1
|
Zhang Q, Li G, Wang Y, Yang C, Bai W, Li Q, Zhang J, Zhang P. Cas5 Regulates the Exposure of β-Glucan, the Cell Surface Hydrophobicity, and the Expression of Cell Wall Proteins to Remodel the Candida albicans Cell Wall and Participates in the Recruitment of Neutrophils. Microorganisms 2025; 13:683. [PMID: 40142575 PMCID: PMC11944837 DOI: 10.3390/microorganisms13030683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/09/2025] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
Candida albicans (C. albicans) is a major opportunistic fungal pathogen that causes life-threatening infections, particularly in immunocompromised individuals, underscoring the critical need to understand its pathogenic mechanisms. This study investigates the role of Cas5, a key transcription factor, in regulating C. albicans cell wall remodeling, virulence, and host interactions. Genetic manipulation and biochemical assays were used to examine the effects of Cas5 depletion on C. albicans cell wall structure, adhesion to host cells, morphology transition, innate immune cells recruitment, and pathogenicity in a BALB/C mouse model of oropharyngeal candidiasis (OPC). The results showed that the Cas5 depletion mediated β-glucan exposure and enhanced C. albicans's ability to recruit neutrophils in vivo. Additionally, Cas5-mediated changes in cell surface hydrophobicity (CSH), CWP expressions, and morphological transition promoted C. albicans adhesion to biologically active surfaces (host cells) and increased fungal burden in the mouse model of OPC. In conclusion, Cas5 modulates C. albicans cell wall remodeling by masking cell wall β-glucan, altering CSH, and regulating the expression of cell wall proteins (CWPs). Additionally, Cas5 participates in inhibiting neutrophil recruitment and enhancing the C. albicans adhesion to host cells, as well as facilitating morphological transitions. These actions promote the colonization and invasion of C. albicans in OPC pathogenesis.
Collapse
Affiliation(s)
- Qiyue Zhang
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China; (Q.Z.); (G.L.); (Y.W.); (C.Y.); (W.B.); (Q.L.); (J.Z.)
- Institute of Pharmaceutical Science and Technology, Xi’an Jiaotong University, Xi’an 710061, China
| | - Guanglin Li
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China; (Q.Z.); (G.L.); (Y.W.); (C.Y.); (W.B.); (Q.L.); (J.Z.)
- Institute of Pharmaceutical Science and Technology, Xi’an Jiaotong University, Xi’an 710061, China
| | - Yanmei Wang
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China; (Q.Z.); (G.L.); (Y.W.); (C.Y.); (W.B.); (Q.L.); (J.Z.)
- Institute of Pharmaceutical Science and Technology, Xi’an Jiaotong University, Xi’an 710061, China
| | - Chen Yang
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China; (Q.Z.); (G.L.); (Y.W.); (C.Y.); (W.B.); (Q.L.); (J.Z.)
- Institute of Pharmaceutical Science and Technology, Xi’an Jiaotong University, Xi’an 710061, China
| | - Wenhui Bai
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China; (Q.Z.); (G.L.); (Y.W.); (C.Y.); (W.B.); (Q.L.); (J.Z.)
- Institute of Pharmaceutical Science and Technology, Xi’an Jiaotong University, Xi’an 710061, China
| | - Qingqing Li
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China; (Q.Z.); (G.L.); (Y.W.); (C.Y.); (W.B.); (Q.L.); (J.Z.)
- Institute of Pharmaceutical Science and Technology, Xi’an Jiaotong University, Xi’an 710061, China
| | - Jiye Zhang
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China; (Q.Z.); (G.L.); (Y.W.); (C.Y.); (W.B.); (Q.L.); (J.Z.)
- Institute of Pharmaceutical Science and Technology, Xi’an Jiaotong University, Xi’an 710061, China
| | - Peipei Zhang
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China; (Q.Z.); (G.L.); (Y.W.); (C.Y.); (W.B.); (Q.L.); (J.Z.)
- Institute of Pharmaceutical Science and Technology, Xi’an Jiaotong University, Xi’an 710061, China
| |
Collapse
|
2
|
Puumala E, Nandakumar M, Yiu B, Stogios PJ, Strickland BG, Zarnowski R, Wang X, Williams NS, Savchenko A, Andes DR, Robbins N, Whitesell L, Willson TM, Cowen LE. Structure-guided optimization of small molecules targeting Yck2 as a strategy to combat Candida albicans. Nat Commun 2025; 16:2156. [PMID: 40038303 PMCID: PMC11880385 DOI: 10.1038/s41467-025-57346-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/19/2025] [Indexed: 03/06/2025] Open
Abstract
Candida albicans is the most common cause of life-threatening fungal infection in the developed world but remains a therapeutic challenge. Protein kinases have been rewarding drug targets across diverse indications but remain untapped for antifungal development. Previously, screening kinase inhibitors against C. albicans revealed a 2,3-aryl-pyrazolopyridine, GW461484A (GW), which targets casein kinase 1 (CK1) family member Yck2. Here, we report optimization of GW via two complementary approaches, synthesis of bioisosteres possessing an imidazo[1,2-a]pyridine core, and R-group substitution of GW's pyrazolo[1,5-a]pyridine core. Characterization of compounds reveals two 6-cyano derivatives with improved pharmacological properties that retain whole-cell bioactivity and selectivity for fungal Yck2 compared to human CK1α. Efficacy studies in mice indicate both analogs possess single-agent activity against C. albicans resistant to first-line echinocandin antifungals and potentiate non-curative echinocandin treatment. Results validate Yck2 as an antifungal target and encourage further development of inhibitors acting by this previously unexploited mode of action.
Collapse
Affiliation(s)
- Emily Puumala
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Meganathan Nandakumar
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Bonnie Yiu
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Peter J Stogios
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | - Benjamin G Strickland
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Robert Zarnowski
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Xiaoyu Wang
- Department of Biochemistry, University of Texas Southwestern Medical School, Dallas, TX, USA
| | - Noelle S Williams
- Department of Biochemistry, University of Texas Southwestern Medical School, Dallas, TX, USA
| | - Alexei Savchenko
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Center for Structural Biology of Infectious Diseases (CSBID), Chicago, Illinois, USA
| | - David R Andes
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Luke Whitesell
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Timothy M Willson
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
3
|
Mundodi V, Choudhary S, Smith AD, Kadosh D. Ribosome profiling reveals differences in global translational vs transcriptional gene expression changes during early Candida albicans biofilm formation. Microbiol Spectr 2025; 13:e0219524. [PMID: 39873514 PMCID: PMC11878023 DOI: 10.1128/spectrum.02195-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/20/2024] [Indexed: 01/30/2025] Open
Abstract
Candida albicans, a major human fungal pathogen, can form biofilms on a variety of inert and biological surfaces. C. albicans biofilms allow for immune evasion, are highly resistant to antifungal therapies, and represent a significant complication for a wide variety of immunocompromised patients in clinical settings. While transcriptional regulators and global transcriptional profiles of C. albicans biofilm formation have been well-characterized, much less is known about translational regulation of this important C. albicans virulence property. Here, using ribosome profiling, we define the first global translational profile of genes that are expressed during early biofilm development in a human fungal pathogen, C. albicans. We show that C. albicans biofilm formation involves altered translational regulation of genes and gene classes associated with protein synthesis, pathogenesis, transport, plasma membrane, polarized growth, cell cycle, secretion, and signal transduction. Interestingly, while similar, but not identical, classes of genes showed transcriptional alterations during early C. albicans biofilm development, we observed very little overlap between specific genes that are upregulated or downregulated at the translational vs transcriptional levels. Our results suggest that distinct translational mechanisms play an important role in regulating early biofilm development of a major human fungal pathogen. These mechanisms, in turn, could serve as potential targets for novel antifungal strategies.IMPORTANCEThe major human fungal pathogen Candida albicans is known to form biofilms or complex aggregated microbial communities encased in an extracellular matrix. These biofilms allow C. albicans to escape detection by the immune system as well as resist a variety of antifungal drugs. In this study, we define the first global profile of genes that show altered translation during C. albicans biofilm formation. These genes are involved in a variety of key cellular processes, including polarized growth, pathogenesis, transport, protein synthesis, cell cycle, plasma membrane, signal transduction, and secretion. Interestingly, while similar classes of genes are induced at both the transcriptional and translational levels during early C. albicans biofilm formation, we observed very little overlap among specific genes with altered transcription and translation. Our results suggest that C. albicans biofilm formation is controlled by distinct translational mechanisms, which could potentially be targeted by novel antifungal drugs.
Collapse
Affiliation(s)
- Vasanthakrishna Mundodi
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Saket Choudhary
- Quantitative and Computational Biology, University of Southern California, Los Angeles, California, USA
| | - Andrew D. Smith
- Quantitative and Computational Biology, University of Southern California, Los Angeles, California, USA
| | - David Kadosh
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
4
|
Busch RJ, Doty C, Mills CA, Latifi F, Herring LE, Konjufca V, Vargas-Muñiz JM. Deletion of core septin gene aspB in Aspergillus fumigatus results in fungicidal activity of caspofungin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.25.640155. [PMID: 40060473 PMCID: PMC11888321 DOI: 10.1101/2025.02.25.640155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Septins are a family of GTP-binding proteins found in many eukaryotic lineages. Although highly conserved throughout many eukaryotes, their functions vary across species. In Aspergillus fumigatus, the etiological agent of invasive aspergillosis, septins participate in a variety of processes such as cell wall organization of conidia, septation, and response to cell wall stress. Previous studies determined that the ΔaspB strain had a greater sensitivity to anti-cell wall drugs, especially the echinocandin caspofungin, yet mechanisms behind this augmented sensitivity are unknown. We performed cell viability staining of the deletion strains post-caspofungin exposure and found that the ΔaspA, ΔaspB, and ΔaspC strains have significantly lower cell viability. Concomitant with the reduced viability, deletion strains are more susceptible to caspofungin on solid media. These results indicate that the septin cytoskeleton is important for A. fumigatus survival in the presence of caspofungin. Due to the potential of improved therapeutic outcome, we followed up using a neutropenic murine model of invasive aspergillosis. Animals infected with the ΔaspB strain and treated with caspofungin showed improved survival compared to the animals infected with akuB KU80 wild-type or complemented strains. Additionally, histological analysis showed reduced fungal burden and inflammation in the ΔaspB infected, caspofungin-treated group. Affinity purification coupled with quantitative proteomics identified proteins involved in the septin-dependent response to caspofungin, includng four candidate interactors involved in cell wall stress response. Deletion of these candidate genes resulted in increased susceptibility to caspofungin and moderately reduced viability post-drug exposure. Taken together, these data suggest that septin AspB contributes to the fungistatic response to caspofungin.
Collapse
Affiliation(s)
- Rebecca Jean Busch
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States
| | - Carson Doty
- School of Biological Sciences, Southern Illinois University-Carbondale, Carbondale, Illinois, United States
| | - C. Allie Mills
- Michael Hooker Metabolomics and Proteomics Core Facility, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Flutur Latifi
- Microbiology Program, Southern Illinois University-Carbondale, Carbondale, Illinois, United States
| | - Laura E. Herring
- Michael Hooker Metabolomics and Proteomics Core Facility, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Vjollca Konjufca
- Microbiology Program, Southern Illinois University-Carbondale, Carbondale, Illinois, United States
| | - José M Vargas-Muñiz
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States
- Fralin Life Science Institute, Virginia Tech, Blacksburg, VA
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA
| |
Collapse
|
5
|
Goich D, Bloom ALM, Duffy SR, Ventura MN, Panepinto JC. Gcn2 rescues reprogramming in the absence of Hog1/p38 signaling in C. neoformans during thermal stress. mBio 2025; 16:e0176224. [PMID: 39670714 PMCID: PMC11796416 DOI: 10.1128/mbio.01762-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 11/22/2024] [Indexed: 12/14/2024] Open
Abstract
The fungus Cryptococcus neoformans is an opportunistic pathogen of humans that reprograms its translatome to facilitate adaptation and virulence within the host. We studied the role of Hog1/p38 in reprogramming translation during thermal stress adaptation and found that this pathway acts on translation via crosstalk with the Gcn2 pathway, a well-studied regulator of general translation control. Using a combination of molecular assays and phenotypic analysis, we show that increased output from the Gcn2 pathway in a Hog1 deletion mutant is associated with rescue of thermal stress adaptation at both molecular and phenotypic scales. We characterize known outputs of the Hog1 pathway during thermal stress as either Gcn2-dependent or Gcn2-independent and demonstrate that Hog1 activation regulates the Gcn2 pathway even in the absence of thermal stress. Finally, we implicate this phenomenon in another Hog1-regulated process, morphogenesis, and recapitulate Hog1-Gcn2 crosstalk in the distantly related fungal pathogen, Candida albicans. Our results point to an important link between the stress response machinery and translation control and clarify the etiology of phenotypes associated with Hog1 deletion. More broadly, this study highlights complex interplay between core conserved signal transduction pathways and the utility of molecular assays to better understand how these pathways are connected.IMPORTANCECryptococcus neoformans is an opportunistic pathogen of humans that causes deadly cryptococcal meningitis, which is is responsible for an estimated 19% of AIDS-related mortality. When left untreated, cryptococcal meningitis is uniformly fatal, and in patients receiving the most effective antifungal regimens, mortality remains high. Thus, there is a critical need to identify additional targets that play a role in the adaptation to the human host and virulence. This study explores the role of the stress response kinases Hog1 and Gcn2 in thermoadaptation, which is a pre-requisite for virulence. Our results show that compensatory signaling occurs via the Gcn2 pathway when Hog1 is deleted, and that disruption of both pathways increases sensitivity to thermal stress. Importantly, our study highlights the insufficiency of using single-gene deletion mutants to study gene function, since many phenotypes associated with Hog1 deletion were driven by Gcn2 signaling in this background, rather than loss of direct Hog1 activity.
Collapse
Affiliation(s)
- David Goich
- Department of Microbiology and Immunology, Witebsky Center for Microbial Pathogenesis and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Amanda L. M. Bloom
- Department of Microbiology and Immunology, Witebsky Center for Microbial Pathogenesis and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Sean R. Duffy
- Department of Microbiology and Immunology, Witebsky Center for Microbial Pathogenesis and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Maritza N. Ventura
- Department of Microbiology and Immunology, Witebsky Center for Microbial Pathogenesis and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - John C. Panepinto
- Department of Microbiology and Immunology, Witebsky Center for Microbial Pathogenesis and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
6
|
Cowen L, Puumala E, Nandakumar M, Yiu B, Stogios P, Strickland B, Zarnowski R, Wang X, Williams N, Savchenko A, Andes D, Robbins N, Whitesell L, Willson T. Structure-guided optimization of small molecules targeting the yeast casein kinase, Yck2, as a therapeutic strategy to combat Candida albicans. RESEARCH SQUARE 2025:rs.3.rs-5524306. [PMID: 39866870 PMCID: PMC11760248 DOI: 10.21203/rs.3.rs-5524306/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Candida albicans is the most common cause of life-threatening fungal infection in the developed world but remains a therapeutic challenge. Protein kinases have been rewarding drug targets across diverse indications but remain untapped for antifungal development. Previously, screening kinase inhibitors against C. albicans revealed a 2,3-aryl-pyrazolopyridine, GW461484A (GW), which targets casein kinase 1 (CK1) family member Yck2. Here, we report optimization of GW via two complementary approaches, synthesis of bioisosteres possessing an imidazo[1,2-a]pyridine core, and R-group substitution of GW's pyrazolo[1,5-a]pyridine core. Characterization of compounds synthesized revealed two 6-cyano derivatives with improved pharmacological properties that retained whole-cell bioactivity and selectivity for fungal Yck2 compared to human CK1α. Efficacy studies in mice indicated both analogs possess single-agent activity against C. albicans resistant to first-line echinocandin antifungals and potentiate non-curative echinocandin treatment. Results validate Yck2 as an antifungal target and encourage further development of inhibitors acting by this previously unexploited mode of action.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Noelle Williams
- The University of Texas Southwestern Medical Center at Dallas
| | | | | | | | | | | |
Collapse
|
7
|
Martinez Barrera S, Hatchell E, Byrum SD, Mackintosh SG, Kozubowski L. Quantitative analysis of septin Cdc10 & Cdc3-associated proteome during stress response in the fungal pathogen Cryptococcus neoformans. PLoS One 2024; 19:e0313444. [PMID: 39689097 DOI: 10.1371/journal.pone.0313444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/23/2024] [Indexed: 12/19/2024] Open
Abstract
Cryptococcus neoformans is a pathogenic basidiomycetous yeast that primarily infects immunocompromised individuals. Fatal outcome of cryptococcosis depends on the ability of C. neoformans to sense and adapt to 37°C. A complex of conserved filament forming GTPases, called septins, composed of Cdc3, Cdc10, Cdc11, and Cdc12, assembles at the mother-bud neck in C. neoformans. Septins Cdc3 and Cdc12 are essential for proliferation of C. neoformans at 37°C and for virulence in the Galleria mellonella model of infection, presumably due to their requirement for septin complex formation, and the involvement in cytokinesis. However, how exactly Cdc3, and Cdc12 contribute to C. neoformans growth at 37°C remains unknown. Based on studies investigating roles of septins in Saccharomyces cerevisiae, septin complex at the mother-bud neck of C. neoformans is predicted to interact with proteins involved in cell cycle control, morphogenesis, and cytokinesis, but the septin-associated proteome in C. neoformans has not been investigated. Here, we utilized tandem mass spectrometry to define C. neoformans proteins that associate with either Cdc3 or Cdc10 at ∼25°C or after the shift to 37°C. Our findings unveil a diverse array of septin-associated proteins, highlighting potential roles of septins in cell division, and stress response. Two proteins, identified as associated with both Cdc3 and Cdc10, the actin-binding protein profilin, which was detected at both temperatures, and ATP-binding multi-drug transporter Afr1, which was detected exclusively at 37°C, were further confirmed by co-immunoprecipitation. We also confirmed that association of Cdc3 with Afr1 was enhanced at 37°C. Upon shift to 37°C, septins Cdc3 and Cdc10 exhibited altered localization and Cdc3 partially co-localized with Afr1. In addition, we also investigated changes to levels of individual C. neoformans proteins upon shift from ∼25 to 37°C in exponentially grown culture and when cells entered stationary phase at ∼25°C. Our study reveals changes to C. neoformans proteome associated with heat and nutrient deprivation stresses and provides a landscape of septin-associated C. neoformans proteome, which will facilitate elucidating the biology of septins and mechanisms of stress response in this fungal pathogen.
Collapse
Affiliation(s)
- Stephani Martinez Barrera
- Department of Genetics and Biochemistry, Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, SC, United States of America
| | - Emma Hatchell
- Department of Genetics and Biochemistry, Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, SC, United States of America
| | - Stephanie D Byrum
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Samuel G Mackintosh
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Lukasz Kozubowski
- Department of Genetics and Biochemistry, Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, SC, United States of America
| |
Collapse
|
8
|
Lombardi L, Salzberg LI, Cinnéide EÓ, O'Brien C, Morio F, Turner SA, Byrne KP, Butler G. Alternative sulphur metabolism in the fungal pathogen Candida parapsilosis. Nat Commun 2024; 15:9190. [PMID: 39448588 PMCID: PMC11502921 DOI: 10.1038/s41467-024-53442-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
Candida parapsilosis is an opportunistic fungal pathogen commonly isolated from the environment and associated with nosocomial infection outbreaks worldwide. We describe here the construction of a large collection of gene disruptions, greatly increasing the molecular tools available for probing gene function in C. parapsilosis. We use these to identify transcription factors associated with multiple metabolic pathways, and in particular to dissect the network regulating the assimilation of sulphur. We find that, unlike in other yeasts and filamentous fungi, the transcription factor Met4 is not the main regulator of methionine synthesis. In C. parapsilosis, assimilation of inorganic sulphur (sulphate) and synthesis of cysteine and methionine is regulated by Met28, a paralog of Met4, whereas Met4 regulates expression of a wide array of transporters and enzymes involved in the assimilation of organosulfur compounds. Analysis of transcription factor binding sites suggests that Met4 is recruited by the DNA-binding protein Met32, and Met28 is recruited by Cbf1. Despite having different target genes, Met4 and Met28 have partial functional overlap, possibly because Met4 can contribute to assimilation of inorganic sulphur in the absence of Met28.
Collapse
Affiliation(s)
- Lisa Lombardi
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin, Ireland.
| | - Letal I Salzberg
- School of Medicine, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Eoin Ó Cinnéide
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Caoimhe O'Brien
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Florent Morio
- Nantes Université, CHU Nantes, Cibles et Médicaments des Infections et de l'Immunité, UR1155, Nantes, France
| | - Siobhán A Turner
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Kevin P Byrne
- School of Medicine, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Geraldine Butler
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin, Ireland.
| |
Collapse
|
9
|
Kramara J, Kim MJ, Ollinger TL, Ristow LC, Wakade RS, Zarnowski R, Wellington M, Andes DR, Mitchell AG, Krysan DJ. Systematic analysis of the Candida albicans kinome reveals environmentally contingent protein kinase-mediated regulation of filamentation and biofilm formation in vitro and in vivo. mBio 2024; 15:e0124924. [PMID: 38949302 PMCID: PMC11323567 DOI: 10.1128/mbio.01249-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 05/20/2024] [Indexed: 07/02/2024] Open
Abstract
Protein kinases are critical regulatory proteins in both prokaryotes and eukaryotes. Accordingly, protein kinases represent a common drug target for a wide range of human diseases. Therefore, understanding protein kinase function in human pathogens such as the fungus Candida albicans is likely to extend our knowledge of its pathobiology and identify new potential therapies. To facilitate the study of C. albicans protein kinases, we constructed a library of 99 non-essential protein kinase homozygous deletion mutants marked with barcodes in the widely used SN genetic background. Here, we describe the construction of this library and the characterization of the competitive fitness of the protein kinase mutants under 11 different growth and stress conditions. We also screened the library for protein kinase mutants with altered filamentation and biofilm formation, two critical virulence traits of C. albicans. An extensive network of protein kinases governs these virulence traits in a manner highly dependent on the specific environmental conditions. Studies on specific protein kinases revealed that (i) the cell wall integrity MAPK pathway plays a condition-dependent role in filament initiation and elongation; (ii) the hyper-osmolar glycerol MAPK pathway is required for both filamentation and biofilm formation, particularly in the setting of in vivo catheter infection; and (iii) Sok1 is dispensable for filamentation in hypoxic environments at the basal level of a biofilm but is required for filamentation in normoxia. In addition to providing a new genetic resource for the community, these observations emphasize the environmentally contingent function of C. albicans protein kinases.IMPORTANCECandida albicans is one of the most common causes of fungal disease in humans for which new therapies are needed. Protein kinases are key regulatory proteins and are increasingly targeted by drugs for the treatment of a wide range of diseases. Understanding protein kinase function in C. albicans pathogenesis may facilitate the development of new antifungal drugs. Here, we describe a new library of 99 protein kinase deletion mutants to facilitate the study of protein kinases. Furthermore, we show that the function of protein kinases in two virulence-related processes, filamentation and biofilm formation, is dependent on the specific environmental conditions.
Collapse
Affiliation(s)
- Juraj Kramara
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Min-Ju Kim
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Tomye L. Ollinger
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Laura C. Ristow
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Rohan S. Wakade
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Robert Zarnowski
- Department of Medicine, Section of Infectious Disease, University of Wisconsin, Madison, Wisconsin, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, Wisconsin, USA
| | - Melanie Wellington
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - David R. Andes
- Department of Medicine, Section of Infectious Disease, University of Wisconsin, Madison, Wisconsin, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, Wisconsin, USA
| | - Aaron G. Mitchell
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Damian J. Krysan
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
10
|
Lorenz MC. Regulatory complexity of cellular differentiation in Candida albicans revealed through systematic screening of protein kinase mutants. mBio 2024; 15:e0169824. [PMID: 39058031 PMCID: PMC11323536 DOI: 10.1128/mbio.01698-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024] Open
Abstract
A recent study in mBio reports the construction and preliminary screening of a library containing mutants of 99 of the 119 predicted protein kinases in Candida albicans (the majority of the remaining 20 are probably essential) (J. Kramara, M.-J. Kim, T. L. Ollinger, L. C. Ristow, et al., mBio e01249-24, 2024, https://doi.org/10.1128/mbio.01249-24). Using a quantitative competition assay in 10 conditions that represent nutritional, osmotic, cell wall, and pH stresses that are considered to model various aspects of the host environment allowed them to phenotypically cluster kinases, which highlight both the integration and specialization of signaling pathways, suggesting novel functions for many kinases. In addition, they tackle two complex and partially overlapping differentiation events, hyphal morphogenesis and biofilm formation. They find that a remarkable 88% of the viable kinase mutants in C. albicans affect hyphal growth, illustrating how integrated morphogenesis is in the overall biology of this organism, and begin to dissect the regulatory relationships that control this key virulence trait.
Collapse
Affiliation(s)
- Michael C. Lorenz
- Department of Microbiology and Molecular Genetics, University of Texas McGovern Medical School, Houston, Texas, USA
| |
Collapse
|
11
|
Chao W, Qiu L, Gao L, Feng J, Liu Y, Yan L, Jiang Y, Lv Q. Antifungal Tetrahydrocarbazole Compound CAR-8 Induces Endoplasmic Reticulum Stress in Candida albicans. ACS Infect Dis 2024; 10:2705-2716. [PMID: 38989983 DOI: 10.1021/acsinfecdis.4c00069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
The development of new effective antifungal agents is essential to combat fungal infections. Tetrahydrocarbazole has been exploited as a promising skeleton against various pathogenic microorganisms and is used to search for novel active antifungal compounds. In this study, a library composed of small tetrahydrocarbazole compounds was screened, and a potent antifungal agent, CAR-8, was identified with a minimum inhibitory concentration of 2-4 μg/mL against Candida albicans. CAR-8 showed strong fungicidal activities and killed almost all C. albicans within 3 h at a concentration of 16 μg/mL. At concentrations of 2 and 8 μg/mL, CAR-8 significantly inhibited the formation of hyphae and biofilms. Moreover, CAR-8 at 10 and 20 mg/kg reduced the fungal load and improved the survival in the C. albicans infection model in the invertebrate Galleria mellonella. Transcriptome analysis revealed significant changes in the expression of genes associated with protein processing in the endoplasmic reticulum (ER), ER-associated degradation, and unfolded protein response (UPR), which suggested that CAR-8 treatment induced ER stress. Moreover, CAR-8 treatment resulted in various phenotypes similar to tunicamycin, a classical ER stress inducer. These included nonconventional splicing of HAC1 mRNA, the fragmented morphology of ER, the distribution changes of GFP-Snc1 in Saccharomyces cerevisiae, and cell apoptosis probably caused by ER stress. More importantly, the disruption of IRE1 or HAC1 increased the sensitivity of C. albicans to CAR-8, confirming that the UPR signaling pathway was critical for CAR-8 resistance. Overall, our study identifies a potent ER stress-induced antifungal compound that will help the discovery of new antifungal drugs.
Collapse
Affiliation(s)
- Wen Chao
- College of Basic Medical Sciences, Naval Medical University, Shanghai 200433, China
| | - Lijuan Qiu
- College of Basic Medical Sciences, Naval Medical University, Shanghai 200433, China
| | - Lu Gao
- Department of Pharmacology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Jia Feng
- Department of Pharmacology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yu Liu
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Lan Yan
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Yuanying Jiang
- Department of Pharmacology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Quanzhen Lv
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Naval Medical University, Shanghai 200433, China
| |
Collapse
|
12
|
Xiong J, Wang L, Feng Y, Zhen C, Hang S, Yu J, Lu H, Jiang Y. Geldanamycin confers fungicidal properties to azole by triggering the activation of succinate dehydrogenase. Life Sci 2024; 348:122699. [PMID: 38718854 DOI: 10.1016/j.lfs.2024.122699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/17/2024] [Accepted: 05/04/2024] [Indexed: 05/13/2024]
Abstract
AIMS Azoles have been widely employed for the treatment of invasive fungal diseases; however, their efficacy is diminished as pathogenic fungi tolerate them due to their fungistatic properties. Geldanamycin (GdA) can render azoles fungicidal by inhibiting the ATPase and molecular chaperone activities of heat shock protein 90 (Hsp90). Nonetheless, the clinical applicability of GdA is restricted due to its cytotoxic ansamycin scaffold structure, its induction of cytoprotective heat shock responses, and the conservative nature of Hsp90. Hence, it is imperative to elucidate the mechanism of action of GdA to confer fungicidal properties to azoles and mitigate the toxic adverse effects associated with GdA. MATERIALS AND METHODS Through various experimental methods, including the construction of gene-deleted Candida albicans mutants, in vitro drug sensitivity experiments, Western blot analysis, reactive oxygen species (ROS) assays, and succinate dehydrogenase activity assays, we identified Hsp90 client proteins associated with the tolerance of C. albicans to azoles. KEY FINDINGS It was observed that GdA effectively hindered the entry of Hsp90 into mitochondria, resulting in the alleviation of inhibitory effect of Hsp90 on succinate dehydrogenase. Consequently, the activation of succinate dehydrogenase led to an increased production of ROS. within the mitochondria, thereby facilitating the antifungal effects of azoles against C. albicans. SIGNIFICANCE This research presents a novel approach for conferring fungicidal properties to azoles, which involves specifically disrupting the interaction of between Hsp90 and succinate dehydrogenase rather than employing a non-specific inhibition of ATPase activity of Hsp90.
Collapse
Affiliation(s)
- Juan Xiong
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Li Wang
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yanru Feng
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Cheng Zhen
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Sijin Hang
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Jinhua Yu
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Hui Lu
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| | - Yuanying Jiang
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| |
Collapse
|
13
|
Goich D, Bloom ALM, Duffy SR, Ventura MN, Panepinto JC. Gcn2 rescues reprogramming in the absence of Hog1/p38 signaling in C. neoformans during thermal stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.11.598457. [PMID: 38915642 PMCID: PMC11195226 DOI: 10.1101/2024.06.11.598457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The fungus Cryptococcus neoformans is an opportunistic pathogen of people that reprograms its translatome to facilitate adaptation and virulence within the host. We studied the role of Hog1/p38 in reprogramming translation during thermal stress adaptation, and found that this pathway acts on translation via crosstalk with the Gcn2 pathway, a well-studied regulator of general translation control. Using a combination of molecular assays and phenotypic analysis, we show that increased output from the Gcn2 pathway in a Hog1 deletion mutant is associated with rescue of thermal stress adaptation at both molecular and phenotypic scales. We characterize known outputs of the Hog1 pathway during thermal stress as either Gcn2-dependent or Gcn2-independent, and demonstrate that Hog1 activation regulates the Gcn2 pathway even in the absence of thermal stress. Finally, we implicate this phenomenon in another Hog1-regulated process, morphogenesis, and recapitulate Hog1-Gcn2 crosstalk in the distantly related fungal pathogen, Candida albicans. Our results point to an important link between the stress response machinery and translation control, and clarify the etiology of phenotypes associated with Hog1 deletion. More broadly, this study highlights complex interplay between core conserved signal transduction pathways and the utility of molecular assays to better understand how these pathways are connected.
Collapse
Affiliation(s)
- David Goich
- Department of Microbiology and Immunology, Witebsky Center for Microbial Pathogenesis and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Amanda L. M. Bloom
- Department of Microbiology and Immunology, Witebsky Center for Microbial Pathogenesis and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Sean R. Duffy
- Department of Microbiology and Immunology, Witebsky Center for Microbial Pathogenesis and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Maritza N. Ventura
- Department of Microbiology and Immunology, Witebsky Center for Microbial Pathogenesis and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - John C. Panepinto
- Department of Microbiology and Immunology, Witebsky Center for Microbial Pathogenesis and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
14
|
Puumala E, Fallah S, Robbins N, Cowen LE. Advancements and challenges in antifungal therapeutic development. Clin Microbiol Rev 2024; 37:e0014223. [PMID: 38294218 PMCID: PMC10938895 DOI: 10.1128/cmr.00142-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024] Open
Abstract
Over recent decades, the global burden of fungal disease has expanded dramatically. It is estimated that fungal disease kills approximately 1.5 million individuals annually; however, the true worldwide burden of fungal infection is thought to be higher due to existing gaps in diagnostics and clinical understanding of mycotic disease. The development of resistance to antifungals across diverse pathogenic fungal genera is an increasingly common and devastating phenomenon due to the dearth of available antifungal classes. These factors necessitate a coordinated response by researchers, clinicians, public health agencies, and the pharmaceutical industry to develop new antifungal strategies, as the burden of fungal disease continues to grow. This review provides a comprehensive overview of the new antifungal therapeutics currently in clinical trials, highlighting their spectra of activity and progress toward clinical implementation. We also profile up-and-coming intracellular proteins and pathways primed for the development of novel antifungals targeting their activity. Ultimately, we aim to emphasize the importance of increased investment into antifungal therapeutics in the current continually evolving landscape of infectious disease.
Collapse
Affiliation(s)
- Emily Puumala
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Sara Fallah
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
15
|
Sah SK, Yadav A, Kruppa MD, Rustchenko E. Identification of 10 genes on Candida albicans chromosome 5 that control surface exposure of the immunogenic cell wall epitope β-glucan and cell wall remodeling in caspofungin-adapted mutants. Microbiol Spectr 2023; 11:e0329523. [PMID: 37966256 PMCID: PMC10714753 DOI: 10.1128/spectrum.03295-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/10/2023] [Indexed: 11/16/2023] Open
Abstract
IMPORTANCE Candida infections are often fatal in immuno-compromised individuals, resulting in many thousands of deaths per year. Caspofungin has proven to be an excellent anti-Candida drug and is now the frontline treatment for infections. However, as expected, the number of resistant cases is increasing; therefore, new treatment modalities are needed. We are determining metabolic pathways leading to decreased drug susceptibility in order to identify mechanisms facilitating evolution of clinical resistance. This study expands the understanding of genes that modulate drug susceptibility and reveals new targets for the development of novel antifungal drugs.
Collapse
Affiliation(s)
- Sudisht K. Sah
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York, USA
| | - Anshuman Yadav
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York, USA
| | - Michael D. Kruppa
- Department of Biomedical Sciences, Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Elena Rustchenko
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
16
|
Ramírez-Zavala B, Krüger I, Wollner A, Schwanfelder S, Morschhäuser J. The Ypk1 protein kinase signaling pathway is rewired and not essential for viability in Candida albicans. PLoS Genet 2023; 19:e1010890. [PMID: 37561787 PMCID: PMC10443862 DOI: 10.1371/journal.pgen.1010890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/22/2023] [Accepted: 07/28/2023] [Indexed: 08/12/2023] Open
Abstract
Protein kinases are central components of almost all signaling pathways that control cellular activities. In the model organism Saccharomyces cerevisiae, the paralogous protein kinases Ypk1 and Ypk2, which control membrane lipid homeostasis, are essential for viability, and previous studies strongly indicated that this is also the case for their single ortholog Ypk1 in the pathogenic yeast Candida albicans. Here, using FLP-mediated inducible gene deletion, we reveal that C. albicans ypk1Δ mutants are viable but slow-growing, explaining prior failures to obtain null mutants. Phenotypic analyses of the mutants showed that the functions of Ypk1 in regulating sphingolipid biosynthesis and cell membrane lipid asymmetry are conserved, but the consequences of YPK1 deletion are milder than in S. cerevisiae. Mutational studies demonstrated that the highly conserved PDK1 phosphorylation site T548 in its activation loop is essential for Ypk1 function, whereas the TORC2 phosphorylation sites S687 and T705 at the C-terminus are important for Ypk1-dependent resistance to membrane stress. Unexpectedly, Pkh1, the single C. albicans orthologue of Pkh1/Pkh2, which mediate Ypk1 phosphorylation at the PDK1 site in S. cerevisiae, was not required for normal growth of C. albicans under nonstressed conditions, and Ypk1 phosphorylation at T548 was only slightly reduced in pkh1Δ mutants. We found that another protein kinase, Pkh3, whose ortholog in S. cerevisiae cannot substitute Pkh1/2, acts redundantly with Pkh1 to activate Ypk1 in C. albicans. No phenotypic effects were observed in cells lacking Pkh3 alone, but pkh1Δ pkh3Δ double mutants had a severe growth defect and Ypk1 phosphorylation at T548 was completely abolished. These results establish that Ypk1 is not essential for viability in C. albicans and that, despite its generally conserved function, the Ypk1 signaling pathway is rewired in this pathogenic yeast and includes a novel upstream kinase to activate Ypk1 by phosphorylation at the PDK1 site.
Collapse
Affiliation(s)
| | - Ines Krüger
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Andreas Wollner
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Sonja Schwanfelder
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Joachim Morschhäuser
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
17
|
Druseikis M, Mottola A, Berman J. The Metabolism of Susceptibility: Clearing the FoG Between Tolerance and Resistance in Candida albicans. CURRENT CLINICAL MICROBIOLOGY REPORTS 2023; 10:36-46. [DOI: 10.1007/s40588-023-00189-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
18
|
Lee Y, Hossain S, MacAlpine J, Robbins N, Cowen LE. Functional genomic analysis of Candida albicans protein kinases reveals modulators of morphogenesis in diverse environments. iScience 2023; 26:106145. [PMID: 36879823 PMCID: PMC9984565 DOI: 10.1016/j.isci.2023.106145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/21/2022] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Candida albicans is a leading cause of mycotic infection. The ability to transition between yeast and filamentous forms is critical to C. albicans virulence and complex signaling pathways regulate this process. Here, we screened a C. albicans protein kinase mutant library in six environmental conditions to identify regulators of morphogenesis. We identified the uncharacterized gene orf19.3751 as a negative regulator of filamentation and follow-up investigations implicated a role for orf19.3751 in cell cycle regulation. We also uncovered a dual role for the kinases Ire1 and protein kinase A (Tpk1 and Tpk2) in C. albicans morphogenesis, specifically as negative regulators of wrinkly colony formation on solid medium but positive regulators of filamentation in liquid medium. Further analyses suggested Ire1 modulates morphogenesis in both media states in part through the transcription factor Hac1 and in part through independent mechanisms. Overall, this work provides insights into the signaling governing morphogenesis in C. albicans.
Collapse
Affiliation(s)
- Yunjin Lee
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Saif Hossain
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jessie MacAlpine
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
19
|
Gervais NC, La Bella AA, Wensing LF, Sharma J, Acquaviva V, Best M, Cadena López RO, Fogal M, Uthayakumar D, Chavez A, Santiago-Tirado F, Flores-Mireles AL, Shapiro RS. Development and applications of a CRISPR activation system for facile genetic overexpression in Candida albicans. G3 (BETHESDA, MD.) 2023; 13:jkac301. [PMID: 36450451 PMCID: PMC9911074 DOI: 10.1093/g3journal/jkac301] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/02/2021] [Accepted: 11/04/2022] [Indexed: 12/02/2022]
Abstract
For the fungal pathogen Candida albicans, genetic overexpression readily occurs via a diversity of genomic alterations, such as aneuploidy and gain-of-function mutations, with important consequences for host adaptation, virulence, and evolution of antifungal drug resistance. Given the important role of overexpression on C. albicans biology, it is critical to develop and harness tools that enable the analysis of genes expressed at high levels in the fungal cell. Here, we describe the development, optimization, and application of a novel, single-plasmid-based CRISPR activation (CRISPRa) platform for targeted genetic overexpression in C. albicans, which employs a guide RNA to target an activator complex to the promoter region of a gene of interest, thus driving transcriptional expression of that gene. Using this system, we demonstrate the ability of CRISPRa to drive high levels of gene expression in C. albicans, and we assess optimal guide RNA targeting for robust and constitutive overexpression. We further demonstrate the specificity of the system via RNA sequencing. We highlight the application of CRISPR activation to overexpress genes involved in pathogenesis and drug susceptibility, and contribute toward the identification of novel phenotypes. Consequently, this tool will facilitate a broad range of applications for the study of C. albicans genetic overexpression.
Collapse
Affiliation(s)
- Nicholas C Gervais
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1H 5N4, Canada
| | - Alyssa A La Bella
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Lauren F Wensing
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1H 5N4, Canada
| | - Jehoshua Sharma
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1H 5N4, Canada
| | - Victoria Acquaviva
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1H 5N4, Canada
| | - Madison Best
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1H 5N4, Canada
| | | | - Meea Fogal
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1H 5N4, Canada
| | - Deeva Uthayakumar
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1H 5N4, Canada
- Present address: Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Alejandro Chavez
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | | | - Ana L Flores-Mireles
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Rebecca S Shapiro
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1H 5N4, Canada
| |
Collapse
|
20
|
Chaillot J, Cook MA, Sellam A. Novel determinants of cell size homeostasis in the opportunistic yeast Candida albicans. Curr Genet 2023; 69:67-75. [PMID: 36449086 DOI: 10.1007/s00294-022-01260-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 12/05/2022]
Abstract
The basis for commitment to cell division in late G1 phase, called Start in yeast, is a critical but still poorly understood aspect of eukaryotic cell proliferation. Most dividing cells accumulate mass and grow to a critical cell size before traversing the cell cycle. This size threshold couples cell growth to division and thereby establishes long-term size homeostasis. At present, mechanisms involved in cell size homeostasis in fungal pathogens are not well described. Our previous survey of the size phenome in Candida albicans focused on 279 unique mutants enriched mainly in kinases and transcription factors (Sellam et al. PLoS Genet 15:e1008052, 2019). To uncover novel size regulators in C. albicans and highlight potential innovation within cell size control in pathogenic fungi, we expanded our genetic survey of cell size to include 1301 strains from the GRACE (Gene Replacement and Conditional Expression) collection. The current investigation uncovered both known and novel biological processes required for cell size homeostasis in C. albicans. We also confirmed the plasticity of the size control network as few C. albicans size genes overlapped with those of the budding yeast Saccharomyces cerevisiae. Many new size genes of C. albicans were associated with biological processes that were not previously linked to cell size control and offer an opportunity for future investigation. Additional work is needed to understand if mitochondrial activity is a critical element of the metric that dictates cell size in C. albicans and whether modulation of the onset of actomyosin ring constriction is an additional size checkpoint.
Collapse
Affiliation(s)
- Julien Chaillot
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
- Centre de Recherche Paul Pascal, Unité Mixte de Recherche 5031, Université de Bordeaux, Centre National de la Recherche Scientifique, 33600, Pessac, France
| | - Michael A Cook
- Department of Biochemistry and Biomedical Sciences, David Braley Center for Antibiotic Discovery, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Adnane Sellam
- Montreal Heart Institute, Université de Montréal, Montréal, QC, Canada.
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
21
|
Application of the Mutant Libraries for Candida albicans Functional Genomics. Int J Mol Sci 2022; 23:ijms232012307. [PMID: 36293157 PMCID: PMC9603287 DOI: 10.3390/ijms232012307] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
Candida albicans is a typical opportunistic pathogen in humans that causes serious health risks in clinical fungal infections. The construction of mutant libraries has made remarkable developments in the study of C. albicans molecular and cellular biology with the ongoing advancements of gene editing, which include the application of CRISPR-Cas9 and novel high-efficient transposon. Large-scale genetic screens and genome-wide functional analysis accelerated the investigation of new genetic regulatory mechanisms associated with the pathogenicity and resistance to environmental stress in C. albicans. More importantly, sensitivity screening based on C. albicans mutant libraries is critical for the target identification of novel antifungal compounds, which leads to the discovery of Sec7p, Tfp1p, Gwt1p, Gln4p, and Erg11p. This review summarizes the main types of C. albicans mutant libraries and interprets their applications in morphogenesis, biofilm formation, fungus-host interactions, antifungal drug resistance, and target identification.
Collapse
|
22
|
Jenull S, Shivarathri R, Tsymala I, Penninger P, Trinh PC, Nogueira F, Chauhan M, Singh A, Petryshyn A, Stoiber A, Chowdhary A, Chauhan N, Kuchler K. Transcriptomics and Phenotyping Define Genetic Signatures Associated with Echinocandin Resistance in Candida auris. mBio 2022; 13:e0079922. [PMID: 35968956 PMCID: PMC9426441 DOI: 10.1128/mbio.00799-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/18/2022] [Indexed: 11/20/2022] Open
Abstract
Candida auris emerged as a human fungal pathogen only during the past decade. Remarkably, C. auris displays high degrees of genomic diversity and phenotypic plasticity, with four major clades causing hospital outbreaks with high mortality and morbidity rates. C. auris can show clinical resistance to all classes of antifungal drugs, including echinocandins that are usually recommended as first-line therapies for invasive candidiasis. Here, we exploit transcriptomics coupled with phenotypic profiling to characterize a set of clinical C. auris isolates displaying pronounced echinocandin resistance (ECN-R). A hot spot mutation in the echinocandin FKS1 target gene is present in all resistant isolates. Moreover, ECN-R strains share a core signature set of 362 genes differentially expressed in ECN-R isolates. Among others, mitochondrial gene expression and genes affecting cell wall function appear to be the most prominent, with the latter correlating well with enhanced adhesive traits, increased cell wall mannan content, and altered sensitivity to cell wall stress of ECN-R isolates. Moreover, ECN-R phenotypic signatures were also linked to pathogen recognition and interaction with immune cells. Hence, transcriptomics paired with phenotyping is a suitable tool to predict resistance and fitness traits as well as treatment outcomes in pathogen populations with complex phenotypic diversity. IMPORTANCE The surge in antimicrobial drug resistance in some bacterial and fungal pathogens constitutes a significant challenge to health care facilities. The emerging human fungal pathogen Candida auris has been particularly concerning, as isolates can display pan-antifungal resistance traits against all drugs, including echinocandins. However, the mechanisms underlying this phenotypic diversity remain poorly understood. We identify transcriptomic signatures in C. auris isolates resistant to otherwise fungicidal echinocandins. We identify a set of differentially expressed genes shared by resistant strains compared to unrelated susceptible isolates. Moreover, phenotyping demonstrates that resistant strains show distinct behaviors, with implications for host-pathogen interactions. Hence, this work provides a solid basis to identify the mechanistic links between antifungal multidrug resistance and fitness costs that affect the interaction of C. auris with host immune defenses.
Collapse
Affiliation(s)
- Sabrina Jenull
- Department of Medical Biochemistry, Max Perutz Labs Vienna, Medical University of Vienna, Campus Vienna Biocenter, Vienna, Austria
- Functional Microbiology, Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Raju Shivarathri
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| | - Irina Tsymala
- Department of Medical Biochemistry, Max Perutz Labs Vienna, Medical University of Vienna, Campus Vienna Biocenter, Vienna, Austria
| | - Philipp Penninger
- Department of Medical Biochemistry, Max Perutz Labs Vienna, Medical University of Vienna, Campus Vienna Biocenter, Vienna, Austria
| | - Phan-Canh Trinh
- Department of Medical Biochemistry, Max Perutz Labs Vienna, Medical University of Vienna, Campus Vienna Biocenter, Vienna, Austria
| | - Filomena Nogueira
- Department of Medical Biochemistry, Max Perutz Labs Vienna, Medical University of Vienna, Campus Vienna Biocenter, Vienna, Austria
- CCRI-St. Anna Children’s Cancer Research Institute, Vienna, Austria
| | - Manju Chauhan
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| | - Ashutosh Singh
- National Reference Laboratory for Antimicrobial Resistance in Fungal Pathogens, Medical Mycology Unit, Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Andriy Petryshyn
- Department of Medical Biochemistry, Max Perutz Labs Vienna, Medical University of Vienna, Campus Vienna Biocenter, Vienna, Austria
| | - Anton Stoiber
- Department of Medical Biochemistry, Max Perutz Labs Vienna, Medical University of Vienna, Campus Vienna Biocenter, Vienna, Austria
| | - Anuradha Chowdhary
- National Reference Laboratory for Antimicrobial Resistance in Fungal Pathogens, Medical Mycology Unit, Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Neeraj Chauhan
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| | - Karl Kuchler
- Department of Medical Biochemistry, Max Perutz Labs Vienna, Medical University of Vienna, Campus Vienna Biocenter, Vienna, Austria
| |
Collapse
|
23
|
Lee Y, Liston SD, Lee D, Robbins N, Cowen LE. Functional analysis of the Candida albicans kinome reveals Hrr25 as a regulator of antifungal susceptibility. iScience 2022; 25:104432. [PMID: 35663022 PMCID: PMC9160768 DOI: 10.1016/j.isci.2022.104432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 05/05/2022] [Accepted: 05/13/2022] [Indexed: 12/14/2022] Open
Abstract
Candida albicans is a leading cause of death due to systemic fungal infections. Poor patient outcomes are attributable to the limited number of antifungal classes and the increasing prevalence of drug resistance. Protein kinases have emerged as rewarding targets in the development of drugs for diverse diseases, yet kinases remain untapped in the quest for new antifungals. Here, we performed a comprehensive analysis of the C. albicans kinome to identify genes for which loss-of-function confers hypersensitivity to the two most widely deployed antifungals, echinocandins and azoles. Through this analysis, we found a role for the casein kinase 1 (CK1) homologue Hrr25 in regulating tolerance to both antifungals as well as target-mediated echinocandin resistance. Follow-up investigations established that Hrr25 regulates these responses through its interaction with the SBF transcription factor. Thus, we provide insights into the circuitry governing cellular responses to antifungals and implicate Hrr25 as a key mediator of drug resistance. Screening Candida albicans kinase mutants reveals 47 regulators of antifungal tolerance Hrr25 is important for growth and cell wall/membrane stress tolerance Hrr25 enables target-mediated echinocandin resistance Hrr25 interacts with the SBF transcription factor complex
Collapse
Affiliation(s)
- Yunjin Lee
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Sean D Liston
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Dongyeob Lee
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| |
Collapse
|
24
|
Rao KH, Roy K, Ghosh S. Srg1, a putative protein phosphatase from the HAD-family, is involved in stress adaptation in Candida albicans. Biochim Biophys Acta Gen Subj 2022; 1866:130164. [PMID: 35523365 DOI: 10.1016/j.bbagen.2022.130164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 04/23/2022] [Accepted: 04/28/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND The cell stress response plays an important role in the survival of organisms. Studies have revealed that the pathogenic yeast Candida albicans that constantly encounters various environmental insults inside the host has emerged as an ideal system to understand the molecular mechanism (s) of stress response. In this study, we characterize a stress-inducible gene SRG1 which is a Halo Acid Dehalogenase (HAD) family member from C. albicans. METHODS We used confocal microscopy, site-directed mutagenesis, gene deletion techniques, and tandem-affinity purification and co-immunoprecipitation studies to functionally characterize SRG1. RESULTS The sub-cellular localization of Srg1 is predominantly cytoplasmic and includes punctate mitochondrial staining in the presence of salt. Protein purification studies coupled with LC-MS analysis showed that Srg1 is a phosphoprotein. The Srg1 mutant carrying S47A and S49A mutations failed to migrate to mitochondria in the presence of salt but retained its phosphatase activity. Srg1 migrates to the nucleus in ∆hog1 mutant cells indicating an unorthodox role for HAD family proteins in stress-mediated transcriptional response. Srg1 also interacts with Erg13, a component involved in the mitochondrial membrane lipid biosynthesis pathway. CONCLUSIONS A multistep relay mechanism that includes a positive modulation by the MAP kinase Hog1 and a negative modulation by the global repressor Tup1 controls SRG1 expression. GENERAL SIGNIFICANCE Taken together, our work contributes towards gaining a functional insight into a class of phosphatases that probably have evolved with novel specificities in the pathogenic yeast C. albicans to counteract stressful conditions.
Collapse
Affiliation(s)
- Kongara Hanumantha Rao
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, New Delhi, India; Central Instrumentation Facility, Division of Research and Development, Lovely Professional University, Phagwara, Punjab, India.
| | - Kasturi Roy
- Dept. of Molecular Biology and Biotechnology, University of Kalyani., Kalyani, West Bengal, India
| | - Swagata Ghosh
- Dept. of Molecular Biology and Biotechnology, University of Kalyani., Kalyani, West Bengal, India.
| |
Collapse
|
25
|
Prasad P, Joshi A, Ghosh SK. Sth1, the ATPase subunit of the RSC chromatin remodeler has important roles in stress response and DNA damage repair in the pathogenic fungi Candida albicans. Microb Pathog 2022; 166:105515. [DOI: 10.1016/j.micpath.2022.105515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 03/26/2022] [Accepted: 04/03/2022] [Indexed: 01/13/2023]
|
26
|
Ramírez-Zavala B, Krüger I, Dunker C, Jacobsen ID, Morschhäuser J. The protein kinase Ire1 has a Hac1-independent essential role in iron uptake and virulence of Candida albicans. PLoS Pathog 2022; 18:e1010283. [PMID: 35108336 PMCID: PMC8846550 DOI: 10.1371/journal.ppat.1010283] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/14/2022] [Accepted: 01/19/2022] [Indexed: 11/25/2022] Open
Abstract
Protein kinases play central roles in virtually all signaling pathways that enable organisms to adapt to their environment. Microbial pathogens must cope with severely restricted iron availability in mammalian hosts to invade and establish themselves within infected tissues. To uncover protein kinase signaling pathways that are involved in the adaptation of the pathogenic yeast Candida albicans to iron limitation, we generated a comprehensive protein kinase deletion mutant library of a wild-type strain. Screening of this library revealed that the protein kinase Ire1, which has a conserved role in the response of eukaryotic cells to endoplasmic reticulum stress, is essential for growth of C. albicans under iron-limiting conditions. Ire1 was not necessary for the activity of the transcription factor Sef1, which regulates the response of the fungus to iron limitation, and Sef1 target genes that are induced by iron depletion were normally upregulated in ire1Δ mutants. Instead, Ire1 was required for proper localization of the high-affinity iron permease Ftr1 to the cell membrane. Intriguingly, iron limitation did not cause increased endoplasmic reticulum stress, and the transcription factor Hac1, which is activated by Ire1-mediated removal of the non-canonical intron in the HAC1 mRNA, was dispensable for Ftr1 localization to the cell membrane and growth under iron-limiting conditions. Nevertheless, expression of a pre-spliced HAC1 copy in ire1Δ mutants restored Ftr1 localization and rescued the growth defects of the mutants. Both ire1Δ and hac1Δ mutants were avirulent in a mouse model of systemic candidiasis, indicating that an appropriate response to endoplasmic reticulum stress is important for the virulence of C. albicans. However, the specific requirement of Ire1 for the functionality of the high-affinity iron permease Ftr1, a well-established virulence factor, even in the absence of endoplasmic reticulum stress uncovers a novel Hac1-independent essential role of Ire1 in iron acquisition and virulence of C. albicans.
Collapse
Affiliation(s)
| | - Ines Krüger
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Christine Dunker
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany
| | - Ilse D. Jacobsen
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany
- Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Joachim Morschhäuser
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
27
|
Henry M, Burgain A, Tebbji F, Sellam A. Transcriptional Control of Hypoxic Hyphal Growth in the Fungal Pathogen Candida albicans. Front Cell Infect Microbiol 2022; 11:770478. [PMID: 35127551 PMCID: PMC8807691 DOI: 10.3389/fcimb.2021.770478] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/26/2021] [Indexed: 12/18/2022] Open
Abstract
The ability of Candida albicans, an important human fungal pathogen, to develop filamentous forms is a crucial determinant for host invasion and virulence. While hypoxia is one of the predominant host cues that promote C. albicans filamentous growth, the regulatory circuits that link oxygen availability to filamentation remain poorly characterized. We have undertaken a genetic screen and identified the two transcription factors Ahr1 and Tye7 as central regulators of the hypoxic filamentation. Both ahr1 and tye7 mutants exhibited a hyperfilamentous phenotype specifically under an oxygen-depleted environment suggesting that these transcription factors act as negative regulators of hypoxic filamentation. By combining microarray and ChIP-chip analyses, we have characterized the set of genes that are directly modulated by Ahr1 and Tye7. We found that both Ahr1 and Tye7 modulate a distinct set of genes and biological processes. Our genetic epistasis analysis supports our genomic finding and suggests that Ahr1 and Tye7 act independently to modulate hyphal growth in response to hypoxia. Furthermore, our genetic interaction experiments uncovered that Ahr1 and Tye7 repress the hypoxic filamentation via the Efg1 and Ras1/Cyr1 pathways, respectively. This study yielded a new and an unprecedented insight into the oxygen-sensitive regulatory circuit that control morphogenesis in a fungal pathogen.
Collapse
Affiliation(s)
- Manon Henry
- Montreal Heart Institute, Université de Montréal, Montréal, QC, Canada
| | - Anaïs Burgain
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Faiza Tebbji
- Montreal Heart Institute, Université de Montréal, Montréal, QC, Canada
| | - Adnane Sellam
- Montreal Heart Institute, Université de Montréal, Montréal, QC, Canada
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- *Correspondence: Adnane Sellam,
| |
Collapse
|
28
|
Das S, Goswami AM, Saha T. An insight into the role of protein kinases as virulent factors, regulating pathogenic attributes in Candida albicans. Microb Pathog 2022; 164:105418. [DOI: 10.1016/j.micpath.2022.105418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 01/21/2022] [Accepted: 01/21/2022] [Indexed: 11/26/2022]
|
29
|
Gervais NC, Halder V, Shapiro RS. A data library of Candida albicans functional genomic screens. FEMS Yeast Res 2021; 21:6433625. [PMID: 34864983 DOI: 10.1093/femsyr/foab060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/19/2021] [Indexed: 12/12/2022] Open
Abstract
Functional genomic screening of genetic mutant libraries enables the characterization of gene function in diverse organisms. For the fungal pathogen Candida albicans, several genetic mutant libraries have been generated and screened for diverse phenotypes, including tolerance to environmental stressors and antifungal drugs, and pathogenic traits such as cellular morphogenesis, biofilm formation and host-pathogen interactions. Here, we compile and organize C. albicans functional genomic screening data from ∼400 screens, to generate a data library of genetic mutant strains analyzed under diverse conditions. For quantitative screening data, we normalized these results to enable quantitative and comparative analysis of different genes across different phenotypes. Together, this provides a unique C. albicans genetic database, summarizing abundant phenotypic data from functional genomic screens in this critical fungal pathogen.
Collapse
Affiliation(s)
- Nicholas C Gervais
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Viola Halder
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Rebecca S Shapiro
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
30
|
Lara-Aguilar V, Rueda C, García-Barbazán I, Varona S, Monzón S, Jiménez P, Cuesta I, Zaballos Á, Zaragoza Ó. Adaptation of the emerging pathogenic yeast Candida auris to high caspofungin concentrations correlates with cell wall changes. Virulence 2021; 12:1400-1417. [PMID: 34180774 PMCID: PMC8244764 DOI: 10.1080/21505594.2021.1927609] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/15/2021] [Accepted: 04/30/2021] [Indexed: 11/13/2022] Open
Abstract
Candida auris has emerged as a fungal pathogen that causes nosocomial outbreaks worldwide. Diseases caused by this fungus are of concern, due to its reduced susceptibility to several antifungals. C. auris exhibits paradoxical growth (PG; defined as growth at high, but not intermediate antifungal concentrations) in the presence of caspofungin (CPF). We have characterized the cellular changes associated with adaptation to CPF. Using EUCAST AFST protocols, all C. auris isolates tested showed PG to CPF, although in some isolates it was more prominent. Most isolates also showed a trailing effect (TE) to micafungin and anidulafungin. We identified two FKS genes in C. auris that encode the echinocandins target, namely β-1,3-glucan synthase. FKS1 contained the consensus hot-spot (HS) 1 and HS2 sequences. FKS2 only contained the HS1 region which had a change (F635Y), that has been shown to confer resistance to echinocandins in C. glabrata. PG has been characterized in other species, mainly C. albicans, where high CPF concentrations induced an increase in chitin, cell volume and aggregation. In C. auris CPF only induced a slight accumulation of chitin, and none of the other phenomena. RNAseq experiments demonstrated that CPF induced the expression of genes encoding several GPI-anchored cell wall proteins, membrane proteins required for the stability of the cell wall, chitin synthase and mitogen-activated protein kinases (MAPKs) involved in cell integrity, such as BCK2, HOG1 and MKC1 (SLT2). Our work highlights some of the processes induced in C. auris to adapt to echinocandins.
Collapse
Affiliation(s)
- Violeta Lara-Aguilar
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto De Salud Carlos III, Madrid, Spain
| | - Cristina Rueda
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto De Salud Carlos III, Madrid, Spain
| | - Irene García-Barbazán
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto De Salud Carlos III, Madrid, Spain
| | - Sarai Varona
- Bioinformatics Unit, Core Scientific and Technical Units, Instituto De Salud Carlos III, Madrid, Spain
| | - Sara Monzón
- Bioinformatics Unit, Core Scientific and Technical Units, Instituto De Salud Carlos III, Madrid, Spain
| | - Pilar Jiménez
- Genomics Unit, Core Scientific and Technical Units, Instituto De Salud Carlos III, Madrid, Spain
| | - Isabel Cuesta
- Bioinformatics Unit, Core Scientific and Technical Units, Instituto De Salud Carlos III, Madrid, Spain
| | - Ángel Zaballos
- Genomics Unit, Core Scientific and Technical Units, Instituto De Salud Carlos III, Madrid, Spain
| | - Óscar Zaragoza
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto De Salud Carlos III, Madrid, Spain
| |
Collapse
|
31
|
Kim J, Park S, Kwon SH, Lee EJ, Lee JS. Set1-mediated H3K4 methylation is required for Candida albicans virulence by regulating intracellular level of reactive oxygen species. Virulence 2021; 12:2648-2658. [PMID: 34696687 PMCID: PMC8555521 DOI: 10.1080/21505594.2021.1980988] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Candida albicans is an opportunistic human fungal pathogen that exists in normal flora but can cause infection in immunocompromised individuals. The transition to pathogenic C. albicans requires a change of various gene expressions. Because histone-modifying enzymes can regulate gene expression, they are thought to control the virulence of C. albicans. Indeed, the absence of H3 lysine 4 (H3K4) methyltransferase Set1 has been shown to reduce the virulence of C. albicans; however, Set1-regulated genes responsible for this attenuated virulence phenotype remain unknown. Here, we demonstrated that Set1 positively regulates the expression of mitochondrial protein genes by methylating H3K4. In particular, levels of cellular mitochondrial reactive oxygen species (ROS) were higher in Δset1 than in the wild-type due to the defect of those genes’ expression. Set1 deletion also increases H2O2 sensitivity and prevents proper colony formation when interacting with macrophage in vitro, consistent with its attenuated virulence in vivo. Together, these findings suggest that Set1 is required to regulate proper cellular ROS production by positively regulating the expression of mitochondrial protein genes and subsequently sustaining mitochondrial membrane integrity. Consequently, C. albicans maintains proper ROS levels via Set1-mediated transcriptional regulation, thus establishing a rapid defense against external ROS generated by the host.
Collapse
Affiliation(s)
- Jueun Kim
- Department of Molecular Bioscience College of Biomedical Science, Kangwon National University, Chuncheon-si, Korea
| | - Shinae Park
- Department of Molecular Bioscience College of Biomedical Science, Kangwon National University, Chuncheon-si, Korea
| | - So Hee Kwon
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Korea
| | - Eun-Jin Lee
- Department of Life Sciences, Korea University, Seoul, Korea
| | - Jung-Shin Lee
- Department of Molecular Bioscience College of Biomedical Science, Kangwon National University, Chuncheon-si, Korea
| |
Collapse
|
32
|
Rai LS, van Wijlick L, Chauvel M, d'Enfert C, Legrand M, Bachellier-Bassi S. Overexpression approaches to advance understanding of Candida albicans. Mol Microbiol 2021; 117:589-599. [PMID: 34569668 PMCID: PMC9298300 DOI: 10.1111/mmi.14818] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 12/15/2022]
Abstract
Candida albicans is an opportunistic fungal pathogen that is responsible for infections linked to high mortality. Loss‐of‐function approaches, taking advantage of gene knockouts or inducible down‐regulation, have been successfully used in this species in order to understand gene function. However, overexpression of a gene provides an alternative, powerful tool to elucidate gene function and identify novel phenotypes. Notably, overexpression can identify pathway components that might remain undetected using loss‐of‐function approaches. Several repressible or inducible promoters have been developed which allow to shut off or turn on the expression of a gene in C. albicans upon growth in the presence of a repressor or inducer. In this review, we summarize recent overexpression approaches used to study different aspects of C. albicans biology, including morphogenesis, biofilm formation, drug tolerance, and commensalism.
Collapse
Affiliation(s)
- Laxmi Shanker Rai
- Unité Biologie et Pathogénicité Fongiques, Institut Pasteur, Université de Paris, INRAE, USC2019, Paris, France
| | - Lasse van Wijlick
- Unité Biologie et Pathogénicité Fongiques, Institut Pasteur, Université de Paris, INRAE, USC2019, Paris, France
| | - Murielle Chauvel
- Unité Biologie et Pathogénicité Fongiques, Institut Pasteur, Université de Paris, INRAE, USC2019, Paris, France
| | - Christophe d'Enfert
- Unité Biologie et Pathogénicité Fongiques, Institut Pasteur, Université de Paris, INRAE, USC2019, Paris, France
| | - Mélanie Legrand
- Unité Biologie et Pathogénicité Fongiques, Institut Pasteur, Université de Paris, INRAE, USC2019, Paris, France
| | - Sophie Bachellier-Bassi
- Unité Biologie et Pathogénicité Fongiques, Institut Pasteur, Université de Paris, INRAE, USC2019, Paris, France
| |
Collapse
|
33
|
Min K, Jannace TF, Si H, Veeramah KR, Haley JD, Konopka JB. Integrative multi-omics profiling reveals cAMP-independent mechanisms regulating hyphal morphogenesis in Candida albicans. PLoS Pathog 2021; 17:e1009861. [PMID: 34398936 PMCID: PMC8389844 DOI: 10.1371/journal.ppat.1009861] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/26/2021] [Accepted: 08/02/2021] [Indexed: 12/24/2022] Open
Abstract
Microbial pathogens grow in a wide range of different morphologies that provide distinct advantages for virulence. In the fungal pathogen Candida albicans, adenylyl cyclase (Cyr1) is thought to be a master regulator of the switch to invasive hyphal morphogenesis and biofilm formation. However, faster growing cyr1Δ/Δ pseudorevertant (PR) mutants were identified that form hyphae in the absence of cAMP. Isolation of additional PR mutants revealed that their improved growth was due to loss of one copy of BCY1, the negative regulatory subunit of protein kinase A (PKA) from the left arm of chromosome 2. Furthermore, hyphal morphogenesis was improved in some of PR mutants by multigenic haploinsufficiency resulting from loss of large regions of the left arm of chromosome 2, including global transcriptional regulators. Interestingly, hyphal-associated genes were also induced in a manner that was independent of cAMP. This indicates that basal protein kinase A activity is an important prerequisite to induce hyphae, but activation of adenylyl cyclase is not needed. Instead, phosphoproteomic analysis indicated that the Cdc28 cyclin-dependent kinase and the casein kinase 1 family member Yck2 play key roles in promoting polarized growth. In addition, integrating transcriptomic and proteomic data reveals hyphal stimuli induce increased production of key transcription factors that contribute to polarized morphogenesis.
Collapse
Affiliation(s)
- Kyunghun Min
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University (SUNY), Stony Brook, New York, United States of America
| | - Thomas F. Jannace
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University (SUNY), Stony Brook, New York, United States of America
| | - Haoyu Si
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University (SUNY), Stony Brook, New York, United States of America
| | - Krishna R. Veeramah
- Department of Ecology and Evolution, Stony Brook University (SUNY), Stony Brook, New York, United States of America
| | - John D. Haley
- Department of Pathology, Renaissance School of Medicine, Stony Brook University (SUNY), Stony Brook, New York, United States of America
- Biological Mass Spectrometry Shared Resource, Renaissance School of Medicine, Stony Brook University (SUNY), Stony Brook, New York, United States of America
| | - James B. Konopka
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University (SUNY), Stony Brook, New York, United States of America
- * E-mail:
| |
Collapse
|
34
|
Ichikawa Y, Bruno VM, Woolford CA, Kim H, Do E, Brewer GC, Mitchell AP. Environmentally contingent control of Candida albicans cell wall integrity by transcriptional regulator Cup9. Genetics 2021; 218:iyab075. [PMID: 33989396 PMCID: PMC8864738 DOI: 10.1093/genetics/iyab075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 05/07/2021] [Indexed: 11/14/2022] Open
Abstract
The fungal pathogen Candida albicans is surrounded by a cell wall that is the target of caspofungin and other echinocandin antifungals. Candida albicans can grow in several morphological forms, notably budding yeast and hyphae. Yeast and hyphal forms differ in cell wall composition, leading us to hypothesize that there may be distinct genes required for yeast and hyphal responses to caspofungin. Mutants in 27 genes reported previously to be caspofungin hypersensitive under yeast growth conditions were all caspofungin hypersensitive under hyphal growth conditions as well. However, a screen of mutants defective in transcription factor genes revealed that Cup9 is required for normal caspofungin tolerance under hyphal and not yeast growth conditions. In a hyphal-defective efg1Δ/Δ background, Cup9 is still required for normal caspofungin tolerance. This result argues that Cup9 function is related to growth conditions rather than cell morphology. RNA-seq conducted under hyphal growth conditions indicated that 361 genes were up-regulated and 145 genes were down-regulated in response to caspofungin treatment. Both classes of caspofungin-responsive genes were enriched for cell wall-related proteins, as expected for a response to disruption of cell wall integrity and biosynthesis. The cup9Δ/Δ mutant, treated with caspofungin, had reduced RNA levels of 40 caspofungin up-regulated genes, and had increased RNA levels of 8 caspofungin down-regulated genes, an indication that Cup9 has a narrow rather than global role in the cell wall integrity response. Five Cup9-activated surface-protein genes have roles in cell wall integrity, based on mutant analysis published previously (PGA31 and IFF11) or shown here (ORF19.3499, ORF19.851, or PGA28), and therefore may explain the hypersensitivity of the cup9Δ/Δmutant to caspofungin. Our findings define Cup9 as a new determinant of caspofungin susceptibility.
Collapse
Affiliation(s)
- Yuichi Ichikawa
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Division of Cancer Biology, The Cancer Institute of JFCR, Koto-ku, Tokyo 135-8550, Japan
| | - Vincent M Bruno
- Department of Microbiology and Immunology and Institute of Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Carol A Woolford
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Hannah Kim
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA 19122, USA
| | - Eunsoo Do
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | - Grace C Brewer
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | - Aaron P Mitchell
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
35
|
Germination of a Field: Women in Candida albicans Research. CURRENT CLINICAL MICROBIOLOGY REPORTS 2021. [DOI: 10.1007/s40588-021-00169-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
36
|
Lu H, Shrivastava M, Whiteway M, Jiang Y. Candida albicans targets that potentially synergize with fluconazole. Crit Rev Microbiol 2021; 47:323-337. [PMID: 33587857 DOI: 10.1080/1040841x.2021.1884641] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 01/11/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023]
Abstract
Fluconazole has characteristics that make it widely used in the clinical treatment of C. albicans infections. However, fluconazole has only a fungistatic activity in C. albicans, therefore, in the long-term treatment of C. albicans infection with fluconazole, C. albicans has the potential to acquire fluconazole resistance. A promising approach to increase fluconazole's efficacy is identifying potential targets of drugs that can enhance the antifungal effect of fluconazole, or even make the drug fungicidal. In this review, we systematically provide a global overview of potential targets of drugs synergistic with fluconazole in C. albicans, identify new avenues for research on fluconazole potentiation, and highlight the promise of combinatorial strategies with fluconazole in combatting C. albicans infections.
Collapse
Affiliation(s)
- Hui Lu
- Department of Pharmacology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | | | - Malcolm Whiteway
- Department of Biology, Concordia University, Montreal, QC, Canada
| | - Yuanying Jiang
- Department of Pharmacology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
37
|
Mela A, Momany M. Septins coordinate cell wall integrity and lipid metabolism in a sphingolipid-dependent process. J Cell Sci 2021; 135:256543. [PMID: 33912961 DOI: 10.1242/jcs.258336] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 12/31/2020] [Indexed: 01/09/2023] Open
Abstract
Septins colocalize with membrane sterol-rich regions and facilitate recruitment of cell wall synthases during wall remodeling. We show that null mutants missing an Aspergillus nidulans core septin present in hexamers and octamers (ΔaspAcdc11, ΔaspBcdc3 or ΔaspCcdc12) are sensitive to multiple cell wall-disturbing agents that activate the cell wall integrity MAPK pathway. The null mutant missing the octamer-exclusive core septin (ΔaspDcdc10) showed similar sensitivity, but only to a single cell wall-disturbing agent and the null mutant missing the noncore septin (ΔaspE) showed only very mild sensitivity to a different single agent. Core septin mutants showed changes in wall polysaccharide composition and chitin synthase localization. Mutants missing any of the five septins resisted ergosterol-disrupting agents. Hexamer mutants showed increased sensitivity to sphingolipid-disrupting agents. Core septins mislocalized after treatment with sphingolipid-disrupting agents, but not after ergosterol-disrupting agents. Our data suggest that the core septins are involved in cell wall integrity signaling, that all five septins are involved in monitoring ergosterol metabolism, that the hexamer septins are required for sphingolipid metabolism and that septins require sphingolipids to coordinate the cell wall integrity response.
Collapse
Affiliation(s)
- Alexander Mela
- Fungal Biology Group and Plant Biology Department, University of Georgia, 2502 Miller Plant Science Building, Athens, GA 30602, USA
| | - Michelle Momany
- Fungal Biology Group and Plant Biology Department, University of Georgia, 2502 Miller Plant Science Building, Athens, GA 30602, USA
| |
Collapse
|
38
|
Mottola A, Ramírez-Zavala B, Hünniger K, Kurzai O, Morschhäuser J. The zinc cluster transcription factor Czf1 regulates cell wall architecture and integrity in Candida albicans. Mol Microbiol 2021; 116:483-497. [PMID: 33860578 DOI: 10.1111/mmi.14727] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/29/2021] [Accepted: 04/10/2021] [Indexed: 11/28/2022]
Abstract
The fungal cell wall is essential for the maintenance of cellular integrity and mediates interactions of the cells with the environment. It is a highly flexible organelle whose composition and organization is modulated in response to changing growth conditions. In the pathogenic yeast Candida albicans, a network of signaling pathways regulates the structure of the cell wall, and mutants with defects in these pathways are hypersensitive to cell wall stress. By harnessing a library of genetically activated forms of all C. albicans zinc cluster transcription factors, we found that a hyperactive Czf1 rescued the hypersensitivity to cell wall stress of different protein kinase deletion mutants. The hyperactive Czf1 induced the expression of many genes with cell wall-related functions and caused visible changes in the cell wall structure. C. albicans czf1Δ mutants were hypersensitive to the antifungal drug caspofungin, which inhibits cell wall biosynthesis. The changes in cell wall architecture caused by hyperactivity or absence of Czf1 resulted in an increased recognition of C. albicans by human neutrophils. Our results show that Czf1, which is known as a regulator of filamentous growth and white-opaque switching, controls the expression of cell wall genes and modulates the architecture of the cell wall.
Collapse
Affiliation(s)
- Austin Mottola
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | | | - Kerstin Hünniger
- Research Group Fungal Septomics, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, Jena, Germany.,Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Oliver Kurzai
- Research Group Fungal Septomics, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, Jena, Germany.,Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany.,National Reference Center for Invasive Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, Jena, Germany
| | - Joachim Morschhäuser
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
39
|
Fungi of the human gut microbiota: Roles and significance. Int J Med Microbiol 2021; 311:151490. [DOI: 10.1016/j.ijmm.2021.151490] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 02/04/2021] [Accepted: 02/23/2021] [Indexed: 12/15/2022] Open
|
40
|
Das S, Bhuyan R, Goswami AM, Saha T. Kinome analyses of Candida albicans, C. parapsilosis and C. tropicalis enable novel kinases as therapeutic drug targets in candidiasis. Gene 2021; 780:145530. [PMID: 33631248 DOI: 10.1016/j.gene.2021.145530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/20/2020] [Accepted: 02/09/2021] [Indexed: 01/12/2023]
Abstract
Candida spp. have attracted considerable attention as they cause serious human diseases in immunocompromised individuals. The genomes of the pathogenic Candida spp. have been sequenced, but systemic characterizations of their kinomes are yet to be reported. As in various eukaryotes, the protein kinases play crucial regulatory roles in pathogenicity of Candida. Increased frequency of antifungal resistance in Candida spp. requires significant attention to explore novel therapeutic molecules for their control. The present in-silico study involves novel bioinformatics strategies to identify the kinase proteins and their potential drug targets with the purpose to combat fungal infections. The study reports 103, 107 and 106 kinase proteins from 3 Candida spp., C. albicans, C. parapsilosis and C. tropicalis, respectively. Moreover, 79 common kinase proteins were identified, of which 54 proteins play essential roles in Candida spp. and 42 proteins were human non-homologues. Among the essential and human non-homologous protein kinases, 9 were found to be common essential human non-homologues, of which 6 are uniquely present in Candida. These 6 protein kinases namely, Hsl1, Npr1, Ptk2, Kin2, Ksp1 and orf19.3854 (CAALFM_CR06040WA) are involved in various molecular and cellular processes regulating virulence or pathogenicity. Further, these 6 kinases are prioritized as potential drug targets and explored for discovering new lead compounds against candidiasis. The drug repurposing approach for these 6 kinases show 13 approved drugs and investigational compounds that might play substantial inhibitory roles during combating candidiasis.
Collapse
Affiliation(s)
- Sanjib Das
- Department of Molecular Biology & Biotechnology, University of Kalyani, West Bengal 741235, India
| | - Rajabrata Bhuyan
- Department of Bioscience & Biotechnology, Banasthali Vidyapith, Rajasthan 304022, India
| | - Achintya Mohan Goswami
- Department of Physiology, Krishnagar Govt. College, Krishnagar, Nadia, West Bengal 741101, India.
| | - Tanima Saha
- Department of Molecular Biology & Biotechnology, University of Kalyani, West Bengal 741235, India.
| |
Collapse
|
41
|
Pál SE, Tóth R, Nosanchuk JD, Vágvölgyi C, Németh T, Gácser A. A Candida parapsilosis Overexpression Collection Reveals Genes Required for Pathogenesis. J Fungi (Basel) 2021; 7:jof7020097. [PMID: 33572958 PMCID: PMC7911391 DOI: 10.3390/jof7020097] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/18/2021] [Accepted: 01/25/2021] [Indexed: 01/07/2023] Open
Abstract
Relative to the vast data regarding the virulence mechanisms of Candida albicans, there is limited knowledge on the emerging opportunistic human pathogen Candida parapsilosis. The aim of this study was to generate and characterize an overexpression mutant collection to identify and explore virulence factors in C. parapsilosis. With the obtained mutants, we investigated stress tolerance, morphology switch, biofilm formation, phagocytosis, and in vivo virulence in Galleria mellonella larvae and mouse models. In order to evaluate the results, we compared the data from the C. parapsilosis overexpression collection analysis to the results derived from previous deletion mutant library characterizations. Of the 37 overexpression C. parapsilosis mutants, we identified eight with altered phenotypes compared to the controls. This work is the first report to identify CPAR2_107240, CPAR2_108840, CPAR2_302400, CPAR2_406400, and CPAR2_602820 as contributors to C. parapsilosis virulence by regulating functions associated with host-pathogen interactions and biofilm formation. Our findings also confirmed the role of CPAR2_109520, CPAR2_200040, and CPAR2_500180 in pathogenesis. This study was the first attempt to use an overexpression strategy to systematically assess gene function in C. parapsilosis, and our results demonstrate that this approach is effective for such investigations.
Collapse
Affiliation(s)
- Sára E. Pál
- Department of Microbiology, University of Szeged, Közép Fasor, 6726 Szeged, Hungary; (S.E.P.); (R.T.); (C.V.); (T.N.)
| | - Renáta Tóth
- Department of Microbiology, University of Szeged, Közép Fasor, 6726 Szeged, Hungary; (S.E.P.); (R.T.); (C.V.); (T.N.)
| | - Joshua D. Nosanchuk
- Departments of Medicine and Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY 10461, USA;
| | - Csaba Vágvölgyi
- Department of Microbiology, University of Szeged, Közép Fasor, 6726 Szeged, Hungary; (S.E.P.); (R.T.); (C.V.); (T.N.)
| | - Tibor Németh
- Department of Microbiology, University of Szeged, Közép Fasor, 6726 Szeged, Hungary; (S.E.P.); (R.T.); (C.V.); (T.N.)
| | - Attila Gácser
- Department of Microbiology, University of Szeged, Közép Fasor, 6726 Szeged, Hungary; (S.E.P.); (R.T.); (C.V.); (T.N.)
- MTA-SZTE Lendület Mycobiome Research Group, University of Szeged, 6726 Szeged, Hungary
- Correspondence:
| |
Collapse
|
42
|
Sircaik S, Román E, Bapat P, Lee KK, Andes DR, Gow NAR, Nobile CJ, Pla J, Panwar SL. The protein kinase Ire1 impacts pathogenicity of Candida albicans by regulating homeostatic adaptation to endoplasmic reticulum stress. Cell Microbiol 2021; 23:e13307. [PMID: 33403715 PMCID: PMC8044019 DOI: 10.1111/cmi.13307] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 12/19/2020] [Accepted: 12/21/2020] [Indexed: 12/20/2022]
Abstract
The unfolded protein response (UPR), crucial for the maintenance of endoplasmic reticulum (ER) homeostasis, is tied to the regulation of multiple cellular processes in pathogenic fungi. Here, we show that Candida albicans relies on an ER‐resident protein, inositol‐requiring enzyme 1 (Ire1) for sensing ER stress and activating the UPR. Compromised Ire1 function impacts cellular processes that are dependent on functional secretory homeostasis, as inferred from transcriptional profiling. Concordantly, an Ire1‐mutant strain exhibits pleiotropic roles in ER stress response, antifungal tolerance, cell wall regulation and virulence‐related traits. Hac1 is the downstream target of C. albicans Ire1 as it initiates the unconventional splicing of the 19 bp intron from HAC1 mRNA during tunicamycin‐induced ER stress. Ire1 also activates the UPR in response to perturbations in cell wall integrity and cell membrane homeostasis in a manner that does not necessitate the splicing of HAC1 mRNA. Furthermore, the Ire1‐mutant strain is severely defective in hyphal morphogenesis and biofilm formation as well as in establishing a successful infection in vivo. Together, these findings demonstrate that C. albicans Ire1 functions to regulate traits that are essential for virulence and suggest its importance in responding to multiple stresses, thus integrating various stress signals to maintain ER homeostasis.
Collapse
Affiliation(s)
- Shabnam Sircaik
- Yeast Molecular Genetics Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Elvira Román
- Departamento de Microbiología y Parasitología-IRYCIS, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Priyanka Bapat
- Department of Molecular and Cell Biology, University of California, Merced, California, USA.,Quantitative and System Biology Graduate Program, University of California, Merced, California, USA
| | - Keunsook K Lee
- The Aberdeen Fungal Group, MRC Centre for Medical Mycology, School of Medicine, Medical Sciences & Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - David R Andes
- Department of Medicine, Section of Infectious Diseases, University of Wisconsin, Madison, Wisconsin, USA
| | - Neil A R Gow
- The Aberdeen Fungal Group, MRC Centre for Medical Mycology, School of Medicine, Medical Sciences & Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK.,Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Clarissa J Nobile
- Department of Molecular and Cell Biology, University of California, Merced, California, USA.,Health Sciences Research Institute, University of California, Merced, California, USA
| | - Jesús Pla
- Departamento de Microbiología y Parasitología-IRYCIS, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Sneh Lata Panwar
- Yeast Molecular Genetics Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
43
|
Anderson TM, Shammami MA, Taddei SM, Finkel JS. How to Use a Mutant Library to Identify Genes Required for Biofilm Formation in the Pathogenic Fungus Candida albicans. UJEMI+ 2021; 2:1-13. [PMID: 35493534 PMCID: PMC9052792 DOI: 10.14288/ujemi.v2i.193711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
With over 1 billion infections and the causative agents showing critical diseases such as pancreatic cancer, the study of pathogenic fungi has never been more critical. In 2017, the United States spent $7.2 billion on fungal diseases. $4.5 billion was allocated to 75,055 hospitalizations, while $2.6 billion went to 8,993,230 outpatient visits. For Candida infections specifically, the cost was $1.4 billion. Currently, there are few classes of antifungals available, and resistance is growing. The identification of genes required for biofilm formation is essential for new antifungal development. This review details how to identify, verify, and characterize defective biofilm formation mutants in C. albicans. This includes how to run an in vitro biofilm formation assay, how to create clean deletions using the modified CRISPR-Cas9 system, how to assay to identify the potential causes of the defect, and how to create complementation strains to confirm the mutant defect.
Collapse
Affiliation(s)
- Tania M Anderson
- Department of Biology, College of Engineering and Science, University of Detroit Mercy, USA
| | - Marcelio A Shammami
- Department of Biology, College of Engineering and Science, University of Detroit Mercy, USA
| | - Steven M Taddei
- Department of Biology, College of Engineering and Science, University of Detroit Mercy, USA
| | - Jonathan S Finkel
- Department of Biology, College of Engineering and Science, University of Detroit Mercy, USA
| |
Collapse
|
44
|
Abstract
In this issue of Cell Chemical Biology, Caplan et al. (2020) describe a series of studies in the human fungal pathogen Candida albicans to identify a new target for antimicrobial drug development. Beginning with an unbiased compound screen, they identify new mechanisms to address rising resistance to currently used anti-infective agents.
Collapse
|
45
|
A Human IRE1 Inhibitor Blocks the Unfolded Protein Response in the Pathogenic Fungus Aspergillus fumigatus and Suggests Noncanonical Functions within the Pathway. mSphere 2020; 5:5/5/e00879-20. [PMID: 33087521 PMCID: PMC7580959 DOI: 10.1128/msphere.00879-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The unfolded protein response (UPR) is a signaling pathway that maintains endoplasmic reticulum (ER) homeostasis, with functions that overlap virulence mechanisms in the human-pathogenic mold Aspergillus fumigatus. The canonical pathway centers on HacA, its master transcriptional regulator. Translation of this protein requires the removal of an unconventional intron from the cytoplasmic mRNA of the hacA gene, which is achieved by an RNase domain located in the ER-transmembrane stress sensor IreA. Here, we show that targeting this RNase activity with a small-molecule inhibitor effectively blocked UPR activation, resulting in effects that mirror the consequences of genetic deletion of the RNase domain. However, these phenotypes were surprisingly narrow in scope relative to those associated with a complete deletion of the hacA gene. These findings expand the understanding of UPR signaling in this species by supporting the existence of noncanonical functions for the unspliced hacA mRNA in ER stress response. The unfolded protein response (UPR) is a signaling network that maintains homeostasis of the endoplasmic reticulum (ER). In the human-pathogenic fungus Aspergillus fumigatus, the UPR is initiated by activation of an endoribonuclease (RNase) domain in the ER transmembrane stress sensor IreA, which splices the downstream mRNA hacAu into its active form, hacAi, encoding the master transcriptional regulator of the pathway. Small-molecule inhibitors against IRE1, the human ortholog of IreA, have been developed for anticancer therapy, but their effects on the fungal UPR are unexplored. Here, we demonstrate that the IRE1 RNase inhibitor 4μ8C prevented A. fumigatus from increasing the levels of hacAi mRNA, thereby blocking induction of downstream UPR target gene expression. Treatment with 4μ8C had minimal effects on growth in minimal medium but severely impaired growth on a collagen substrate that requires high levels of hydrolytic enzyme secretion, mirroring the phenotype of other fungal UPR mutants. 4μ8C also increased sensitivity to carvacrol, a natural compound that disrupts ER integrity in fungi, and hygromycin B, which correlated with reduced expression of glycosylation-related genes. Interestingly, treatment with 4μ8C was unable to induce all of the phenotypes attributed to the loss of the canonical UPR in a ΔhacA mutant but showed remarkable similarity to the phenotype of an RNase-deficient IreA mutant that is also unable to generate the hacAi mRNA. These results establish proof of principle that pharmacological inhibition of the canonical UPR pathway is feasible in A. fumigatus and support a noncanonical role for the hacAu mRNA in ER stress response. IMPORTANCE The unfolded protein response (UPR) is a signaling pathway that maintains endoplasmic reticulum (ER) homeostasis, with functions that overlap virulence mechanisms in the human-pathogenic mold Aspergillus fumigatus. The canonical pathway centers on HacA, its master transcriptional regulator. Translation of this protein requires the removal of an unconventional intron from the cytoplasmic mRNA of the hacA gene, which is achieved by an RNase domain located in the ER-transmembrane stress sensor IreA. Here, we show that targeting this RNase activity with a small-molecule inhibitor effectively blocked UPR activation, resulting in effects that mirror the consequences of genetic deletion of the RNase domain. However, these phenotypes were surprisingly narrow in scope relative to those associated with a complete deletion of the hacA gene. These findings expand the understanding of UPR signaling in this species by supporting the existence of noncanonical functions for the unspliced hacA mRNA in ER stress response.
Collapse
|
46
|
Rsr1 Palmitoylation and GTPase Activity Status Differentially Coordinate Nuclear, Septin, and Vacuole Dynamics in Candida albicans. mBio 2020; 11:mBio.01666-20. [PMID: 33051364 PMCID: PMC7554666 DOI: 10.1128/mbio.01666-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Directional growth and tissue invasion by hyphae of the pathogenic fungus, Candida albicans, are disrupted by deletion of the small GTPase, Rsr1, which localizes Cdc42 and its kinase, Cla4, to the site of polarized growth. We investigated additional abnormalities observed in rsr1Δ hyphae, including vacuole development, cytoplasm inheritance, mitochondrial morphology, septin ring organization, nuclear division and migration, and branching frequency, which together demonstrate a fundamental role for Rsr1 in cellular organization. Rsr1 contains a C-terminal CCAAX box, which putatively undergoes both reversible palmitoylation and farnesylation for entry into the secretory pathway. We expressed variants of Rsr1 with mutated C244 or C245, or which lacked GTPase activity (Rsr1K16N and Rsr1G12V), in the rsr1Δ background and compared the resulting phenotypes with those of mutants lacking Bud5 (Rsr1 GEF), Bud2 (Rsr1 GAP), or Cla4. Bud5 was required only for cell size and bud site selection in yeast, suggesting there are alternative activators for Rsr1 in hyphae. Septin ring and vacuole dynamics were restored by expression of unpalmitoylated Rsr1C244S, which localized to endomembranes, but not by cytoplasmic Rsr1C245A or GTP/GDP-locked Rsr1, suggesting Rsr1 functions at intracellular membranes in addition to the plasma membrane. Rsr1K16N or cytoplasmic Rsr1C245A restored normal nuclear division but not septin ring or vacuole dynamics. Rsr1-GDP therefore plays a specific role in suppressing START, which can be signaled from the cytosol. Via differential palmitoylation and activity states, Rsr1 operates at diverse cell sites to orchestrate proper nuclear division and inheritance during constitutive polarized growth. As cla4Δ phenocopied rsr1Δ, it is likely these functions involve Cdc42-Cla4 activity.IMPORTANCE Understanding how single eukaryotic cells self-organize to replicate and migrate is relevant to health and disease. In the fungal pathogen, Candida albicans, the small GTPase, Rsr1, guides the directional growth of hyphae that invade human tissue during life-threatening infections. Rsr1 is a Ras-like GTPase and a homolog of the conserved Rap1 subfamily, which directs migration in mammalian cells. Research into how this single GTPase delivers complex intracellular patterning is challenging established views of GTPase regulation, trafficking, and interaction. Here, we show that Rsr1 directly and indirectly coordinates the spatial and temporal development of key intracellular macrostructures, including septum formation and closure, vacuole dynamics, and nuclear division and segregation, as well as whole-cell morphology by determining branching patterns. Furthermore, we categorize these functions by differential Rsr1 localization and activity state and provide evidence to support the emerging view that the cytosolic pool of Ras-like GTPases is functionally active.
Collapse
|
47
|
Transcriptional regulation of the caspofungin-induced cell wall damage response in Candida albicans. Curr Genet 2020; 66:1059-1068. [PMID: 32876716 DOI: 10.1007/s00294-020-01105-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 08/14/2020] [Accepted: 08/25/2020] [Indexed: 12/14/2022]
Abstract
The human fungal pathogen Candida albicans maintains pathogenic and commensal states primarily through cell wall functions. The echinocandin antifungal drug caspofungin inhibits cell wall synthesis and is widely used in treating disseminated candidiasis. Signaling pathways are critical in coordinating the adaptive response to cell wall damage (CWD). C. albicans executes a robust transcriptional program following caspofungin-induced CWD. A comprehensive analysis of signaling pathways at the transcriptional level facilitates the identification of prospective genes for functional characterization and propels the development of novel antifungal interventions. This review article focuses on the molecular functions and signaling crosstalk of the C. albicans transcription factors Sko1, Rlm1, and Cas5 in caspofungin-induced CWD signaling.
Collapse
|
48
|
The Ndr/LATS Kinase Cbk1 Regulates a Specific Subset of Ace2 Functions and Suppresses the Hypha-to-Yeast Transition in Candida albicans. mBio 2020; 11:mBio.01900-20. [PMID: 32817109 PMCID: PMC7439482 DOI: 10.1128/mbio.01900-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The regulation of Ace2 and morphogenesis (RAM) pathway is a key regulatory network that plays a role in many aspects of C. albicans pathobiology. In addition to characterizing the transcriptional effects of this pathway, we discovered that Cbk1 and Ace2, a key RAM pathway regulator-effector pair, mediate a specific set of the overall functions of the RAM pathway. We have also discovered a new function for the Cbk1-Ace2 axis: suppression of the hypha-to-yeast transition. Very few regulators of this transition have been described, and our data indicate that maintenance of hyphal morphogenesis requires suppression of yeast phase growth by Cbk1-regulated Ace2. The regulation of Ace2 and morphogenesis (RAM) pathway is an important regulatory network in the human fungal pathogen Candida albicans. The RAM pathway’s two most well-studied components, the NDR/Lats kinase Cbk1 and its putative substrate, the transcription factor Ace2, have a wide range of phenotypes and functions. It is not clear, however, which of these functions are specifically due to the phosphorylation of Ace2 by Cbk1. To address this question, we first compared the transcriptional profiles of CBK1 and ACE2 deletion mutants. This analysis indicates that, of the large number of genes whose expression is affected by deletion of CBK1 and ACE2, only 5.5% of those genes are concordantly regulated. Our data also suggest that Ace2 directly or indirectly represses a large set of genes during hyphal morphogenesis. Second, we generated strains containing ACE2 alleles with alanine mutations at the Cbk1 phosphorylation sites. Phenotypic and transcriptional analysis of these ace2 mutants indicates that, as in Saccharomyces cerevisiae, Cbk1 regulation is important for daughter cell localization of Ace2 and cell separation during yeast-phase growth. In contrast, Cbk1 phosphorylation of Ace2 plays a minor role in C. albicans yeast-to-hypha transition. We have, however, discovered a new function for the Cbk1-Ace2 axis. Specifically, Cbk1 phosphorylation of Ace2 prevents the hypha-to-yeast transition. To our knowledge, this is one of the first regulators of the C. albicans hypha-to-yeast transition to be described. Finally, we present an integrated model for the role of Cbk1 in the regulation of hyphal morphogenesis in C. albicans.
Collapse
|
49
|
LeBlanc EV, Polvi EJ, Veri AO, Privé GG, Cowen LE. Structure-guided approaches to targeting stress responses in human fungal pathogens. J Biol Chem 2020; 295:14458-14472. [PMID: 32796038 DOI: 10.1074/jbc.rev120.013731] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/11/2020] [Indexed: 11/06/2022] Open
Abstract
Fungi inhabit extraordinarily diverse ecological niches, including the human body. Invasive fungal infections have a devastating impact on human health worldwide, killing ∼1.5 million individuals annually. The majority of these deaths are attributable to species of Candida, Cryptococcus, and Aspergillus Treating fungal infections is challenging, in part due to the emergence of resistance to our limited arsenal of antifungal agents, necessitating the development of novel therapeutic options. Whereas conventional antifungal strategies target proteins or cellular components essential for fungal growth, an attractive alternative strategy involves targeting proteins that regulate fungal virulence or antifungal drug resistance, such as regulators of fungal stress responses. Stress response networks enable fungi to adapt, grow, and cause disease in humans and include regulators that are highly conserved across eukaryotes as well as those that are fungal-specific. This review highlights recent developments in elucidating crystal structures of fungal stress response regulators and emphasizes how this knowledge can guide the design of fungal-selective inhibitors. We focus on the progress that has been made with highly conserved regulators, including the molecular chaperone Hsp90, the protein phosphatase calcineurin, and the small GTPase Ras1, as well as with divergent stress response regulators, including the cell wall kinase Yck2 and trehalose synthases. Exploring structures of these important fungal stress regulators will accelerate the design of selective antifungals that can be deployed to combat life-threatening fungal diseases.
Collapse
Affiliation(s)
- Emmanuelle V LeBlanc
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Elizabeth J Polvi
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Amanda O Veri
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Gilbert G Privé
- Departments of Medical Biophysics and Biochemistry, University of Toronto, Toronto, Ontario, Canada.,Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
50
|
Sharma Y, Rastogi SK, Perwez A, Rizvi MA, Manzoor N. β-citronellol alters cell surface properties of Candida albicans to influence pathogenicity related traits. Med Mycol 2020; 58:93-106. [PMID: 30843057 DOI: 10.1093/mmy/myz009] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 12/26/2018] [Accepted: 01/23/2019] [Indexed: 12/18/2022] Open
Abstract
The pathogenicity of Candida albicans, an opportunistic human fungal pathogen, is attributed to several virulence factors. β-citronellol is a monoterpenoid present in several plant essential oils. The present study explores the antifungal potential and mode of action of β-citronellol against C. albicans ATCC 90028 (standard), C. albicans D-27 (FLC-sensitive), and C. albicans S-1 (FLC-resistant). Anti-Candida potential was studied by performing MIC, MFC, growth curves, disc diffusion, spot assay, and WST1 cytotoxic assay. Morphological transition was monitored microscopically in both solid and liquid hyphae inducing media. β-citronellol inhibits yeast to hyphal transition in both liquid and solid hyphae inducing media. It had a significant inhibitory effect on biofilm formation and secretion of extracellular proteinases and phospholipases. We showed that it has an adverse effect on membrane ergosterol levels and modulates expression of related ERG genes. Expression profiles of selected genes associated with C. albicans pathogenicity displayed reduced expression in treated cells. This work suggests that β-citronellol inhibits morphological transition in C. albicans and decreases the secretion of hydrolytic enzymes involved in the early stage of infection as well as modulates the expression of associated genes. Pleiotropic phenotype shown by β-citronellol treated Candida cells suggests various modes of action. Further studies will assess the clinical application of β-citronellol in the treatment of fungal infections.
Collapse
Affiliation(s)
- Yamini Sharma
- Medical Mycology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi-110025, India
| | - Sumit Kumar Rastogi
- Medical Mycology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi-110025, India.,Yeast Molecular Genetics Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi-110067, India
| | - Ahmad Perwez
- Genome Biology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi-110025, India
| | - Moshahid Alam Rizvi
- Genome Biology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi-110025, India
| | - Nikhat Manzoor
- Medical Mycology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi-110025, India.,College of Applied Medical Sciences, Taibah University, Al-Madinah Al-Munawarah-30001, Kingdom of Saudi Arabia
| |
Collapse
|