1
|
Magesh S, Schrope JH, Soto NM, Li C, Hurley AI, Huttenlocher A, Beebe DJ, Handelsman J. Co-zorbs: Motile, multispecies biofilms aid transport of diverse bacterial species. Proc Natl Acad Sci U S A 2025; 122:e2417327122. [PMID: 39899715 PMCID: PMC11831133 DOI: 10.1073/pnas.2417327122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/23/2024] [Indexed: 02/05/2025] Open
Abstract
Biofilms are three-dimensional structures containing one or more bacterial species embedded in extracellular polymeric substances. Although most biofilms are stationary, Flavobacterium johnsoniae forms a motile spherical biofilm called a zorb, which is propelled by its base cells and contains a polysaccharide core. Here, we report the formation of spatially organized, motile, multispecies biofilms, designated "co-zorbs," that are distinguished by a core-shell structure. F. johnsoniae forms zorbs whose cells collect other bacterial species and transport them to the zorb core, forming a co-zorb. Live imaging revealed that co-zorbs also form in zebrafish, thereby demonstrating a different type of bacterial movement in vivo. This finding opens different avenues for understanding community behaviors, the role of biofilms in bulk bacterial transport, and collective strategies for microbial success in various environments.
Collapse
Affiliation(s)
- Shruthi Magesh
- Department of Plant Pathology, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI53715
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI53715
| | - Jonathan H. Schrope
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI53705
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI53705
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI53706
| | - Nayanna Mercado Soto
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI53715
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI53706
| | - Chao Li
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI53792
| | - Amanda I. Hurley
- Department of Plant Pathology, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI53715
- Avantiqor, Washington, DC20024
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI53706
| | - David J. Beebe
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI53705
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI53705
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI53792
| | - Jo Handelsman
- Department of Plant Pathology, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI53715
| |
Collapse
|
2
|
Magesh S, Schrope JH, Soto NM, Li C, Hurley AI, Huttenlocher A, Beebe DJ, Handelsman J. Co-zorbs: Motile, multispecies biofilms aid transport of diverse bacterial species. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.29.607786. [PMID: 39257784 PMCID: PMC11383685 DOI: 10.1101/2024.08.29.607786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Biofilms are three-dimensional structures containing one or more bacterial species embedded in extracellular polymeric substances. Although most biofilms are stationary, Flavobacterium johnsoniae forms a motile spherical biofilm called a zorb, which is propelled by its base cells and contains a polysaccharide core. Here, we report formation of spatially organized, motile, multispecies biofilms, designated "co-zorbs," that are distinguished by a core-shell structure. F. johnsoniae forms zorbs whose cells collect other bacterial species and transport them to the zorb core, forming a co-zorb. Live imaging revealed that co-zorbs also form in zebrafish, thereby demonstrating a new type of bacterial movement in vivo. This discovery opens new avenues for understanding community behaviors, the role of biofilms in bulk bacterial transport, and collective strategies for microbial success in various environments.
Collapse
Affiliation(s)
- Shruthi Magesh
- Wisconsin Institute for Discovery and Department of Plant Pathology, University of Wisconsin-Madison; Madison, WI, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison; Madison, WI, USA
| | - Jonathan H. Schrope
- Department of Biomedical Engineering, University of Wisconsin-Madison; Madison, WI, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison; Madison, WI, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison; Madison, WI, USA
| | - Nayanna Mercado Soto
- Microbiology Doctoral Training Program, University of Wisconsin-Madison; Madison, WI, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison; Madison, WI, USA
| | - Chao Li
- Carbone Cancer Center, University of Wisconsin-Madison; Madison, WI, USA
| | - Amanda I. Hurley
- Wisconsin Institute for Discovery and Department of Plant Pathology, University of Wisconsin-Madison; Madison, WI, USA
- Avantiqor, 800 Wharf St SW, Washington, DC 20024
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison; Madison, WI, USA
| | - David J. Beebe
- Department of Biomedical Engineering, University of Wisconsin-Madison; Madison, WI, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison; Madison, WI, USA
- Carbone Cancer Center, University of Wisconsin-Madison; Madison, WI, USA
| | - Jo Handelsman
- Wisconsin Institute for Discovery and Department of Plant Pathology, University of Wisconsin-Madison; Madison, WI, USA
| |
Collapse
|
3
|
Lepesheva A, Grobarcikova M, Osickova A, Jurnecka D, Knoblochova S, Cizkova M, Osicka R, Sebo P, Masin J. Modification of the RTX domain cap by acyl chains of adapted length rules the formation of functional hemolysin pores. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184311. [PMID: 38570122 DOI: 10.1016/j.bbamem.2024.184311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/14/2024] [Accepted: 03/25/2024] [Indexed: 04/05/2024]
Abstract
The acylated pore-forming Repeats in ToXin (RTX) cytolysins α-hemolysin (HlyA) and adenylate cyclase toxin (CyaA) preferentially bind to β2 integrins of myeloid leukocytes but can also promiscuously bind and permeabilize cells lacking the β2 integrins. We constructed a HlyA1-563/CyaA860-1706 chimera that was acylated either by the toxin-activating acyltransferase CyaC, using sixteen carbon-long (C16) acyls, or by the HlyC acyltransferase using fourteen carbon-long (C14) acyls. Cytolysin assays with the C16- or C14-acylated HlyA/CyaA chimeric toxin revealed that the RTX domain of CyaA can functionally replace the RTX domain of HlyA only if it is modified by C16-acyls on the Lys983 residue of CyaA. The C16-monoacylated HlyA/CyaA chimera was as pore-forming and cytolytic as native HlyA, whereas the C14-acylated chimera exhibited very low pore-forming activity. Hence, the capacity of the RTX domain of CyaA to support the insertion of the N-terminal pore-forming domain into the target cell membrane, and promote formation of toxin pores, strictly depends on the modification of the Lys983 residue by an acyl chain of adapted length.
Collapse
Affiliation(s)
- Anna Lepesheva
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic; Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Michaela Grobarcikova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic; Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Adriana Osickova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - David Jurnecka
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Sarka Knoblochova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Monika Cizkova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Radim Osicka
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Peter Sebo
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | - Jiri Masin
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
4
|
Thiriet-Rupert S, Josse J, Perez-Pascual D, Tasse J, Andre C, Abad L, Lebeaux D, Ghigo JM, Laurent F, Beloin C. Analysis of In-Patient Evolution of Escherichia coli Reveals Potential Links to Relapse of Bone and Joint Infections. J Infect Dis 2024; 229:1546-1556. [PMID: 38041851 DOI: 10.1093/infdis/jiad528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 11/03/2023] [Accepted: 11/29/2023] [Indexed: 12/04/2023] Open
Abstract
Bone and joint infections (BJIs) are difficult to treat and affect a growing number of patients, in which relapses are observed in 10-20% of case. These relapses, which call for prolonged antibiotic treatment and increase resistance emergence risk, may originate from ill-understood adaptation of the pathogen to the host. Here, we investigated 3 pairs of Escherichia coli strains from BJI cases and their relapses to unravel adaptations within patients. Whole-genome comparison presented evidence for positive selection and phenotypic characterization showed that biofilm formation remained unchanged, contrary to what is usually described in such cases. Although virulence was not modified, we identified the loss of 2 virulence factors contributing to immune system evasion in one of the studied strains. Other strategies, including global growth optimization and colicin production, likely allowed the strains to outcompete competitors. This work highlights the variety of strategies allowing in-patient adaptation in BJIs.
Collapse
Affiliation(s)
| | - Jérôme Josse
- Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Lyon, France
| | - David Perez-Pascual
- Genetics of Biofilms Laboratory, Institut Pasteur, Université de Paris-Cité, Paris, France
| | - Jason Tasse
- Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Lyon, France
| | - Camille Andre
- Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Lyon, France
| | - Lélia Abad
- Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Lyon, France
| | - David Lebeaux
- Genetics of Biofilms Laboratory, Institut Pasteur, Université de Paris-Cité, Paris, France
- Département de Maladies Infectieuses et Tropicales, AP-HP, Hôpital Saint-Louis, Lariboisière, Paris, France
- FHU PROTHEE (Prosthetic joint infections: innovative strategies to overcome a medico-surgical challenge) Group
| | - Jean-Marc Ghigo
- Genetics of Biofilms Laboratory, Institut Pasteur, Université de Paris-Cité, Paris, France
| | - Frédéric Laurent
- Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Lyon, France
| | - Christophe Beloin
- Genetics of Biofilms Laboratory, Institut Pasteur, Université de Paris-Cité, Paris, France
| |
Collapse
|
5
|
Munhoz DD, Richards AC, Santos FF, Mulvey MA, Piazza RMF. E. coli Common pili promote the fitness and virulence of a hybrid aEPEC/ExPEC strain within diverse host environments. Gut Microbes 2023; 15:2190308. [PMID: 36949030 PMCID: PMC10038029 DOI: 10.1080/19490976.2023.2190308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 03/07/2023] [Indexed: 03/24/2023] Open
Abstract
Pathogenic subsets of Escherichia coli include diarrheagenic (DEC) strains that cause disease within the gut and extraintestinal pathogenic E. coli (ExPEC) strains that are linked with urinary tract infections, bacteremia, and other infections outside of intestinal tract. Among DEC strains is an emergent pathotype known as atypical enteropathogenic E. coli (aEPEC), which can cause severe diarrhea. Recent sequencing efforts revealed that some E. coli strains possess genetic features that are characteristic of both DEC and ExPEC isolates. BA1250 is a newly reclassified hybrid strain with characteristics of aEPEC and ExPEC. This strain was isolated from a child with diarrhea, but its genetic features indicate that it might have the capacity to cause disease at extraintestinal sites. The spectrum of adhesins encoded by hybrid strains like BA1250 are expected to be especially important in facilitating colonization of diverse niches. E. coli common pilus (ECP) is an adhesin expressed by many E. coli pathogens, but how it impacts hybrid strains has not been ascertained. Here, using zebrafish larvae as surrogate hosts to model both gut colonization and extraintestinal infections, we found that ECP can act as a multi-niche colonization and virulence factor for BA1250. Furthermore, our results indicate that ECP-related changes in activation of envelope stress response pathways may alter the fitness of BA1250. Using an in silico approach, we also delineated the broader repertoire of adhesins that are encoded by BA1250, and provide evidence that the expression of at least a few of these varies in the absence of functional ECP.
Collapse
Affiliation(s)
| | - Amanda C. Richards
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake, UT, USA
| | - Fernanda F. Santos
- Laboratório Alerta, Departamento de Medicina, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Matthew A. Mulvey
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake, UT, USA
| | | |
Collapse
|
6
|
Hill JH, Massaquoi MS, Sweeney EG, Wall ES, Jahl P, Bell R, Kallio K, Derrick D, Murtaugh LC, Parthasarathy R, Remington SJ, Round JL, Guillemin K. BefA, a microbiota-secreted membrane disrupter, disseminates to the pancreas and increases β cell mass. Cell Metab 2022; 34:1779-1791.e9. [PMID: 36240759 PMCID: PMC9633563 DOI: 10.1016/j.cmet.2022.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/26/2022] [Accepted: 08/31/2022] [Indexed: 01/11/2023]
Abstract
Microbiome dysbiosis is a feature of diabetes, but how microbial products influence insulin production is poorly understood. We report the mechanism of BefA, a microbiome-derived protein that increases proliferation of insulin-producing β cells during development in gnotobiotic zebrafish and mice. BefA disseminates systemically by multiple anatomic routes to act directly on pancreatic islets. We detail BefA's atomic structure, containing a lipid-binding SYLF domain, and demonstrate that it permeabilizes synthetic liposomes and bacterial membranes. A BefA mutant impaired in membrane disruption fails to expand β cells, whereas the pore-forming host defense protein, Reg3, stimulates β cell proliferation. Our work demonstrates that membrane permeabilization by microbiome-derived and host defense proteins is necessary and sufficient for β cell expansion during pancreas development, potentially connecting microbiome composition with diabetes risk.
Collapse
Affiliation(s)
- Jennifer Hampton Hill
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA; Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT 84112, USA
| | | | | | - Elena S Wall
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Philip Jahl
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA; Department of Physics and Materials Science Institute, University of Oregon, Eugene, OR 97403, USA
| | - Rickesha Bell
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT 84112, USA
| | - Karen Kallio
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Daniel Derrick
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - L Charles Murtaugh
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Raghuveer Parthasarathy
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA; Department of Physics and Materials Science Institute, University of Oregon, Eugene, OR 97403, USA
| | - S James Remington
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - June L Round
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT 84112, USA
| | - Karen Guillemin
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA; Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, ON M5G 1Z8, Canada.
| |
Collapse
|
7
|
Sasaki H, Ueshiba H, Yanagisawa N, Itoh Y, Ishikawa H, Shigenaga A, Benga L, Ike F. Genomic and pathogenic characterization of RTX toxin producing Rodentibacter sp. that is closely related to Rodentibacter haemolyticus. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 102:105314. [PMID: 35675867 DOI: 10.1016/j.meegid.2022.105314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/26/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Rodentibacter spp. are opportunistic pathogens that are often isolated from the upper respiratory tracts of laboratory rodents. In particular, R. pneumotropicus and R. heylii require considerable caution in rodent colonies, as they cause lethal pneumonia in rodents. A new species, R. haemolyticus, has recently been classified in the genus, and a very closely related strain, Rodentibacter sp. strain JRC, has been isolated in Japan. This study focused on strain JRC by performing genomic and pathogenic analyses. Draft genome sequencing of strain JRC identified several genes coding for putative virulent proteins, including hemolysin and adhesin. Furthermore, we found a new RTX (repeats-in-structural toxin) toxin gene in the genome, which was predicted to produce a critical virulence factor (RTXIA) similar to Enterobacteriaceae. The concentrated culture supernatant containing RTX toxin (RTXIA) showed cytotoxicity toward RAW264.7 cells. Pre-incubation with anti-CD11a attenuated the cytolysis, suggesting that the concentrated culture supernatant containing RTXIA is cell surface LFA-1 mediated cytolysin. Experimental infection of strain JRC intranasally with 5 female BALB/c-Rag2-/- mice showed 60% lethality and was not significantly different from those of R. pneumotropicus ATCC 35149T using the log-rank test. Combined with our finding that RTXIA has an almost identical amino acid sequence (98% identity) to that of R. haemolyticus 1625/19T, these results strongly suggest that RTXIA-producing strain JRC (and related R. haemolyticus) is pathogenic to immunodeficient rodents, and both agents should be excluded in laboratory rodent colonies.
Collapse
Affiliation(s)
- Hiraku Sasaki
- Department of Health Science, Faculty of Health and Sports Science, Juntendo University, Inzai, Chiba, Japan.
| | - Hidehiro Ueshiba
- Department of Microbiology and Immunology, Tokyo Women's Medical University School of Medicine, Shinjuku, Tokyo, Japan
| | - Naoko Yanagisawa
- Department of Microbiology and Immunology, Tokyo Women's Medical University School of Medicine, Shinjuku, Tokyo, Japan
| | - Yuta Itoh
- Department of Health Science, Faculty of Health and Sports Science, Juntendo University, Inzai, Chiba, Japan
| | - Hiroki Ishikawa
- Department of Microbiology and Immunology, Showa University School of Medicine, Shinagawa, Tokyo, Japan
| | - Ayako Shigenaga
- Institute of Health and Sports Science & Medicine, Graduate School of Health and Sports Science, Juntendo University, Inzai, Chiba, Japan
| | - Laurentiu Benga
- Central Unit for Animal Research and Animal Welfare Affairs, University Hospital, Heinrich - Heine - University, Düsseldorf, Germany
| | - Fumio Ike
- Experimental Animal Division, RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| |
Collapse
|
8
|
Astley DJ, Spang L, Parnian F, Vollmerhausen T, Kilic H, Hora M, Gundogdu A, Katouli M. A comparative study of the clonal diversity and virulence characteristics of uropathogenic Escherichia coli isolated from Australian and Turkish (Turkey) children and adults with urinary tract infections. Germs 2022; 12:214-230. [PMID: 36504619 PMCID: PMC9719378 DOI: 10.18683/germs.2022.1324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 03/30/2022] [Accepted: 05/20/2022] [Indexed: 12/15/2022]
Abstract
Introduction The virulence-associated gene (VAG) repertoire and clonal organization of uropathogenic Escherichia coli (UPEC) strains is influenced by host demographic, geographic locale, and the setting of urinary tract infection (UTI). Nevertheless, a direct comparison of these features among Australian and Turkish UPEC remains unexplored. Accordingly, this study investigated the clonal composition and virulence characteristics of a collection of UPEC isolated from Australian and Turkish UTI patients. Methods A total of 715 UPEC strains isolated from Australian (n=361) and Turkish (n=354) children and adults with hospital (HA)- and community-acquired (CA)-UTIs were included in this study. Typing of the strains using RAPD-PCR and PhPlate fingerprinting grouped all strains into 25 clonal groups (CGs). CG representatives were phylogrouped and screened for the presence of 18 VAGs associated with extraintestinal pathogenic E. coli. Results Turkish UPEC strains were characterized by high clonal diversity and predominance of the phylogroup D, while few distinct clonal groups with phylogenetic group B2 backgrounds dominated among the Australian strains. Twelve identical CGs were shared between ≥1 patient group from either country. Australian strains, particularly those isolated from children with HA-UTI, showed higher virulence potential than their Turkish counterparts, carrying significantly more genes associated with adhesion, iron acquisition and capsule biosynthesis. Conclusions This study identified identical CGs of UPEC causing HA- and CA-UTIs among Australian and Turkish UTI patients. These CGs frequently carried VAGs associated with adhesion, iron acquisition, immune evasion, and toxin production, which may contribute to their ability to disseminate internationally and to cause UTI.
Collapse
Affiliation(s)
- Dylan John Astley
- BSc, School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore DC 4558, Queensland, Australia
| | - Labolina Spang
- BSc, School of Science, Technology and Engineering; University of the Sunshine Coast, Maroochydore DC 4558, Queensland, Australia
| | - Fatemeh Parnian
- BSc, School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore DC 4558, Queensland, Australia
| | - Tara Vollmerhausen
- PhD, School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore DC 4558, Queensland, Australia
| | - Huseyin Kilic
- PhD, Department of Microbiology and Clinical Microbiology, Faculty of Medicine, Erciyes University, Kayseri 38039, Turkey
| | - Mehmet Hora
- PhD, Genome and Stem Cell Center (GenKok), Erciyes University, Kayseri, Turkey
| | - Aycan Gundogdu
- PhD, Department of Microbiology and Clinical Microbiology, Faculty of Medicine, Erciyes University, Turkey and Genome and Stem Cell Center (GenKok), Erciyes University, Kayseri 38039, Turkey
| | - Mohammad Katouli
- PhD, School of Science, Technology and Engineering and Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore DC 4558, Queensland, Australia,Corresponding author: Mohammad Katouli,
| |
Collapse
|
9
|
Bacterial hitchhikers derive benefits from fungal housing. Curr Biol 2022; 32:1523-1533.e6. [PMID: 35235767 PMCID: PMC9009100 DOI: 10.1016/j.cub.2022.02.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 10/14/2021] [Accepted: 02/03/2022] [Indexed: 12/21/2022]
Abstract
Fungi and bacteria are ubiquitous constituents of all microbiomes, yet mechanisms of microbial persistence in polymicrobial communities remain obscure. Here, we examined the hypothesis that specialized fungal survival structures, chlamydospores, induced by bacterial lipopeptides serve as bacterial reservoirs. We find that symbiotic and pathogenic gram-negative bacteria from non-endosymbiotic taxa enter and propagate in chlamydospores. Internalized bacteria have higher fitness than planktonic bacteria when challenged with abiotic stress. Further, tri-cultures of Ralstonia solanacearum, Pseudomonas aeruginosa, and Aspergillus flavus reveal the unprecedented finding that chlamydospores are colonized by endofungal bacterial communities. Our work identifies a previously unknown ecological role of chlamydospores, provides an expanded view of microbial niches, and presents significant implications for the persistence of pathogenic and beneficial bacteria.
Collapse
|
10
|
Rawson A, Saxena V, Gao H, Hooks J, Xuei X, McGuire P, Hato T, Hains DS, Anderson RM, Schwaderer AL. A Pilot Single Cell Analysis of the Zebrafish Embryo Cellular Responses to Uropathogenic Escherichia coli Infection. Pathog Immun 2022; 7:1-18. [PMID: 35178490 PMCID: PMC8843076 DOI: 10.20411/pai.v7i1.479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/06/2021] [Indexed: 11/23/2022] Open
Abstract
Background: Uropathogenic Escherichia coli (UPEC) infections are common and when they disseminate can be of high morbidity.
Methods: We studied the effects of UPEC infection using single cell RNA sequencing (scRNAseq) in zebrafish. Bulk RNA sequencing has historically been used to evaluate gene expression patterns, but scRNAseq allows gene expression to be evaluated at the single cell level and is optimal for evaluating heterogeneity within cell types and rare cell types. Zebrafish cohorts were injected with either saline or UPEC,and scRNAseq and canonical pathway analyses were performed.
Results: Canonical pathway analysis of scRNAseq data provided key information regarding innate immune pathways in the cells determined to be thymus cells, ionocytes, macrophages/monocytes, and pronephros cells. Pathways activated in thymus cells included interleukin 6 (IL-6) signaling and production of reactive oxygen species. Fc receptor-mediated phagocytosis was a leading canonical pathway in the pronephros and macrophages. Genes that were downregulated in UPEC vs saline exposed embryos involved the cellular response to the Gram-negative endotoxin lipopolysaccharide (LPS) and included Forkhead Box O1a (Foxo1a), Tribbles Pseudokinase 3 (Trib3), Arginase 2 (Arg2) and Polo Like Kinase 3 (Plk3).
Conclusions: Because 4-day post fertilization zebrafish embryos only have innate immune systems, the scRNAseq provides insights into pathways and genes that cell types utilize in the bacterial response. Based on our analysis, we have identified genes and pathways that might serve as genetic targets for treatment and further investigation in UPEC infections at the single cell level.
Collapse
Affiliation(s)
- Ashley Rawson
- Indiana University School of Medicine, Department of Pediatrics, Division of Nephrology
| | - Vijay Saxena
- Indiana University School of Medicine, Department of Pediatrics, Division of Nephrology
| | - Hongyu Gao
- Indiana University School of Medicine, Department of Medical & Molecular Genetics
| | - Jenaya Hooks
- Indiana University School of Medicine, Department of Pediatrics, Division of Nephrology
| | - Xiaoling Xuei
- Indiana University School of Medicine, Department of Medical & Molecular Genetics
| | - Patrick McGuire
- Indiana University School of Medicine, Department of Medical & Molecular Genetics
| | - Takashi Hato
- Indiana University School of Medicine, Department of Medicine, Division of Nephrology
| | - David S. Hains
- Indiana University School of Medicine, Department of Pediatrics, Division of Nephrology
| | - Ryan M. Anderson
- University of Chicago, Section of Endocrinology, Diabetes and Metabolism
- CORRESPONDING AUTHOR Andrew Schwaderer, Indiana University School of Medicine, Riley Hospital for Children, 699 Riley Hospital Dr., RR230, Indianapolis, IN 46202; Phone: 317-274-2527;
| | - Andrew L. Schwaderer
- Indiana University School of Medicine, Department of Pediatrics, Division of Nephrology
- CORRESPONDING AUTHOR Ryan M Anderson, University of Chicago, Medicine-Endocrinology, Chicago, IL 60637;
| |
Collapse
|
11
|
Tran VLT, Hortle E, Britton WJ, Oehlers SH. Common anti-haemostatic medications increase the severity of systemic infection by uropathogenic Escherichia coli. Microbiol Res 2021; 254:126918. [PMID: 34798538 DOI: 10.1016/j.micres.2021.126918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/16/2021] [Accepted: 11/10/2021] [Indexed: 12/19/2022]
Abstract
Uropathogenic Escherichia coli (UPEC) causes urinary tract infections that can result in sepsis. The haemostatic system is protective in the pyelonephritis stage of ascending UPEC infection, but the role of the haemostatic system has not been investigated during sepsis. Here we utilize a zebrafish-UPEC systemic infection model to visualize infection-induced coagulation and examine the effects of commonly prescribed anti-haemostatic medications on the infection severity. Treatment of systemically infected zebrafish with warfarin, aspirin, or ticagrelor reduced host survival, while stabilization of clots with aminocaproic acid increased host survival. Anti-haemostatic drug treatment increased UPEC burden. Our findings provide evidence that commonly prescribed anti-haemostatic medications may worsen the outcome of severe UPEC infection.
Collapse
Affiliation(s)
- Vi L T Tran
- Tuberculosis Research Program at the Centenary Institute, The University of Sydney, Camperdown, NSW, Australia
| | - Elinor Hortle
- Tuberculosis Research Program at the Centenary Institute, The University of Sydney, Camperdown, NSW, Australia; The University of Sydney, Faculty of Medicine and Health & Marie Bashir Institute, Camperdown, NSW, Australia.
| | - Warwick J Britton
- Tuberculosis Research Program at the Centenary Institute, The University of Sydney, Camperdown, NSW, Australia; Department of Clinical Immunology, Royal Prince Alfred Hospital, Camperdown, NSW, 2050 Australia
| | - Stefan H Oehlers
- Tuberculosis Research Program at the Centenary Institute, The University of Sydney, Camperdown, NSW, Australia; The University of Sydney, Faculty of Medicine and Health & Marie Bashir Institute, Camperdown, NSW, Australia.
| |
Collapse
|
12
|
Kowalewski J, Paris T, Gonzalez C, Lelièvre E, Castaño Valencia L, Boutrois M, Augier C, Lutfalla G, Yatime L. Characterization of a member of the CEACAM protein family as a novel marker of proton pump-rich ionocytes on the zebrafish epidermis. PLoS One 2021; 16:e0254533. [PMID: 34252160 PMCID: PMC8274849 DOI: 10.1371/journal.pone.0254533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/29/2021] [Indexed: 01/04/2023] Open
Abstract
In humans, several members of the CEACAM receptor family have been shown to interact with intestinal pathogens in an inflammatory context. While CEACAMs have long been thought to be only present in mammals, recent studies have identified ceacam genes in other vertebrates, including teleosts. The function of these related genes remains however largely unknown. To gain insight into the function of CEACAM proteins in fish, we undertook the study of a putative member of the family, CEACAMz1, identified in Danio rerio. Sequence analysis of the ceacamz1 gene product predicted a GPI-anchored extracellular protein containing eleven immunoglobulin domains but revealed no evident orthology with human CEACAMs. Using a combination of RT-PCR analyses and in situ hybridization experiments, as well as a fluorescent reporter line, we showed that CEACAMz1 is first expressed in discrete cells on the ventral skin of zebrafish larvae and later on in the developing gills. This distribution remains constant until juvenile stage is reached, at which point CEACAMz1 is almost exclusively expressed in gills. We further observed that at late larval stages, CEACAMz1-expressing cells mostly localize on the afferent side of the branchial filaments and possibly in the inter-lamellar space. Using immunolabelling and 3D-reconstructions, we showed that CEACAMz1 is expressed in cells from the uppermost layer of skin epidermis. These cells are embedded within the keratinocytes pavement and we unambiguously identified them as proton-pump rich ionocytes (HR cells). As the expression of ceacamz1 is turned on concomitantly to that of other known markers of HR cells, we propose that ceacamz1 may serve as a novel marker of mature HR cells from the zebrafish epidermis.
Collapse
Affiliation(s)
- Julien Kowalewski
- Laboratory of Pathogen-Host Interactions (LPHI), UMR5235, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Théo Paris
- Laboratory of Pathogen-Host Interactions (LPHI), UMR5235, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Catherine Gonzalez
- Laboratory of Pathogen-Host Interactions (LPHI), UMR5235, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Etienne Lelièvre
- Laboratory of Pathogen-Host Interactions (LPHI), UMR5235, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Lina Castaño Valencia
- Laboratory of Pathogen-Host Interactions (LPHI), UMR5235, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Morgan Boutrois
- Laboratory of Pathogen-Host Interactions (LPHI), UMR5235, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Camille Augier
- Laboratory of Pathogen-Host Interactions (LPHI), UMR5235, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Georges Lutfalla
- Laboratory of Pathogen-Host Interactions (LPHI), UMR5235, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Laure Yatime
- Laboratory of Pathogen-Host Interactions (LPHI), UMR5235, University of Montpellier, CNRS, INSERM, Montpellier, France
| |
Collapse
|
13
|
Banerji R, Karkee A, Kanojiya P, Saroj SD. Pore-forming toxins of foodborne pathogens. Compr Rev Food Sci Food Saf 2021; 20:2265-2285. [PMID: 33773026 DOI: 10.1111/1541-4337.12737] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 02/01/2021] [Accepted: 02/08/2021] [Indexed: 01/04/2023]
Abstract
Pore-forming toxins (PFTs) are water-soluble molecules that have been identified as the most crucial virulence factors during bacterial pathogenesis. PFTs disrupt the host cell membrane to internalize or to deliver other bacterial or virulence factors for establishing infections. Disruption of the host cell membrane by PFTs can lead to uncontrollable exchanges between the extracellular and the intracellular matrix, thereby disturbing the cellular homeostasis. Recent studies have provided insights into the molecular mechanism of PFTs during pathogenesis. Evidence also suggests the activation of several signal transduction pathways in the host cell on recognition of PFTs. Additionally, numerous distinctive host defense mechanisms as well as membrane repair mechanisms have been reported; however, studies reveal that PFTs aid in host immune evasion of the bacteria through numerous pathways. PFTs have been primarily associated with foodborne pathogens. Infection and death from diseases by consuming contaminated food are a constant threat to public health worldwide, affecting socioeconomic development. Moreover, the emergence of new foodborne pathogens has led to the rise of bacterial antimicrobial resistance affecting the population. Hence, this review focuses on the role of PFTs secreted by foodborne pathogens. The review highlights the molecular mechanism of foodborne bacterial PFTs, assisting bacterial survival from the host immune responses and understanding the downstream mechanism in the activation of various signaling pathways in the host upon PFT recognition. PFT research is a remarkable and an important field for exploring novel and broad applications of antimicrobial compounds as therapeutics.
Collapse
Affiliation(s)
- Rajashri Banerji
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| | - Astha Karkee
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| | - Poonam Kanojiya
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| | - Sunil D Saroj
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| |
Collapse
|
14
|
Verma V, Kumar P, Gupta S, Yadav S, Dhanda RS, Thorlacius H, Yadav M. α-Hemolysin of uropathogenic E. coli regulates NLRP3 inflammasome activation and mitochondrial dysfunction in THP-1 macrophages. Sci Rep 2020; 10:12653. [PMID: 32724079 PMCID: PMC7387347 DOI: 10.1038/s41598-020-69501-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 07/07/2020] [Indexed: 12/16/2022] Open
Abstract
Hemolysin expressing UPEC strains have been associated with severe advanced kidney pathologies, such as cystitis and pyelonephritis, which are associated with an inflammatory response. Macrophages play an important role in regulating an inflammatory response during a urinary tract infection. We have studied the role of purified recombinant α-hemolysin in inducing inflammatory responses and cell death in macrophages. Acylation at lysine residues through HlyC is known to activate proHlyA into a fully functional pore-forming toxin, HlyA. It was observed that active α-hemolysin (HlyA) induced cleavage of caspase-1 leading to the maturation of IL-1β, while inactive α-hemolysin (proHlyA) failed to do so in THP-1 derived macrophages. HlyA also promotes deubiquitination, oligomerization, and activation of the NLRP3 inflammasome, which was found to be dependent on potassium efflux. We have also observed the co-localization of NLRP3 within mitochondria during HlyA stimulations. Moreover, blocking of potassium efflux improved the mitochondrial health in addition to a decreased inflammatory response. Our study demonstrates that HlyA stimulation caused perturbance in potassium homeostasis, which led to the mitochondrial dysfunction followed by an acute inflammatory response, resulting in cell death. However, the repletion of intracellular potassium stores could avoid HlyA induced macrophage cell death. The findings of this study will help to understand the mechanism of α-hemolysin induced inflammatory response and cell death.
Collapse
Affiliation(s)
- Vivek Verma
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi (North Campus), Delhi, 110007, India
| | - Parveen Kumar
- Department of Urology, University of Alabama At Birmingham, Hugh Kaul Genetics Building, Birmingham, AL, USA
| | - Surbhi Gupta
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi (North Campus), Delhi, 110007, India
| | - Sonal Yadav
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi (North Campus), Delhi, 110007, India
| | - Rakesh Singh Dhanda
- Stem Cell Laboratory, Longboat Explorers AB, SMiLE Incubator, Scheelevägen 2, Lund, Sweden
| | - Henrik Thorlacius
- Department of Clinical Sciences, Section of Surgery, Malmö, Skåne University Hospital, Lund University, Malmö, Sweden
| | - Manisha Yadav
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi (North Campus), Delhi, 110007, India.
- Department of Clinical Sciences, Section of Surgery, Malmö, Skåne University Hospital, Lund University, Malmö, Sweden.
| |
Collapse
|
15
|
de Sousa Melo B, Fernandes BHV, Lopes-Ferreira MVA, Henrique C, Piazza RMF, Luz D. Zebrafish embryo sensitivity test as in vivo platform to anti-Shiga toxin compound screening. Braz J Microbiol 2020; 51:1021-1027. [PMID: 32449119 DOI: 10.1007/s42770-020-00305-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/18/2020] [Indexed: 10/24/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) pathotype secretes two types of AB5 cytotoxins (Stx1 and Stx2), responsible for complications such as hemorrhagic colitis (HC) and hemolytic uremic syndrome (HUS) in infected patients, which could lead to sequels and death. Currently, there is no effective treatment against the cytotoxic effect of these toxins. However, in order to approve any therapy molecule, an animal experiment is required in order to evaluate the efficacy and safety of therapeutic approaches. The use of alternative small host models is growing among human infectious disease studies, particularly the vertebrate zebrafish model, since relevant results have been described for pathogen-host interaction. In this sense, the present work aimed to analyze the toxic effect of Shiga toxins in zebrafish embryo model in order to standardize this method in the future to be used as a fast, simple, and efficient methodology for the screening of therapeutic molecules. Herein, we demonstrated that the embryos were sensitive in a dose-dependent manner to both Stx toxins, with LD50 of 22 μg/mL for Stx1 and 33 μg/mL for Stx2, and the use of anti-Stx polyclonal antibody abolished the toxic effect. Therefore, this methodology can be a rapid alternative method for selecting promising compounds against Stx toxins, such as recombinant antibodies.
Collapse
Affiliation(s)
| | - Bianca Helena Ventura Fernandes
- Laboratório de Controle Genético e Sanitário Animal, Unidade Zebrafish, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | | | - Camila Henrique
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, Brazil
| | | | - Daniela Luz
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, Brazil. .,Laboratório de Monoclonais, Instituto de Ciência e Tecnologia, Universidade Federal de São Paulo, Rua Talim, 330, São José dos Campos, SP, 12231-280, Brazil.
| |
Collapse
|
16
|
Advances in Understanding the Human Urinary Microbiome and Its Potential Role in Urinary Tract Infection. mBio 2020; 11:mBio.00218-20. [PMID: 32345639 PMCID: PMC7188990 DOI: 10.1128/mbio.00218-20] [Citation(s) in RCA: 165] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Recent advances in the analysis of microbial communities colonizing the human body have identified a resident microbial community in the human urinary tract (UT). Compared to many other microbial niches, the human UT harbors a relatively low biomass. Studies have identified many genera and species that may constitute a core urinary microbiome. However, the contribution of the UT microbiome to urinary tract infection (UTI) and recurrent UTI (rUTI) pathobiology is not yet clearly understood. Evidence suggests that commensal species within the UT and urogenital tract (UGT) microbiomes, such as Lactobacillus crispatus, may act to protect against colonization with uropathogens. However, the mechanisms and fundamental biology of the urinary microbiome-host relationship are not understood. The ability to measure and characterize the urinary microbiome has been enabled through the development of next-generation sequencing and bioinformatic platforms that allow for the unbiased detection of resident microbial DNA. Translating technological advances into clinical insight will require further study of the microbial and genomic ecology of the urinary microbiome in both health and disease. Future diagnostic, prognostic, and therapeutic options for the management of UTI may soon incorporate efforts to measure, restore, and/or preserve the native, healthy ecology of the urinary microbiomes.
Collapse
|
17
|
An in vivo brain-bacteria interface: the developing brain as a key regulator of innate immunity. NPJ Regen Med 2020; 5:2. [PMID: 32047653 PMCID: PMC7000827 DOI: 10.1038/s41536-020-0087-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 12/20/2019] [Indexed: 01/11/2023] Open
Abstract
Infections have numerous effects on the brain. However, possible roles of the brain in protecting against infection, and the developmental origin and role of brain signaling in immune response, are largely unknown. We exploited a unique Xenopus embryonic model to reveal control of innate immune response to pathogenic E. coli by the developing brain. Using survival assays, morphological analysis of innate immune cells and apoptosis, and RNA-seq, we analyzed combinations of infection, brain removal, and tail-regenerative response. Without a brain, survival of embryos injected with bacteria decreased significantly. The protective effect of the developing brain was mediated by decrease of the infection-induced damage and of apoptosis, and increase of macrophage migration, as well as suppression of the transcriptional consequences of the infection, all of which decrease susceptibility to pathogen. Functional and pharmacological assays implicated dopamine signaling in the bacteria–brain–immune crosstalk. Our data establish a model that reveals the very early brain to be a central player in innate immunity, identify the developmental origins of brain–immune interactions, and suggest several targets for immune therapies.
Collapse
|
18
|
Patterns of partnership: surveillance and mimicry in host-microbiota mutualisms. Curr Opin Microbiol 2020; 54:87-94. [PMID: 32062152 DOI: 10.1016/j.mib.2020.01.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 01/14/2020] [Indexed: 02/07/2023]
Abstract
The repertoire of microbial cues monitored by animal and plant tissues encompasses not just molecules but also microbial activities. These include typical pathogen strategies of injuring membranes, degrading cellular material, and scavenging resources. These activities, however, are not exclusive to pathogens. Instead, they characterize the competitive strategies of microbes living in multispecies communities, like those typically found colonizing host tissues. Similar activities are also deployed by host tissues to keep microbes in check. We propose that host surveillance and mimicry of Microbial-Associated Competitive Activities (MACAs), derived from an evolutionary history of living in mixed microbial communities, has shaped contemporary animal and plant tissue programs of defense, repair, metabolism, and development.
Collapse
|
19
|
Wiles TJ, Guillemin K. The Other Side of the Coin: What Beneficial Microbes Can Teach Us about Pathogenic Potential. J Mol Biol 2019; 431:2946-2956. [PMID: 31078557 DOI: 10.1016/j.jmb.2019.05.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/19/2019] [Accepted: 05/01/2019] [Indexed: 02/07/2023]
Abstract
Koch's postulates and molecular Koch's postulates have made an indelible mark on how we study and classify microbes, particularly pathogens. However, rigid adherence to these historic postulates constrains our view of not only microbial pathogenesis but also host-microbe relationships in general. Collectively, the postulates imply that a "microbial pathogen" is a clearly identifiable organism with the exclusive capacity to elicit disease through an arsenal of pathogen-specific "virulence factors." This narrow definition has been repeatedly contradicted. Advances in DNA sequencing technologies and new experimental systems have revealed that the outcomes of host-microbe interactions are highly contextual and dynamic, especially those involving resident microbiota and variable aspects of host biology. Clarifying what differentiates pathogenic from non-pathogenic microbes, including their paradoxical ability to masquerade as one another, is critical to developing targeted diagnostics and treatments for infectious disease. Such endeavors will also inform the design of therapeutic strategies based on microbiome engineering by providing insights into how manipulating entire host-microbe systems may directly or indirectly alter the pathogenic potential of microbial communities. With these goals in mind, we discuss the need to develop experimental models that better capture the contexts that determine the nature of host-microbe relationships. To demonstrate the potential of one such model-the zebrafish and its resident microbiota-we describe recent work that has revealed the thin line between pathogenic and mutualistic relationships, how the intestine physically shapes bacterial populations and inflammation, and the ability of microbial transmission to override the host's innate immune system.
Collapse
Affiliation(s)
- Travis J Wiles
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA.
| | - Karen Guillemin
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA; Humans and the Microbiome Program, CIFAR, Toronto, Ontario, Canada.
| |
Collapse
|
20
|
Therkildsen JR, Christensen MG, Tingskov SJ, Wehmöller J, Nørregaard R, Praetorius HA. Lack of P2X 7 Receptors Protects against Renal Fibrosis after Pyelonephritis with α-Hemolysin-Producing Escherichia coli. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:1201-1211. [PMID: 30926332 DOI: 10.1016/j.ajpath.2019.02.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 02/22/2019] [Accepted: 02/26/2019] [Indexed: 01/07/2023]
Abstract
Severe urinary tract infections are commonly caused by sub-strains of Escherichia coli secreting the pore-forming virulence factor α-hemolysin (HlyA). Repeated or severe cases of pyelonephritis can cause renal scarring that subsequently can lead to progressive failure. We have previously demonstrated that HlyA releases cellular ATP directly through its membrane pore and that acute HlyA-induced cell damage is completely prevented by blocking ATP signaling. Local ATP signaling and P2X7 receptor activation play a key role in the development of tissue fibrosis. This study investigated the effect of P2X7 receptors on infection-induced renal scarring in a murine model of pyelonephritis. Pyelonephritis was induced by injecting 100 million HlyA-producing, uropathogenic E. coli into the urinary bladder of BALB/cJ mice. A similar degree of pyelonephritis and mortality was confirmed at day 5 after infection in P2X7+/+ and P2X7-/- mice. Fibrosis was first observed 2 weeks after infection, and the data clearly demonstrated that P2X7-/- mice and mice exposed to the P2X7 antagonist, brillian blue G, show markedly less renal fibrosis 14 days after infection compared with controls (P < 0.001). Immunohistochemistry revealed comparable early neutrophil infiltration in the renal cortex from P2X7+/+ and P2X7-/- mice. Interestingly, lack of P2X7 receptors resulted in diminished macrophage infiltration and reduced neutrophil clearance in the cortex of P2X7-/- mice. Hence, this study suggests the P2X7 receptor to be an appealing antifibrotic target after renal infections.
Collapse
Affiliation(s)
| | | | - Stine J Tingskov
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Julia Wehmöller
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Rikke Nørregaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
21
|
Russell CW, Fleming BA, Jost CA, Tran A, Stenquist AT, Wambaugh MA, Bronner MP, Mulvey MA. Context-Dependent Requirements for FimH and Other Canonical Virulence Factors in Gut Colonization by Extraintestinal Pathogenic Escherichia coli. Infect Immun 2018; 86:e00746-17. [PMID: 29311232 PMCID: PMC5820936 DOI: 10.1128/iai.00746-17] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 12/17/2017] [Indexed: 12/19/2022] Open
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC) acts as a commensal within the mammalian gut but can induce pathology upon dissemination to other host environments such as the urinary tract and bloodstream. ExPEC genomes are likely shaped by evolutionary forces encountered within the gut, where the bacteria spend much of their time, provoking the question of how their extraintestinal virulence traits arose. The principle of coincidental evolution, in which a gene that evolved in one niche happens to be advantageous in another, has been used to argue that ExPEC virulence factors originated in response to selective pressures within the gut ecosystem. As a test of this hypothesis, the fitness of ExPEC mutants lacking canonical virulence factors was assessed within the intact murine gut in the absence of antibiotic treatment. We found that most of the tested factors, including cytotoxic necrotizing factor type 1 (CNF1), Usp, colibactin, flagella, and plasmid pUTI89, were dispensable for gut colonization. The deletion of genes encoding the adhesin PapG or the toxin HlyA had transient effects but did not interfere with longer-term persistence. In contrast, a mutant missing the type 1 pilus-associated adhesin FimH displayed somewhat reduced persistence within the gut. However, this phenotype varied dependent on the presence of specific competing strains and was partially attributable to aberrant flagellin expression in the absence of fimH These data indicate that FimH and other key ExPEC-associated factors are not strictly required for gut colonization, suggesting that the development of extraintestinal virulence traits is not driven solely by selective pressures within the gut.
Collapse
Affiliation(s)
- Colin W Russell
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, Utah, USA
| | - Brittany A Fleming
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, Utah, USA
| | - Courtney A Jost
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, Utah, USA
| | - Alexander Tran
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, Utah, USA
| | - Alan T Stenquist
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, Utah, USA
| | - Morgan A Wambaugh
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, Utah, USA
| | - Mary P Bronner
- Department of Pathology, ARUP Laboratories, University of Utah, Salt Lake City, Utah, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Matthew A Mulvey
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, Utah, USA
| |
Collapse
|
22
|
Wambaugh MA, Shakya VPS, Lewis AJ, Mulvey MA, Brown JCS. High-throughput identification and rational design of synergistic small-molecule pairs for combating and bypassing antibiotic resistance. PLoS Biol 2017; 15:e2001644. [PMID: 28632788 PMCID: PMC5478098 DOI: 10.1371/journal.pbio.2001644] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 05/17/2017] [Indexed: 02/06/2023] Open
Abstract
Antibiotic-resistant infections kill approximately 23,000 people and cost $20,000,000,000 each year in the United States alone despite the widespread use of small-molecule antimicrobial combination therapy. Antibiotic combinations typically have an additive effect: the efficacy of the combination matches the sum of the efficacies of each antibiotic when used alone. Small molecules can also act synergistically when the efficacy of the combination is greater than the additive efficacy. However, synergistic combinations are rare and have been historically difficult to identify. High-throughput identification of synergistic pairs is limited by the scale of potential combinations: a modest collection of 1,000 small molecules involves 1 million pairwise combinations. Here, we describe a high-throughput method for rapid identification of synergistic small-molecule pairs, the overlap2 method (O2M). O2M extracts patterns from chemical-genetic datasets, which are created when a collection of mutants is grown in the presence of hundreds of different small molecules, producing a precise set of phenotypes induced by each small molecule across the mutant set. The identification of mutants that show the same phenotype when treated with known synergistic molecules allows us to pinpoint additional molecule combinations that also act synergistically. As a proof of concept, we focus on combinations with the antibiotics trimethoprim and sulfamethizole, which had been standard treatment against urinary tract infections until widespread resistance decreased efficacy. Using O2M, we screened a library of 2,000 small molecules and identified several that synergize with the antibiotic trimethoprim and/or sulfamethizole. The most potent of these synergistic interactions is with the antiviral drug azidothymidine (AZT). We then demonstrate that understanding the molecular mechanism underlying small-molecule synergistic interactions allows the rational design of additional combinations that bypass drug resistance. Trimethoprim and sulfamethizole are both folate biosynthesis inhibitors. We find that this activity disrupts nucleotide homeostasis, which blocks DNA replication in the presence of AZT. Building on these data, we show that other small molecules that disrupt nucleotide homeostasis through other mechanisms (hydroxyurea and floxuridine) also act synergistically with AZT. These novel combinations inhibit the growth and virulence of trimethoprim-resistant clinical Escherichia coli and Klebsiella pneumoniae isolates, suggesting that they may be able to be rapidly advanced into clinical use. In sum, we present a generalizable method to screen for novel synergistic combinations, to identify particular mechanisms resulting in synergy, and to use the mechanistic knowledge to rationally design new combinations that bypass drug resistance.
Collapse
MESH Headings
- Animals
- Anti-Bacterial Agents/chemistry
- Anti-Bacterial Agents/pharmacology
- Anti-Bacterial Agents/therapeutic use
- Anti-Infective Agents, Urinary/chemistry
- Anti-Infective Agents, Urinary/pharmacology
- Anti-Infective Agents, Urinary/therapeutic use
- Bacterial Proteins/antagonists & inhibitors
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Biological Assay
- Computational Biology
- Drug Design
- Drug Resistance, Multiple, Bacterial
- Drug Synergism
- Drug Therapy, Combination
- Embryo, Nonmammalian/drug effects
- Embryo, Nonmammalian/metabolism
- Embryo, Nonmammalian/microbiology
- Escherichia coli/drug effects
- Escherichia coli/growth & development
- Escherichia coli/metabolism
- Escherichia coli Infections/drug therapy
- Escherichia coli Infections/metabolism
- Escherichia coli Infections/microbiology
- Folic Acid Antagonists/chemistry
- Folic Acid Antagonists/pharmacology
- Folic Acid Antagonists/therapeutic use
- High-Throughput Screening Assays
- Klebsiella Infections/drug therapy
- Klebsiella Infections/metabolism
- Klebsiella Infections/microbiology
- Klebsiella pneumoniae/drug effects
- Klebsiella pneumoniae/growth & development
- Klebsiella pneumoniae/metabolism
- Microbial Sensitivity Tests
- Mutation
- Mutation Rate
- Pattern Recognition, Automated
- Reverse Transcriptase Inhibitors/chemistry
- Reverse Transcriptase Inhibitors/pharmacology
- Reverse Transcriptase Inhibitors/therapeutic use
- Small Molecule Libraries
- Sulfamethizole/agonists
- Sulfamethizole/chemistry
- Sulfamethizole/pharmacology
- Sulfamethizole/therapeutic use
- Trimethoprim/agonists
- Trimethoprim/chemistry
- Trimethoprim/pharmacology
- Trimethoprim/therapeutic use
- Zebrafish/embryology
Collapse
Affiliation(s)
- Morgan A. Wambaugh
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Viplendra P. S. Shakya
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Adam J. Lewis
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Matthew A. Mulvey
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Jessica C. S. Brown
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| |
Collapse
|
23
|
Paré JF, Martyniuk CJ, Levin M. Bioelectric regulation of innate immune system function in regenerating and intact Xenopus laevis. NPJ Regen Med 2017; 2:15. [PMID: 29302351 PMCID: PMC5677984 DOI: 10.1038/s41536-017-0019-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/27/2017] [Accepted: 04/02/2017] [Indexed: 02/07/2023] Open
Abstract
Two key inputs that regulate regeneration are the function of the immune system, and spatial gradients of transmembrane potential (Vmem). Endogenous bioelectric signaling in somatic tissues during regenerative patterning is beginning to be understood, but its role in the context of immune response has never been investigated. Here, we show that Vmem levels modulate innate immunity activity in Xenopus laevis embryos. We developed an assay in which X. laevis embryos are infected with a uropathogenic microorganism, in the presence or absence of reagents that modify Vmem, prior to the ontogenesis of the adaptive immune system. General depolarization of the organism's Vmem by pharmacological or molecular genetic (ion channel misexpression) methods increased resistance to infection, while hyperpolarization made the embryos more susceptible to death by infection. Hyperpolarized specimens harbored a higher load of infectious microorganisms when compared to controls. We identified two mechanisms by which Vmem mediates immune function: serotonergic signaling involving melanocytes and an increase in the number of primitive myeloid cells. Bioinformatics analysis of genes whose transcription is altered by depolarization revealed a number of immune system targets consistent with mammalian data. Remarkably, amputation of the tail bud potentiates systemic resistance to infection by increasing the number of peripheral myeloid cells, revealing an interplay of regenerative response, innate immunity, and bioelectric regulation. Our study identifies bioelectricity as a new mechanism by which innate immune response can be regulated in the context of infection or regeneration. Vmem modulation using drugs already approved for human use could be exploited to improve resistance to infections in clinical settings.
Collapse
Affiliation(s)
- Jean-François Paré
- Biology Department, and Allen Discovery Center at Tufts, Tufts University, Medford, MA USA
| | - Christopher J. Martyniuk
- Center for Environmental and Human Toxicology and Department of Physiological Sciences, University of Florida Genetics Institute, College of Veterinary Medicine, University of Florida, Gainesville, FL USA
| | - Michael Levin
- Biology Department, and Allen Discovery Center at Tufts, Tufts University, Medford, MA USA
| |
Collapse
|
24
|
Kjelstrup CK, Barber AE, Norton JP, Mulvey MA, L'Abée-Lund TM. Escherichia coli O78 isolated from septicemic lambs shows high pathogenicity in a zebrafish model. Vet Res 2017; 48:3. [PMID: 28122589 PMCID: PMC5264452 DOI: 10.1186/s13567-016-0407-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 12/07/2016] [Indexed: 12/03/2022] Open
Abstract
The pathogenicity of Escherichia coli O78 strain K46, originally isolated from an outbreak of septicemia in neonatal lambs, was investigated in zebrafish embryo and murine models of infection. Its biofilm potential, cellulose production, and the expression of type 1 pili and curli fimbriae were measured by in vitro assays. The strain was highly pathogenic in the zebrafish embryo model of infection, where it killed all embryos within 24 h post inoculation (hpi) at doses as low as 1000 colony forming units. Zebrafish embryos inoculated with similar doses of commensal E. coli strains showed no signs of disease, and cleared the bacteria within 24 h. E. coli K46 colonized the murine gut at the same level as the uropathogenic E. coli (UPEC) reference strain CFT073 in CBA/J mice after oral inoculation, but infected the murine bladder significantly less than CFT073 after transurethral inoculation. Type 1 pili were clearly expressed by E. coli K46, while curli fimbriae and cellulose production were weakly expressed. The ability to produce biofilm varied in different growth media, but overall E. coli K46 was a poorer biofilm producer compared to the reference strain E. coli UTI89. In conclusion, the zebrafish lethality model provides further evidence that E. coli K46 is highly pathogenic and might be useful in future studies to identify bacterial virulence factors.
Collapse
Affiliation(s)
- Cecilie K Kjelstrup
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, P.O. Box 8146 Dep, 0033, Oslo, Norway
| | - Amelia E Barber
- Division of Microbiology and Immunology, Pathology Department, University of Utah, Salt Lake City, UT, USA
| | - J Paul Norton
- Division of Microbiology and Immunology, Pathology Department, University of Utah, Salt Lake City, UT, USA
| | - Matthew A Mulvey
- Division of Microbiology and Immunology, Pathology Department, University of Utah, Salt Lake City, UT, USA
| | - Trine M L'Abée-Lund
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, P.O. Box 8146 Dep, 0033, Oslo, Norway.
| |
Collapse
|
25
|
Sullivan C, Matty MA, Jurczyszak D, Gabor KA, Millard PJ, Tobin DM, Kim CH. Infectious disease models in zebrafish. Methods Cell Biol 2016; 138:101-136. [PMID: 28129840 DOI: 10.1016/bs.mcb.2016.10.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In recent years, the zebrafish (Danio rerio) has developed as an important alternative to mammalian models for the study of hostpathogen interactions. Because they lack a functional adaptive immune response during the first 4-6weeks of development, zebrafish rely upon innate immune responses to protect against injuries and infections. During this early period of development, it is possible to isolate and study mechanisms of infection and inflammation arising from the innate immune response without the complications presented by the adaptive immune response. Zebrafish possess several inherent characteristics that make them an attractive option to study hostpathogen interactions, including extensive sequence and functional conservation with the human genome, optical clarity in larvae that facilitates the high-resolution visualization of host cell-microbe interactions, a fully sequenced and annotated genome, robust forward and reverse genetic tools and techniques (e.g., CRISPR-Cas9 and TALENs), and amenability to chemical studies and screens. Here, we describe methods for studying hostpathogen interactions both through systemic infections and through localized infections that allow analysis of host cell response, migration patterns, and behavior. Each of the methods described can be modified for use in downstream applications that include ecotoxicant studies and chemical screens.
Collapse
Affiliation(s)
- C Sullivan
- University of Maine, Orono, ME, United States
| | - M A Matty
- Duke University School of Medicine, Durham, NC, United States
| | | | - K A Gabor
- National Institute of Environmental Health Sciences, Durham, NC, United States
| | - P J Millard
- University of Maine, Orono, ME, United States
| | - D M Tobin
- Duke University School of Medicine, Durham, NC, United States
| | - C H Kim
- University of Maine, Orono, ME, United States
| |
Collapse
|
26
|
Jim KK, Engelen-Lee J, van der Sar AM, Bitter W, Brouwer MC, van der Ende A, Veening JW, van de Beek D, Vandenbroucke-Grauls CMJE. Infection of zebrafish embryos with live fluorescent Streptococcus pneumoniae as a real-time pneumococcal meningitis model. J Neuroinflammation 2016; 13:188. [PMID: 27542968 PMCID: PMC4992281 DOI: 10.1186/s12974-016-0655-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 07/08/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Streptococcus pneumoniae is one of the most important causes of bacterial meningitis, an infection where unfavourable outcome is driven by bacterial and host-derived toxins. In this study, we developed and characterized a pneumococcal meningitis model in zebrafish embryos that allows for real-time investigation of early host-microbe interaction. METHODS Zebrafish embryos were infected in the caudal vein or hindbrain ventricle with green fluorescent wild-type S. pneumoniae D39 or a pneumolysin-deficient mutant. The kdrl:mCherry transgenic zebrafish line was used to visualize the blood vessels, whereas phagocytic cells were visualized by staining with far red anti-L-plastin or in mpx:GFP/mpeg1:mCherry zebrafish, that have green fluorescent neutrophils and red fluorescent macrophages. Imaging was performed by fluorescence confocal and time-lapse microscopy. RESULTS After infection by caudal vein, we saw focal clogging of the pneumococci in the blood vessels and migration of bacteria through the blood-brain barrier into the subarachnoid space and brain tissue. Infection with pneumolysin-deficient S. pneumoniae in the hindbrain ventricle showed attenuated growth and migration through the brain as compared to the wild-type strain. Time-lapse and confocal imaging revealed that the initial innate immune response to S. pneumoniae in the subarachnoid space mainly consisted of neutrophils and that pneumolysin-mediated cytolytic activity caused a marked reduction of phagocytes. CONCLUSIONS This new meningitis model permits detailed analysis and visualization of host-microbe interaction in pneumococcal meningitis in real time and is a very promising tool to further our insights in the pathogenesis of pneumococcal meningitis.
Collapse
Affiliation(s)
- Kin Ki Jim
- Department of Medical Microbiology and Infection Control, VU University Medical Center, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
- Department of Neurology, Center of Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - JooYeon Engelen-Lee
- Department of Neurology, Center of Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Astrid M van der Sar
- Department of Medical Microbiology and Infection Control, VU University Medical Center, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Wilbert Bitter
- Department of Medical Microbiology and Infection Control, VU University Medical Center, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Matthijs C Brouwer
- Department of Neurology, Center of Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Arie van der Ende
- Department of Medical Microbiology, Center of Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- The Netherlands Reference Laboratory for Bacterial Meningitis, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Jan-Willem Veening
- Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, Centre for Synthetic Biology, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Diederik van de Beek
- Department of Neurology, Center of Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Christina M J E Vandenbroucke-Grauls
- Department of Medical Microbiology and Infection Control, VU University Medical Center, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands.
- Department of Medical Microbiology and Infection Control, VU University Medical Center, P.O. Box 7057, 1007 MB, Amsterdam, The Netherlands.
| |
Collapse
|
27
|
Strengths and Limitations of Model Systems for the Study of Urinary Tract Infections and Related Pathologies. Microbiol Mol Biol Rev 2016; 80:351-67. [PMID: 26935136 DOI: 10.1128/mmbr.00067-15] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Urinary tract infections (UTIs) are some of the most common bacterial infections worldwide and are a source of substantial morbidity among otherwise healthy women. UTIs can be caused by a variety of microbes, but the predominant etiologic agent of these infections is uropathogenic Escherichia coli (UPEC). An especially troubling feature of UPEC-associated UTIs is their high rate of recurrence. This problem is compounded by the drastic increase in the global incidence of antibiotic-resistant UPEC strains over the past 15 years. The need for more-effective treatments for UTIs is driving research aimed at bettering our understanding of the virulence mechanisms and host-pathogen interactions that occur during the course of these infections. Surrogate models of human infection, including cell culture systems and the use of murine, porcine, avian, teleost (zebrafish), and nematode hosts, are being employed to define host and bacterial factors that modulate the pathogenesis of UTIs. These model systems are revealing how UPEC strains can avoid or overcome host defenses and acquire scarce nutrients while also providing insight into the virulence mechanisms used by UPEC within compromised individuals, such as catheterized patients. Here, we summarize our current understanding of UTI pathogenesis while also giving an overview of the model systems used to study the initiation, persistence, and recurrence of UTIs and life-threatening sequelae like urosepsis. Although we focus on UPEC, the experimental systems described here can also provide valuable insight into the disease processes associated with other bacterial pathogens both within the urinary tract and elsewhere within the host.
Collapse
|
28
|
Barber AE, Fleming BA, Mulvey MA. Similarly Lethal Strains of Extraintestinal Pathogenic Escherichia coli Trigger Markedly Diverse Host Responses in a Zebrafish Model of Sepsis. mSphere 2016; 1:e00062-16. [PMID: 27303721 PMCID: PMC4894679 DOI: 10.1128/msphere.00062-16] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 03/29/2016] [Indexed: 02/06/2023] Open
Abstract
In individuals with sepsis, the infecting microbes are commonly viewed as generic inducers of inflammation while the host background is considered the primary variable affecting disease progression and outcome. To study the effects of bacterial strain differences on the maladaptive immune responses that are induced during sepsis, we employed a novel zebrafish embryo infection model using extraintestinal pathogenic Escherichia coli (ExPEC) isolates. These genetically diverse pathogens are a leading cause of sepsis and are becoming increasingly dangerous because of the rise of multidrug-resistant strains. Zebrafish infected with ExPEC isolates exhibit many of the pathophysiological features seen in septic human patients, including dysregulated inflammatory responses (cytokine storms), tachycardia, endothelial leakage, and progressive edema. However, only a limited subset of ExPEC isolates can trigger a sepsis-like state and death of the host when introduced into the bloodstream. Mirroring the situation in human patients, antibiotic therapy reduced ExPEC titers and improved host survival rates but was only effective within limited time frames that varied, depending on the infecting pathogen. Intriguingly, we find that phylogenetically distant but similarly lethal ExPEC isolates can stimulate markedly different host transcriptional responses, including disparate levels of inflammatory mediators. These differences correlate with the amounts of bacterial flagellin expression during infection, as well as differential activation of Toll-like receptor 5 by discrete flagellar serotypes. Altogether, this work establishes zebrafish as a relevant model of key aspects of human sepsis and highlights the ability of genetically distinct ExPEC isolates to induce divergent host responses independently of baseline host attributes. IMPORTANCE Sepsis is a life-threatening systemic inflammatory condition that is initiated by the presence of microorganisms in the bloodstream. In the United States, sepsis due to ExPEC and other pathogens kills well over a quarter of a million people each year and is associated with tremendous health care costs. A high degree of heterogeneity in the signs and symptomology of sepsis makes this disease notoriously difficult to effectively diagnose and manage. Here, using a zebrafish model of sepsis, we find that similarly lethal but genetically distinct ExPEC isolates can elicit notably disparate host responses. These variances are in part due to differences in the levels and types of flagellin that are expressed by the infecting ExPEC strains. A better understanding of the variable impact that bacterial factors like flagellin have on host responses during sepsis could lead to improved diagnostic and therapeutic approaches to these often deadly infections. Podcast: A podcast concerning this article is available.
Collapse
Affiliation(s)
- Amelia E Barber
- Division of Microbiology and Immunology, Pathology Department, University of Utah, Salt Lake City, Utah, USA
| | - Brittany A Fleming
- Division of Microbiology and Immunology, Pathology Department, University of Utah, Salt Lake City, Utah, USA
| | - Matthew A Mulvey
- Division of Microbiology and Immunology, Pathology Department, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
29
|
Nowik N, Podlasz P, Jakimiuk A, Kasica N, Sienkiewicz W, Kaleczyc J. Zebrafish: an animal model for research in veterinary medicine. Pol J Vet Sci 2016; 18:663-74. [PMID: 26618602 DOI: 10.1515/pjvs-2015-0086] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The zebrafish (Danio rerio) has become known as an excellent model organism for studies of vertebrate biology, vertebrate genetics, embryonal development, diseases and drug screening. Nevertheless, there is still lack of detailed reports about usage of the zebrafish as a model in veterinary medicine. Comparing to other vertebrates, they can lay hundreds of eggs at weekly intervals, externally fertilized zebrafish embryos are accessible to observation and manipulation at all stages of their development, which makes possible to simplify the research techniques such as fate mapping, fluorescent tracer time-lapse lineage analysis and single cell transplantation. Although zebrafish are only 2.5 cm long, they are easy to maintain. Intraperitoneal and intracerebroventricular injections, blood sampling and measurement of food intake are possible to be carry out in adult zebrafish. Danio rerio is a useful animal model for neurobiology, developmental biology, drug research, virology, microbiology and genetics. A lot of diseases, for which the zebrafish is a perfect model organism, affect aquatic animals. For a part of them, like those caused by Mycobacterium marinum or Pseudoloma neutrophila, Danio rerio is a natural host, but the zebrafish is also susceptible to the most of fish diseases including Itch, Spring viraemia of carp and Infectious spleen and kidney necrosis. The zebrafish is commonly used in research of bacterial virulence. The zebrafish embryo allows for rapid, non-invasive and real time analysis of bacterial infections in a vertebrate host. Plenty of common pathogens can be examined using zebrafish model: Streptococcus iniae, Vibrio anguillarum or Listeria monocytogenes. The steps are taken to use the zebrafish also in fungal research, especially that dealing with Candida albicans and Cryptococcus neoformans. Although, the zebrafish is used commonly as an animal model to study diseases caused by external agents, it is also useful in studies of metabolic disorders including fatty liver disease and diabetes. The zebrafish is also a valuable tool as a model in behavioral studies connected with feeding, predator evasion, habituation and memory or lateralized control of behavior. The aim of the present article is to familiarize the reader with the possibilities of Danio rerio as an experimental model for veterinary medicine.
Collapse
|
30
|
Harvie EA, Huttenlocher A. Neutrophils in host defense: new insights from zebrafish. J Leukoc Biol 2015; 98:523-37. [PMID: 25717145 PMCID: PMC4569048 DOI: 10.1189/jlb.4mr1114-524r] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 01/15/2015] [Accepted: 01/19/2015] [Indexed: 12/11/2022] Open
Abstract
Neutrophils are highly motile phagocytic cells that play a critical role in the immune response to infection. Zebrafish (Danio rerio) are increasingly used to study neutrophil function and host-pathogen interactions. The generation of transgenic zebrafish lines with fluorescently labeled leukocytes has made it possible to visualize the neutrophil response to infection in real time by use of optically transparent zebrafish larvae. In addition, the genetic tractability of zebrafish has allowed for the generation of models of inherited neutrophil disorders. In this review, we discuss several zebrafish models of infectious disease, both in the context of immunocompetent, as well as neutrophil-deficient hosts and how these models have shed light on neutrophil behavior during infection.
Collapse
Affiliation(s)
- Elizabeth A Harvie
- *Microbiology Doctoral Training Program, Departments of Medical Microbiology and Immunology and Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Anna Huttenlocher
- *Microbiology Doctoral Training Program, Departments of Medical Microbiology and Immunology and Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
31
|
Ristow LC, Welch RA. Hemolysin of uropathogenic Escherichia coli: A cloak or a dagger? BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1858:538-45. [PMID: 26299820 DOI: 10.1016/j.bbamem.2015.08.015] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 08/05/2015] [Accepted: 08/18/2015] [Indexed: 01/27/2023]
Abstract
Hemolysin from uropathogenic Escherichia coli (UPEC) is a hemolytic and cytotoxic protein active against a broad range of species and cell types. Expression of hemolysin correlates with severity of infection, as up to 78% of UPEC isolates from pyelonephritis cases express hemolysin. Despite decades of research on hemolysin activity, the mechanism of intoxication and the function of hemolysin in UPEC infection remain elusive. Early in vitro research established the role of hemolysin as a lytic protein at high doses. It is hypothesized that hemolysin is secreted at sublytic doses in vivo and recent research has focused on understanding the more subtle effects of hemolysin both in vitro and in elegant infection models in vivo, including inoculation by micropuncture of individual kidney nephrons. As the field continues to evolve, comparisons of hemolysin function in isolates from a range of UTI infections will be important for delineating the role of this toxin. This article is part of a Special Issue entitled: Pore-Forming Toxins edited by Mauro Dalla Serra and Franco Gambale.
Collapse
Affiliation(s)
- Laura C Ristow
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Rodney A Welch
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
32
|
Harvie EA, Huttenlocher A. Non-invasive Imaging of the Innate Immune Response in a Zebrafish Larval Model of Streptococcus iniae Infection. J Vis Exp 2015:52788. [PMID: 25938624 PMCID: PMC4541586 DOI: 10.3791/52788] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The aquatic pathogen, Streptococcus iniae, is responsible for over 100 million dollars in annual losses for the aquaculture industry and is capable of causing systemic disease in both fish and humans. A better understanding of S. iniae disease pathogenesis requires an appropriate model system. The genetic tractability and the optical transparency of the early developmental stages of zebrafish allow for the generation and non-invasive imaging of transgenic lines with fluorescently tagged immune cells. The adaptive immune system is not fully functional until several weeks post fertilization, but zebrafish larvae have a conserved vertebrate innate immune system with both neutrophils and macrophages. Thus, the generation of a larval infection model allows the study of the specific contribution of innate immunity in controlling S. iniae infection. The site of microinjection will determine whether an infection is systemic or initially localized. Here, we present our protocols for otic vesicle injection of zebrafish aged 2-3 days post fertilization as well as our techniques for fluorescent confocal imaging of infection. A localized infection site allows observation of initial microbe invasion, recruitment of host cells and dissemination of infection. Our findings using the zebrafish larval model of S. iniae infection indicate that zebrafish can be used to examine the differing contributions of host neutrophils and macrophages in localized bacterial infections. In addition, we describe how photolabeling of immune cells can be used to track individual host cell fate during the course of infection.
Collapse
Affiliation(s)
- Elizabeth A Harvie
- Microbiology Doctoral Training Program, University of Wisconsin-Madison; Department of Medical Microbiology and Immunology, University of Wisconsin-Madison
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison; Department of Pediatrics, University of Wisconsin-Madison;
| |
Collapse
|
33
|
Dysregulation of Escherichia coli α-hemolysin expression alters the course of acute and persistent urinary tract infection. Proc Natl Acad Sci U S A 2015; 112:E871-80. [PMID: 25675528 DOI: 10.1073/pnas.1500374112] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Urinary tract infections (UTIs) are among the most common bacterial infections, causing considerable morbidity in females. Infection is highly recurrent despite appropriate antibiotic treatment. Uropathogenic Escherichia coli (UPEC), the most common causative agent of UTIs, invades bladder epithelial cells (BECs) and develops into clonal intracellular bacterial communities (IBCs). Upon maturation, IBCs disperse, with bacteria spreading to neighboring BECs to repeat this cycle. This process allows UPEC to gain a foothold in the face of innate defense mechanisms, including micturition, epithelial exfoliation, and the influx of polymorphonuclear leukocytes. Here, we investigated the mechanism and dynamics of urothelial exfoliation in the early acute stages of infection. We show that UPEC α-hemolysin (HlyA) induces Caspase-1/Caspase-4-dependent inflammatory cell death in human urothelial cells, and we demonstrate that the response regulator (CpxR)-sensor kinase (CpxA) two-component system (CpxRA), which regulates virulence gene expression in response to environmental signals, is critical for fine-tuning HlyA cytotoxicity. Deletion of the cpxR transcriptional response regulator derepresses hlyA expression, leading to enhanced Caspase-1/Caspase-4- and NOD-like receptor family, pyrin domain containing 3-dependent inflammatory cell death in human urothelial cells. In vivo, overexpression of HlyA during acute bladder infection induces more rapid and extensive exfoliation and reduced bladder bacterial burdens. Bladder fitness is restored fully by inhibition of Caspase-1 and Caspase-11, the murine homolog of Caspase-4. Thus, we have discovered that fine-tuning of HlyA expression by the CpxRA system is critical for enhancing UPEC fitness in the urinary bladder. These results have significant implications for our understanding of how UPEC establishes persistent colonization.
Collapse
|
34
|
Lüthje P, Brauner A. Virulence factors of uropathogenic E. coli and their interaction with the host. Adv Microb Physiol 2014; 65:337-72. [PMID: 25476769 DOI: 10.1016/bs.ampbs.2014.08.006] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Urinary tract infections (UTIs) belong to the most common infectious diseases worldwide. The most frequently isolated pathogen from uncomplicated UTIs is Escherichia coli. To establish infection in the urinary tract, E. coli has to overcome several defence strategies of the host, including the urine flow, exfoliation of urothelial cells, endogenous antimicrobial factors and invading neutrophils. Thus, uropathogenic E. coli (UPEC) harbour a number of virulence and fitness factors enabling the bacterium to resist and overcome these different defence mechanisms. There is no particular factor which allows the identification of UPEC among the commensal faecal flora apart from the ability to enter the urinary tract and cause an infection. Many of potential virulence or fitness factors occur moreover with high redundancy. Fimbriae are inevitable for adherence to and invasion into the host cells; the type 1 pilus is an established virulence factor in UPEC and indispensable for successful infection of the urinary tract. Flagella and toxins promote bacterial dissemination, while different iron-acquisition systems allow bacterial survival in the iron-limited environment of the urinary tract. The immune response to UPEC is primarily mediated by toll-like receptors recognising lipopolysaccharide, flagella and other structures on the bacterial surface. UPEC have the capacity to subvert this immune response of the host by means of actively impacting on pro-inflammatory signalling pathways, or by physical masking of immunogenic structures. The large repertoire of bacterial virulence and fitness factors in combination with host-related differences results in a complex interaction between host and pathogen in the urinary tract.
Collapse
Affiliation(s)
- Petra Lüthje
- Department of Microbiology, Tumor and Cell Biology, Division of Clinical Microbiology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Annelie Brauner
- Department of Microbiology, Tumor and Cell Biology, Division of Clinical Microbiology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
35
|
Sridevi JP, Anantaraju HS, Kulkarni P, Yogeeswari P, Sriram D. Optimization and validation of Mycobacterium marinum-induced adult zebrafish model for evaluation of oral anti-tuberculosis drugs. Int J Mycobacteriol 2014; 3:259-67. [PMID: 26786625 DOI: 10.1016/j.ijmyco.2014.10.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 10/02/2014] [Indexed: 10/24/2022] Open
Abstract
INTRODUCTION Mycobacterium marinum has emerged as a suitable species for induction of tuberculosis-like disease in zebrafish, and various zebrafish models (larval and adult) for drug screening have been proposed in the literature. It is believed that an adult zebrafish model is more useful in drug screening because, apart from assessment of efficacy, one can obtain data on dosage, pharmacokinetics and overall health improvement. This study suggests a simple, cost-effective and resource-efficient protocol for screening of anti-tuberculosis drugs. METHODS The parameters used for assessment of infection as well as anti-bacterial response were: (a) bacterial count; and (b) body weight change. An optimization study was conducted to establish the concentration of bacteria required to produce a reproducible phenotype of tuberculosis (TB). A negative control (Amoxicillin) and anti-mycobacterial drugs (Isoniazid, Rifampicin, Moxifloxacin, Ethambutol and Isoniazid+Rifampicin) were used for validation of the protocol. All the drugs were administered orally. RESULTS An intra-peritoneal inoculation of 0.75million bacteria/fish was optimized for the model. All the anti-tuberculosis drugs showed efficacy in this model, whereas the negative control did not show any signs of reversing the parameters of M. marinum infection. DISCUSSION Adult zebrafish model of M. marinum-induced tuberculosis has not been fully exploited as a drug screening tool. In the present report, a protocol is suggested that is simple, reproducible and resource-efficient for screening of anti-tuberculosis agents. This protocol is an attempt to refine the published protocols and use this model as a surrogate model of human TB for the purpose of drug screening.
Collapse
Affiliation(s)
- Jonnalagadda Padma Sridevi
- Drug Discovery Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Hyderabad 500078, India
| | - Hasitha Shilpa Anantaraju
- Drug Discovery Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Hyderabad 500078, India
| | - Pushkar Kulkarni
- Drug Discovery Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Hyderabad 500078, India; Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500046, India.
| | - Perumal Yogeeswari
- Drug Discovery Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Hyderabad 500078, India
| | - Dharmarajan Sriram
- Drug Discovery Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Hyderabad 500078, India
| |
Collapse
|
36
|
Genotypic and phenotypic profiles of Escherichia coli isolates belonging to clinical sequence type 131 (ST131), clinical non-ST131, and fecal non-ST131 lineages from India. Antimicrob Agents Chemother 2014; 58:7240-9. [PMID: 25246402 DOI: 10.1128/aac.03320-14] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In view of the epidemiological success of CTX-M-15-producing lineages of Escherichia coli and particularly of sequence type 131 (ST131), it is of significant interest to explore its prevalence in countries such as India and to determine if antibiotic resistance, virulence, metabolic potential, and/or the genetic architecture of the ST131 isolates differ from those of non-ST131 isolates. A collection of 126 E. coli isolates comprising 43 ST131 E. coli, 40 non-ST131 E. coli, and 43 fecal E. coli isolates collected from a tertiary care hospital in India was analyzed. These isolates were subjected to enterobacterial repetitive intergenic consensus (ERIC)-based fingerprinting, O typing, phylogenetic grouping, antibiotic sensitivity testing, and virulence and antimicrobial resistance gene (VAG) detection. Representative isolates from this collection were also analyzed by multilocus sequence typing (MLST), conjugation, metabolic profiling, biofilm production assay, and zebra fish lethality assay. All of the 43 ST131 E. coli isolates were exclusively associated with phylogenetic group B2 (100%), while most of the clinical non-ST131 and stool non-ST131 E. coli isolates were affiliated with the B2 (38%) and A (58%) phylogenetic groups, respectively. Significantly greater proportions of ST131 isolates (58%) than non-ST131 isolates (clinical and stool E. coli isolates, 5% each) were technically identified to be extraintestinal pathogenic E. coli (ExPEC). The clinical ST131, clinical non-ST131, and stool non-ST131 E. coli isolates exhibited high rates of multidrug resistance (95%, 91%, and 91%, respectively), extended-spectrum-β-lactamase (ESBL) production (86%, 83%, and 91%, respectively), and metallo-β-lactamase (MBL) production (28%, 33%, and 0%, respectively). CTX-M-15 was strongly linked with ESBL production in ST131 isolates (93%), whereas CTX-M-15 plus TEM were present in clinical and stool non-ST131 E. coli isolates. Using MLST, we confirmed the presence of two NDM-1-positive ST131 E. coli isolates. The aggregate bioscores (metabolite utilization) for ST131, clinical non-ST131, and stool non-ST131 E. coli isolates were 53%, 52%, and 49%, respectively. The ST131 isolates were moderate biofilm producers and were more highly virulent in zebra fish than non-ST131 isolates. According to ERIC-based fingerprinting, the ST131 strains were more genetically similar, and this was subsequently followed by the genetic similarity of clinical non-ST131 and stool non-ST131 E. coli strains. In conclusion, our data provide novel insights into aspects of the fitness advantage of E. coli lineage ST131 and suggest that a number of factors are likely involved in the worldwide dissemination of and infections due to ST131 E. coli isolates.
Collapse
|
37
|
West K, Miles R, Kent ML, Frazer JK. Unusual fluorescent granulomas and myonecrosis in Danio rerio infected by the microsporidian pathogen Pseudoloma neurophilia. Zebrafish 2014; 11:283-90. [PMID: 24707848 DOI: 10.1089/zeb.2013.0933] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Abstract Zebrafish are a powerful model organism to study disease. Like other animal models, Danio rerio colonies are at risk of pathogenic infection. Microsporidia, a group of intracellular fungus-like parasites, are one potential threat. Microsporidian spores germinate and spread causing pathological changes in the central nervous system, skeletal muscle, and other anatomic sites. Infection can impair breeding, cause other morbidities, and ultimately be lethal. Previously, detecting microsporidia in zebrafish has required sacrificing animals for histopathologic analysis or microscopic examination of fresh tissues. Here, we show that fish with microsporidial infection often have autofluorescent nodules, and we demonstrate infectious spread from nodule-bearing fish to healthy D. rerio. Histologic analyses revealed that fluorescent nodules are granulomatous lesions composed of spores, degenerating muscle, and inflammatory cells. Additional histologic staining verified that microsporidia were present, specifically, Pseudoloma neurophilia. Polymerase chain reaction (PCR)-based testing confirmed the presence of P. neurophilia. Further PCR testing excluded infection by another common zebrafish microsporidial parasite, Pleistophora hyphessobryconis. Collectively, these studies show that P. neurophilia can induce skeletal muscle granulomas in D. rerio, a previously unknown finding. Moreover, since granulomas autofluoresce, microscopic screening for P. neurophilia infection is feasible in live fish, avoiding the need to sacrifice fish for surveillance for this pathogen.
Collapse
Affiliation(s)
- Kylie West
- 1 Section of Pediatric Hematology-Oncology, Department of Pediatrics, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
| | | | | | | |
Collapse
|
38
|
Affiliation(s)
- Sheila Nathan
- School of Biosciences & Biotechnology; Faculty of Science & Technology; Universiti Kebangsaan Malaysia; Bangi, Selangor, Malaysia
| |
Collapse
|
39
|
Kumar SSD, Surianarayanan M, Vijayaraghavan R, Mandal AB, MacFarlane DR. Curcumin loaded poly(2-hydroxyethyl methacrylate) nanoparticles from gelled ionic liquid--in vitro cytotoxicity and anti-cancer activity in SKOV-3 cells. Eur J Pharm Sci 2013; 51:34-44. [PMID: 24012589 DOI: 10.1016/j.ejps.2013.08.036] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 08/27/2013] [Accepted: 08/27/2013] [Indexed: 12/30/2022]
Abstract
The main focus of this study is to encapsulate hydrophobic drug curcumin in hydrophilic polymeric core such as poly(2-hydroxyethyl methacrylate) [PHEMA] nanoparticles from gelled ionic liquid (IL) to improve its efficacy. We have achieved 26.4% drug loading in a biocompatible hydrophilic polymer. Curcumin loaded PHEMA nanoparticles (C-PHEMA-NPs) were prepared by nano-precipitation method. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) analysis showed that the prepared nanoparticles were spherical in shape and free from aggregation. The size and zeta potential of prepared C-PHEMA-NPs were about 300 nm and -33.4 mV respectively. C-PHEMA-NPs were further characterized by FT-IR spectroscopy which confirmed the existence of curcumin in the nanoparticles. X-ray diffraction and differential scanning calorimetry studies revealed that curcumin present in the PHEMA nanoparticles were found to be amorphous in nature. The anticancer activity of C-PHEMA-NPs was measured in ovarian cancer cells (SKOV-3) in vitro, and the results revealed that the C-PHEMA-NPs had better tumor cells regression activity than free curcumin. Flow cytometry showed the significant reduction in G0/G1 cells after treatment with C-PHEMA-NPs and molecular level of apoptosis were also studied using western blotting. Toxicity of PHEMA nanoparticles were studied in zebrafish embryo model and results revealed the material to be highly biocompatible. The present study demonstrates the curcumin loaded PHEMA nanoparticles have potential therapeutic values in the treatment of cancer.
Collapse
Affiliation(s)
- Sathish Sundar Dhilip Kumar
- Thermo Chemical Lab, Chemical Engineering Department, Central Leather Research Institute, Chennai 600 020, India
| | | | | | | | | |
Collapse
|
40
|
Wiles TJ, Norton JP, Russell CW, Dalley BK, Fischer KF, Mulvey MA. Combining quantitative genetic footprinting and trait enrichment analysis to identify fitness determinants of a bacterial pathogen. PLoS Genet 2013; 9:e1003716. [PMID: 23990803 PMCID: PMC3749937 DOI: 10.1371/journal.pgen.1003716] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 06/26/2013] [Indexed: 01/03/2023] Open
Abstract
Strains of Extraintestinal Pathogenic Escherichia c oli (ExPEC) exhibit an array of virulence strategies and are a major cause of urinary tract infections, sepsis and meningitis. Efforts to understand ExPEC pathogenesis are challenged by the high degree of genetic and phenotypic variation that exists among isolates. Determining which virulence traits are widespread and which are strain-specific will greatly benefit the design of more effective therapies. Towards this goal, we utilized a quantitative genetic footprinting technique known as transposon insertion sequencing (Tn-seq) in conjunction with comparative pathogenomics to functionally dissect the genetic repertoire of a reference ExPEC isolate. Using Tn-seq and high-throughput zebrafish infection models, we tracked changes in the abundance of ExPEC variants within saturated transposon mutant libraries following selection within distinct host niches. Nine hundred and seventy bacterial genes (18% of the genome) were found to promote pathogen fitness in either a niche-dependent or independent manner. To identify genes with the highest therapeutic and diagnostic potential, a novel Trait Enrichment Analysis (TEA) algorithm was developed to ascertain the phylogenetic distribution of candidate genes. TEA revealed that a significant portion of the 970 genes identified by Tn-seq have homologues more often contained within the genomes of ExPEC and other known pathogens, which, as suggested by the first axiom of molecular Koch's postulates, is considered to be a key feature of true virulence determinants. Three of these Tn-seq-derived pathogen-associated genes--a transcriptional repressor, a putative metalloendopeptidase toxin and a hypothetical DNA binding protein--were deleted and shown to independently affect ExPEC fitness in zebrafish and mouse models of infection. Together, the approaches and observations reported herein provide a resource for future pathogenomics-based research and highlight the diversity of factors required by a single ExPEC isolate to survive within varying host environments.
Collapse
Affiliation(s)
- Travis J. Wiles
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - J. Paul Norton
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Colin W. Russell
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Brian K. Dalley
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Kael F. Fischer
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- ARUP Laboratories, Salt Lake City, Utah, United States of America
| | - Matthew A. Mulvey
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- * E-mail:
| |
Collapse
|
41
|
Wiles TJ, Mulvey MA. The RTX pore-forming toxin α-hemolysin of uropathogenic Escherichia coli: progress and perspectives. Future Microbiol 2013; 8:73-84. [PMID: 23252494 DOI: 10.2217/fmb.12.131] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Members of the RTX family of protein toxins are functionally conserved among an assortment of bacterial pathogens. By disrupting host cell integrity through their pore-forming and cytolytic activities, this class of toxins allows pathogens to effectively tamper with normal host cell processes, promoting pathogenesis. Here, we focus on the biology of RTX toxins by describing salient properties of a prototype member, α-hemolysin, which is often encoded by strains of uropathogenic Escherichia coli. It has long been appreciated that RTX toxins can have distinct effects on host cells aside from outright lysis. Recently, advances in modeling and analysis of host-pathogen interactions have led to novel findings concerning the consequences of pore formation during host-pathogen interactions. We discuss current progress on longstanding questions concerning cell specificity and pore formation, new areas of investigation that involve toxin-mediated perturbations of host cell signaling cascades and perspectives on the future of RTX toxin investigation.
Collapse
Affiliation(s)
- Travis J Wiles
- Division of Microbiology & Immunology, Pathology Department, University of Utah, 15 North Medical Drive East #2100, Salt Lake City, UT 84112-0565, USA
| | | |
Collapse
|
42
|
Los FCO, Randis TM, Aroian RV, Ratner AJ. Role of pore-forming toxins in bacterial infectious diseases. Microbiol Mol Biol Rev 2013; 77:173-207. [PMID: 23699254 PMCID: PMC3668673 DOI: 10.1128/mmbr.00052-12] [Citation(s) in RCA: 308] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Pore-forming toxins (PFTs) are the most common bacterial cytotoxic proteins and are required for virulence in a large number of important pathogens, including Streptococcus pneumoniae, group A and B streptococci, Staphylococcus aureus, Escherichia coli, and Mycobacterium tuberculosis. PFTs generally disrupt host cell membranes, but they can have additional effects independent of pore formation. Substantial effort has been devoted to understanding the molecular mechanisms underlying the functions of certain model PFTs. Likewise, specific host pathways mediating survival and immune responses in the face of toxin-mediated cellular damage have been delineated. However, less is known about the overall functions of PFTs during infection in vivo. This review focuses on common themes in the area of PFT biology, with an emphasis on studies addressing the roles of PFTs in in vivo and ex vivo models of colonization or infection. Common functions of PFTs include disruption of epithelial barrier function and evasion of host immune responses, which contribute to bacterial growth and spreading. The widespread nature of PFTs make this group of toxins an attractive target for the development of new virulence-targeted therapies that may have broad activity against human pathogens.
Collapse
Affiliation(s)
| | - Tara M. Randis
- Department of Pediatrics, Columbia University, New York, New York, USA
| | - Raffi V. Aroian
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California, USA
| | - Adam J. Ratner
- Department of Pediatrics, Columbia University, New York, New York, USA
| |
Collapse
|
43
|
Role of pore-forming toxins in neonatal sepsis. Clin Dev Immunol 2013; 2013:608456. [PMID: 23710203 PMCID: PMC3655490 DOI: 10.1155/2013/608456] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 03/27/2013] [Indexed: 11/17/2022]
Abstract
Protein toxins are important virulence factors contributing to neonatal sepsis. The major pathogens of neonatal sepsis, group B Streptococci, Escherichia coli, Listeria monocytogenes, and Staphylococcus aureus, secrete toxins of different molecular nature, which are key for defining the disease. Amongst these toxins are pore-forming exotoxins that are expressed as soluble monomers prior to engagement of the target cell membrane with subsequent formation of an aqueous membrane pore. Membrane pore formation is not only a means for immediate lysis of the targeted cell but also a general mechanism that contributes to penetration of epithelial barriers and evasion of the immune system, thus creating survival niches for the pathogens. Pore-forming toxins, however, can also contribute to the induction of inflammation and hence to the manifestation of sepsis. Clearly, pore-forming toxins are not the sole factors that drive sepsis progression, but they often act in concert with other bacterial effectors, especially in the initial stages of neonatal sepsis manifestation.
Collapse
|
44
|
The Cpx stress response system potentiates the fitness and virulence of uropathogenic Escherichia coli. Infect Immun 2013; 81:1450-9. [PMID: 23429541 DOI: 10.1128/iai.01213-12] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Strains of uropathogenic Escherichia coli (UPEC) are the primary cause of urinary tract infections, representing one of the most widespread and successful groups of pathogens on the planet. To colonize and persist within the urinary tract, UPEC must be able to sense and respond appropriately to environmental stresses, many of which can compromise the bacterial envelope. The Cpx two-component envelope stress response system is comprised of the inner membrane histidine kinase CpxA, the cytosolic response regulator CpxR, and the periplasmic auxiliary factor CpxP. Here, by using deletion mutants along with mouse and zebrafish infection models, we show that the Cpx system is critical to the fitness and virulence of two reference UPEC strains, the cystitis isolate UTI89 and the urosepsis isolate CFT073. Specifically, deletion of the cpxRA operon impaired the ability of UTI89 to colonize the murine bladder and greatly reduced the virulence of CFT073 during both systemic and localized infections within zebrafish embryos. These defects coincided with diminished host cell invasion by UTI89 and increased sensitivity of both strains to complement-mediated killing and the aminoglycoside antibiotic amikacin. Results obtained with the cpxP deletion mutants were more complicated, indicating variable strain-dependent and niche-specific requirements for this well-conserved auxiliary factor.
Collapse
|
45
|
Wiles TJ, Norton JP, Smith SN, Lewis AJ, Mobley HLT, Casjens SR, Mulvey MA. A phyletically rare gene promotes the niche-specific fitness of an E. coli pathogen during bacteremia. PLoS Pathog 2013; 9:e1003175. [PMID: 23459509 PMCID: PMC3573123 DOI: 10.1371/journal.ppat.1003175] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 12/19/2012] [Indexed: 12/17/2022] Open
Abstract
In bacteria, laterally acquired genes are often concentrated within chromosomal regions known as genomic islands. Using a recently developed zebrafish infection model, we set out to identify unique factors encoded within genomic islands that contribute to the fitness and virulence of a reference urosepsis isolate—extraintestinal pathogenic Escherichia coli strain CFT073. By screening a series of deletion mutants, we discovered a previously uncharacterized gene, neaT, that is conditionally required by the pathogen during systemic infections. In vitro assays indicate that neaT can limit bacterial interactions with host phagocytes and alter the aggregative properties of CFT073. The neaT gene is localized within an integrated P2-like bacteriophage in CFT073, but was rarely found within other proteobacterial genomes. Sequence-based analyses revealed that neaT homologues are present, but discordantly conserved, within a phyletically diverse set of bacterial species. In CFT073, neaT appears to be unameliorated, having an exceptionally A+T-rich composition along with a notably altered codon bias. These data suggest that neaT was recently brought into the proteobacterial pan-genome from an extra-phyletic source. Interestingly, even in G+C-poor genomes, as found within the Firmicutes lineage, neaT-like genes are often unameliorated. Sequence-level features of neaT homologues challenge the common supposition that the A+T-rich nature of many recently acquired genes reflects the nucleotide composition of their genomes of origin. In total, these findings highlight the complexity of the evolutionary forces that can affect the acquisition, utilization, and assimilation of rare genes that promote the niche-dependent fitness and virulence of a bacterial pathogen. Bacterial pathogens, even those belonging to the same species, can be incredibly diverse with regard to the genes they carry. However, the design of vaccines and antibiotics typically relies upon identification of general molecular features shared by the targeted organisms. Thus, we have traditionally focused on broadly conserved characteristics of pathogenic bacteria, often ignoring the genes that account for their individuality. In this article we report the discovery of a unique gene, neaT, that promotes the fitness of a pathogenic Escherichia coli isolate in zebrafish and mouse models of systemic blood infections. Surprisingly, neaT is rarely found in other related strains of E. coli and appears to have been recently acquired from distant lineages of bacteria via a process known as ‘lateral gene transfer’ that is used by microbes to swap genetic material. Expression of the neaT gene appears to help pathogens avoid interactions with host immune cells, possibly by altering bacterial surface structures. This work provides an interesting example of how the lateral acquisition of a rare gene can impact the niche-specific virulence properties of a pathogen, shedding light on the mechanisms that drive pathogen evolution and diversity.
Collapse
Affiliation(s)
- Travis J. Wiles
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - J. Paul Norton
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Sara N. Smith
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Adam J. Lewis
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Harry L. T. Mobley
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Sherwood R. Casjens
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Matthew A. Mulvey
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- * E-mail:
| |
Collapse
|
46
|
Ulett GC, Totsika M, Schaale K, Carey AJ, Sweet MJ, Schembri MA. Uropathogenic Escherichia coli virulence and innate immune responses during urinary tract infection. Curr Opin Microbiol 2013; 16:100-7. [DOI: 10.1016/j.mib.2013.01.005] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 12/19/2012] [Accepted: 01/08/2013] [Indexed: 12/17/2022]
|
47
|
Abstract
UNLABELLED The rapid increase in information about genes and their associations with human diseases has highlighted the need for model organisms suitable for genetic manipulation and drug testing. The zebrafish is a valuable vertebrate animal model that offers many advantages, including the relative ease of husbandry and genetic manipulation and the capacity for high-throughput screens. In this review, we describe the zebrafish as a model for paediatric diseases, with particular emphasis on haematopoietic and infectious diseases. CONCLUSION The zebrafish has become an established vertebrate model in which to elucidate the molecular mechanisms of various human diseases.
Collapse
Affiliation(s)
- Olli Lohi
- Paediatric Research Centre, University of Tampere Medical School and Tampere University Hospital, Tampere, Finland
| | | | | |
Collapse
|
48
|
Landraud L, Jauréguy F, Frapy E, Guigon G, Gouriou S, Carbonnelle E, Clermont O, Denamur E, Picard B, Lemichez E, Brisse S, Nassif X. Severity of Escherichia coli bacteraemia is independent of the intrinsic virulence of the strains assessed in a mouse model. Clin Microbiol Infect 2013; 19:85-90. [DOI: 10.1111/j.1469-0691.2011.03750.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
49
|
Donovan GT, Norton JP, Bower JM, Mulvey MA. Adenylate cyclase and the cyclic AMP receptor protein modulate stress resistance and virulence capacity of uropathogenic Escherichia coli. Infect Immun 2013; 81:249-58. [PMID: 23115037 PMCID: PMC3536135 DOI: 10.1128/iai.00796-12] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 10/24/2012] [Indexed: 02/07/2023] Open
Abstract
In many bacteria, the second messenger cyclic AMP (cAMP) interacts with the transcription factor cAMP receptor protein (CRP), forming active cAMP-CRP complexes that can control a multitude of cellular activities, including expanded carbon source utilization, stress response pathways, and virulence. Here, we assessed the role of cAMP-CRP as a regulator of stress resistance and virulence in uropathogenic Escherichia coli (UPEC), the principal cause of urinary tract infections worldwide. Deletion of genes encoding either CRP or CyaA, the enzyme responsible for cAMP synthesis, attenuates the ability of UPEC to colonize the bladder in a mouse infection model, dependent on intact innate host defenses. UPEC mutants lacking cAMP-CRP grow normally in the presence of glucose but are unable to utilize alternate carbon sources like amino acids, the primary nutrients available to UPEC within the urinary tract. Relative to the wild-type UPEC isolate, the cyaA and crp deletion mutants are sensitive to nitrosative stress and the superoxide generator methyl viologen but remarkably resistant to hydrogen peroxide (H(2)O(2)) and acid stress. In the mutant strains, H(2)O(2) resistance correlates with elevated catalase activity attributable in part to enhanced translation of the alternate sigma factor RpoS. Acid resistance was promoted by both RpoS-independent and RpoS-dependent mechanisms, including expression of the RpoS-regulated DNA-binding ferritin-like protein Dps. We conclude that balanced input from many cAMP-CRP-responsive elements, including RpoS, is critical to the ability of UPEC to handle the nutrient limitations and severe environmental stresses present within the mammalian urinary tract.
Collapse
Affiliation(s)
- Grant T Donovan
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | | | | | | |
Collapse
|
50
|
Jones CF, Campbell RA, Brooks AE, Assemi S, Tadjiki S, Thiagarajan G, Mulcock C, Weyrich AS, Brooks BD, Ghandehari H, Grainger DW. Cationic PAMAM dendrimers aggressively initiate blood clot formation. ACS NANO 2012; 6:9900-10. [PMID: 23062017 PMCID: PMC3532938 DOI: 10.1021/nn303472r] [Citation(s) in RCA: 162] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Poly(amidoamine) (PAMAM) dendrimers are increasingly studied as model nanoparticles for a variety of biomedical applications, notably in systemic administrations. However, with respect to blood-contacting applications, amine-terminated dendrimers have recently been shown to activate platelets and cause a fatal, disseminated intravascular coagulation (DIC)-like condition in mice and rats. We here demonstrate that, upon addition to blood, cationic G7 PAMAM dendrimers induce fibrinogen aggregation, which may contribute to the in vivo DIC-like phenomenon. We demonstrate that amine-terminated dendrimers act directly on fibrinogen in a thrombin-independent manner to generate dense, high-molecular-weight fibrinogen aggregates with minimal fibrin fibril formation. In addition, we hypothesize this clot-like behavior is likely mediated by electrostatic interactions between the densely charged cationic dendrimer surface and negatively charged fibrinogen domains. Interestingly, cationic dendrimers also induced aggregation of albumin, suggesting that many negatively charged blood proteins may be affected by cationic dendrimers. To investigate this further, zebrafish embryos were employed to more specifically determine the speed of this phenomenon and the pathway- and dose-dependency of the resulting vascular occlusion phenotype. These novel findings show that G7 PAMAM dendrimers significantly and adversely impact many blood components to produce rapid coagulation and strongly suggest that these effects are independent of classic coagulation mechanisms. These results also strongly suggest the need to fully characterize amine-terminated PAMAM dendrimers in regard to their adverse effects on both coagulation and platelets, which may contribute to blood toxicity.
Collapse
Affiliation(s)
- Clinton F. Jones
- Department of Pharmaceutics and Pharmaceutical Chemistry, Health Sciences, University of Utah, Salt Lake City, UT 84112 USA
| | - Robert A. Campbell
- Program in Molecular Medicine; University of Utah School of Medicine, Salt Lake City, UT 84132 USA
| | - Amanda E. Brooks
- Department of Pharmaceutics and Pharmaceutical Chemistry, Health Sciences, University of Utah, Salt Lake City, UT 84112 USA
| | - Shoeleh Assemi
- Department of Metallurgical Engineering, University of Utah, Salt Lake City, UT 84112 USA
| | | | - Giridhar Thiagarajan
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT 84112 USA
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84112 USA
| | - Cheyanne Mulcock
- Department of Pharmaceutics and Pharmaceutical Chemistry, Health Sciences, University of Utah, Salt Lake City, UT 84112 USA
| | - Andrew S. Weyrich
- Program in Molecular Medicine; University of Utah School of Medicine, Salt Lake City, UT 84132 USA
- Divisions of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Utah, Salt Lake City, UT 84132 USA
| | - Benjamin D. Brooks
- Department of Pharmaceutics and Pharmaceutical Chemistry, Health Sciences, University of Utah, Salt Lake City, UT 84112 USA
| | - Hamidreza Ghandehari
- Department of Pharmaceutics and Pharmaceutical Chemistry, Health Sciences, University of Utah, Salt Lake City, UT 84112 USA
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT 84112 USA
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84112 USA
| | - David W. Grainger
- Department of Pharmaceutics and Pharmaceutical Chemistry, Health Sciences, University of Utah, Salt Lake City, UT 84112 USA
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT 84112 USA
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84112 USA
| |
Collapse
|