1
|
Vargas-Maya NI, Maunakea AK, Ramírez-Montiel FB, Sultana R, Peres R, Macías-Cervantes QX, Medina-Nieto AL, Rangel-Serrano Á, Martínez-Álvarez JA, Páramo-Pérez I, Anaya-Velázquez F, Padilla-Vaca F, Franco B. Avirulent UG10 Entamoeba histolytica mutant derived from HM-1:IMSS strain shows limited genome variability and aberrant 5-methyl cytosine genomic distribution. Mol Biochem Parasitol 2024; 260:111647. [PMID: 39002760 DOI: 10.1016/j.molbiopara.2024.111647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/25/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
Entamoeba histolytica, an intestinal parasite of global significance, poses substantial health risks with its associated high morbidity and mortality rates. Despite the current repertoire of molecular tools for the study of gene function in, the regulatory mechanisms governing its pathogenicity remain largely unexplored. This knowledge gap underscores the need to elucidate key genetic determinants orchestrating cellular functions critical to its virulence. Previously, our group generated an avirulent strain, termed UG10, with the same genetic background as the HM1:IMSS strain. UG10 strain, despite showing normal expression levels of well-known virulence factors, was unable to perform in-vitro and in-vivo activities related to amoebic virulence. In this study, we aimed to uncover the genome-wide modifications that rendered the avirulent phenotype of the UG10 strain through whole-genome sequencing. As a complementary approach, we conducted Methylated DNA Immunoprecipitation coupled with sequencing (MeDIP-seq) analysis on both the highly virulent HM1:IMSS strain and the low-virulence UG10 strain to uncover the genome-wide methylation profile. These dual methodologies revealed two aspects of the UG10 avirulent strain. One is the random integration of fragments from the ribosomal gene cluster and tRNA genes, ranging from 120 to 400 bp; and secondly, a clear, enriched methylation profile in the coding and non-coding strand relative to the start codon sequence in genes encoding small GTPases, which is associated with the previously described avirulent phenotype. This study provides the foundation to explore other genetic and epigenetic regulatory circuitries in E. histolytica and novel targets to understand the pathogenic mechanism of this parasite.
Collapse
Affiliation(s)
- Naurú Idalia Vargas-Maya
- Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA; Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta s/n, Guanajuato 36050, Mexico
| | - Alika K Maunakea
- Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - Fátima Berenice Ramírez-Montiel
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta s/n, Guanajuato 36050, Mexico
| | - Razvan Sultana
- Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - Rafael Peres
- Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | | | - Ana Laura Medina-Nieto
- Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - Ángeles Rangel-Serrano
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta s/n, Guanajuato 36050, Mexico
| | - José A Martínez-Álvarez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta s/n, Guanajuato 36050, Mexico
| | - Itzel Páramo-Pérez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta s/n, Guanajuato 36050, Mexico
| | - Fernando Anaya-Velázquez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta s/n, Guanajuato 36050, Mexico
| | - Felipe Padilla-Vaca
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta s/n, Guanajuato 36050, Mexico.
| | - Bernardo Franco
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta s/n, Guanajuato 36050, Mexico.
| |
Collapse
|
2
|
Canela-Pérez I, Azuara-Liceaga E, Cuéllar P, Saucedo-Cárdenas O, Valdés J. Multiple types of nuclear localization signals in Entamoeba histolytica. Biochem Biophys Rep 2024; 39:101770. [PMID: 39055170 PMCID: PMC11269297 DOI: 10.1016/j.bbrep.2024.101770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/27/2024] Open
Abstract
Entamoeba histolytica is a protozoan parasite that belongs to the Amoebozoa supergroup whose study related to the nucleocytoplasmic transport of proteins through the nucleus is poorly studied. In this work, we have performed in silico predictions of the potential nuclear localization signals (NLS) corresponding to the proteome of 8201 proteins from Entamoeba histolytica annotated in the AmoebaDB database. We have found the presence of monopartite nuclear localization signals (MNLSs), bipartite nuclear localization signals (BNLSs), and non-canonical monopartite NLSs with lengths exceeding 20 amino acid residues. Additionally, we detected a new type of NLS consisting of multiple juxtaposed bipartite NLSs (JNLSs) that have not been described in any eukaryotic organism. Also, we have generated consensus sequences for the nuclear import of proteins with the NLSs obtained. Docking experiments between EhImportin α and an MNLS, BNLS, and JNLS outlined the interacting residues between the Importin and cargo proteins, emphasizing their putative roles in nuclear import. By transfecting HA-tagged protein constructs, we assessed the nuclear localization of MNLS (U1A and U2AF1), JMNLS (U2AF2), and non-canonical NLS (N-terminus of Pol ll) in vivo. Our data provide the basis for understanding the nuclear transport process in E. histolytica.
Collapse
Affiliation(s)
- Israel Canela-Pérez
- Departamento de Bioquímica, CINVESTAV-México, Av. IPN 2508 colonia San Pedro Zacatenco, GAM, CDMX, 07360, Mexico
| | - Elisa Azuara-Liceaga
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Mexico City, 03100, Mexico
| | - Patricia Cuéllar
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Mexico City, 03100, Mexico
| | - Odila Saucedo-Cárdenas
- Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, 67700, Mexico
| | - Jesús Valdés
- Departamento de Bioquímica, CINVESTAV-México, Av. IPN 2508 colonia San Pedro Zacatenco, GAM, CDMX, 07360, Mexico
| |
Collapse
|
3
|
Li H, Liu H, Zhu D, Dou C, Gang B, Zhang M, Wan Z. Biological function molecular pathways and druggability of DNMT2/TRDMT1. Pharmacol Res 2024; 205:107222. [PMID: 38782147 DOI: 10.1016/j.phrs.2024.107222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
5-methylcytosine (m5C) is among the most common epigenetic modification in DNA and RNA molecules, and plays an important role in the animal development and disease pathogenesis. Interestingly, unlike other m5C DNA methyltransferases (DNMTs), DNMT2/TRDMT1 has the double-substrate specificity and adopts a DNMT-similar catalytic mechanism to methylate RNA. Moreover, it is widely involved in a variety of physiological regulatory processes, such as the gene expression, precise protein synthesis, immune response, and disease occurrence. Thus, comprehending the epigenetic mechanism and function of DNMT2/TRDMT1 will probably provide new strategies to treat some refractory diseases. Here, we discuss recent studies on the spatiotemporal expression pattern and post-translational modifications of DNMT2/TRDMT1, and summarize the research advances in substrate characteristics, catalytic recognition mechanism, DNMT2/TRDMT1-related genes or proteins, pharmacological application, and inhibitor development. This review will shed light on the pharmacological design by targeting DNMT2/TRDMT1 to treat parasitic, viral and oncologic diseases.
Collapse
Affiliation(s)
- Huari Li
- Department of Biochemistry and Molecular Biology, College of Laboratory Medicine, Anhui Province Key Laboratory of Cancer Translational Medicine, and The First Affiliated Hospital of Bengbu Medical University, Bengbu Medical University, No.2600 Donghai Avenue, Bengbu, Anhui Province 233030, PR China; College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan, Hubei Province 430070, PR China.
| | - Huiru Liu
- Department of Biochemistry and Molecular Biology, College of Laboratory Medicine, Anhui Province Key Laboratory of Cancer Translational Medicine, and The First Affiliated Hospital of Bengbu Medical University, Bengbu Medical University, No.2600 Donghai Avenue, Bengbu, Anhui Province 233030, PR China
| | - Daiyun Zhu
- College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan, Hubei Province 430070, PR China; State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| | - Chengli Dou
- Department of Biochemistry and Molecular Biology, College of Laboratory Medicine, Anhui Province Key Laboratory of Cancer Translational Medicine, and The First Affiliated Hospital of Bengbu Medical University, Bengbu Medical University, No.2600 Donghai Avenue, Bengbu, Anhui Province 233030, PR China
| | - Baocai Gang
- Department of Biochemistry and Molecular Biology, College of Laboratory Medicine, Anhui Province Key Laboratory of Cancer Translational Medicine, and The First Affiliated Hospital of Bengbu Medical University, Bengbu Medical University, No.2600 Donghai Avenue, Bengbu, Anhui Province 233030, PR China
| | - Mengjie Zhang
- Department of Biochemistry and Molecular Biology, College of Laboratory Medicine, Anhui Province Key Laboratory of Cancer Translational Medicine, and The First Affiliated Hospital of Bengbu Medical University, Bengbu Medical University, No.2600 Donghai Avenue, Bengbu, Anhui Province 233030, PR China
| | - Ziyu Wan
- Department of Biochemistry and Molecular Biology, College of Laboratory Medicine, Anhui Province Key Laboratory of Cancer Translational Medicine, and The First Affiliated Hospital of Bengbu Medical University, Bengbu Medical University, No.2600 Donghai Avenue, Bengbu, Anhui Province 233030, PR China
| |
Collapse
|
4
|
Wadhwa N, Kapoor S, Kapoor M. Arabidopsis T-DNA mutants affected in TRDMT1/DNMT2 show differential protein synthesis and compromised stress tolerance. FEBS J 2024; 291:92-113. [PMID: 37584564 DOI: 10.1111/febs.16935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 07/18/2023] [Accepted: 08/14/2023] [Indexed: 08/17/2023]
Abstract
TRDMT1/DNMT2 belongs to the conserved family of nucleic acid methyltransferases. Unlike the animal systems, studies on TRDMT1/DNMT2 in land plants have been limited. We show that TRDMT1/DNMT2 is strongly conserved in the green lineage. Studies in mosses have previously shown that TRDMT1/DNMT2 plays a crucial role in modulating molecular networks involved in stress perception and signalling and in transcription/stability of specific tRNAs under stress. To gain deeper insight into its biological roles in a flowering plant, we examined more closely the previously reported Arabidopsis SALK_136635C line deficient in TRDMT1/DNMT2 function [Goll MG et al. (2006) Science 311, 395-398]. RNAs derived from Arabidopsis Dnmt2-deficient plants lacked m5 C38 in tRNAAsp . In this study, by transient expression assays we show that Arabidopsis TRDMT1/DNMT2 is distributed in the nucleus, cytoplasm and RNA-processing bodies, suggesting a role for TRDMT1/DNMT2 in RNA metabolic processes possibly by shuttling between cellular compartments. Bright-field and high-resolution SEM and qPCR analysis reveal roles of TRDMT1/DNMT2 in proper growth and developmental progression. Quantitative proteome analysis by LC-MS/MS coupled with qPCR shows AtTRDMT1/AtDNMT2 function to be crucial for protein synthesis and cellular homeostasis via housekeeping roles and proteins with poly-Asp stretches and RNA pol II activity on selected genes are affected in attrdmt1/atdnmt2. This shift in metabolic pathways primes the mutant plants to become increasingly sensitive to oxidative and osmotic stress. Taken together, our study sheds light on the mechanistic role of TRDMT1/DNMT2 in a flowering plant.
Collapse
Affiliation(s)
- Nikita Wadhwa
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
| | - Sanjay Kapoor
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Meenu Kapoor
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
| |
Collapse
|
5
|
Balmer EA, Wirdnam CD, Faso C. A core UPS molecular complement implicates unique endocytic compartments at the parasite-host interface in Giardia lamblia. Virulence 2023; 14:2174288. [PMID: 36730629 PMCID: PMC9928461 DOI: 10.1080/21505594.2023.2174288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Unconventional protein secretion (UPS) plays important roles in cell physiology. In contrast to canonical secretory routes, UPS does not generally require secretory signal sequences and often bypasses secretory compartments such as the ER and the Golgi apparatus. Giardia lamblia is a protist parasite with reduced subcellular complexity which releases several proteins, some of them virulence factors, without canonical secretory signals. This implicates UPS at the parasite-host interface. No dedicated machinery nor mechanism(s) for UPS in Giardia are currently known, although speculations on the involvement of endocytic organelles called PV/PECs, have been put forth. To begin to address the question of whether PV/PECs are implicated in virulence-associated UPS and to define the composition of molecular machinery involved in protein release, we employed affinity purification and mass spectrometry, coupled to microscopy-based subcellular localization and signal correlation quantification to investigate the interactomes of 11 reported unconventionally secreted proteins, all predicted to be cytosolic. A subset of these are associated with PV/PECs. Extended and validated interactomes point to a core PV/PECs-associated UPS machinery, which includes uncharacterized and Giardia-specific coiled-coil proteins and NEK kinases. Finally, a subset of the alpha-giardin protein family was enriched in all PV/PECs-associated protein interactomes, highlighting a previously unappreciated role for these proteins at PV/PECs and in UPS. Taken together, our results provide the first characterization of a virulence-associated UPS protein complex in Giardia lamblia at PV/PECs, suggesting a novel link between these primarily endocytic and feeding organelles and UPS at the parasite-host interface.
Collapse
Affiliation(s)
- Erina A. Balmer
- Institute of Cell Biology, University of Bern, Bern, Switzerland,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | | | - Carmen Faso
- Institute of Cell Biology, University of Bern, Bern, Switzerland,Multidisciplinary Center for Infectious Diseases, University of Bern, Bern, Switzerland,CONTACT Carmen Faso
| |
Collapse
|
6
|
Wadhwa N, Singh D, Yadav R, Kapoor S, Kapoor M. Role of TRDMT1/DNMT2 in stress adaptation and its influence on transcriptome and proteome dynamics under osmotic stress in Physcomitrium patens. PHYSIOLOGIA PLANTARUM 2023; 175:e14014. [PMID: 37882266 DOI: 10.1111/ppl.14014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/07/2023] [Accepted: 08/21/2023] [Indexed: 10/27/2023]
Abstract
Early land plants such as the moss Physcomitrium patens lack several morphological traits that offer protection to tracheophytes from environmental stresses. These plants instead have evolved several physiological and biochemical mechanisms that facilitate them to adapt to terrestrial stresses such as drought. We have previously shown that loss-of-function mutants of tRNA (cytosine(38)-C(5))-methyltransferase TRDMT1/DNMT2 in P. patens are highly sensitive to oxidative and osmotic stress. To gain insight into the role of PpTRDMT1/PpDNMT2 in modulating genetic networks under osmotic stress, genome-wide transcriptome and proteome studies were undertaken in wild-type and ppdnmt2 plants. Transcriptome analysis revealed 375 genes to be differentially expressed in the ppdnmt2 under stress compared to the WT. Most of these genes are affiliated with carbohydrate metabolic pathways, photosynthesis, cell wall biogenesis, pathways related to isotropic and polarised cell growth and transcription factors among others. Histochemical staining showed elevated levels of reactive oxygen species in ppdnmt2 while transmission electron microscopy revealed no distinct defects in the ultrastructure of chloroplasts. Immunoprecipitation using PpDNMT2-specific antibody coupled with mass spectrometry revealed core proteins of the glycolytic pathway, antioxidant enzymes, proteins of amino acid biosynthetic pathways and photosynthesis-related proteins among others to co-purify with PpTRDMT1/PpDNMT2 under osmotic stress. Yeast two-hybrid assays, protein deletion and α-galactosidase assays showed the cytosol glycolytic protein glyceraldehyde 3-phosphate dehydrogenase to bind to the catalytic motifs in PpTRDMT1/PpDNMT2. Results presented in this study allow us to better understand genetic networks linking enzymes of energy metabolism, epigenetic processes and RNA pol II-mediated transcription during osmotic stress tolerance in P. patens.
Collapse
Affiliation(s)
- Nikita Wadhwa
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Dwarka, Delhi, India
| | - Darshika Singh
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Dwarka, Delhi, India
| | - Radha Yadav
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Dwarka, Delhi, India
| | - Sanjay Kapoor
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, Delhi, India
| | - Meenu Kapoor
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Dwarka, Delhi, India
| |
Collapse
|
7
|
Gaona-López C, Vazquez-Jimenez LK, Gonzalez-Gonzalez A, Delgado-Maldonado T, Ortiz-Pérez E, Nogueda-Torres B, Moreno-Rodríguez A, Vázquez K, Saavedra E, Rivera G. Advances in Protozoan Epigenetic Targets and Their Inhibitors for the Development of New Potential Drugs. Pharmaceuticals (Basel) 2023; 16:ph16040543. [PMID: 37111300 PMCID: PMC10143871 DOI: 10.3390/ph16040543] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023] Open
Abstract
Protozoan parasite diseases cause significant mortality and morbidity worldwide. Factors such as climate change, extreme poverty, migration, and a lack of life opportunities lead to the propagation of diseases classified as tropical or non-endemic. Although there are several drugs to combat parasitic diseases, strains resistant to routinely used drugs have been reported. In addition, many first-line drugs have adverse effects ranging from mild to severe, including potential carcinogenic effects. Therefore, new lead compounds are needed to combat these parasites. Although little has been studied regarding the epigenetic mechanisms in lower eukaryotes, it is believed that epigenetics plays an essential role in vital aspects of the organism, from controlling the life cycle to the expression of genes involved in pathogenicity. Therefore, using epigenetic targets to combat these parasites is foreseen as an area with great potential for development. This review summarizes the main known epigenetic mechanisms and their potential as therapeutics for a group of medically important protozoal parasites. Different epigenetic mechanisms are discussed, highlighting those that can be used for drug repositioning, such as histone post-translational modifications (HPTMs). Exclusive parasite targets are also emphasized, including the base J and DNA 6 mA. These two categories have the greatest potential for developing drugs to treat or eradicate these diseases.
Collapse
Affiliation(s)
- Carlos Gaona-López
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico
| | - Lenci K Vazquez-Jimenez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico
| | - Alonzo Gonzalez-Gonzalez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico
| | - Timoteo Delgado-Maldonado
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico
| | - Eyrá Ortiz-Pérez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico
| | - Benjamín Nogueda-Torres
- Departamento de Parasitología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Adriana Moreno-Rodríguez
- Laboratorio de Estudios Epidemiológicos, Clínicos, Diseños Experimentales e Investigación, Facultad de Ciencias Químicas, Universidad Autónoma "Benito Juárez" de Oaxaca, Avenida Universidad S/N, Ex Hacienda Cinco Señores, Oaxaca 68120, Mexico
| | - Karina Vázquez
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Nuevo León, Francisco Villa 20, General Escobedo 66054, Mexico
| | - Emma Saavedra
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico
| | - Gildardo Rivera
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico
| |
Collapse
|
8
|
Jasni N, Saidin S, Kin WW, Arifin N, Othman N. Entamoeba histolytica: Membrane and Non-Membrane Protein Structure, Function, Immune Response Interaction, and Vaccine Development. MEMBRANES 2022; 12:1079. [PMID: 36363634 PMCID: PMC9695907 DOI: 10.3390/membranes12111079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/26/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Entamoeba histolytica is a protozoan parasite that is the causative agent of amoebiasis. This parasite has caused widespread infection in India, Africa, Mexico, and Central and South America, and results in 100,000 deaths yearly. An immune response is a body's mechanism for eradicating and fighting against substances it sees as harmful or foreign. E. histolytica biological membranes are considered foreign and immunogenic to the human body, thereby initiating the body's immune responses. Understanding immune response and antigen interaction are essential for vaccine development. Thus, this review aims to identify and understand the protein structure, function, and interaction of the biological membrane with the immune response, which could contribute to vaccine development. Furthermore, the current trend of vaccine development studies to combat amoebiasis is also reviewed.
Collapse
Affiliation(s)
- Nurhana Jasni
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor 11800, Malaysia
| | - Syazwan Saidin
- Department of Biology, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, Tanjung Malim 35900, Malaysia
| | - Wong Weng Kin
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia
| | - Norsyahida Arifin
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor 11800, Malaysia
| | - Nurulhasanah Othman
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor 11800, Malaysia
| |
Collapse
|
9
|
Chen M, Zhou L, Li S, Wei H, Chen J, Yang P, Peng H. Toxoplasma gondii DNA methyltransferases regulate parasitic energy metabolism. Acta Trop 2022; 229:106329. [PMID: 35122712 DOI: 10.1016/j.actatropica.2022.106329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/10/2022] [Accepted: 01/23/2022] [Indexed: 11/29/2022]
Abstract
The intracellular protozoan Toxoplasma gondii results in serious diseases such as encephalitis, and retinochoroiditis in immunocompromised patients. The interconversion between tachyzoites and bradyzoites under the host's immune pressure results in the interchange of acute infection and chronic infection. We previously reported two functional DNA methyltransferases (DNMT) in Toxoplasma gondii named TgDNMTa and TgDNMTb. In this research, proteomics analysis for T. gondii tachyzoites of ME49 WT, dnmta knockout (ME49-∆Tgdnmta), and dnmtb knockout (ME49-∆Tgdnmtb) strains, revealed 362 significantly regulated proteins for ME49-∆Tgdnmta, and 219 for ME49-∆Tgdnmtb, compared with the proteins of ME49 WT. TgDNMTa down regulated three glycolytic enzymes, one gluconeogenic enzyme and four pyruvate metabolic enzymes. Furthermore, TgDNMTb up regulated two proteins in the tricarboxylic acid (TCA) cycle. Glucose metabolic flux detection showed that TgDNMTa inhibited the glycolysis pathway, while TgDNMTb promoted the tricarboxylic acid (TCA) cycle so as to promote parasite's proliferation. These findings demonstrated that the functions of Toxoplasma gondii DNA methyltransferases extended beyond DNA methylation to the regulation of parasitic energy metabolism.
Collapse
Affiliation(s)
- Min Chen
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Lijuan Zhou
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Shengmin Li
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Hiaxia Wei
- Department of Pathogenic Biology, Guangzhou Medical University, Guangzhou 511436, China
| | - Jiating Chen
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Pei Yang
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Hongjuan Peng
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
10
|
Sarid L, Ankri S. Are Metabolites From the Gut Microbiota Capable of Regulating Epigenetic Mechanisms in the Human Parasite Entamoeba histolytica? Front Cell Dev Biol 2022; 10:841586. [PMID: 35300430 PMCID: PMC8921869 DOI: 10.3389/fcell.2022.841586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/25/2022] [Indexed: 12/21/2022] Open
Abstract
The unicellular parasite Entamoeba histolytica inhabits the human gut. It has to adapt to a complex environment that consists of the host microbiota, nutritional stress, oxidative stress, and nitrosative stress. Adaptation to this complex environment is vital for the survival of this parasite. Studies have shown that the host microbiota shapes virulence and stress adaptation in E. histolytica. Increasing evidence suggests that metabolites from the microbiota mediate communication between the parasite and microbiota. In this review, we discuss the bacterial metabolites that regulate epigenetic processes in E. histolytica and the implications that this knowledge may have for the development of new anti-amebic strategies.
Collapse
Affiliation(s)
- Lotem Sarid
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Serge Ankri
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| |
Collapse
|
11
|
Motorin Y, Helm M. RNA nucleotide methylation: 2021 update. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1691. [PMID: 34913259 DOI: 10.1002/wrna.1691] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/22/2021] [Accepted: 07/22/2021] [Indexed: 12/14/2022]
Abstract
Among RNA modifications, transfer of methylgroups from the typical cofactor S-adenosyl-l-methionine by methyltransferases (MTases) to RNA is by far the most common reaction. Since our last review about a decade ago, the field has witnessed the re-emergence of mRNA methylation as an important mechanism in gene regulation. Attention has then spread to many other RNA species; all being included into the newly coined concept of the "epitranscriptome." The focus moved from prokaryotes and single cell eukaryotes as model organisms to higher eukaryotes, in particular to mammals. The perception of the field has dramatically changed over the past decade. A previous lack of phenotypes in knockouts in single cell organisms has been replaced by the apparition of MTases in numerous disease models and clinical investigations. Major driving forces of the field include methylation mapping techniques, as well as the characterization of the various MTases, termed "writers." The latter term has spilled over from DNA modification in the neighboring epigenetics field, along with the designations "readers," applied to mediators of biological effects upon specific binding to a methylated RNA. Furthermore "eraser" enzymes effect the newly discovered oxidative removal of methylgroups. A sense of reversibility and dynamics has replaced the older perception of RNA modification as a concrete-cast, irreversible part of RNA maturation. A related concept concerns incompletely methylated residues, which, through permutation of each site, lead to inhomogeneous populations of numerous modivariants. This review recapitulates the major developments of the past decade outlined above, and attempts a prediction of upcoming trends. This article is categorized under: RNA Processing > RNA Editing and Modification.
Collapse
Affiliation(s)
- Yuri Motorin
- Université de Lorraine, CNRS, INSERM, UMS2008/US40 IBSLor, EpiRNA-Seq Core Facility, Nancy, France.,Université de Lorraine, CNRS, UMR7365 IMoPA, Nancy, France
| | - Mark Helm
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-Universität, Mainz, Germany
| |
Collapse
|
12
|
Li H, Zhu D, Wu J, Ma Y, Cai C, Chen Y, Qin M, Dai H. New substrates and determinants for tRNA recognition of RNA methyltransferase DNMT2/TRDMT1. RNA Biol 2021; 18:2531-2545. [PMID: 34110975 PMCID: PMC8632113 DOI: 10.1080/15476286.2021.1930756] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/16/2021] [Accepted: 05/12/2021] [Indexed: 02/07/2023] Open
Abstract
Methylation is a common post-transcriptional modification of tRNAs, particularly in the anticodon loop region. The cytosine 38 (C38) in tRNAs, such as tRNAAsp-GUC, tRNAGly-GCC, tRNAVal-AAC, and tRNAGlu-CUC, can be methylated by human DNMT2/TRDMT1 and some homologs found in bacteria, plants, and animals. However, the substrate properties and recognition mechanism of DNMT2/TRDMT1 remain to be explored. Here, taking into consideration common features of the four known substrate tRNAs, we investigated methylation activities of DNMT2/TRDMT1 on the tRNAGly-GCC truncation and point mutants, and conformational changes of mutants. The results demonstrated that human DNMT2/TRDMT1 preferred substrate tRNAGly-GCC in vitro. L-shaped conformation of classical tRNA could be favourable for DNMT2/TRDMT1 activity. The complete sequence and structure of tRNA were dispensable for DNMT2/TRDMT1 activity, whereas T-arm was indispensable to this activity. G19, U20, and A21 in D-loop were identified as the important bases for DNMT2/TRDMT1 activity, while G53, C56, A58, and C61 in T-loop were found as the critical bases. The conserved CUXXCAC sequence in the anticodon loop was confirmed to be the most critical determinant, and it could stabilize C38-flipping to promote C38 methylation. Based on these tRNA properties, new substrates, tRNAVal-CAC and tRNAGln-CUG, were discovered in vitro. Moreover, a single nucleotide substitute, U32C, could convert non-substrate tRNAAla-AGC into a substrate for DNMT2/TRDMT1. Altogether, our findings imply that DNMT2/TRDMT1 relies on a delicate network involving both the primary sequence and tertiary structure of tRNA for substrate recognition.
Collapse
Affiliation(s)
- Huari Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Daiyun Zhu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jian Wu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yunfei Ma
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Chao Cai
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yong Chen
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Mian Qin
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Hanchuan Dai
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
13
|
Balmer EA, Faso C. The Road Less Traveled? Unconventional Protein Secretion at Parasite-Host Interfaces. Front Cell Dev Biol 2021; 9:662711. [PMID: 34109175 PMCID: PMC8182054 DOI: 10.3389/fcell.2021.662711] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/07/2021] [Indexed: 01/01/2023] Open
Abstract
Protein secretion in eukaryotic cells is a well-studied process, which has been known for decades and is dealt with by any standard cell biology textbook. However, over the past 20 years, several studies led to the realization that protein secretion as a process might not be as uniform among different cargos as once thought. While in classic canonical secretion proteins carry a signal sequence, the secretory or surface proteome of several organisms demonstrated a lack of such signals in several secreted proteins. Other proteins were found to indeed carry a leader sequence, but simply circumvent the Golgi apparatus, which in canonical secretion is generally responsible for the modification and sorting of secretory proteins after their passage through the endoplasmic reticulum (ER). These alternative mechanisms of protein translocation to, or across, the plasma membrane were collectively termed “unconventional protein secretion” (UPS). To date, many research groups have studied UPS in their respective model organism of choice, with surprising reports on the proportion of unconventionally secreted proteins and their crucial roles for the cell and survival of the organism. Involved in processes such as immune responses and cell proliferation, and including far more different cargo proteins in different organisms than anyone had expected, unconventional secretion does not seem so unconventional after all. Alongside mammalian cells, much work on this topic has been done on protist parasites, including genera Leishmania, Trypanosoma, Plasmodium, Trichomonas, Giardia, and Entamoeba. Studies on protein secretion have mainly focused on parasite-derived virulence factors as a main source of pathogenicity for hosts. Given their need to secrete a variety of substrates, which may not be compatible with canonical secretion pathways, the study of mechanisms for alternative secretion pathways is particularly interesting in protist parasites. In this review, we provide an overview on the current status of knowledge on UPS in parasitic protists preceded by a brief overview of UPS in the mammalian cell model with a focus on IL-1β and FGF-2 as paradigmatic UPS substrates.
Collapse
Affiliation(s)
- Erina A Balmer
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Carmen Faso
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| |
Collapse
|
14
|
Zhu X, Wang X, Yan W, Yang H, Xiang Y, Lv F, Shi Y, Li HY, Lan L. Ubiquitination-mediated degradation of TRDMT1 regulates homologous recombination and therapeutic response. NAR Cancer 2021; 3:zcab010. [PMID: 33778494 PMCID: PMC7984809 DOI: 10.1093/narcan/zcab010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 01/08/2021] [Accepted: 02/24/2021] [Indexed: 12/25/2022] Open
Abstract
The RNA methyltransferase TRDMT1 has recently emerged as a key regulator of homologous recombination (HR) in the transcribed regions of the genome, but how it is regulated and its relevance in cancer remain unknown. Here, we identified that TRDMT1 is poly-ubiquitinated at K251 by the E3 ligase TRIM28, removing TRDMT1 from DNA damage sites and allowing completion of HR. Interestingly, K251 is adjacent to G155 in the 3D structure, and the G155V mutation leads to hyper ubiquitination of TRDMT1, reduced TRDMT1 levels and impaired HR. Accordingly, a TRDMT1 G155V mutation in an ovarian cancer super responder to platinum treatment. Cells expressing TRDMT1-G155V are sensitive to cisplatin in vitro and in vivo. In contrast, high expression of TRDMT1 in patients with ovarian cancer correlates with platinum resistance. A potent TRDMT1 inhibitor resensitizes TRDMT1-high tumor cells to cisplatin. These results suggest that TRDMT1 is a promising therapeutic target to sensitize ovarian tumors to platinum therapy.
Collapse
Affiliation(s)
- Xiaolan Zhu
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Xiangyu Wang
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Wei Yan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | - Haibo Yang
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yufei Xiang
- Department of Cell Biology, University of Pittsburgh, 3501 fifth Ave., Pittsburgh, PA 15260, USA
| | - Fengping Lv
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | - Yi Shi
- Department of Cell Biology, University of Pittsburgh, 3501 fifth Ave., Pittsburgh, PA 15260, USA
| | - Hong-yu Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | - Li Lan
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
15
|
Reyes-López M, Piña-Vázquez C, Pérez-Salazar E, de la Garza M. Endocytosis, signal transduction and proteolytic cleaving of human holotransferrin in Entamoeba histolytica. Int J Parasitol 2020; 50:959-967. [PMID: 32822678 DOI: 10.1016/j.ijpara.2020.05.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 04/03/2020] [Accepted: 05/08/2020] [Indexed: 01/15/2023]
Abstract
Amoebiasis is a parasitic infection of the human large intestine caused by Entamoeba histolytica; this disease mainly affects people from developing countries. To survive, this primitive protozoan has a high demand for iron, and it uses host iron proteins upon invasion. Transferrin (Tf) is a plasma iron-binding protein that transports and delivers iron to all cells. Iron-loaded Tf (holoTf) in humans can support the proliferation of amoebae in vitro by binding to an amoebic TfR (EhTfR), and amoebae endocytose it inside clathrin-coated vesicles. In this study, it was found that EhTfR phosphorylation is required for human holoTf endocytosis by E. histolytica. Once this complex is endocytosed, human holoTf could be degraded with a nutritional purpose by cysteine proteases. HoloTf endocytosis initiates the activation of the mitogen-activated protein kinases (MAPKs) and focal adhesion kinase (FAK) pathways, which induce cell proliferation with phosphoinositide 3-kinase (PI-3 K) and Ca2+ involvement. In the first minutes after holoTf is endocytosed, several proteins are phosphorylated including transketolase, enolase, L-myo-inositol-1-phosphate synthase and phosphoglucomutase, which control carbohydrate metabolism, and heat shock protein-70. The study of these proteins and their signal transduction pathways could be useful for developing future therapies.
Collapse
Affiliation(s)
- Magda Reyes-López
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ave. IPN 2508, Col. Zacatenco, CdMx 07360, Mexico
| | - Carolina Piña-Vázquez
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ave. IPN 2508, Col. Zacatenco, CdMx 07360, Mexico
| | - Eduardo Pérez-Salazar
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ave. IPN 2508, Col. Zacatenco, CdMx 07360, Mexico
| | - Mireya de la Garza
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ave. IPN 2508, Col. Zacatenco, CdMx 07360, Mexico.
| |
Collapse
|
16
|
Singh D, Yadav R, Kaushik S, Wadhwa N, Kapoor S, Kapoor M. Transcriptome Analysis of ppdnmt2 and Identification of Superoxide Dismutase as a Novel Interactor of DNMT2 in the Moss Physcomitrella patens. FRONTIERS IN PLANT SCIENCE 2020; 11:1185. [PMID: 32849734 PMCID: PMC7419982 DOI: 10.3389/fpls.2020.01185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/21/2020] [Indexed: 05/07/2023]
Abstract
DNMT2 is a DNA/tRNA cytosine methyltransferase that is highly conserved in structure and function in eukaryotes. In plants however, limited information is available on the function of this methyltransferase. We have previously reported that in the moss Physcomitrella patens, DNMT2 plays a crucial role in stress recovery and tRNAAsp transcription/stability under salt stress. To further investigate the role of PpDNMT2 at genome level, in this study we have performed RNA sequencing of ppdnmt2. Transcriptome analysis reveals a number of genes and pathways to function differentially and suggests a close link between PpDNMT2 function and osmotic and ionic stress tolerance. We propose PpDNMT2 to play a pivotal role in regulating salt tolerance by affecting molecular networks involved in stress perception and signal transduction that underlie maintenance of ion homeostasis in cells. We also examined interactome of PpDNMT2 using affinity purification (AP) coupled to mass spectrometry (AP-MS). Quantitative proteomic analysis reveals several chloroplast proteins involved in light reactions and carbon assimilation and proteins involved in stress response and some not implicated in stress to co-immunoprecipitate with PpDNMT2. Comparison between transcriptome and interactome datasets has revealed novel association between PpDNMT2 activity and the antioxidant enzyme Superoxide dismutase (SOD), protein turnover mediated by the Ubiquitin-proteasome system and epigenetic gene regulation. PpDNMT2 possibly exists in complex with CuZn-SODs in vivo and the two proteins also directly interact in the yeast nucleus as observed by yeast two-hybrid assay. Taken together, the work presented in this study sheds light on diverse roles of PpDNMT2 in maintaining molecular and physiological homeostasis in P. patens. This is a first report describing transcriptome and interactome of DNMT2 in any land plant.
Collapse
Affiliation(s)
- Darshika Singh
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
| | - Radha Yadav
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
| | - Shubham Kaushik
- Vproteomics, Valerian Chem Private Limited Green Park Mains, New Delhi, India
| | - Nikita Wadhwa
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
| | - Sanjay Kapoor
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Meenu Kapoor
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
- *Correspondence: Meenu Kapoor,
| |
Collapse
|
17
|
Control and regulation of the pyrophosphate-dependent glucose metabolism in Entamoeba histolytica. Mol Biochem Parasitol 2019; 229:75-87. [PMID: 30772421 DOI: 10.1016/j.molbiopara.2019.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/31/2019] [Accepted: 02/09/2019] [Indexed: 01/10/2023]
Abstract
Entamoeba histolytica has neither Krebs cycle nor oxidative phosphorylation activities; therefore, glycolysis is the main pathway for ATP supply and provision of carbon skeleton precursors for the synthesis of macromolecules. Glucose is metabolized through fermentative glycolysis, producing ethanol as its main end-product as well as some acetate. Amoebal glycolysis markedly differs from the typical Embden-Meyerhof-Parnas pathway present in human cells: (i) by the use of inorganic pyrophosphate, instead of ATP, as the high-energy phospho group donor; (ii) with one exception, the pathway enzymes can catalyze reversible reactions under physiological conditions; (iii) there is no allosteric regulation and sigmoidal kinetic behavior of key enzymes; and (iv) the presence of some glycolytic and fermentation enzymes similar to those of anaerobic bacteria. These peculiarities bring about alternative mechanisms of control and regulation of the PPi-dependent fermentative glycolysis in the parasite in comparison to the ATP-dependent and allosterically regulated glycolysis in many other eukaryotic cells. In this review, the current knowledge of the carbohydrate metabolism enzymes in E. histolytica is analyzed. Thermodynamics and stoichiometric analyses indicate 2 to 3.5 ATP yield per glucose metabolized, instead of the often presumed 5 ATP/glucose ratio. PPi derived from anabolism seems insufficient for PPi-glycolysis; hence, alternative ways of PPi supply are also discussed. Furthermore, the underlying mechanisms of control and regulation of the E. histolytica carbohydrate metabolism, analyzed by applying integral and systemic approaches such as Metabolic Control Analysis and kinetic modeling, contribute to unveiling alternative and promising drug targets.
Collapse
|
18
|
Shaulov Y, Shimokawa C, Trebicz-Geffen M, Nagaraja S, Methling K, Lalk M, Weiss-Cerem L, Lamm AT, Hisaeda H, Ankri S. Escherichia coli mediated resistance of Entamoeba histolytica to oxidative stress is triggered by oxaloacetate. PLoS Pathog 2018; 14:e1007295. [PMID: 30308066 PMCID: PMC6181410 DOI: 10.1371/journal.ppat.1007295] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/25/2018] [Indexed: 12/20/2022] Open
Abstract
Amebiasis, a global intestinal parasitic disease, is due to Entamoeba histolytica. This parasite, which feeds on bacteria in the large intestine of its human host, can trigger a strong inflammatory response upon invasion of the colonic mucosa. Whereas information about the mechanisms which are used by the parasite to cope with oxidative and nitrosative stresses during infection is available, knowledge about the contribution of bacteria to these mechanisms is lacking. In a recent study, we demonstrated that enteropathogenic Escherichia coli O55 protects E. histolytica against oxidative stress. Resin-assisted capture (RAC) of oxidized (OX) proteins coupled to mass spectrometry (OX-RAC) was used to investigate the oxidation status of cysteine residues in proteins present in E. histolytica trophozoites incubated with live or heat-killed E. coli O55 and then exposed to H2O2-mediated oxidative stress. We found that the redox proteome of E. histolytica exposed to heat-killed E. coli O55 is enriched with proteins involved in redox homeostasis, lipid metabolism, small molecule metabolism, carbohydrate derivative metabolism, and organonitrogen compound biosynthesis. In contrast, we found that proteins associated with redox homeostasis were the only OX-proteins that were enriched in E. histolytica trophozoites which were incubated with live E. coli O55. These data indicate that E. coli has a profound impact on the redox proteome of E. histolytica. Unexpectedly, some E. coli proteins were also co-identified with E. histolytica proteins by OX-RAC. We demonstrated that one of these proteins, E. coli malate dehydrogenase (EcMDH) and its product, oxaloacetate, are key elements of E. coli-mediated resistance of E. histolytica to oxidative stress and that oxaloacetate helps the parasite survive in the large intestine. We also provide evidence that the protective effect of oxaloacetate against oxidative stress extends to Caenorhabditis elegans.
Collapse
Affiliation(s)
- Yana Shaulov
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa Israel
| | - Chikako Shimokawa
- Department of Parasitology, Graduate School of Medicine, Gunma University, Showa-machi, Maebashi, Gunma, Japan
| | - Meirav Trebicz-Geffen
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa Israel
| | - Shruti Nagaraja
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa Israel
| | - Karen Methling
- University of Greifswald, Institute of Biochemistry, Greifswald, Germany
| | - Michael Lalk
- University of Greifswald, Institute of Biochemistry, Greifswald, Germany
| | - Lea Weiss-Cerem
- Faculty of Biology, Technion- Israel Institute of Technology, Technion City, Haifa, Israel
| | - Ayelet T. Lamm
- Faculty of Biology, Technion- Israel Institute of Technology, Technion City, Haifa, Israel
| | - Hajime Hisaeda
- Department of Parasitology, Graduate School of Medicine, Gunma University, Showa-machi, Maebashi, Gunma, Japan
- Department of Parasitology, National Institute of Infectious Diseases, Toyama, Shinjuku, Tokyo, Japan
| | - Serge Ankri
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa Israel
- * E-mail:
| |
Collapse
|
19
|
Ahn CS, Kim JG, Shin MH, Lee YA, Kong Y. Comparison of Secretome Profile of Pathogenic and Non-Pathogenic Entamoeba histolytica. Proteomics 2018; 18:e1700341. [PMID: 29409117 DOI: 10.1002/pmic.201700341] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 01/08/2018] [Indexed: 02/05/2023]
Abstract
The obligatory intracellular protozoan parasite Entamoeba histolytica causes amebic dysentery and liver abscess. E. histolytica adheres to the host tissues in a contact-dependent manner. E. histolytica excretory-secretory products (ESP) might play critical roles during invasion. We comparatively analyzed the secretome profile of E. histolytica pathogenic HM-1:IMSS and non-pathogenic Rahman strains. The two ESP revealed similar but distinct spotting patterns. In both ESP, alcohol dehydrogenase, enolase 1, and transketolase, which control classical carbohydrate metabolism and other moonlighting effects, constituted the most abundant fractions. We recognized differently secreted molecules. Secretion of cytoskeletal organization proteins (actin, actin binding protein, and EHI_068510), protein remodeling amino peptidase, and multifunctional elongation factor 1-α were increased in Rahman. Conversely, carbohydrate metabolizing enolase 1, alcohol dehydrogenase, transketolase, calponin, phosphoglucose mutase, malic enzyme and EHI_156420, xenobiotic scavenging superoxide dismutase and EHI_140740, and pyruvate:ferredoxin oxidoreductase and coronin (carbohydrate metabolism/detoxification) showed reduced secretion. Transcription levels of some genes involved in these processes also decreased. Changes of secretory behavior, especially decreased secretion of multifunctional carbohydrate metabolizing enzymes and detoxifying proteins that importantly participated in amoeba pathogenesis might reflect avirulent nature of Rahman strain in the host.
Collapse
Affiliation(s)
- Chun-Seob Ahn
- Department of Molecular Parasitology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Jeong-Geun Kim
- Department of Molecular Parasitology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Myeong Heon Shin
- Department of Environmental Medical Biology, Yonsei University College of Medicine, Seoul, Korea
| | - Young Ah Lee
- Department of Environmental Medical Biology, Yonsei University College of Medicine, Seoul, Korea
| | - Yoon Kong
- Department of Molecular Parasitology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, Korea
| |
Collapse
|
20
|
Nagaraja S, Ankri S. Utilization of Different Omic Approaches to Unravel Stress Response Mechanisms in the Parasite Entamoeba histolytica. Front Cell Infect Microbiol 2018; 8:19. [PMID: 29473019 PMCID: PMC5809450 DOI: 10.3389/fcimb.2018.00019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/16/2018] [Indexed: 12/18/2022] Open
Abstract
During its life cycle, the unicellular parasite Entamoeba histolytica is challenged by a wide variety of environmental stresses, such as fluctuation in glucose concentration, changes in gut microbiota composition, and the release of oxidative and nitrosative species from neutrophils and macrophages. The best mode of survival for this parasite is to continuously adapt itself to the dynamic environment of the host. Our ability to study the stress-induced responses and adaptive mechanisms of this parasite has been transformed through the development of genomics, proteomics or metabolomics (omics sciences). These studies provide insights into different facets of the parasite's behavior in the host. However, there is a dire need for multi-omics data integration to better understand its pathogenic nature, ultimately paving the way to identify new chemotherapeutic targets against amebiasis. This review provides an integration of the most relevant omics information on the mechanisms that are used by E. histolytica to resist environmental stresses.
Collapse
Affiliation(s)
- Shruti Nagaraja
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Serge Ankri
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| |
Collapse
|
21
|
Lewinska A, Adamczyk-Grochala J, Kwasniewicz E, Wnuk M. Downregulation of methyltransferase Dnmt2 results in condition-dependent telomere shortening and senescence or apoptosis in mouse fibroblasts. J Cell Physiol 2017; 232:3714-3726. [PMID: 28177119 DOI: 10.1002/jcp.25848] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/06/2017] [Accepted: 02/07/2017] [Indexed: 01/05/2023]
Abstract
Dnmt2 is a highly conserved methyltransferase of uncertain biological function(s). As Dnmt2 was considered as a driver of fruit fly longevity and a modulator of stress response, we decided to evaluate the role of Dnmt2 during stress-induced premature senescence in NIH3T3 mouse fibroblasts. Stable knockdown of Dnmt2 resulted in hydrogen peroxide-mediated sensitivity and apoptosis, whereas in the control conditions, senescence was induced. Cellular senescence was accompanied by elevated levels of p53 and p21, decreased telomere length and telomerase activity, increased production of reactive oxygen species and protein carbonylation, and DNA damage. Dnmt2 silencing also promoted global DNA and RNA hypermethylation, and upregulation of methyltransferases, namely Dnmt1, Dnmt3a, and Dnmt3b. Taken together, we show for the first time that Dnmt2 may promote lifespan in the control conditions and survival during stress conditions in mouse fibroblasts.
Collapse
Affiliation(s)
- Anna Lewinska
- Laboratory of Cell Biology, University of Rzeszow, Kolbuszowa, Poland
| | | | - Ewa Kwasniewicz
- Laboratory of Cell Biology, University of Rzeszow, Kolbuszowa, Poland
| | - Maciej Wnuk
- Department of Genetics, University of Rzeszow, Kolbuszowa, Poland
| |
Collapse
|
22
|
Dutta S, Moitra A, Mukherjee D, Jarori GK. Functions of tryptophan residues in EWGWS insert of Plasmodium falciparum enolase. FEBS Open Bio 2017; 7:892-904. [PMID: 28680804 PMCID: PMC5494301 DOI: 10.1002/2211-5463.12242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 05/04/2017] [Indexed: 12/16/2022] Open
Abstract
Plasmodium falciparum enolase (Pfeno) is a dimeric enzyme with multiple moonlighting functions. This enzyme is thus a potential target for anti-malarial treatments. A unique feature of Pfeno is the presence of a pentapeptide insert 104 EWGWS 108. The functional role of tryptophan residues in this insert was investigated using site-directed mutagenesis. Replacement of these two Trp residues with alanines (or lysines) resulted in a near complete loss of enolase activity and dissociation of the normal dimeric form into monomers. Molecular modeling indicated that 340R forms π-cation bonds with the aromatic rings of 105W and 46Y. Mutation induced changes in the interactions among these three residues were presumably relayed to the inter-subunit interface via a coil formed by 46Y : 59Y, resulting in the disruption of a salt bridge between 11R : 425E and a π-cation interaction between 11R : 59Y. This led to a drop of ~ 4 kcal·mole-1 in the inter-subunit docking energy in the mutant, causing a ~ 103 fold decrease in affinity. Partial restoration of the inter-subunit interactions led to reformation of dimers and also restored a significant fraction of the lost enzyme activity. These results suggested that the perturbations in the conformation of the surface loop containing the insert sequence were relayed to the interface region, causing dimer dissociation that, in turn, disrupted the enzyme's active site. Since Plasmodium enolase is a moonlighting protein with multiple parasite-specific functions, it is likely that these functions may map on to the highly conserved unique insert region of this protein. ENZYMES Enolase(EC4.2.1.11).
Collapse
Affiliation(s)
- Sneha Dutta
- Department of Biological Sciences Tata Institute of Fundamental Research Mumbai India.,Present address: T. H. Chan School of Public Health Graduate School of Arts and Sciences Harvard University Boston MA USA
| | - Anasuya Moitra
- Department of Biological Sciences Tata Institute of Fundamental Research Mumbai India
| | - Debanjan Mukherjee
- Instituto de Medicina Molecular Faculdade de Medicina Universidade de Lisboa Portugal
| | - Gotam K Jarori
- Department of Biological Sciences Tata Institute of Fundamental Research Mumbai India
| |
Collapse
|
23
|
Mi R, Yang X, Huang Y, Cheng L, Lu K, Han X, Chen Z. Immunolocation and enzyme activity analysis of Cryptosporidium parvum enolase. Parasit Vectors 2017; 10:273. [PMID: 28569179 PMCID: PMC5452291 DOI: 10.1186/s13071-017-2200-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 05/16/2017] [Indexed: 12/27/2022] Open
Abstract
Background Enolase is an essential multifunctional glycolytic enzyme that is involved in many biological processes of apicomplexan protozoa, such as adhesion and invasion. However, the characteristics of enolase in Cryptosporidium parvum, including the location on the oocyst and the enzyme activity, remain unclear. Methods The C. parvum enolase gene (cpeno) was amplified by RT-PCR and sequenced. The deduced amino acid sequence was analysed by bioinformatics software. The gene was expressed in Escherichia coli BL21 (DE3) and purified recombinant protein was used for enzyme activity analysis, binding experiments and antibody preparation. The localisation of enolase on oocysts was examined via immunofluorescence techniques. Results A 1,350 bp DNA sequence was amplified from cDNA taken from C. parvum oocysts. The deduced amino acids sequence of C. parvum enolase (CpEno) had 82.1% homology with Cryptosporidium muris enolase, and 54.7–68.0% homology with others selected species. Western blot analysis indicated that recombinant C. parvum enolase (rCpEno) could be recognised by C. parvum-infected cattle sera. Immunolocalization testing showed that CpEno was found to locate mainly on the surface of oocysts. The enzyme activity was 33.5 U/mg, and the Michaelis constant (Km) was 0.571 mM/l. Kinetic measurements revealed that the most suitable pH value was 7.0–7.5, and there were only minor effects on the activity of rCpEno with a change in the reaction temperature. The enzyme activity decreased when the Ca2+, K+, Mg2+ and Na+ concentrations of the reaction solution increased. The binding assays demonstrated that rCpEno could bind to human plasminogen. Conclusion This study is the first report of immunolocation, binding activity and enzyme characteristics of CpEno. The results of this study suggest that the surface-associated CpEno not only functions as a glycolytic enzyme but may also participate in attachment and invasion process of the parasite. Electronic supplementary material The online version of this article (doi:10.1186/s13071-017-2200-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rongsheng Mi
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou, 730046, China.,Key Laboratory of Animal Parasitology of Ministry of Agriculture, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Xiaojiao Yang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Yan Huang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Long Cheng
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Ke Lu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Xiangan Han
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Zhaoguo Chen
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou, 730046, China. .,Key Laboratory of Animal Parasitology of Ministry of Agriculture, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| |
Collapse
|
24
|
Shahi P, Trebicz-Geffen M, Nagaraja S, Hertz R, Baumel-Alterzon S, Methling K, Lalk M, Mazumder M, Samudrala G, Ankri S. N-acetyl ornithine deacetylase is a moonlighting protein and is involved in the adaptation of Entamoeba histolytica to nitrosative stress. Sci Rep 2016; 6:36323. [PMID: 27808157 PMCID: PMC5093748 DOI: 10.1038/srep36323] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 10/14/2016] [Indexed: 12/14/2022] Open
Abstract
Adaptation of the Entamoeba histolytica parasite to toxic levels of nitric oxide (NO) that are produced by phagocytes may be essential for the establishment of chronic amebiasis and the parasite's survival in its host. In order to obtain insight into the mechanism of E. histolytica's adaptation to NO, E. histolytica trophozoites were progressively adapted to increasing concentrations of the NO donor drug, S-nitrosoglutathione (GSNO) up to a concentration of 110 μM. The transcriptome of NO adapted trophozoites (NAT) was investigated by RNA sequencing (RNA-seq). N-acetyl ornithine deacetylase (NAOD) was among the 208 genes that were upregulated in NAT. NAOD catalyzes the deacetylation of N-acetyl-L-ornithine to yield ornithine and acetate. Here, we report that NAOD contributes to the better adaptation of the parasite to nitrosative stress (NS) and that this function does not depend on NAOD catalytic activity. We also demonstrated that glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is detrimental to E. histolytica exposed to NS and that this detrimental effect is neutralized by NAOD or by a catalytically inactive NAOD (mNAOD). These results establish NAOD as a moonlighting protein, and highlight the unexpected role of this metabolic enzyme in the adaptation of the parasite to NS.
Collapse
Affiliation(s)
- Preeti Shahi
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion, P.O.B. 9649, 31096 Haifa Israel
| | - Meirav Trebicz-Geffen
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion, P.O.B. 9649, 31096 Haifa Israel
| | - Shruti Nagaraja
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion, P.O.B. 9649, 31096 Haifa Israel
| | - Rivka Hertz
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion, P.O.B. 9649, 31096 Haifa Israel
| | - Sharon Baumel-Alterzon
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion, P.O.B. 9649, 31096 Haifa Israel
| | - Karen Methling
- University of Greifswald, Institute of Biochemistry, Greifswald, Germany
| | - Michael Lalk
- University of Greifswald, Institute of Biochemistry, Greifswald, Germany
| | - Mohit Mazumder
- Jawaharlal Nehru University School of Life Sciences, New Delhi, India
| | | | - Serge Ankri
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion, P.O.B. 9649, 31096 Haifa Israel
| |
Collapse
|
25
|
Jeltsch A, Ehrenhofer-Murray A, Jurkowski TP, Lyko F, Reuter G, Ankri S, Nellen W, Schaefer M, Helm M. Mechanism and biological role of Dnmt2 in Nucleic Acid Methylation. RNA Biol 2016; 14:1108-1123. [PMID: 27232191 PMCID: PMC5699548 DOI: 10.1080/15476286.2016.1191737] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
A group of homologous nucleic acid modification enzymes called Dnmt2, Trdmt1, Pmt1, DnmA, and Ehmet in different model organisms catalyze the transfer of a methyl group from the cofactor S-adenosyl-methionine (SAM) to the carbon-5 of cytosine residues. Originally considered as DNA MTases, these enzymes were shown to be tRNA methyltransferases about a decade ago. Between the presumed involvement in DNA modification-related epigenetics, and the recent foray into the RNA modification field, significant progress has characterized Dnmt2-related research. Here, we review this progress in its diverse facets including molecular evolution, structural biology, biochemistry, chemical biology, cell biology and epigenetics.
Collapse
Affiliation(s)
- Albert Jeltsch
- a Institute of Biochemistry , Stuttgart University , Stuttgart , Germany
| | | | - Tomasz P Jurkowski
- a Institute of Biochemistry , Stuttgart University , Stuttgart , Germany
| | - Frank Lyko
- c Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center , Heidelberg , Germany
| | - Gunter Reuter
- d Institute of Biology, Developmental Genetics, Martin Luther University Halle , Halle , Germany
| | - Serge Ankri
- e Department of Molecular Microbiology , The Bruce Rappaport Faculty of Medicine , Technion , Haifa , Israel
| | - Wolfgang Nellen
- f Abteilung für Genetik, Universität Kassel , Kassel , Germany
| | - Matthias Schaefer
- g Medical University of Vienna, Center for Anatomy & Cell Biology , Vienna , Austria
| | - Mark Helm
- h Institut für Pharmazie und Biochemie, Johannes Gutenberg-Universität Mainz , Mainz , Germany
| |
Collapse
|
26
|
Ashapkin VV, Kutueva LI, Vanyushin BF. Dnmt2 is the most evolutionary conserved and enigmatic cytosine DNA methyltransferase in eukaryotes. RUSS J GENET+ 2016. [DOI: 10.1134/s1022795416030029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Gaston KW, Limbach PA. The identification and characterization of non-coding and coding RNAs and their modified nucleosides by mass spectrometry. RNA Biol 2015; 11:1568-85. [PMID: 25616408 PMCID: PMC4615682 DOI: 10.4161/15476286.2014.992280] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The analysis of ribonucleic acids (RNA) by mass spectrometry has been a valuable analytical approach for more than 25 years. In fact, mass spectrometry has become a method of choice for the analysis of modified nucleosides from RNA isolated out of biological samples. This review summarizes recent progress that has been made in both nucleoside and oligonucleotide mass spectral analysis. Applications of mass spectrometry in the identification, characterization and quantification of modified nucleosides are discussed. At the oligonucleotide level, advances in modern mass spectrometry approaches combined with the standard RNA modification mapping protocol enable the characterization of RNAs of varying lengths ranging from low molecular weight short interfering RNAs (siRNAs) to the extremely large 23 S rRNAs. New variations and improvements to this protocol are reviewed, including top-down strategies, as these developments now enable qualitative and quantitative measurements of RNA modification patterns in a variety of biological systems.
Collapse
Affiliation(s)
- Kirk W Gaston
- a Rieveschl Laboratories for Mass Spectrometry; Department of Chemistry ; University of Cincinnati ; Cincinnati , OH USA
| | | |
Collapse
|
28
|
Shanmugam R, Fierer J, Kaiser S, Helm M, Jurkowski TP, Jeltsch A. Cytosine methylation of tRNA-Asp by DNMT2 has a role in translation of proteins containing poly-Asp sequences. Cell Discov 2015; 1:15010. [PMID: 27462411 PMCID: PMC4860778 DOI: 10.1038/celldisc.2015.10] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 03/26/2015] [Indexed: 01/09/2023] Open
Abstract
The Dnmt2 RNA methyltransferase catalyses the methylation of C38 in the anticodon loop of tRNA-Asp, but the molecular role of this methylation is unknown. Here, we report that mouse aspartyl-tRNA synthetase shows a four to fivefold preference for C38-methylated tRNA-Asp. Consistently, a 30% reduced charging level of tRNA-Asp was observed in Dnmt2 knockout (KO) murine embryonic fibroblast cells. Gene expression analysis with fluorescent reporter proteins fused to an N-terminal poly-Asp sequence showed that protein synthesis of poly-Asp-tagged reporter proteins was reduced in Dnmt2 KO cells as well. The same effect was observed with endogenous proteins containing poly-Asp sequences, indicating that Dnmt2-mediated C38 methylation of tRNA-Asp regulates the translation of proteins containing poly-Asp sequences. Gene ontology searches for proteins containing poly-Asp sequences in the human proteome showed that a significant number of these proteins have roles in transcriptional regulation and gene expression. Hence, the Dnmt2-mediated methylation of tRNA-Asp exhibits a post-transcriptional regulatory role by controlling the synthesis of a group of target proteins containing poly-Asp sequences.
Collapse
Affiliation(s)
- Raghuvaran Shanmugam
- Institute of Biochemistry, Stuttgart University, Faculty of Chemistry , Stuttgart, Germany
| | - Jacob Fierer
- MoLife Program, School of Engineering and Science, Jacobs University Bremen , Bremen, Germany
| | - Steffen Kaiser
- Institute of Pharmacy and Biochemistry, Faculty of Chemistry, Pharmaceutical Sciences and Geoscience, Johannes Gutenberg-Universität Mainz , Mainz, Germany
| | - Mark Helm
- Institute of Pharmacy and Biochemistry, Faculty of Chemistry, Pharmaceutical Sciences and Geoscience, Johannes Gutenberg-Universität Mainz , Mainz, Germany
| | - Tomasz P Jurkowski
- Institute of Biochemistry, Stuttgart University, Faculty of Chemistry , Stuttgart, Germany
| | - Albert Jeltsch
- Institute of Biochemistry, Stuttgart University, Faculty of Chemistry , Stuttgart, Germany
| |
Collapse
|
29
|
Transferrin: Endocytosis and Cell Signaling in Parasitic Protozoa. BIOMED RESEARCH INTERNATIONAL 2015; 2015:641392. [PMID: 26090431 PMCID: PMC4450279 DOI: 10.1155/2015/641392] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 12/18/2014] [Indexed: 12/31/2022]
Abstract
Iron is the fourth most abundant element on Earth and the most abundant metal in the human body. This element is crucial for life because almost all organisms need iron for several biological activities. This is the case with pathogenic organisms, which are at the vanguard in the battle with the human host for iron. The latest regulates Fe concentration through several iron-containing proteins, such as transferrin. The transferrin receptor transports iron to each cell that needs it and maintains it away from pathogens. Parasites have developed several strategies to obtain iron as the expression of specific transferrin receptors localized on plasma membrane, internalized through endocytosis. Signal transduction pathways related to the activation of the receptor have functional importance in proliferation. The study of transferrin receptors and other proteins with action in the signaling networks is important because these proteins could be used as therapeutic targets due to their specificity or to differences with the human counterpart. In this work, we describe proteins that participate in signal transduction processes, especially those that involve transferrin endocytosis, and we compare these processes with those found in T. brucei, T. cruzi, Leishmania spp., and E. histolytica parasites.
Collapse
|
30
|
Abstract
Cells have developed molecular machineries, which can chemically modify DNA and RNA nucleosides. One particular and chemically simple modification, (cytosine-5) methylation (m(5)C), has been detected both in RNA and DNA suggesting universal use of m(5)C for the function of these nucleotide polymers. m(5)C can be reproducibly mapped to abundant noncoding RNAs (transfer RNA, tRNA and ribosomal RNA, rRNA), and recently, also nonabundant RNAs (including mRNAs) have been reported to carry this modification. Quantification of m(5)C content in total RNA preparations indicates that a limited number of RNAs carry this modification and suggests specific functions for (cytosine-5) RNA methylation. What exactly is the biological function of m(5)C in RNA? Before attempting to address this question, m(5)C needs to be mapped specifically and reproducibly, preferably on a transcriptome-wide scale. To facilitate the detection of m(5)C in its sequence context, RNA bisulfite sequencing (RNA-BisSeq) has been developed. This method relies on the efficient chemical deamination of nonmethylated cytosine, which can be read out as single nucleotide polymorphism (nonmethylated cytosine as thymine vs. methylated cytosine as cytosine), when differentially comparing cDNA libraries to reference sequences after DNA sequencing. Here, the basic protocol of RNA-BisSeq, its current applications and limitations are described.
Collapse
Affiliation(s)
- Matthias Schaefer
- Vienna Biocenter, Max F. Perutz Laboratories, Department of Biochemistry and Cell Biology, Universität Wien, Vienna, Austria.
| |
Collapse
|
31
|
Elhardt W, Shanmugam R, Jurkowski TP, Jeltsch A. Somatic cancer mutations in the DNMT2 tRNA methyltransferase alter its catalytic properties. Biochimie 2015; 112:66-72. [PMID: 25747896 DOI: 10.1016/j.biochi.2015.02.022] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 02/24/2015] [Indexed: 12/22/2022]
Abstract
Methylation of tRNA is an important post-transcriptional modification and aberrations in tRNA modification has been implicated in cancer. The DNMT2 protein methylates C38 of tRNA-Asp and it has a role in cellular physiology and stress response and its expression levels are altered in cancer tissues. Here we studied whether DNMT2 somatic mutations found in cancer tissues affect the activity of the enzyme. We have generated 13 DNMT2 variants and purified the corresponding proteins. All proteins were properly folded as determined by circular dichroism spectroscopy. We tested their RNA methylation activity using in vitro generated tRNA-Asp. One of the mutations (E63K) caused a twofold increase in activity, while two of them led to a strong (over fourfold) decrease in activity (G155S and L257V). Two additional mutant proteins were almost inactive (R371H and G155V). The strong effect of some of the somatic cancer mutations on DNMT2 activity suggests that these mutations have a functional role in tumorigenesis.
Collapse
Affiliation(s)
- Winfried Elhardt
- Institute of Biochemistry, Stuttgart University, 70569 Stuttgart, Germany
| | | | - Tomasz P Jurkowski
- Institute of Biochemistry, Stuttgart University, 70569 Stuttgart, Germany.
| | - Albert Jeltsch
- Institute of Biochemistry, Stuttgart University, 70569 Stuttgart, Germany.
| |
Collapse
|
32
|
Ruan J, Mouveaux T, Light SH, Minasov G, Anderson WF, Tomavo S, Ngô HM. The structure of bradyzoite-specific enolase from Toxoplasma gondii reveals insights into its dual cytoplasmic and nuclear functions. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2015; 71:417-26. [PMID: 25760592 PMCID: PMC4356359 DOI: 10.1107/s1399004714026479] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 12/01/2014] [Indexed: 12/15/2022]
Abstract
In addition to catalyzing a central step in glycolysis, enolase assumes a remarkably diverse set of secondary functions in different organisms, including transcription regulation as documented for the oncogene c-Myc promoter-binding protein 1. The apicomplexan parasite Toxoplasma gondii differentially expresses two nuclear-localized, plant-like enolases: enolase 1 (TgENO1) in the latent bradyzoite cyst stage and enolase 2 (TgENO2) in the rapidly replicative tachyzoite stage. A 2.75 Å resolution crystal structure of bradyzoite enolase 1, the second structure to be reported of a bradyzoite-specific protein in Toxoplasma, captures an open conformational state and reveals that distinctive plant-like insertions are located on surface loops. The enolase 1 structure reveals that a unique residue, Glu164, in catalytic loop 2 may account for the lower activity of this cyst-stage isozyme. Recombinant TgENO1 specifically binds to a TTTTCT DNA motif present in the cyst matrix antigen 1 (TgMAG1) gene promoter as demonstrated by gel retardation. Furthermore, direct physical interactions of both nuclear TgENO1 and TgENO2 with the TgMAG1 gene promoter are demonstrated in vivo using chromatin immunoprecipitation (ChIP) assays. Structural and biochemical studies reveal that T. gondii enolase functions are multifaceted, including the coordination of gene regulation in parasitic stage development. Enolase 1 provides a potential lead in the design of drugs against Toxoplasma brain cysts.
Collapse
Affiliation(s)
- Jiapeng Ruan
- Center for Structural Genomics of Infectious Diseases, Northwestern University, 320 E. Superior Street, Morton 7-601, Chicago, IL 60611, USA
| | - Thomas Mouveaux
- Center for Infection and Immunity of Lille, CNRS UMR 8204, INSERM U1019, Institut Pasteur de Lille, Université Lille Nord de France, France
| | - Samuel H. Light
- Center for Structural Genomics of Infectious Diseases, Northwestern University, 320 E. Superior Street, Morton 7-601, Chicago, IL 60611, USA
| | - George Minasov
- Center for Structural Genomics of Infectious Diseases, Northwestern University, 320 E. Superior Street, Morton 7-601, Chicago, IL 60611, USA
| | - Wayne F. Anderson
- Center for Structural Genomics of Infectious Diseases, Northwestern University, 320 E. Superior Street, Morton 7-601, Chicago, IL 60611, USA
| | - Stanislas Tomavo
- Center for Infection and Immunity of Lille, CNRS UMR 8204, INSERM U1019, Institut Pasteur de Lille, Université Lille Nord de France, France
| | - Huân M. Ngô
- Center for Structural Genomics of Infectious Diseases, Northwestern University, 320 E. Superior Street, Morton 7-601, Chicago, IL 60611, USA
- BrainMicro LLC, 21 Pendleton Street, New Haven, CT 06511, USA
| |
Collapse
|
33
|
Exploiting Unique Structural and Functional Properties of Malarial Glycolytic Enzymes for Antimalarial Drug Development. Malar Res Treat 2014; 2014:451065. [PMID: 25580350 PMCID: PMC4280493 DOI: 10.1155/2014/451065] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 10/30/2014] [Indexed: 01/10/2023] Open
Abstract
Metabolic enzymes have been known to carry out a variety of functions besides their normal housekeeping roles known as “moonlighting functions.” These functionalities arise from structural changes induced by posttranslational modifications and/or binding of interacting proteins. Glycolysis is the sole source of energy generation for malaria parasite Plasmodium falciparum, hence a potential pathway for therapeutic intervention. Crystal structures of several P. falciparum glycolytic enzymes have been solved, revealing that they exhibit unique structural differences from the respective host enzymes, which could be exploited for their selective targeting. In addition, these enzymes carry out many parasite-specific functions, which could be of potential interest to control parasite development and transmission. This review focuses on the moonlighting functions of P. falciparum glycolytic enzymes and unique structural differences and functional features of the parasite enzymes, which could be exploited for therapeutic and transmission blocking interventions against malaria.
Collapse
|
34
|
López-Rosas I, Marchat LA, Olvera BG, Guillen N, Weber C, Hernández de la Cruz O, Ruíz-García E, Astudillo-de la Vega H, López-Camarillo C. Proteomic analysis identifies endoribouclease EhL-PSP and EhRRP41 exosome protein as novel interactors of EhCAF1 deadenylase. J Proteomics 2014; 111:59-73. [PMID: 24998979 DOI: 10.1016/j.jprot.2014.06.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 05/31/2014] [Accepted: 06/20/2014] [Indexed: 01/17/2023]
Abstract
UNLABELLED In higher eukaryotic cells mRNA degradation initiates by poly(A) tail shortening catalyzed by deadenylases CAF1 and CCR4. In spite of the key role of mRNA turnover in gene expression regulation, the underlying mechanisms remain poorly understood in parasites. Here, we aimed to study the function of EhCAF1 and identify associated proteins in Entamoeba histolytica. By biochemical assays, we evidenced that EhCAF1 has both RNA binding and deadenylase activities in vitro. EhCAF1 was located in cytoplasmic P-bodies that increased in number and size after cellular stress induced by DNA damage, heat shock, and nitric oxide. Using pull-down assays and ESI-MS/MS mass spectrometry, we identified 15 potential EhCAF1-interacting proteins, including the endoribonuclease EhL-PSP. Remarkably, EhCAF1 colocalized with EhL-PSP in cytoplasmic P-bodies in trophozoites. Bioinformatic analysis of EhL-PSP network proteins predicts a potential interaction with EhRRP41 exosome protein. Consistently, we evidenced that EhL-PSP colocalizes and physically interacts with EhRRP41. Strikingly, EhRRP41 did not coimmunoprecipitate EhCAF1, suggesting the existence of two EhL-PSP-containing complexes. In conclusion, our results showed novel interactions between mRNA degradation proteins and evidenced for the first time that EhCAF1 is a functional deadenylase that interacts with EhL-PSP endoribonuclease in P-bodies, while EhL-PSP interacts with EhRRP41 exosome protein in this early-branched eukaryote. BIOLOGICAL SIGNIFICANCE This study provides evidences for the functional deadenylase activity of EhCAF1 and shows a link between different mRNA degradation proteins in E. histolytica. By proteomic tools and pull down assays, we evidenced that EhCAF1 interacts with the putative endoribonuclease EhL-PSP, which in turn interacts with exosome EhRRP41 protein. Our data suggest for the first time the presence of two complexes, one containing the endoribonuclease EhL-PSP and the deadenylase EhCAF1 in P-bodies; and another containing the endoribonuclease EhL-PSP and the exosome EhRRP41 exoribonuclease. Overall, these results provide novel data that may help to understand mRNA decay mechanisms in this parasite.
Collapse
Affiliation(s)
- Itzel López-Rosas
- Autonomous University of Mexico City, Genomics Sciences Program, Mexico City, Mexico; Biotechnology Program, National School of Medicine and Homeopathy, National Polytechnic Institute, Mexico City, Mexico
| | - Laurence A Marchat
- Biotechnology Program, National School of Medicine and Homeopathy, National Polytechnic Institute, Mexico City, Mexico; Institutional Program of Molecular Biomedicine, National School of Medicine and Homeopathy, National Polytechnic Institute, Mexico City, Mexico
| | - Beatriz Gallo Olvera
- Biotechnology Program, National School of Medicine and Homeopathy, National Polytechnic Institute, Mexico City, Mexico; Institutional Program of Molecular Biomedicine, National School of Medicine and Homeopathy, National Polytechnic Institute, Mexico City, Mexico
| | - Nancy Guillen
- Unit of Cell Biology for Parasitism, Pasteur Institute, Paris, France; INSERM U786, Paris, France
| | - Christian Weber
- Unit of Cell Biology for Parasitism, Pasteur Institute, Paris, France; INSERM U786, Paris, France
| | | | - Erika Ruíz-García
- Translational Medicine Laboratory, National Institute of Cancerology, Mexico City, Mexico
| | - Horacio Astudillo-de la Vega
- Laboratory of Translational Cancer Research and Cellular Therapy, Oncology Hospital, Medical Center Siglo XXI, Mexico City, Mexico
| | - César López-Camarillo
- Autonomous University of Mexico City, Genomics Sciences Program, Mexico City, Mexico.
| |
Collapse
|
35
|
Mouveaux T, Oria G, Werkmeister E, Slomianny C, Fox BA, Bzik DJ, Tomavo S. Nuclear glycolytic enzyme enolase of Toxoplasma gondii functions as a transcriptional regulator. PLoS One 2014; 9:e105820. [PMID: 25153525 PMCID: PMC4143315 DOI: 10.1371/journal.pone.0105820] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 07/28/2014] [Indexed: 01/07/2023] Open
Abstract
Apicomplexan parasites including Toxoplasma gondii have complex life cycles within different hosts and their infectivity relies on their capacity to regulate gene expression. However, little is known about the nuclear factors that regulate gene expression in these pathogens. Here, we report that T. gondii enolase TgENO2 is targeted to the nucleus of actively replicating parasites, where it specifically binds to nuclear chromatin in vivo. Using a ChIP-Seq technique, we provide evidence for TgENO2 enrichment at the 5′ untranslated gene regions containing the putative promoters of 241 nuclear genes. Ectopic expression of HA-tagged TgENO1 or TgENO2 led to changes in transcript levels of numerous gene targets. Targeted disruption of TgENO1 gene results in a decrease in brain cyst burden of chronically infected mice and in changes in transcript levels of several nuclear genes. Complementation of this knockout mutant with ectopic TgENO1-HA fully restored normal transcript levels. Our findings reveal that enolase functions extend beyond glycolytic activity and include a direct role in coordinating gene regulation in T. gondii.
Collapse
Affiliation(s)
- Thomas Mouveaux
- Center for Infection and Immunity of Lille, CNRS UMR 8204, INSERM U 1019, Institut Pasteur de Lille, Université Lille Nord de France, Lille, France
| | - Gabrielle Oria
- Center for Infection and Immunity of Lille, CNRS UMR 8204, INSERM U 1019, Institut Pasteur de Lille, Université Lille Nord de France, Lille, France
| | - Elisabeth Werkmeister
- Center for Infection and Immunity of Lille, CNRS UMR 8204, INSERM U 1019, Institut Pasteur de Lille, Université Lille Nord de France, Lille, France
| | - Christian Slomianny
- Laboratory of Cell Physiology, INSERM U 1003, Université Lille Nord de France, Villeneuve d'Ascq, France
| | - Barbara A. Fox
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| | - David J. Bzik
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| | - Stanislas Tomavo
- Center for Infection and Immunity of Lille, CNRS UMR 8204, INSERM U 1019, Institut Pasteur de Lille, Université Lille Nord de France, Lille, France
- * E-mail:
| |
Collapse
|
36
|
Entamoeba histolytica adaptation to glucose starvation: a matter of life and death. Curr Opin Microbiol 2014; 20:139-45. [DOI: 10.1016/j.mib.2014.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 06/11/2014] [Accepted: 06/13/2014] [Indexed: 12/25/2022]
|
37
|
Shanmugam R, Aklujkar M, Schäfer M, Reinhardt R, Nickel O, Reuter G, Lovley DR, Ehrenhofer-Murray A, Nellen W, Ankri S, Helm M, Jurkowski TP, Jeltsch A. The Dnmt2 RNA methyltransferase homolog of Geobacter sulfurreducens specifically methylates tRNA-Glu. Nucleic Acids Res 2014; 42:6487-96. [PMID: 24711368 PMCID: PMC4041430 DOI: 10.1093/nar/gku256] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Dnmt2 enzymes are conserved in eukaryotes, where they methylate C38 of tRNA-Asp with high activity. Here, the activity of one of the very few prokaryotic Dnmt2 homologs from Geobacter species (GsDnmt2) was investigated. GsDnmt2 was observed to methylate tRNA-Asp from flies and mice. Unexpectedly, it had only a weak activity toward its matching Geobacter tRNA-Asp, but methylated Geobacter tRNA-Glu with good activity. In agreement with this result, we show that tRNA-Glu is methylated in Geobacter while the methylation is absent in tRNA-Asp. The activities of Dnmt2 enzymes from Homo sapiens, Drosophila melanogaster, Schizosaccharomyces pombe and Dictyostelium discoideum for methylation of the Geobacter tRNA-Asp and tRNA-Glu were determined showing that all these Dnmt2s preferentially methylate tRNA-Asp. Hence, the GsDnmt2 enzyme has a swapped transfer ribonucleic acid (tRNA) specificity. By comparing the different tRNAs, a characteristic sequence pattern was identified in the variable loop of all preferred tRNA substrates. An exchange of two nucleotides in the variable loop of murine tRNA-Asp converted it to the corresponding variable loop of tRNA-Glu and led to a strong reduction of GsDnmt2 activity. Interestingly, the same loss of activity was observed with human DNMT2, indicating that the variable loop functions as a specificity determinant in tRNA recognition of Dnmt2 enzymes.
Collapse
Affiliation(s)
| | - Muktak Aklujkar
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003-9298, USA
| | - Matthias Schäfer
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, 69120 Heidelberg, Germany
| | | | - Olaf Nickel
- Institute of Biology, Developmental Genetics, Martin Luther University Halle, 06120 Halle, Germany
| | - Gunter Reuter
- Institute of Biology, Developmental Genetics, Martin Luther University Halle, 06120 Halle, Germany
| | - Derek R Lovley
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003-9298, USA
| | | | - Wolfgang Nellen
- Department of Genetics, University of Kassel, 34132 Kassel, Germany
| | - Serge Ankri
- Department of Molecular Microbiology, The Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | - Mark Helm
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg-Universität Mainz, 55128 Mainz, Germany
| | - Tomasz P Jurkowski
- Institute of Biochemistry, Stuttgart University, 70569 Stuttgart, Germany
| | - Albert Jeltsch
- Institute of Biochemistry, Stuttgart University, 70569 Stuttgart, Germany
| |
Collapse
|
38
|
The Entamoeba histolytica Dnmt2 homolog (Ehmeth) confers resistance to nitrosative stress. EUKARYOTIC CELL 2014; 13:494-503. [PMID: 24562908 DOI: 10.1128/ec.00031-14] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Nitric oxide (NO) has antimicrobial properties against many pathogens due to its reactivity as an S-nitrosylating agent. It inhibits many of the key enzymes that are involved in the metabolism and virulence of the parasite Entamoeba histolytica through S-nitrosylation of essential cysteine residues. Very little information is available on the mechanism of resistance to NO by pathogens in general and by this parasite in particular. Here, we report that exposure of the parasites to S-nitrosoglutathione (GSNO), an NO donor molecule, strongly reduces their viability and protein synthesis. However, the deleterious effects of NO were significantly reduced in trophozoites overexpressing Ehmeth, the cytosine-5 methyltransferase of the Dnmt2 family. Since these trophozoites also exhibited high levels of tRNA(Asp) methylation, the high levels suggested that Ehmeth-mediated tRNA(Asp) methylation is part of the resistance mechanism to NO. We previously reported that enolase, another glycolytic enzyme, binds to Ehmeth and inhibits its activity. We observed that the amount of Ehmeth-enolase complex was significantly reduced in GSNO-treated E. histolytica, which explains the aforementioned increase of tRNA methylation. Specifically, we demonstrated via site-directed mutagenesis that cysteine residues 228 and 229 of Ehmeth are susceptible to S-nitrosylation and are crucial for Ehmeth binding to enolase and for Ehmeth-mediated resistance to NO. These results indicate that Ehmeth has a central role in the response of the parasite to NO, and they contribute to the growing evidence that NO is a regulator of epigenetic mechanisms.
Collapse
|
39
|
Mott NN, Pinceti E, Rao YS, Przybycien-Szymanska MM, Prins SA, Shults CL, Yang X, Glucksman MJ, Roberts JL, Pak TR. Age-dependent Effects of 17β-estradiol on the dynamics of estrogen receptor β (ERβ) protein-protein interactions in the ventral hippocampus. Mol Cell Proteomics 2014; 13:760-79. [PMID: 24390426 DOI: 10.1074/mcp.m113.031559] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recent clinical evidence suggests that the neuroprotective and beneficial effects of hormone therapy may be limited by factors related to age and reproductive status. The patient's age and length of time without circulating ovarian hormones are likely to be key factors in the specific neurological outcomes of hormone therapy. However, the mechanisms underlying age-related changes in hormone efficacy have not been determined. We hypothesized that there are intrinsic changes in estrogen receptor β (ERβ) function that determine its ability to mediate the actions of 17β-estradiol (E2) in brain regions such as the ventral hippocampus. In this study, we identified and quantified a subset of ERβ protein interactions in the ventral hippocampus that were significantly altered by E2 replacement in young and aged animals, using two-dimensional differential gel electrophoresis coupled with liquid chromatography-electrospray ionization-tandem mass spectrometry. This study demonstrates quantitative changes in ERβ protein-protein interactions with E2 replacement that are dependent upon age in the ventral hippocampus and how these changes could alter processes such as transcriptional regulation. Thus, our data provide evidence that changes in ERβ protein interactions are a potential mechanism for age-related changes in E2 responsiveness in the brain after menopause.
Collapse
Affiliation(s)
- Natasha N Mott
- Department of Cell and Molecular Physiology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois 60153
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Food vacuole associated enolase in plasmodium undergoes multiple post-translational modifications: evidence for atypical ubiquitination. PLoS One 2013; 8:e72687. [PMID: 24009698 PMCID: PMC3751847 DOI: 10.1371/journal.pone.0072687] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 07/18/2013] [Indexed: 01/05/2023] Open
Abstract
Plasmodium enolase localizes to several sub-cellular compartments viz. cytosol, nucleus, cell membrane, food vacuole (FV) and cytoskeleton, without having any organelle targeting signal sequences. This enzyme has been shown to undergo multiple post-translational modifications (PTMs) giving rise to several variants that show organelle specific localization. It is likely that these PTMs may be responsible for its diverse distribution and moonlighting functions. While most variants have a MW of ~50 kDa and are likely to arise due to changes in pI, food vacuole (FV) associated enolase showed three forms with MW~50, 65 and 75 kDa. Evidence from immuno-precipitation and western analysis indicates that the 65 and 75 kDa forms of FV associated enolase are ubiquitinated. Using mass spectrometry (MS), definitive evidence is obtained for the nature of PTMs in FV associated variants of enolase. Results showed several modifications, viz. ubiquitination at K147, phosphorylation at Y148 and acetylation at K142 and K384. MS data also revealed the conjugation of three ubiquitin (Ub) molecules to enolase through K147. Trimeric ubiquitin has a linear peptide linkage between the NH2-terminal methionine of the first ubiquitin (Ub1) and the C-terminal G76 of the second (Ub2). Ub2 and third ubiquitin (Ub3) were linked through an atypical isopeptide linkage between K6 of Ub2 and G76 of Ub3, respectively. Further, the tri-ubiquitinated form was found to be largely associated with hemozoin while the 50 and 65 kDa forms were present in the NP-40 soluble fraction of FV. Mass spectrometry results also showed phosphorylation of S42 in the cytosolic enolase from P. falciparum and T337 in the cytoskeleton associated enolase from P. yoelii. The composition of food vacuolar proteome and likely interactors of enolase are also being reported.
Collapse
|
41
|
Müller S, Windhof IM, Maximov V, Jurkowski T, Jeltsch A, Förstner KU, Sharma CM, Gräf R, Nellen W. Target recognition, RNA methylation activity and transcriptional regulation of the Dictyostelium discoideum Dnmt2-homologue (DnmA). Nucleic Acids Res 2013; 41:8615-27. [PMID: 23877245 PMCID: PMC3794594 DOI: 10.1093/nar/gkt634] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Although the DNA methyltransferase 2 family is highly conserved during evolution and recent reports suggested a dual specificity with stronger activity on transfer RNA (tRNA) than DNA substrates, the biological function is still obscure. We show that the Dictyostelium discoideum Dnmt2-homologue DnmA is an active tRNA methyltransferase that modifies C38 in tRNAAsp(GUC)in vitro and in vivo. By an ultraviolet-crosslinking and immunoprecipitation approach, we identified further DnmA targets. This revealed specific tRNA fragments bound by the enzyme and identified tRNAGlu(CUC/UUC) and tRNAGly(GCC) as new but weaker substrates for both human Dnmt2 and DnmA in vitro but apparently not in vivo. Dnmt2 enzymes form transient covalent complexes with their substrates. The dynamics of complex formation and complex resolution reflect methylation efficiency in vitro. Quantitative PCR analyses revealed alterations in dnmA expression during development, cell cycle and in response to temperature stress. However, dnmA expression only partially correlated with tRNA methylation in vivo. Strikingly, dnmA expression in the laboratory strain AX2 was significantly lower than in the NC4 parent strain. As expression levels and binding of DnmA to a target in vivo are apparently not necessarily accompanied by methylation, we propose an additional biological function of DnmA apart from methylation.
Collapse
Affiliation(s)
- Sara Müller
- Department of Genetics, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany, Institute of Biochemistry, University Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany, Research Center for Infectious Diseases (ZINF), University of Würzburg, Josef-Schneider-Str. 2/Bau D15, 97080 Würzburg and Universität Potsdam, Institut für Biochemie und Biologie, Abt. Zellbiologie, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam - Golm
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Sibbritt T, Patel HR, Preiss T. Mapping and significance of the mRNA methylome. WILEY INTERDISCIPLINARY REVIEWS-RNA 2013; 4:397-422. [PMID: 23681756 DOI: 10.1002/wrna.1166] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 03/20/2013] [Accepted: 03/22/2013] [Indexed: 12/25/2022]
Abstract
Internal methylation of eukaryotic mRNAs in the form of N6-methyladenosine (m(6)A) and 5-methylcytidine (m(5)C) has long been known to exist, but progress in understanding its role was hampered by difficulties in identifying individual sites. This was recently overcome by high-throughput sequencing-based methods that mapped thousands of sites for both modifications throughout mammalian transcriptomes, with most sites found in mRNAs. The topology of m(6)A in mouse and human revealed both conserved and variable sites as well as plasticity in response to extracellular cues. Within mRNAs, m(5)C and m(6)A sites were relatively depleted in coding sequences and enriched in untranslated regions, suggesting functional interactions with post-transcriptional gene control. Finer distribution analyses and preexisting literature point toward roles in the regulation of mRNA splicing, translation, or decay, through an interplay with RNA-binding proteins and microRNAs. The methyltransferase (MTase) METTL3 'writes' m(6)A marks on mRNA, whereas the demethylase FTO can 'erase' them. The RNA:m(5)C MTases NSUN2 and TRDMT1 have roles in tRNA methylation but they also act on mRNA. Proper functioning of these enzymes is important in development and there are clear links to human disease. For instance, a common variant of FTO is a risk allele for obesity carried by 1 billion people worldwide and mutations cause a lethal syndrome with growth retardation and brain deficits. NSUN2 is linked to cancer and stem cell biology and mutations cause intellectual disability. In this review, we summarize the advances, open questions, and intriguing possibilities in this emerging field that might be called RNA modomics or epitranscriptomics.
Collapse
Affiliation(s)
- Tennille Sibbritt
- Genome Biology Department, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | | | | |
Collapse
|
43
|
Nakayama T, Ishida KI, Archibald JM. Broad distribution of TPI-GAPDH fusion proteins among eukaryotes: evidence for glycolytic reactions in the mitochondrion? PLoS One 2012; 7:e52340. [PMID: 23284996 PMCID: PMC3527533 DOI: 10.1371/journal.pone.0052340] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Accepted: 11/14/2012] [Indexed: 12/25/2022] Open
Abstract
Glycolysis is a central metabolic pathway in eukaryotic and prokaryotic cells. In eukaryotes, the textbook view is that glycolysis occurs in the cytosol. However, fusion proteins comprised of two glycolytic enzymes, triosephosphate isomerase (TPI) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), were found in members of the stramenopiles (diatoms and oomycetes) and shown to possess amino-terminal mitochondrial targeting signals. Here we show that mitochondrial TPI-GAPDH fusion protein genes are widely spread across the known diversity of stramenopiles, including non-photosynthetic species (Bicosoeca sp. and Blastocystis hominis). We also show that TPI-GAPDH fusion genes exist in three cercozoan taxa (Paulinella chromatophora, Thaumatomastix sp. and Mataza hastifera) and an apusozoan protist, Thecamonas trahens. Interestingly, subcellular localization predictions for other glycolytic enzymes in stramenopiles and a cercozoan show that a significant fraction of the glycolytic enzymes in these species have mitochondrial-targeted isoforms. These results suggest that part of the glycolytic pathway occurs inside mitochondria in these organisms, broadening our knowledge of the diversity of mitochondrial metabolism of protists.
Collapse
Affiliation(s)
- Takuro Nakayama
- Department of Biochemistry & Molecular Biology, Canadian Institute for Advanced Research, Program in Integrated Microbial Biodiversity, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Ken-ichiro Ishida
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - John M. Archibald
- Department of Biochemistry & Molecular Biology, Canadian Institute for Advanced Research, Program in Integrated Microbial Biodiversity, Dalhousie University, Halifax, Nova Scotia, Canada
- * E-mail:
| |
Collapse
|
44
|
Baumel-Alterzon S, Weber C, Guillén N, Ankri S. Identification of dihydropyrimidine dehydrogenase as a virulence factor essential for the survival of Entamoeba histolytica in glucose-poor environments. Cell Microbiol 2012; 15:130-44. [PMID: 23016994 DOI: 10.1111/cmi.12036] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 09/11/2012] [Accepted: 09/19/2012] [Indexed: 11/28/2022]
Abstract
Adaptation to nutritional changes is a key feature for successful survival of a pathogen within its host. The protozoan parasite Entamoeba histolytica normally colonizes the human colon and in rare occasions, this parasite spread to distant organs, such as the liver. E. histolytica obtains most of its energy from the fermentation of glucose into ethanol. In this study, we were intrigued to know how this parasite reacts to changes in glucose availability and we addressed this issue by performing a DNA microarray analysis of gene expression. Results show that parasites that were adapted to growth in absence of glucose increased their virulence and altered the transcription of several genes. One of these genes is the dihydropyrimidine dehydrogenase (DPD), which is involved in degradation of pyrimidines. We showed that this gene is crucial for the parasite's growth when the availability of glucose is limited. These data contribute to our understanding of the parasite's ability to survive in glucose-poor environments and reveal a new role for the DPD enzyme.
Collapse
Affiliation(s)
- Sharon Baumel-Alterzon
- Department of Molecular Microbiology, Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | | | |
Collapse
|
45
|
Becker M, Müller S, Nellen W, Jurkowski TP, Jeltsch A, Ehrenhofer-Murray AE. Pmt1, a Dnmt2 homolog in Schizosaccharomyces pombe, mediates tRNA methylation in response to nutrient signaling. Nucleic Acids Res 2012; 40:11648-58. [PMID: 23074192 PMCID: PMC3526270 DOI: 10.1093/nar/gks956] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The fission yeast Schizosaccharomyces pombe carries a cytosine 5-methyltransferase homolog of the Dnmt2 family (termed pombe methyltransferase 1, Pmt1), but contains no detectable DNA methylation. Here, we found that Pmt1, like other Dnmt2 homologs, has in vitro methylation activity on cytosine 38 of tRNAAsp and, to a lesser extent, of tRNAGlu, despite the fact that it contains a non-consensus residue in catalytic motif IV as compared with its homologs. In vivo tRNA methylation also required Pmt1. Unexpectedly, however, its in vivo activity showed a strong dependence on the nutritional status of the cell because Pmt1-dependent tRNA methylation was induced in cells grown in the presence of peptone or with glutamate as a nitrogen source. Furthermore, this induction required the serine/threonine kinase Sck2, but not the kinases Sck1, Pka1 or Tor1 and was independent of glucose signaling. Taken together, this work reveals a novel connection between nutrient signaling and tRNA methylation that thus may link tRNA methylation to processes downstream of nutrient signaling like ribosome biogenesis and translation initiation.
Collapse
Affiliation(s)
- Maria Becker
- Zentrum für Medizinische Biotechnologie, Universität Duisburg-Essen, 45117 Essen, Germany
| | | | | | | | | | | |
Collapse
|
46
|
López-Rosas I, Orozco E, Marchat LA, García-Rivera G, Guillen N, Weber C, Carrillo-Tapia E, Hernández de la Cruz O, Pérez-Plasencia C, López-Camarillo C. mRNA decay proteins are targeted to poly(A)+ RNA and dsRNA-containing cytoplasmic foci that resemble P-bodies in Entamoeba histolytica. PLoS One 2012; 7:e45966. [PMID: 23029343 PMCID: PMC3454373 DOI: 10.1371/journal.pone.0045966] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 08/23/2012] [Indexed: 01/30/2023] Open
Abstract
In higher eukaryotes, mRNA degradation and RNA-based gene silencing occur in cytoplasmic foci referred to as processing bodies (P-bodies). In protozoan parasites, the presence of P-bodies and their putative role in mRNA decay have yet to be comprehensively addressed. Identification of P-bodies might provide information on how mRNA degradation machineries evolved in lower eukaryotes. Here, we used immunofluorescence and confocal microscopy assays to investigate the cellular localization of mRNA degradation proteins in the human intestinal parasite Entamoeba histolytica and found evidence of the existence of P-bodies. Two mRNA decay factors, namely the EhXRN2 exoribonuclease and the EhDCP2 decapping enzyme, were localized in cytoplasmic foci in a pattern resembling P-body organization. Given that amoebic foci appear to be smaller and less rounded than those described in higher eukaryotes, we have named them "P-body-like structures". These foci contain additional mRNA degradation factors, including the EhCAF1 deadenylase and the EhAGO2-2 protein involved in RNA interference. Biochemical analysis revealed that EhCAF1 co-immunoprecipitated with EhXRN2 but not with EhDCP2 or EhAGO2-2, thus linking deadenylation to 5'-to-3' mRNA decay. The number of EhCAF1-containing foci significantly decreased after inhibition of transcription and translation with actinomycin D and cycloheximide, respectively. Furthermore, results of RNA-FISH assays showed that (i) EhCAF1 colocalized with poly(A)(+) RNA and (ii) during silencing of the Ehpc4 gene by RNA interference, EhAGO2-2 colocalized with small interfering RNAs in cytoplasmic foci. Our observation of decapping, deadenylation and RNA interference proteins within P-body-like foci suggests that these structures have been conserved after originating in the early evolution of eukaryotic lineages. To the best of our knowledge, this is the first study to report on the localization of mRNA decay proteins within P-body-like structures in E. histolytica. Our findings should open up opportunities for deciphering the mechanisms of mRNA degradation and RNA-based gene silencing in this deep-branching eukaryote.
Collapse
Affiliation(s)
- Itzel López-Rosas
- Programa en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, México City, México
| | - Esther Orozco
- Programa en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, México City, México
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional, México City, México
| | - Laurence A. Marchat
- Programa Institucional de Biomedicina Molecular y Red en Biotecnología, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, México City, México
| | - Guillermina García-Rivera
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional, México City, México
| | - Nancy Guillen
- Unité Biologie Cellulaire du Parasitisme, Institut Pasteur, Paris, France
- INSERM U786, Paris, France
| | - Christian Weber
- Unité Biologie Cellulaire du Parasitisme, Institut Pasteur, Paris, France
- INSERM U786, Paris, France
| | - Eduardo Carrillo-Tapia
- Programa en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, México City, México
| | | | - Carlos Pérez-Plasencia
- Unidad de Genómica y Secuenciación Masiva, Instituto Nacional de Cancerología, México City, México
- Unidad de Biomedicina, Facultad de Estudios Superiores-Iztacala, Universidad Nacional Autónoma de México, México City, México
| | - César López-Camarillo
- Programa en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, México City, México
| |
Collapse
|
47
|
A functional study of nucleocytoplasmic transport signals of the EhNCABP166 protein from Entamoeba histolytica. Parasitology 2012; 139:1697-710. [PMID: 22906852 DOI: 10.1017/s0031182012001199] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
EhNCABP166 is an Entamoeba histolytica actin-binding protein that localizes to the nucleus and cytoplasm. Bioinformatic analysis of the EhNCABP166 amino acid sequence shows the presence of 3 bipartite nuclear localization signals (NLS) and a nuclear export signal (NES). The present study aimed to investigate the functionality of these signals in 3 ways. First, we fused each potential NLS to a cytoplasmic domain of ehFLN to determine whether the localization of this domain could be altered by the presence of the NLSs. Furthermore, the localization of each domain of EhNCABP166 was determined. Similarly, we generated mutations in the first block of bipartite signals from the domains that contained these signals. Additionally, we added an NES to 2 constructs that were then evaluated. We confirmed the intranuclear localization of EhNCABP166 using transmission electron microscopy. Fusion of each NLS resulted in shuttling of the cytoplasmic domain to the nucleus. With the exception of 2 domains, all of the evaluated domains localized within the nucleus. A mutation in the first block of bipartite signals affected the localization of the domains containing an NLS. The addition of an NES shifted the localization of these domains to the cytoplasm. The results presented here establish EhNCABP166 as a protein containing functional nuclear localization signals and a nuclear export signal.
Collapse
|
48
|
Lorenzatto KR, Monteiro KM, Paredes R, Paludo GP, da Fonsêca MM, Galanti N, Zaha A, Ferreira HB. Fructose-bisphosphate aldolase and enolase from Echinococcus granulosus: genes, expression patterns and protein interactions of two potential moonlighting proteins. Gene 2012; 506:76-84. [PMID: 22750316 DOI: 10.1016/j.gene.2012.06.046] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 04/26/2012] [Accepted: 06/17/2012] [Indexed: 01/16/2023]
Abstract
Glycolytic enzymes, such as fructose-bisphosphate aldolase (FBA) and enolase, have been described as complex multifunctional proteins that may perform non-glycolytic moonlighting functions, but little is known about such functions, especially in parasites. We have carried out in silico genomic searches in order to identify FBA and enolase coding sequences in Echinococcus granulosus, the causative agent of cystic hydatid disease. Four FBA genes and 3 enolase genes were found, and their sequences and exon-intron structures were characterized and compared to those of their orthologs in Echinococcus multilocularis, the causative agent of alveolar hydatid disease. To gather evidence of possible non-glycolytic functions, the expression profile of FBA and enolase isoforms detected in the E. granulosus pathogenic larval form (hydatid cyst) (EgFBA1 and EgEno1) was assessed. Using specific antibodies, EgFBA1 and EgEno1 were detected in protoscolex and germinal layer cells, as expected, but they were also found in the hydatid fluid, which contains parasite's excretory-secretory (ES) products. Besides, both proteins were found in protoscolex tegument and in vitro ES products, further suggesting possible non-glycolytic functions in the host-parasite interface. EgFBA1 modeled 3D structure predicted a F-actin binding site, and the ability of EgFBA1 to bind actin was confirmed experimentally, which was taken as an additional evidence of FBA multifunctionality in E. granulosus. Overall, our results represent the first experimental evidences of alternative functions performed by glycolytic enzymes in E. granulosus and provide relevant information for the understanding of their roles in host-parasite interplay.
Collapse
Affiliation(s)
- Karina Rodrigues Lorenzatto
- Laboratório de Genômica Estrutural e Funcional and Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Schulz EC, Roth HM, Ankri S, Ficner R. Structure analysis of Entamoeba histolytica DNMT2 (EhMeth). PLoS One 2012; 7:e38728. [PMID: 22737219 PMCID: PMC3380923 DOI: 10.1371/journal.pone.0038728] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 05/14/2012] [Indexed: 11/25/2022] Open
Abstract
In eukaryotes, DNA methylation is an important epigenetic modification that is generally involved in gene regulation. Methyltransferases (MTases) of the DNMT2 family have been shown to have a dual substrate specificity acting on DNA as well as on three specific tRNAs (tRNAAsp, tRNAVal, tRNAGly). Entamoeba histolytica is a major human pathogen, and expresses a single DNA MTase (EhMeth) that belongs to the DNMT2 family and shows high homology to the human enzyme as well as to the bacterial DNA MTase M.HhaI. The molecular basis for the recognition of the substrate tRNAs and discrimination of non-cognate tRNAs is unknown. Here we present the crystal structure of the cytosine-5-methyltransferase EhMeth at a resolution of 2.15 Å, in complex with its reaction product S-adenosyl-L-homocysteine, revealing all parts of a DNMT2 MTase, including the active site loop. Mobility shift assays show that in vitro the full length tRNA is required for stable complex formation with EhMeth.
Collapse
Affiliation(s)
- Eike C. Schulz
- Abteilung für Molekulare Strukturbiologie, Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Heide M. Roth
- Abteilung für Molekulare Strukturbiologie, Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Serge Ankri
- Department of Molecular Microbiology, The Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Ralf Ficner
- Abteilung für Molekulare Strukturbiologie, Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen, Göttingen, Germany
- * E-mail:
| |
Collapse
|
50
|
Jurkowski TP, Shanmugam R, Helm M, Jeltsch A. Mapping the tRNA Binding Site on the Surface of Human DNMT2 Methyltransferase. Biochemistry 2012; 51:4438-44. [DOI: 10.1021/bi3002659] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Tomasz P. Jurkowski
- Biochemistry Laboratory, School
of Engineering and Science, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany, and Institute of Biochemistry,
Faculty of Chemistry, Stuttgart University, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Raghuvaran Shanmugam
- Biochemistry Laboratory, School
of Engineering and Science, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany, and Institute of Biochemistry,
Faculty of Chemistry, Stuttgart University, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Mark Helm
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg-Universität Mainz, Staudinger
Weg 5, 55128 Mainz, Germany
| | - Albert Jeltsch
- Biochemistry Laboratory, School
of Engineering and Science, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany, and Institute of Biochemistry,
Faculty of Chemistry, Stuttgart University, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| |
Collapse
|