infected crab, parasite externae and parasite larvae) and over time (summer and fall). Specifically, the microbial communities from parasite externae and larvae had similar microbiomes that were consistent through time. Infected crabs demonstrated microbial communities spanning those of their host and parasite, while uninfected crabs showed more distinctive communities with greater variability over time. Microbial communities were also found to be indicators of early-stage infections. Resolving the microbial community composition of a host and its parasite is an important step in understanding the microbiome's role in the host-parasite relationship and determining how this tripartite relationship impacts coevolutionary processes.
Collapse
Affiliation(s)
- Kyle Swanson
- Department of Biology, East Carolina University, Greenville, North Carolina, USA
| | - April M H Blakeslee
- Department of Biology, East Carolina University, Greenville, North Carolina, USA
| | - Amy E Fowler
- Environmental Science & Policy Department, George Mason University, Fairfax, Virginia, USA
| | - Sara Roozbehi
- Department of Biology, East Carolina University, Greenville, North Carolina, USA
| | - Erin K Field
- Department of Biology, East Carolina University, Greenville, North Carolina, USA
| |
Collapse
|
45
|
Zhou YM, Xie W, Zhi JR, Zou X. Frankliniella occidentalis pathogenic fungus Lecanicillium interacts with internal microbes and produces sublethal effects. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 197:105679. [PMID: 38072536 DOI: 10.1016/j.pestbp.2023.105679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/21/2023] [Accepted: 10/25/2023] [Indexed: 12/18/2023]
Abstract
Frankliniella occidentalis (Thysanoptera: Thripidae) is a pest that feeds on various crops worldwide. A prior study identified Lecanicillium attenuatum and L. cauligalbarum as pathogens of F. occidentalis. Unfortunately, the potential of these two entomopathogenic fungi for the biocontrol of F. occidentalis has not been effectively evaluated. The internal microbes (endosymbionts and the gut microbiota) of insects, especially gut bacteria, are crucial in regulating the interactions between the host and intestinal pathogens. The role of thrips internal microbes in the infection of these two entomopathogenic fungi is also unknown. Therefore, biological control of thrips is immediately needed, and to accomplish that, an improved understanding of the internal microbes of thrips against Lecanicillium infection is essential. The virulence of the two pathogenic fungi against F. occidentalis increased with the conidia concentration. Overall, the LC50 of L. cauligalbarum was lower than that of L. attenuatum, and the pathogenicity degree was adult > pupa > nymphs. The activities of protective enzymes include superoxide dismutase (SOD), catalase (CAT), peroxidase (POD); detoxification enzymes include polyphenol oxidase (PPO), glutathione s-transferase (GSTs), and carboxylesterase (CarE); hormones include ecdysone and juvenile hormone; and the composition and proportion of microorganisms (fungi and bacteria) in F. occidentalis infected by L. cauligalbarum and L. attenuatum have changed significantly. According to the network correlation results, there was a considerable correlation among the internal microbes (including bacteria and fungi), enzyme activities, and hormones, which indicates that in addition to bacteria, internal fungi of F. occidentalis are also involved in the L. cauligalbarum and L. attenuatum infection process. In addition, the development time of the surviving F. occidentalis exposed to L. cauligalbarum or L. attenuatum was significantly shorter than that of the control group. Furthermore, the intrinsic rate of increase (rm), finite rate of increase (λ), net reproductive rate (R0), mean generation time (T), and gross reproductive rate (GRR) were significantly lower in the treatment groups than in the control group. L. attenuatum and L. cauligalbarum have biocontrol potential against F. occidentalis. In addition to bacteria, internal fungi of F. occidentalis are also involved in the infection process of insect pathogenic fungi. Disruption of the internal microbial balance results in discernible sublethal effects. Such prevention and control potential should not be ignored. These findings provide an improved understanding of physiological responses in thrips with altered immunity against entomopathogenic fungal infections, which can guide us toward the development of novel biocontrol strategies against thrips.
Collapse
Affiliation(s)
- Ye-Ming Zhou
- Institute of Entomology, Guizhou University, The Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guiyang 550025, Guizhou, China; Institute of Fungus Resources, Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of life Sciences, Guizhou University, Guiyang 550025, Guizhou, China
| | - Wen Xie
- Institute of Entomology, Guizhou University, The Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guiyang 550025, Guizhou, China
| | - Jun-Rui Zhi
- Institute of Entomology, Guizhou University, The Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guiyang 550025, Guizhou, China.
| | - Xiao Zou
- Institute of Fungus Resources, Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of life Sciences, Guizhou University, Guiyang 550025, Guizhou, China
| |
Collapse
|
46
|
Zhou F, Liang Q, Zhao X, Wu X, Fan S, Zhang X. Comparative metaproteomics reveal co-contribution of onion maggot and its gut microbiota to phoxim resistance. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115649. [PMID: 37913580 DOI: 10.1016/j.ecoenv.2023.115649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/09/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023]
Abstract
Pesticide resistance inflicts significant economic losses on a global scale each year. To address this pressing issue, substantial efforts have been dedicated to unraveling the resistance mechanisms, particularly the newly discovered microbiota-derived pesticide resistance in recent decades. Previous research has predominantly focused on investigating microbiota-derived pesticide resistance from the perspective of the pest host, associated microbes, and their interactions. However, a gap remains in the quantification of the contribution by the pest host and associated microbes to this resistance. In this study, we investigated the toxicity of phoxim by examining one resistant and one sensitive Delia antiqua strain. We also explored the critical role of associated microbiota and host in conferring phoxim resistance. In addition, we used metaproteomics to compare the proteomic profile of the two D. antiqua strains. Lastly, we investigated the activity of detoxification enzymes in D. antiqua larvae and phoxim-degrading gut microbes, and assessed their respective contributions to phoxim resistance in D. antiqua. The results revealed contributions by D. antiqua and its gut bacteria to phoxim resistance. Metaproteomics showed that the two D. antiqua strains expressed different protein profiles. Detoxifying enzymes including Glutathione S-transferases, carboxylesterases, Superoxide Dismutase, Glutathione Peroxidase, and esterase B1 were overexpressed in the resistant strain and dominated in differentially expressed insect proteins. In addition, organophosphorus hydrolases combined with a group of ABC type transporters were overexpressed in the gut microbiota of resistant D. antiqua compared to the sensitive strain. 85.2% variation of the larval mortality resulting from phoxim treatment could be attributed to the combined effects of proteins from both from gut bacteria and D. antiqua, while the individual contribution of proteins from gut bacteria or D. antiqua alone accounted for less than 10% of the variation in larval mortality caused by phoxim. The activity of the overexpressed insect enzymes and the phoxim-degrading activity of gut bacteria in resistant D. antiqua larvae were further confirmed. This work enhances our understanding of microbiota-derived pesticide resistance and illuminates new strategies for controlling pesticide resistance in the context of insect-microbe mutualism.
Collapse
Affiliation(s)
- Fangyuan Zhou
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan 250103, China
| | - Qingxia Liang
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan 250103, China
| | - Xiaoyan Zhao
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan 250103, China
| | - Xiaoqing Wu
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan 250103, China
| | - Susu Fan
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan 250103, China
| | - Xinjian Zhang
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan 250103, China.
| |
Collapse
|
47
|
Andrade AO, Santos NAC, Bastos AS, Pontual JDC, Araújo CS, Lima AS, Martinez LN, Ferreira AS, Aguiar ACC, Teles CBG, Guido RVC, Santana RA, Lopes SCP, Medeiros JF, Rizopoulos Z, Vinetz JM, Campo B, Lacerda MVG, Araújo MS. Optimization of Plasmodium vivax infection of colonized Amazonian Anopheles darlingi. Sci Rep 2023; 13:18207. [PMID: 37875508 PMCID: PMC10598059 DOI: 10.1038/s41598-023-44556-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/10/2023] [Indexed: 10/26/2023] Open
Abstract
Obtaining Plasmodium vivax sporozoites is essential for in vitro culture of liver stage parasites, not only to understand fundamental aspects of parasite biology, but also for drug and vaccine development. A major impediment to establish high-throughput in vitro P. vivax liver stage assays for drug development is obtaining sufficient numbers of sporozoites. To do so, female anopheline mosquitoes have to be fed on blood from P. vivax-infected patients through an artificial membrane-feeding system, which in turns requires a well-established Anopheles colony. In this study we established conditions to provide a robust supply of P. vivax sporozoites. Adding a combination of serum replacement and antibiotics to the membrane-feeding protocol was found to best improve sporozoite production. A simple centrifugation method appears to be a possible tool for rapidly obtaining purified sporozoites with a minimal loss of yield. However, this method needs to be better defined since sporozoite viability and hepatocyte infection were not evaluated.
Collapse
Affiliation(s)
- Alice O Andrade
- Plataforma de Produção e Infecção de Vetores da Malária (PIVEM)/Laboratório de Entomologia, Fiocruz Rondônia, Porto Velho, Rondônia, Brazil
- Programa de Pós-Graduação em Saúde Publica, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo, Brazil
| | - Najara Akira C Santos
- Plataforma de Produção e Infecção de Vetores da Malária (PIVEM)/Laboratório de Entomologia, Fiocruz Rondônia, Porto Velho, Rondônia, Brazil
- Programa de Pós-Graduação em Biologia Experimental, Fundação Universidade Federal de Rondônia, Porto Velho, Rondônia, Brazil
| | - Alessandra S Bastos
- Plataforma de Produção e Infecção de Vetores da Malária (PIVEM)/Laboratório de Entomologia, Fiocruz Rondônia, Porto Velho, Rondônia, Brazil
- Programa de Pós-Graduação em Biologia Experimental, Fundação Universidade Federal de Rondônia, Porto Velho, Rondônia, Brazil
| | - José Daniel C Pontual
- Plataforma de Produção e Infecção de Vetores da Malária (PIVEM)/Laboratório de Entomologia, Fiocruz Rondônia, Porto Velho, Rondônia, Brazil
| | - Cristiane S Araújo
- Plataforma de Produção e Infecção de Vetores da Malária (PIVEM)/Laboratório de Entomologia, Fiocruz Rondônia, Porto Velho, Rondônia, Brazil
- Programa de Pós-Graduação em Conservação e uso de Recursos Naturais - PPGReN, Fundação Universidade Federal de Rondônia, Porto Velho, Rondônia, Brazil
| | - Analice S Lima
- Plataforma de Produção e Infecção de Vetores da Malária (PIVEM)/Laboratório de Entomologia, Fiocruz Rondônia, Porto Velho, Rondônia, Brazil
- Faculdades Integradas Aparício Carvalho (FIMCA), Porto Velho, Rondônia, Brazil
| | - Leandro N Martinez
- Programa de Pós-Graduação em Saúde Publica, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo, Brazil
- Plataforma de Bioensaios de Malária e Leishmaniose da Fiocruz (PBML), Fiocruz Rondônia, Porto Velho, Rondônia, Brazil
| | - Amália S Ferreira
- Plataforma de Bioensaios de Malária e Leishmaniose da Fiocruz (PBML), Fiocruz Rondônia, Porto Velho, Rondônia, Brazil
| | - Anna Caroline C Aguiar
- Departamento de Biociência, Universidade Federal de São Paulo, Santos, São Paulo, Brazil
| | - Carolina B G Teles
- Programa de Pós-Graduação em Biologia Experimental, Fundação Universidade Federal de Rondônia, Porto Velho, Rondônia, Brazil
- Plataforma de Bioensaios de Malária e Leishmaniose da Fiocruz (PBML), Fiocruz Rondônia, Porto Velho, Rondônia, Brazil
- Rede de Biodiversidade e Biotecnologia da Amazônia Legal - BIONORTE, Porto Velho, Rondônia, Brazil
| | - Rafael V C Guido
- São Carlos Institute of Physics, University of Sao Paulo, São Carlos, São Paulo, Brazil
| | - Rosa A Santana
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
| | - Stefanie C P Lopes
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
- Instituto Leônidas & Maria Deane, FIOCRUZ, Manaus, Brazil
| | - Jansen F Medeiros
- Plataforma de Produção e Infecção de Vetores da Malária (PIVEM)/Laboratório de Entomologia, Fiocruz Rondônia, Porto Velho, Rondônia, Brazil
- Programa de Pós-Graduação em Biologia Experimental, Fundação Universidade Federal de Rondônia, Porto Velho, Rondônia, Brazil
| | | | - Joseph M Vinetz
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Alexander von Humboldt Institute of Tropical Medicine and Faculty of Sciences, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Brice Campo
- Medicines for Malaria Venture, Geneva, Switzerland
| | - Marcus Vinicius G Lacerda
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
- Instituto Leônidas & Maria Deane, FIOCRUZ, Manaus, Brazil
| | - Maisa S Araújo
- Plataforma de Produção e Infecção de Vetores da Malária (PIVEM)/Laboratório de Entomologia, Fiocruz Rondônia, Porto Velho, Rondônia, Brazil.
- Programa de Pós-Graduação em Conservação e uso de Recursos Naturais - PPGReN, Fundação Universidade Federal de Rondônia, Porto Velho, Rondônia, Brazil.
| |
Collapse
|
48
|
Song M, Zhang Z, Li Y, Xiang Y, Li C. Midgut microbiota affects the intestinal barrier by producing short-chain fatty acids in Apostichopus japonicus. Front Microbiol 2023; 14:1263731. [PMID: 37915855 PMCID: PMC10616862 DOI: 10.3389/fmicb.2023.1263731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/15/2023] [Indexed: 11/03/2023] Open
Abstract
Introduction The intestinal microbiota participates in host physiology and pathology through metabolites, in which short-chain fatty acids (SCFAs) are considered principal products and have extensive influence on intestine homeostasis. It has been reported that skin ulceration syndrome (SUS), the disease of Apostichopus japonicus caused by Vibrio splendidus, is associated with the alteration of the intestinal microbiota composition. Method To investigate whether the intestinal microbiota affects A. japonicus health via SCFAs, in this study, we focus on the SCFA profiling and intestinal barrier function in A. japonicus treated with V. splendidus. Results and discussion We found that V. splendidus could destroy the mid-intestine integrity and downregulate the expression of tight junction proteins ZO-1 and occludin in A. japonicus, which further dramatically decreased microorganism abundance and altered SCFAs contents. Specifically, acetic acid is associated with the largest number of microorganisms and has a significant correlation with occludin and ZO-1 among the seven SCFAs. Furthermore, our findings showed that acetic acid could maintain the intestinal barrier function by increasing the expression of tight junction proteins and rearranging the tight junction structure by regulating F-actin in mid-intestine epithelial cells. Thus, our results provide insights into the effects of the gut microbiome and SCFAs on intestine barrier homeostasis and provide essential knowledge for intervening in SUS by targeting metabolites or the gut microbiota.
Collapse
Affiliation(s)
- Mingshan Song
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
| | - Zhen Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
| | - Yanan Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
| | - Yangxi Xiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
| | - Chenghua Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
49
|
Tian Z, Guo X, Michaud JP, Zha M, Zhu L, Liu X, Liu X. The gut microbiome of Helicoverpa armigera enhances immune response to baculovirus infection via suppression of Duox-mediated reactive oxygen species. PEST MANAGEMENT SCIENCE 2023; 79:3611-3621. [PMID: 37184157 DOI: 10.1002/ps.7546] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/16/2023]
Abstract
BACKGROUND Baculoviruses such as Helicoverpa armigera nucleopolyhedrovirus (HearNPV) infect their lepidopteran hosts via the larval midgut where they interact with host immune responses and gut microbiota. Here we demonstrate that gut microbiota proliferating in response to HearNPV infection promote larval immune responses which impede the infection process. RESULTS The microbial load of the larval midgut increased following HearNPV infection, due primarily to increases in Enterococcus spp., whereas most other bacterial genera declined, with Firmicutes replacing Proteobacteria as the dominant phylum. Injection of abdominal prolegs of infected larvae with H2 O2 promoted viral infection, diminished microbial abundance, and accelerated larval death, mimicking the effects of HearNPV infection, which up-regulated dual oxidase (Duox) expression, increasing H2 O2 levels in the midgut. Knockdown of Duox with RNAi reduced H2 O2 production in the guts of infected larvae, increased bacterial loads, decreased viral replication, and improved larval survival. Germ-free larvae were more susceptible to HearNPV than control larvae, exhibiting greater expression of Duox, higher levels of H2 O2 , and lower survival. Replenishment of gut bacteria in germ-free larvae restored the base-line immunity to HearNPV observed in normal larvae. Enterococcus spp., Levilactobacillus brevis, and Lactobacillus sp. bacteria were isolated and implicated in immunity restoration via replenishment in germ-free larvae. CONCLUSION These findings illuminate how gut microbiota play important roles in larval defense against oral baculovirus infection, and suggest novel avenues of investigation to enhance the efficacy of baculoviruses and improve control of lepidopteran pests. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhiqiang Tian
- Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xi Guo
- Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - J P Michaud
- Department of Entomology, Kansas State University, Agricultural Research Center-Hays, Hays, KS, USA
| | - Meng Zha
- Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Lin Zhu
- Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xiaoming Liu
- Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xiaoxia Liu
- Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
50
|
Li P, Hong J, Wu M, Yuan Z, Li D, Wu Z, Sun X, Lin D. Metagenomic Analysis Reveals Variations in Gut Microbiomes of the Schistosoma mansoni-Transmitting Snails Biomphalaria straminea and Biomphalaria glabrata. Microorganisms 2023; 11:2419. [PMID: 37894077 PMCID: PMC10609589 DOI: 10.3390/microorganisms11102419] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/01/2023] [Accepted: 09/14/2023] [Indexed: 10/29/2023] Open
Abstract
Biomphalaria snails play a crucial role in the transmission of the human blood fluke Schistosoma mansoni. The gut microbiota of intermediate hosts is known to influence their physiological functions, but little is known about its composition and role in Biomphalaria snails. To gain insights into the biological characteristics of these freshwater intermediate hosts, we conducted metagenomic sequencing on Biomphalaria straminea and B. glabrata to investigate variations in their gut microbiota. This study revealed that the dominant members of the gut microbiota in B. glabrata belong to the phyla Bacteroidetes and Proteobacteria, which were also found to be the top two most abundant gut bacteria in B. straminea. We identified Firmicutes, Acidovorax and Bosea as distinctive gut microbes in B. straminea, while Aeromonas, Cloacibacterium and Chryseobacterium were found to be dependent features of the B. glabrata gut microbiota. We observed significant differences in the community structures and bacterial functions of the gut microbiota between the two host species. Notably, we found a distinctive richness of antibiotic resistance genes (ARGs) associated with various classes of antibiotics, including bacitracin, chloramphenicol, tetracycline, sulfonamide, penicillin, cephalosporin_ii and cephalosporin_i, fluoroquinolone, aminoglycoside, beta-lactam, multidrug and trimethoprim, in the digestive tracts of the snails. Furthermore, this study revealed the potential correlations between snail gut microbiota and the infection rate of S. mansoni using Spearman correlation analysis. Through metagenomic analysis, our study provided new insights into the gut microbiota of Biomphalaria snails and how it is influenced by host species, thereby enhancing our understanding of variant patterns of gut microbial communities in intermediate hosts. Our findings may contribute to future studies on gastropod-microbe interactions and may provide valuable knowledge for developing snail control strategies to combat schistosomiasis in the future.
Collapse
Affiliation(s)
- Peipei Li
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China (Z.W.)
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
- Provincial Engineering Technology Research Center for Diseases-Vectors Control, Sun Yat-Sen University, Guangzhou 510080, China
| | - Jinni Hong
- Department of Traditional Chinese Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou 510180, China
| | - Mingrou Wu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China (Z.W.)
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
| | - Zhanhong Yuan
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China (Z.W.)
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
| | - Dinghao Li
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China (Z.W.)
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
| | - Zhongdao Wu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China (Z.W.)
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
- Provincial Engineering Technology Research Center for Diseases-Vectors Control, Sun Yat-Sen University, Guangzhou 510080, China
| | - Xi Sun
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China (Z.W.)
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
- Provincial Engineering Technology Research Center for Diseases-Vectors Control, Sun Yat-Sen University, Guangzhou 510080, China
| | - Datao Lin
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China (Z.W.)
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
- Provincial Engineering Technology Research Center for Diseases-Vectors Control, Sun Yat-Sen University, Guangzhou 510080, China
| |
Collapse
|