1
|
Perumal N, White B, Sanchez-Valdez F, Tarleton RL. cGAS-STING Pathway Activation during Trypanosoma cruzi Infection Leads to Tissue-Dependent Parasite Control. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1123-1133. [PMID: 37603014 PMCID: PMC10783805 DOI: 10.4049/jimmunol.2300373] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/31/2023] [Indexed: 08/22/2023]
Abstract
Host cell invasion by Trypanosoma cruzi is a markedly silent process, with limited host transcriptional changes indicative of innate immune recognition, except for a modest type I IFN (IFN-I) response. In this study, we show that T. cruzi-induced IFN-β production was nearly abolished in primary murine cGAS-/- or stimulator of IFN genes (STING)-deficient (STINGGt) macrophages and fibroblasts. T. cruzi infection did not impact the ability of IFN-regulatory factor reporter macrophages to respond to classical cGAS-STING agonists, indicating that the limited IFN-β induction is not due to active parasite suppression. cGAS-/-, STINGGt, and IFN-α/β receptor-/- (IFNAR-/-) macrophages infected with T. cruzi yielded significantly higher numbers of amastigotes compared with wild-type macrophages; however, the impact of the STING pathway during infection in vivo is more complex. Despite an initial increase in parasite growth, STINGGt and IFNAR-/- mice ultimately had lower parasite burden in footpads as compared with wild-type mice, demonstrating a role for IFN-I expression in potentiating parasite growth at the infection site. STING pathway activation had little impact on parasite levels in the skeletal muscle; however, in the heart, cGAS-/- and STINGGt mice, but not IFNAR-/- mice, accumulated higher acute parasite loads, suggesting a protective role of STING sensing of T. cruzi in this organ that was independent of IFN-I. Together, these results demonstrate that host cGAS-STING senses T. cruzi infection, enhancing parasite growth at the site of entry, and contributes to acute-phase parasite restriction in the heart, a major site of tissue damage in chronic T. cruzi infection.
Collapse
Affiliation(s)
- Natasha Perumal
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA
- Department of Cellular Biology, University of Georgia, Athens, GA
| | - Brooke White
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA
| | | | - Rick L Tarleton
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA
- Department of Cellular Biology, University of Georgia, Athens, GA
| |
Collapse
|
2
|
Gomes DC, Medeiros TS, Alves Pereira EL, da Silva JFO, de Freitas Oliveira JW, Fernandes-Pedrosa MDF, de Sousa da Silva M, da Silva-Júnior AA. From Benznidazole to New Drugs: Nanotechnology Contribution in Chagas Disease. Int J Mol Sci 2023; 24:13778. [PMID: 37762080 PMCID: PMC10530915 DOI: 10.3390/ijms241813778] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/31/2023] [Accepted: 08/05/2023] [Indexed: 09/29/2023] Open
Abstract
Chagas disease is a neglected tropical disease caused by the protozoan Trypanosoma cruzi. Benznidazole and nifurtimox are the two approved drugs for their treatment, but both drugs present side effects and efficacy problems, especially in the chronic phase of this disease. Therefore, new molecules have been tested with promising results aiming for strategic targeting action against T. cruzi. Several studies involve in vitro screening, but a considerable number of in vivo studies describe drug bioavailability increment, drug stability, toxicity assessment, and mainly the efficacy of new drugs and formulations. In this context, new drug delivery systems, such as nanotechnology systems, have been developed for these purposes. Some nanocarriers are able to interact with the immune system of the vertebrate host, modulating the immune response to the elimination of pathogenic microorganisms. In this overview of nanotechnology-based delivery strategies for established and new antichagasic agents, different strategies, and limitations of a wide class of nanocarriers are explored, as new perspectives in the treatment and monitoring of Chagas disease.
Collapse
Affiliation(s)
- Daniele Cavalcante Gomes
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte-UFRN, Natal 59012-570, Brazil; (D.C.G.); (T.S.M.); (E.L.A.P.); (J.F.O.d.S.); (M.d.F.F.-P.)
| | - Thayse Silva Medeiros
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte-UFRN, Natal 59012-570, Brazil; (D.C.G.); (T.S.M.); (E.L.A.P.); (J.F.O.d.S.); (M.d.F.F.-P.)
| | - Eron Lincoln Alves Pereira
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte-UFRN, Natal 59012-570, Brazil; (D.C.G.); (T.S.M.); (E.L.A.P.); (J.F.O.d.S.); (M.d.F.F.-P.)
| | - João Felipe Oliveira da Silva
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte-UFRN, Natal 59012-570, Brazil; (D.C.G.); (T.S.M.); (E.L.A.P.); (J.F.O.d.S.); (M.d.F.F.-P.)
| | - Johny W. de Freitas Oliveira
- Immunoparasitology Laboratory, Department of Clinical and Toxicological Analysis, Centre of Health Sciences, Federal University of Rio Grande do Norte-UFRN, Natal 59012-570, Brazil; (J.W.d.F.O.); (M.d.S.d.S.)
| | - Matheus de Freitas Fernandes-Pedrosa
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte-UFRN, Natal 59012-570, Brazil; (D.C.G.); (T.S.M.); (E.L.A.P.); (J.F.O.d.S.); (M.d.F.F.-P.)
| | - Marcelo de Sousa da Silva
- Immunoparasitology Laboratory, Department of Clinical and Toxicological Analysis, Centre of Health Sciences, Federal University of Rio Grande do Norte-UFRN, Natal 59012-570, Brazil; (J.W.d.F.O.); (M.d.S.d.S.)
| | - Arnóbio Antônio da Silva-Júnior
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte-UFRN, Natal 59012-570, Brazil; (D.C.G.); (T.S.M.); (E.L.A.P.); (J.F.O.d.S.); (M.d.F.F.-P.)
| |
Collapse
|
3
|
Oliveira AC, Vicentino ARR, Andrade D, Pereira IR, Saboia-Vahia L, Moreira ODC, Carvalho-Pinto CE, Mota JBD, Maciel L, Vilar-Pereira G, Pesquero JB, Lannes-Vieira J, Sirois P, Campos de Carvalho AC, Scharfstein J. Genetic Ablation and Pharmacological Blockade of Bradykinin B1 Receptor Unveiled a Detrimental Role for the Kinin System in Chagas Disease Cardiomyopathy. J Clin Med 2023; 12:jcm12082888. [PMID: 37109224 PMCID: PMC10144326 DOI: 10.3390/jcm12082888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/24/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Chagas disease, the parasitic infection caused by Trypanosoma cruzi, afflicts about 6 million people in Latin America. Here, we investigated the hypothesis that T. cruzi may fuel heart parasitism by activating B1R, a G protein-coupled (brady) kinin receptor whose expression is upregulated in inflamed tissues. Studies in WT and B1R-/- mice showed that T. cruzi DNA levels (15 days post infection-dpi) were sharply reduced in the transgenic heart. FACS analysis revealed that frequencies of proinflammatory neutrophils and monocytes were diminished in B1R-/- hearts whereas CK-MB activity (60 dpi) was exclusively detected in B1R+/+ sera. Since chronic myocarditis and heart fibrosis (90 dpi) were markedly attenuated in the transgenic mice, we sought to determine whether a pharmacological blockade of the des-Arg9-bradykinin (DABK)/B1R pathway might alleviate chagasic cardiomyopathy. Using C57BL/6 mice acutely infected by a myotropic T. cruzi strain (Colombian), we found that daily treatment (15-60 dpi) with R-954 (B1R antagonist) reduced heart parasitism and blunted cardiac injury. Extending R-954 treatment to the chronic phase (120-160 dpi), we verified that B1R targeting (i) decreased mortality indexes, (ii) mitigated chronic myocarditis, and (iii) ameliorated heart conduction disturbances. Collectively, our study suggests that a pharmacological blockade of the proinflammatory KKS/DABK/B1R pathway is cardioprotective in acute and chronic Chagas disease.
Collapse
Affiliation(s)
- Ana Carolina Oliveira
- Programa de Imunobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Amanda Roberta Revoredo Vicentino
- Programa de Imunobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Daniele Andrade
- Programa de Imunobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Isabela Resende Pereira
- Programa de Imunobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Laboratório de Biologia das Interações, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil
| | - Leonardo Saboia-Vahia
- Programa de Imunobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Otacílio da Cruz Moreira
- Plataforma de PCR em Tempo Real RPT09A, Laboratório de Virologia Molecular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil
| | - Carla Eponina Carvalho-Pinto
- Departamento de Imunobiologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói 24020-141, Brazil
| | - Julia Barbalho da Mota
- Programa de Imunobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Leonardo Maciel
- Programa de Medicina Regenerativa, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Núcleo Multidisciplinar de Pesquisa em Biologia, Universidade Federal do Rio de Janeiro, Duque de Caxias Campus, Rio de Janeiro 21941-902, Brazil
| | - Glaucia Vilar-Pereira
- Laboratório de Biologia das Interações, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil
| | - João B Pesquero
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo 05508-090, Brazil
| | - Joseli Lannes-Vieira
- Laboratório de Biologia das Interações, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil
| | - Pierre Sirois
- Department of Microbiology and Immunology, Faculty of Medicine, Université Laval, Quebec, QC G1V 0A6, Canada
| | - Antônio Carlos Campos de Carvalho
- Programa de Medicina Regenerativa, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Centro Nacional de Biologia Estrutural e Bio-Imagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Rio de Janeiro 21941-902, Brazil
| | - Julio Scharfstein
- Programa de Imunobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
4
|
González-Herrera F, Clayton NS, Guzmán-Rivera D, Carrillo I, Castillo C, Catalán M, Anfossi R, Quintero-Pertuz H, Quilaqueo ME, Olea-Azar C, Rivera-Meza M, Kemmerling U, Ridley AJ, Vivar R, Maya JD. Statins change the cytokine profile in Trypanosoma cruzi-infected U937 macrophages and murine cardiac tissue through Rho-associated kinases inhibition. Front Immunol 2023; 13:1035589. [PMID: 36713380 PMCID: PMC9874148 DOI: 10.3389/fimmu.2022.1035589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/16/2022] [Indexed: 01/12/2023] Open
Abstract
Introduction Chronic Chagasic cardiomyopathy (CCC), caused by the protozoan Trypanosoma cruzi, is the most severe manifestation of Chagas disease.CCC is characterized by cardiac inflammation and fibrosis caused by a persistent inflammatory response. Following infection, macrophages secrete inflammatory mediators such as IL-1β, IL-6, and TNF-α to control parasitemia. Although this response contains parasite infection, it causes damage to the heart tissue. Thus, the use of immunomodulators is a rational alternative to CCC. Rho-associated kinase (ROCK) 1 and 2 are RhoA-activated serine/threonine kinases that regulate the actomyosin cytoskeleton. Both ROCKs have been implicated in the polarization of macrophages towards an M1 (pro-inflammatory) phenotype. Statins are FDA-approved lipid-lowering drugs that reduce RhoA signaling by inhibiting geranylgeranyl pyrophosphate (GGPP) synthesis. This work aims to identify the effect of statins on U937 macrophage polarization and cardiac tissue inflammation and its relationship with ROCK activity during T. cruzi infection. Methods PMA-induced, wild-type, GFP-, CA-ROCK1- and CA-ROCK2-expressing U937 macrophages were incubated with atorvastatin, or the inhibitors Y-27632, JSH-23, TAK-242, or C3 exoenzyme incubated with or without T. cruzi trypomastigotes for 30 min to evaluate the activity of ROCK and the M1 and M2 cytokine expression and secretion profiling. Also, ROCK activity was determined in T. cruzi-infected, BALB/c mice hearts. Results In this study, we demonstrate for the first time in macrophages that incubation with T. cruzi leads to ROCK activation via the TLR4 pathway, which triggers NF-κB activation. Inhibition of ROCKs by Y-27632 prevents NF-κB activation and the expression and secretion of M1 markers, as does treatment with atorvastatin. Furthermore, we show that the effect of atorvastatin on the NF-kB pathway and cytokine secretion is mediated by ROCK. Finally, statin treatment decreased ROCK activation and expression, and the pro-inflammatory cytokine production, promoting anti-inflammatory cytokine expression in chronic chagasic mice hearts. Conclusion These results suggest that the statin modulation of the inflammatory response due to ROCK inhibition is a potential pharmacological strategy to prevent cardiac inflammation in CCC.
Collapse
Affiliation(s)
- Fabiola González-Herrera
- Molecular and Clinical Pharmacology Program, Instituto de Ciencias Biomédicas, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Natasha S. Clayton
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Daniela Guzmán-Rivera
- Escuela de Farmacia, Facultad de Medicina, Universidad Andrés Bello, Santiago, Chile
| | - Ileana Carrillo
- Molecular and Clinical Pharmacology Program, Instituto de Ciencias Biomédicas, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Christian Castillo
- Núcleo de Investigación Aplicada en Ciencias Veterinarias y Agronómicas, Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago, Chile
| | - Mabel Catalán
- Molecular and Clinical Pharmacology Program, Instituto de Ciencias Biomédicas, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Renatto Anfossi
- Molecular and Clinical Pharmacology Program, Instituto de Ciencias Biomédicas, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Helena Quintero-Pertuz
- Molecular and Clinical Pharmacology Program, Instituto de Ciencias Biomédicas, Faculty of Medicine, University of Chile, Santiago, Chile
| | - María Elena Quilaqueo
- Department of Chemical Pharmacology and Toxicology, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - Claudio Olea-Azar
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - Mario Rivera-Meza
- Department of Chemical Pharmacology and Toxicology, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - Ulrike Kemmerling
- Integrative Biology Program, Instituto de Ciencias Biomédicas, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Anne J. Ridley
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Raúl Vivar
- Molecular and Clinical Pharmacology Program, Instituto de Ciencias Biomédicas, Faculty of Medicine, University of Chile, Santiago, Chile,*Correspondence: Juan Diego Maya, ; Raúl Vivar,
| | - Juan Diego Maya
- Molecular and Clinical Pharmacology Program, Instituto de Ciencias Biomédicas, Faculty of Medicine, University of Chile, Santiago, Chile,*Correspondence: Juan Diego Maya, ; Raúl Vivar,
| |
Collapse
|
5
|
Shey RA, Ghogomu SM, Nebangwa DN, Shintouo CM, Yaah NE, Yengo BN, Nkemngo FN, Esoh KK, Tchatchoua NMT, Mbachick TT, Dede AF, Lemoge AA, Ngwese RA, Asa BF, Ayong L, Njemini R, Vanhamme L, Souopgui J. Rational design of a novel multi-epitope peptide-based vaccine against Onchocerca volvulus using transmembrane proteins. FRONTIERS IN TROPICAL DISEASES 2022. [DOI: 10.3389/fitd.2022.1046522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Almost a decade ago, it was recognized that the global elimination of onchocerciasis by 2030 will not be feasible without, at least, an effective prophylactic and/or therapeutic vaccine to complement chemotherapy and vector control strategies. Recent advances in computational immunology (immunoinformatics) have seen the design of novel multi-epitope onchocerciasis vaccine candidates which are however yet to be evaluated in clinical settings. Still, continued research to increase the pool of vaccine candidates, and therefore the chance of success in a clinical trial remains imperative. Here, we designed a multi-epitope vaccine candidate by assembling peptides from 14 O. volvulus (Ov) proteins using an immunoinformatics approach. An initial 126 Ov proteins, retrieved from the Wormbase database, and at least 90% similar to orthologs in related nematode species of economic importance, were screened for localization, presence of transmembrane domain, and antigenicity using different web servers. From the 14 proteins retained after the screening, 26 MHC-1 and MHC-II (T-cell) epitopes, and linear B-lymphocytes epitopes were predicted and merged using suitable linkers. The Mycobacterium tuberculosis Resuscitation-promoting factor E (RPFE_MYCTU), which is an agonist of TLR4, was then added to the N-terminal of the vaccine candidate as a built-in adjuvant. Immune simulation analyses predicted strong B-cell and IFN-γ based immune responses which are necessary for protection against O. volvulus infection. Protein-protein docking and molecular dynamic simulation predicted stable interactions between the 3D structure of the vaccine candidate and human TLR4. These results show that the designed vaccine candidate has the potential to stimulate both humoral and cellular immune responses and should therefore be subject to further laboratory investigation.
Collapse
|
6
|
Barbosa CHD, Canto FB, Gomes A, Brandao LM, Lima JR, Melo GA, Granato A, Neves EGA, Dutra WO, Oliveira AC, Nóbrega A, Bellio M. Cytotoxic CD4+ T cells driven by T-cell intrinsic IL-18R/MyD88 signaling predominantly infiltrate Trypanosoma cruzi-infected hearts. eLife 2022; 11:74636. [PMID: 35670567 PMCID: PMC9236613 DOI: 10.7554/elife.74636] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 06/04/2022] [Indexed: 11/13/2022] Open
Abstract
Increasing attention has been directed to cytotoxic CD4+ T cells (CD4CTLs) in different pathologies, both in humans and mice. The impact of CD4CTLs in immunity and the mechanisms controlling their generation, however, remain poorly understood. Here, we show that CD4CTLs abundantly differentiate during mouse infection with the intracellular parasite Trypanosoma cruzi. CD4CTLs display parallel kinetics to Th1 cells in the spleen, mediate specific cytotoxicity against cells presenting pathogen-derived antigens and express immunoregulatory and/or exhaustion markers. We demonstrate that CD4CTL absolute numbers and activity are severely reduced in both Myd88-/- and Il18ra-/- mice. Of note, the infection of mixed-bone marrow chimeras revealed that WT but not Myd88-/- cells transcribe the CD4CTL gene signature and that Il18ra-/- and Myd88-/- CD4+ T cells phenocopy each other. Moreover, adoptive transfer of WT CD4+GzB+ T cells to infected Il18ra-/- mice extended their survival. Importantly, cells expressing the CD4CTL phenotype predominate among CD4+ T cells infiltrating the infected mouse cardiac tissue and are increased in the blood of Chagas patients, in which the frequency of CD4CTLs correlates with the severity of cardiomyopathy. Our findings describe CD4CTLs as a major player in immunity to a relevant human pathogen and disclose T-cell intrinsic IL-18R/MyD88 signaling as a key pathway controlling the magnitude of the CD4CTL response.
Collapse
Affiliation(s)
| | - Fabio B Canto
- Departamento de Imunobiologia, Universidade Federal Fluminense
| | - Ariel Gomes
- Department of Immunology, Universidade Federal do Rio de Janeiro (UFRJ)
| | - Layza M Brandao
- Department of Immunology, Universidade Federal do Rio de Janeiro (UFRJ)
| | - Jéssica R Lima
- Department of Immunology, Universidade Federal do Rio de Janeiro (UFRJ)
| | - Guilherme A Melo
- Department of Immunology, Universidade Federal do Rio de Janeiro (UFRJ)
| | | | - Eula GA Neves
- Laboratório de Biologia das Interações Celulares, Universidade Federal de Minas Gerais
| | - Walderez O Dutra
- Laboratório de Biologia das Interações Celulares, Universidade Federal de Minas Gerais
| | - Ana-Carolina Oliveira
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ)
| | - Alberto Nóbrega
- Department of Immunology, Universidade Federal do Rio de Janeiro (UFRJ)
| | - Maria Bellio
- Department of Immunology, Universidade Federal do Rio de Janeiro (UFRJ)
| |
Collapse
|
7
|
Vieira RDS, Nascimento MS, Noronha IH, Vasconcelos JRC, Benvenuti LA, Barber GN, Câmara NOS, Kalil J, Cunha-Neto E, Almeida RR. STING Signaling Drives Production of Innate Cytokines, Generation of CD8 + T Cells and Enhanced Protection Against Trypanosoma cruzi Infection. Front Immunol 2022; 12:775346. [PMID: 35095849 PMCID: PMC8795786 DOI: 10.3389/fimmu.2021.775346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/16/2021] [Indexed: 12/22/2022] Open
Abstract
A variety of signaling pathways are involved in the induction of innate cytokines and CD8+ T cells, which are major players in protection against acute Trypanosoma cruzi infection. Previous data have demonstrated that a TBK-1/IRF3-dependent signaling pathway promotes IFN-β production in response to Trypanosoma cruzi, but the role for STING, a main interactor of these proteins, remained to be addressed. Here, we demonstrated that STING signaling is required for production of IFN-β, IL-6, and IL-12 in response to Trypanosoma cruzi infection and that STING absence negatively impacts activation of IRF-dependent pathways in response to the parasite. We reported no significant activation of IRF-dependent pathways and cytokine expression in RAW264.7 macrophages in response to heat-killed trypomastigotes. In addition, we showed that STING is essential for T. cruzi DNA-mediated induction of IFN-β, IL-6, and IL-12 gene expression in RAW264.7 macrophages. We demonstrated that STING-knockout mice have significantly higher parasitemia from days 5 to 8 of infection and higher heart parasitism at day 13 after infection. Although we observed similar heart inflammatory infiltrates at day 13 after infection, IFN-β, IL-12, CXCL9, IFN-γ, and perforin gene expression were lower in the absence of STING. We also showed an inverse correlation between parasite DNA and the expression of CXCL9, IFN-γ, and perforin genes in the hearts of infected animals at day 13 after infection. Finally, we reported that STING signaling is required for splenic IFN-β and IL-6 expression early after infection and that STING deficiency results in lower numbers of splenic parasite-specific IFN-γ and IFN-γ/perforin-producing CD8+ T cells, indicating a pivotal role for STING signaling in immunity to Trypanosoma cruzi.
Collapse
Affiliation(s)
- Raquel de Souza Vieira
- Laboratório de Imunologia, Instituto do Coração, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Marilda Savoia Nascimento
- Laboratório de Imunologia, Instituto do Coração, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Isaú Henrique Noronha
- Laboratório de Vacinas Recombinantes, Departamento de Biociências, Universidade Federal de São Paulo, Santos, Brazil
| | | | - Luiz Alberto Benvenuti
- Divisão de Patologia, Instituto do Coração (INCOR), Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Glen N Barber
- Department of Cell Biology, University of Miami, Miami, FL, United States
| | - Niels Olsen Saraiva Câmara
- Laboratório de Imunologia Experimental e Clínica, Departamento de Clínica Médica, Faculdade de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil.,Laboratório de Imunologia de Transplantes, Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Jorge Kalil
- Laboratório de Imunologia, Instituto do Coração, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.,Disciplina de Imunologia Clínica e Alergia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.,Instituto de Investigação em Imunologia (III), Instituto Nacional de Ciência e Tecnologia (INCT), São Paulo, Brazil
| | - Edecio Cunha-Neto
- Laboratório de Imunologia, Instituto do Coração, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.,Disciplina de Imunologia Clínica e Alergia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.,Instituto de Investigação em Imunologia (III), Instituto Nacional de Ciência e Tecnologia (INCT), São Paulo, Brazil
| | - Rafael Ribeiro Almeida
- Laboratório de Imunologia, Instituto do Coração, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
8
|
Chagas disease: Immunology of the disease at a glance. Cytokine Growth Factor Rev 2021; 62:15-22. [PMID: 34696979 DOI: 10.1016/j.cytogfr.2021.10.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 12/12/2022]
Abstract
Chagas disease is an important neglected disease that affects 6-7 million people worldwide. The disease has two phases: acute and chronic, in which there are different clinical symptoms. Controlling the infection depends on innate and acquired immune responses, which are activated during the initial infection and are critical for host survival. Furthermore, the immune system plays an important role in the therapeutic success. Here we summarize the importance of the immune system cytokines in the pathology outcome, as well as in the treatment.
Collapse
|
9
|
Queiroga TBD, Pereira NDS, da Silva DD, Andrade CDM, de Araújo Júnior RF, Brito CRDN, Galvão LMDC, da Câmara ACJ, Nascimento MSL, Guedes PMM. Virulence of Trypanosoma cruzi Strains Is Related to the Differential Expression of Innate Immune Receptors in the Heart. Front Cell Infect Microbiol 2021; 11:696719. [PMID: 34336720 PMCID: PMC8321543 DOI: 10.3389/fcimb.2021.696719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/25/2021] [Indexed: 11/13/2022] Open
Abstract
Resistance or susceptibility to T. cruzi infection is dependent on the host immunological profile. Innate immune receptors, such as Toll-like receptors (TLRs/TLR2, TLR4, TLR7, and TLR9) and Nod-like receptors (NLRs/NOD1 and NLRP3 inflammasome) are involved with the resistance against acute experimental T. cruzi infection. Here, we evaluated the impact of T. cruzi virulence on the expression of innate immune receptors and its products in mice. For that, we used six T. cruzi strains/isolates that showed low (AM64/TcIV and 3253/Tc-V), medium (PL1.10.14/TcIII and CL/TcVI), or high (Colombian/Tc-I and Y/TcII) virulence and pathogenicity to the vertebrate host and belonging to the six discrete typing units (DTUs)—TcI to TcVI. Parasitemia, mortality, and myocarditis were evaluated and correlated to the expression of TLRs, NLRs, adapter molecules, cytokines, and iNOS in myocardium by real time PCR. Cytokines (IL-1β, IL-12, TNF-α, and IFN-γ) were quantified in sera 15 days after infection. Our data indicate that high virulent strains of T. cruzi, which generate high parasitemia, severe myocarditis, and 100% mortality in infected mice, inhibit the expression of TLR2, TLR4, TLR9, TRIF, and Myd88 transcripts, leading to a low IL-12 production, when compared to medium and low virulent T. cruzi strains. On the other hand, the high virulent T. cruzi strains induce the upregulation of NLRP3, caspase-1, IL-1β, TNF-α, and iNOS mRNA in heart muscle, compared to low and medium virulent strains, which may contribute to myocarditis and death. Moreover, high virulent strains induce higher levels of IL-1β and TNF-α in sera compared to less virulent parasites. Altogether the data indicate that differential TLR and NLR expression in heart muscle is correlated with virulence and pathogenicity of T cruzi strains. A better knowledge of the immunological mechanisms involved in resistance to T. cruzi infection is important to understand the natural history of Chagas disease, can lead to identification of immunological markers and/or to serve as a basis for alternative therapies.
Collapse
Affiliation(s)
| | - Nathalie de Sena Pereira
- Graduate Program Health and Biological Sciences, Federal University of Vale do São Francisco, Petrolina, Brazil
| | - Denis Dantas da Silva
- Graduate Program Parasitary Biology, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | - Raimundo Fernandes de Araújo Júnior
- Laboratory of Investigation of the Inflammation and Cancer (LAICI)/Department of Morphology, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | | | | | | | - Paulo Marcos Matta Guedes
- Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
10
|
Pérez‐Mazliah D, Ward AI, Lewis MD. Host-parasite dynamics in Chagas disease from systemic to hyper-local scales. Parasite Immunol 2021; 43:e12786. [PMID: 32799361 PMCID: PMC11475410 DOI: 10.1111/pim.12786] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 12/14/2022]
Abstract
Trypanosoma cruzi is a remarkably versatile parasite. It can parasitize almost any nucleated cell type and naturally infects hundreds of mammal species across much of the Americas. In humans, it is the cause of Chagas disease, a set of mainly chronic conditions predominantly affecting the heart and gastrointestinal tract, which can progress to become life threatening. Yet around two thirds of infected people are long-term asymptomatic carriers. Clinical outcomes depend on many factors, but the central determinant is the nature of the host-parasite interactions that play out over the years of chronic infection in diverse tissue environments. In this review, we aim to integrate recent developments in the understanding of the spatial and temporal dynamics of T. cruzi infections with established and emerging concepts in host immune responses in the corresponding phases and tissues.
Collapse
Affiliation(s)
- Damián Pérez‐Mazliah
- York Biomedical Research InstituteHull York Medical SchoolUniversity of YorkYorkUK
| | - Alexander I. Ward
- Department of Infection BiologyFaculty of Infectious and Tropical DiseasesLondon School of Hygiene and Tropical MedicineLondonUK
| | - Michael D. Lewis
- Department of Infection BiologyFaculty of Infectious and Tropical DiseasesLondon School of Hygiene and Tropical MedicineLondonUK
| |
Collapse
|
11
|
Effect of the Tc13Tul antigen from Trypanosoma cruzi on splenocytes from naïve mice. Parasitology 2020; 147:1114-1123. [PMID: 32466805 DOI: 10.1017/s0031182020000864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Trypanosoma cruzi, the etiological agent of Chagas disease, releases factors, including antigens from the trans-sialidase (TS) superfamily, which modulate the host immune responses. Tc13 antigens belong to group IV of TSs and are characterized by C-terminal EPKSA repeats. Here, we studied the effect of the Tc13 antigen from the Tulahuén strain, Tc13Tul, on primary cultures of splenocytes from naïve BALB/c mice. Recombinant Tc13Tul increased the percentage of viable cells and induced B (CD19+) lymphocyte proliferation. Tc13Tul stimulation also induced secretion of non-specific IgM and interferon-γ (IFN-γ). The same effects were induced by Tc13Tul on splenocytes from naïve C3H/HeJ mice. In vivo administration of Tc13Tul to naïve BALB/c mice increased non-specific IgG in sera. In addition, in vitro cultured splenocytes from Tc13Tul-inoculated mice secreted a higher basal level of non-specific IgM than controls and the in vitro Tc13Tul stimulation of these cells showed an enhanced effect on IgM and IFN-γ secretion. Our results indicate that Tc13Tul may participate in the early immunity in T. cruzi infection by favouring immune system evasion through B-cell activation and non-specific Ig secretion. In contrast, as IFN-γ is an important factor involved in T. cruzi resistance, this may be considered a Tc13Tul effect in favour of the host.
Collapse
|
12
|
da Mota JB, Echevarria-Lima J, Kyle-Cezar F, Melo M, Bellio M, Scharfstein J, Oliveira AC. IL-18R signaling is required for γδ T cell response and confers resistance to Trypanosoma cruzi infection. J Leukoc Biol 2020; 108:1239-1251. [PMID: 32450614 DOI: 10.1002/jlb.4ma0420-568r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/17/2020] [Accepted: 05/08/2020] [Indexed: 01/17/2023] Open
Abstract
IFN-γ-producing γδ T cells have been suggested to play an important role in protection against infection with Trypanosoma cruzi. However, little is known about the mechanisms leading to functional differentiation of this T cell subset in this model. In the current work, we investigated the possibility that the IL-18/MyD88 pathway is central for the generation of effector γδ T cells, playing a role for resistance against infection. We found that splenic γδ+ CD3+ cells were rapidly expanded (10-14 days post infection), which was accompanied by an early γδ T cell infiltration into the heart. In the following days, intracardiac parasitism was reduced, the protective immunity being accompanied by decreased γδ T cells tissue infiltration. As predicted, there was a drastic reduction of γδ T cells in Myd88- and Il18r1-deficient mice, both transgenic strains displaying a susceptible phenotype with increased intracardiac parasitism. In vivo and in vitro assays confirmed that IL-18R deficiency hampered γδ T cell proliferation. Further characterization revealed that T. cruzi infection up-regulates IL-18R expression in WT γδ+ T cell population whereas Il18r1-/- mice showed impaired generation of cytotoxic GzB+ and IFN-γ-producing γδ T cells. Consistently, in vitro cytotoxicity assay confirmed that cytolytic function was impaired in Il18r1-deficient γδ T cells. As a proof of concept, adoptive transfer of WT γδ T cells rescues Il18r1-deficient mice from susceptibility, reducing parasitemia and abrogating the mortality. Collectively, our findings implicate the IL-18R-MyD88 signaling in the mechanisms underlying generation of immunoprotective γδ T cells response in experimental Trypanosoma cruzi infection.
Collapse
Affiliation(s)
- Julia Barbalho da Mota
- Laboratório de Imunologia Celular e Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Juliana Echevarria-Lima
- Laboratório de Imunologia Básica e Aplicada, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda Kyle-Cezar
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Matheus Melo
- Laboratório de Imunologia Celular e Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria Bellio
- Laboratório de Imunobiologia, Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Julio Scharfstein
- Laboratório de Imunologia Celular e Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Carolina Oliveira
- Laboratório de Imunologia Celular e Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
13
|
Cerbán FM, Stempin CC, Volpini X, Carrera Silva EA, Gea S, Motran CC. Signaling pathways that regulate Trypanosoma cruzi infection and immune response. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165707. [DOI: 10.1016/j.bbadis.2020.165707] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 01/14/2020] [Accepted: 01/22/2020] [Indexed: 02/07/2023]
|
14
|
Sorgi S, Bonezi V, Dominguez MR, Gimenez AM, Dobrescu I, Boscardin S, Nakaya HI, Bargieri DY, Soares IS, Silveira ELV. São Paulo School of Advanced Sciences on Vaccines: an overview. J Venom Anim Toxins Incl Trop Dis 2020; 26:e20190061. [PMID: 32362926 PMCID: PMC7187638 DOI: 10.1590/1678-9199-jvatitd-2019-0061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 02/21/2020] [Indexed: 01/08/2023] Open
Abstract
Two years ago, we held an exciting event entitled the São Paulo School of Advanced Sciences on Vaccines (SPSASV). Sixty-eight Ph.D. students, postdoctoral fellows and independent researchers from 37 different countries met at the Mendes Plaza Hotel located in the city of Santos, SP - Brazil to discuss the challenges and the new frontiers of vaccinology. The SPSASV provided a critical and comprehensive view of vaccine research from basics to the current state-of-the-art techniques performed worldwide. For 10 days, we discussed all the aspects of vaccine development in 36 lectures, 53 oral presentations and 2 poster sessions. At the end of the course, participants were further encouraged to present a model of a grant proposal related to vaccine development against individual pathogens. Among the targeted pathogens were viruses (Chikungunya, HIV, RSV, and Influenza), bacteria (Mycobacterium tuberculosis and Streptococcus pyogenes), parasites (Plasmodium falciparum or Plasmodium vivax), and the worm Strongyloides stercoralis. This report highlights some of the knowledge shared at the SPSASV.
Collapse
Affiliation(s)
- Sara Sorgi
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
- Dipartimento di Biotecnologie Mediche, Universita’ degli Studi di Siena, Siena, Italia
| | - Vivian Bonezi
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Mariana R. Dominguez
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Alba Marina Gimenez
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Irina Dobrescu
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Silvia Boscardin
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Helder I. Nakaya
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Daniel Y. Bargieri
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Irene S. Soares
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Eduardo L. V. Silveira
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| |
Collapse
|
15
|
Acosta Rodríguez EV, Araujo Furlan CL, Fiocca Vernengo F, Montes CL, Gruppi A. Understanding CD8 + T Cell Immunity to Trypanosoma cruzi and How to Improve It. Trends Parasitol 2019; 35:899-917. [PMID: 31607632 PMCID: PMC6815727 DOI: 10.1016/j.pt.2019.08.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/24/2019] [Accepted: 08/26/2019] [Indexed: 12/30/2022]
Abstract
The protozoan Trypanosoma cruzi is the causative agent of Chagas' disease, endemic in Latin America but present worldwide. Research efforts have focused on the examination of immune mechanisms that mediate host protection as well as immunopathology during this parasitic infection. The study of CD8+ T cell immunity emerges as a key aspect given the critical importance of parasite-specific CD8+ T cells for host resistance throughout the infection. In recent years, new research has shed light on novel pathways that modulate the induction, maintenance, and regulation of CD8+ T cell responses to T. cruzi. This new knowledge is setting the ground for future vaccines and/or immunotherapies. Herein, we critically review and analyze the latest results published in the field.
Collapse
Affiliation(s)
- Eva V Acosta Rodríguez
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA Córdoba, Argentina.
| | - Cintia L Araujo Furlan
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA Córdoba, Argentina
| | - Facundo Fiocca Vernengo
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA Córdoba, Argentina
| | - Carolina L Montes
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA Córdoba, Argentina
| | - Adriana Gruppi
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA Córdoba, Argentina
| |
Collapse
|
16
|
CD43 sialoglycoprotein modulates cardiac inflammation and murine susceptibility to Trypanosoma cruzi infection. Sci Rep 2019; 9:8628. [PMID: 31197200 PMCID: PMC6565700 DOI: 10.1038/s41598-019-45138-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/29/2019] [Indexed: 12/11/2022] Open
Abstract
CD43 (leukosialin) is a large sialoglycoprotein abundantly expressed on the surface of most cells from the hematopoietic lineage. CD43 is directly involved in the contact between cells participating in a series of events such as signaling, adherence and host parasite interactions. In this study we examined the role of CD43 in the immune response against Trypanosoma cruzi, the protozoan parasite that causes Chagas’ disease, a potential life-threatening illness endemic in 21 Latin American countries according to the WHO. The acute stage of infection is marked by intense parasitemia and cardiac tissue parasitism, resulting in the recruitment of inflammatory cells and acute damage to the heart tissue. We show here that CD43−/− mice were more resistant to infection due to increased cytotoxicity of antigen specific CD8+ T cells and reduced inflammatory infiltration in the cardiac tissue, both contributing to lower cardiomyocyte damage. In addition, we demonstrate that the induction of acute myocarditis involves the engagement of CD43 cytoplasmic tripeptide sequence KRR to ezrin-radixin-moiesin cytoskeletal proteins. Together, our results show the participation of CD43 in different events involved in the pathogenesis of T. cruzi infection, contributing to a better overall understanding of the mechanisms underlying the pathogenesis of acute chagasic cardiomyopathy.
Collapse
|
17
|
Shey RA, Ghogomu SM, Esoh KK, Nebangwa ND, Shintouo CM, Nongley NF, Asa BF, Ngale FN, Vanhamme L, Souopgui J. In-silico design of a multi-epitope vaccine candidate against onchocerciasis and related filarial diseases. Sci Rep 2019; 9:4409. [PMID: 30867498 PMCID: PMC6416346 DOI: 10.1038/s41598-019-40833-x] [Citation(s) in RCA: 219] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 02/25/2019] [Indexed: 01/02/2023] Open
Abstract
Onchocerciasis is a parasitic disease with high socio-economic burden particularly in sub-Saharan Africa. The elimination plan for this disease has faced numerous challenges. A multi-epitope prophylactic/therapeutic vaccine targeting the infective L3 and microfilaria stages of the parasite's life cycle would be invaluable to achieve the current elimination goal. There are several observations that make the possibility of developing a vaccine against this disease likely. For example, despite being exposed to high transmission rates of infection, 1 to 5% of people have no clinical manifestations of the disease and are thus considered as putatively immune individuals. An immuno-informatics approach was applied to design a filarial multi-epitope subunit vaccine peptide consisting of linear B-cell and T-cell epitopes of proteins reported to be potential novel vaccine candidates. Conservation of the selected proteins and predicted epitopes in other parasitic nematode species suggests that the generated chimera could be helpful for cross-protection. The 3D structure was predicted, refined, and validated using bioinformatics tools. Protein-protein docking of the chimeric vaccine peptide with the TLR4 protein predicted efficient binding. Immune simulation predicted significantly high levels of IgG1, T-helper, T-cytotoxic cells, INF-γ, and IL-2. Overall, the constructed recombinant putative peptide demonstrated antigenicity superior to current vaccine candidates.
Collapse
Affiliation(s)
- Robert Adamu Shey
- Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM, Université Libre de Bruxelles, Gosselies, Belgium.,Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, Buea, Cameroon
| | - Stephen Mbigha Ghogomu
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, Buea, Cameroon
| | - Kevin Kum Esoh
- Department of Biochemistry, Faculty of Science, Jomo Kenyatta University of Agriculture and Technology, Juja, Kenya
| | - Neba Derrick Nebangwa
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, Buea, Cameroon
| | - Cabirou Mounchili Shintouo
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, Buea, Cameroon
| | - Nkemngo Francis Nongley
- Department of Microbiology and Parasitology, Faculty of Science, University of Buea, Buea, Cameroon
| | - Bertha Fru Asa
- Department of Public Health and Hygiene, Faculty of Health Science, University of Buea, Buea, Cameroon
| | - Ferdinand Njume Ngale
- Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM, Université Libre de Bruxelles, Gosselies, Belgium.,Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, Buea, Cameroon
| | - Luc Vanhamme
- Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM, Université Libre de Bruxelles, Gosselies, Belgium
| | - Jacob Souopgui
- Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM, Université Libre de Bruxelles, Gosselies, Belgium.
| |
Collapse
|
18
|
Chevillard C, Nunes JPS, Frade AF, Almeida RR, Pandey RP, Nascimento MS, Kalil J, Cunha-Neto E. Disease Tolerance and Pathogen Resistance Genes May Underlie Trypanosoma cruzi Persistence and Differential Progression to Chagas Disease Cardiomyopathy. Front Immunol 2018; 9:2791. [PMID: 30559742 PMCID: PMC6286977 DOI: 10.3389/fimmu.2018.02791] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 11/13/2018] [Indexed: 01/01/2023] Open
Abstract
Chagas disease is caused by infection with the protozoan Trypanosoma cruzi and affects over 8 million people worldwide. In spite of a powerful innate and adaptive immune response in acute infection, the parasite evades eradication, leading to a chronic persistent infection with low parasitism. Chronically infected subjects display differential patterns of disease progression. While 30% develop chronic Chagas disease cardiomyopathy (CCC)-a severe inflammatory dilated cardiomyopathy-decades after infection, 60% of the patients remain disease-free, in the asymptomatic/indeterminate (ASY) form, and 10% develop gastrointestinal disease. Infection of genetically deficient mice provided a map of genes relevant for resistance to T. cruzi infection, leading to the identification of multiple genes linked to survival to infection. These include pathogen resistance genes (PRG) needed for intracellular parasite destruction, and genes involved in disease tolerance (protection against tissue damage and acute phase death-DTG). All identified DTGs were found to directly or indirectly inhibit IFN-γ production or Th1 differentiation. We hypothesize that the absolute need for DTG to control potentially lethal IFN-γ PRG activity leads to T. cruzi persistence and establishment of chronic infection. IFN-γ production is higher in CCC than ASY patients, and is the most highly expressed cytokine in CCC hearts. Key DTGs that downmodulate IFN-γ, like IL-10, and Ebi3/IL27p28, are higher in ASY patients. Polymorphisms in PRG and DTG are associated with differential disease progression. We thus hypothesize that ASY patients are disease tolerant, while an imbalance of DTG and IFN-γ PRG activity leads to the inflammatory heart damage of CCC.
Collapse
Affiliation(s)
| | - João Paulo Silva Nunes
- Laboratorio de Imunologia, Instituto do Coracao, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil
- Disciplina de Imunologia Clínica e Alergia, Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil
- Institute for Investigation in Immunology (iii), INCT, São Paulo, Brazil
| | - Amanda Farage Frade
- Laboratorio de Imunologia, Instituto do Coracao, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil
- Institute for Investigation in Immunology (iii), INCT, São Paulo, Brazil
- Department of Bioengineering, Brazil University, São Paulo, Brazil
| | - Rafael Ribeiro Almeida
- Laboratorio de Imunologia, Instituto do Coracao, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil
- Disciplina de Imunologia Clínica e Alergia, Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil
- Institute for Investigation in Immunology (iii), INCT, São Paulo, Brazil
| | - Ramendra Pati Pandey
- Laboratorio de Imunologia, Instituto do Coracao, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil
- Disciplina de Imunologia Clínica e Alergia, Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil
- Institute for Investigation in Immunology (iii), INCT, São Paulo, Brazil
| | - Marilda Savóia Nascimento
- Laboratorio de Imunologia, Instituto do Coracao, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil
- Disciplina de Imunologia Clínica e Alergia, Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil
- Institute for Investigation in Immunology (iii), INCT, São Paulo, Brazil
| | - Jorge Kalil
- Laboratorio de Imunologia, Instituto do Coracao, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil
- Disciplina de Imunologia Clínica e Alergia, Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil
- Institute for Investigation in Immunology (iii), INCT, São Paulo, Brazil
| | - Edecio Cunha-Neto
- Laboratorio de Imunologia, Instituto do Coracao, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil
- Disciplina de Imunologia Clínica e Alergia, Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil
- Institute for Investigation in Immunology (iii), INCT, São Paulo, Brazil
| |
Collapse
|
19
|
Santana DY, Salgado RM, Fevereiro M, Silva do Nascimento R, Fonseca R, Saraiva Câmara NO, Epiphanio S, Marinho CRF, Barreto-Chaves ML, D’ Império-Lima MR, Álvarez JM. MyD88 activation in cardiomyocytes contributes to the heart immune response to acute Trypanosoma cruzi infection with no effect on local parasite control. PLoS Negl Trop Dis 2018; 12:e0006617. [PMID: 30067739 PMCID: PMC6089445 DOI: 10.1371/journal.pntd.0006617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 08/13/2018] [Accepted: 06/18/2018] [Indexed: 12/15/2022] Open
Abstract
Cardiomyopathy is the most serious consequence of Chagas disease, a neglected human disorder caused by Trypanosoma cruzi infection. Because T. cruzi parasites invade cardiomyocytes, we sought to investigate whether these cells recognize the parasite in vivo by receptors signaling through the MyD88 adaptor, which mediates the activation pathway of most Toll-like receptors (TLRs) and IL-1/IL-18 receptors, and influence the development of acute cardiac pathology. First, we showed that HL-1 cardiac muscle cell line expresses MyD88 gene and protein at resting state and after T. cruzi infection. To evaluate the role in vivo of MyD88 expression in cardiomyocytes, we generated Mer+MyD88flox+/+ mice in which tamoxifen treatment is expected to eliminate the MyD88 gene exclusively in cardiomyocytes. This Cre-loxP model was validated by both PCR and western blot analysis; tamoxifen treatment of Mer+MyD88flox+/+ mice resulted in decreased MyD88 gene and protein expression in the heart, but not in the spleen, while had no effect on littermates. The elimination of MyD88 in cardiomyocytes determined a lower increase in CCL5, IFNγ and TNFα gene transcription during acute infection by T. cruzi parasites of the Y strain, but it did not significantly modify heart leukocyte infiltration and parasitism. Together, our results show that cardiomyocytes can sense T. cruzi infection through MyD88-mediated molecular pathways and contribute to the local immune response to the parasite. The strong pro-inflammatory response of heart-recruited leukocytes may overshadow the effects of MyD88 deficiency in cardiomyocytes on the local leukocyte recruitment and T. cruzi control during acute infection.
Collapse
Affiliation(s)
- Danni Yohani Santana
- Department of Immunology of Biomedical Sciences Institute, University of São Paulo, São Paulo, SP, Brazil
| | - Rafael Moysés Salgado
- Department of Immunology of Biomedical Sciences Institute, University of São Paulo, São Paulo, SP, Brazil
| | - Marina Fevereiro
- Department of Anatomy of Biomedical Sciences Institute, University of São Paulo, São Paulo, SP, Brazil
| | | | - Raissa Fonseca
- Department of Immunology of Biomedical Sciences Institute, University of São Paulo, São Paulo, SP, Brazil
| | - Niels Olsen Saraiva Câmara
- Department of Immunology of Biomedical Sciences Institute, University of São Paulo, São Paulo, SP, Brazil
| | - Sabrina Epiphanio
- Department of Clinical and Toxicologic Analyses, Faculty of Pharmacy, University of São Paulo, São Paulo, SP, Brazil
| | | | | | | | - José M. Álvarez
- Department of Immunology of Biomedical Sciences Institute, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
20
|
Gomes-Neto JF, Sartorius R, Canto FB, Almeida TS, Dias AA, Barbosa CHD, Melo GA, Oliveira AC, Aguiar PHN, Machado CR, de Matos Guedes HL, Santiago MF, Nóbrega A, De Berardinis P, Bellio M. Vaccination With Recombinant Filamentous fd Phages Against Parasite Infection Requires TLR9 Expression. Front Immunol 2018; 9:1173. [PMID: 29896197 PMCID: PMC5987186 DOI: 10.3389/fimmu.2018.01173] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 05/11/2018] [Indexed: 12/31/2022] Open
Abstract
Recombinant filamentous fd bacteriophages (rfd) expressing antigenic peptides were shown to induce cell-mediated immune responses in the absence of added adjuvant, being a promising delivery system for vaccination. Here, we tested the capacity of rfd phages to protect against infection with the human protozoan Trypanosoma cruzi, the etiologic agent of Chagas Disease. For this, C57BL/6 (B6) and Tlr9−/− mice were vaccinated with rfd phages expressing the OVA257–264 peptide or the T. cruzi-immunodominant peptides PA8 and TSKB20 and challenged with either the T. cruzi Y-OVA or Y-strain, respectively. We found that vaccination with rfd phages induces anti-PA8 and anti-TSKB20 IgG production, expansion of Ag-specific IFN-γ, TNF-α, and Granzyme B-producing CD8+ T cells, as well as in vivo Ag-specific cytotoxic responses. Moreover, the fd-TSKB20 vaccine was able to protect against mortality induced by a high-dose inoculum of the parasite. Although vaccination with rfd phages successfully reduced both parasitemia and parasite load in the myocardium of WT B6 mice, Tlr9−/− animals were not protected against infection. Thus, our data extend previous studies, demonstrating that rfd phages induce Ag-specific IgG and CD8+ T cell-mediated responses and confer protection against an important human parasite infection, through a TLR9-dependent mechanism.
Collapse
Affiliation(s)
- João F Gomes-Neto
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Fábio B Canto
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thamyres S Almeida
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - André A Dias
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos-Henrique D Barbosa
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Guilherme A Melo
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Carolina Oliveira
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Pedro-Henrique N Aguiar
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Carlos R Machado
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Herbert L de Matos Guedes
- Instituto de Biofísica Carlos Chagas Filho, Polo Xerém, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Marcelo F Santiago
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Alberto Nóbrega
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Maria Bellio
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,National Institute for Vaccine Development and Technology (INCTV), CNPq-MCT, Belo Horizonte, Brazil
| |
Collapse
|
21
|
Volpini X, Ambrosio LF, Fozzatti L, Insfran C, Stempin CC, Cervi L, Motran CC. Trypanosoma cruzi Exploits Wnt Signaling Pathway to Promote Its Intracellular Replication in Macrophages. Front Immunol 2018; 9:859. [PMID: 29743880 PMCID: PMC5930390 DOI: 10.3389/fimmu.2018.00859] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 04/06/2018] [Indexed: 01/04/2023] Open
Abstract
During the acute phase of Trypanosoma cruzi infection, macrophages can act as host cells for the parasites as well as effector cells in the early anti-parasitic immune response. Thus, the targeting of specific signaling pathways could modulate macrophages response to restrict parasite replication and instruct an appropriate adaptive response. Recently, it has become evident that Wnt signaling has immunomodulatory functions during inflammation and infection. Here, we tested the hypothesis that during T. cruzi infection, the activation of Wnt signaling pathway in macrophages plays a role in modulating the inflammatory/tolerogenic response and therefore regulating the control of parasite replication. In this report, we show that early after T. cruzi infection of bone marrow-derived macrophages (BMM), β-catenin was activated and Wnt3a, Wnt5a, and some Frizzled receptors as well as Wnt/β-catenin pathway’s target genes were upregulated, with Wnt proteins signaling sustaining the activation of Wnt/β-catenin pathway and then activating the Wnt/Ca+2 pathway. Wnt signaling pathway activation was critical to sustain the parasite’s replication in BMM; since the treatments with specific inhibitors of β-catenin transcriptional activation or Wnt proteins secretion limited the parasite replication. Mechanistically, inhibition of Wnt signaling pathway armed BMM to fight against T. cruzi by inducing the production of pro-inflammatory cytokines and indoleamine 2,3-dioxygenase activity and by downregulating arginase activity. Likewise, in vivo pharmacological inhibition of the Wnts’ interaction with its receptors controlled the parasite replication and improved the survival of lethally infected mice. It is well established that T. cruzi infection activates a plethora of signaling pathways that ultimately regulate immune mediators to determine the modulation of a defined set of effector functions in macrophages. In this study, we have revealed a new signaling pathway that is activated by the interaction between protozoan parasites and host innate immunity, establishing a new conceptual framework for the development of new therapies.
Collapse
Affiliation(s)
- Ximena Volpini
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), CONICET, Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, Argentina
| | - Laura F Ambrosio
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), CONICET, Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, Argentina
| | - Laura Fozzatti
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), CONICET, Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, Argentina
| | - Constanza Insfran
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), CONICET, Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, Argentina
| | - Cinthia C Stempin
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), CONICET, Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, Argentina
| | - Laura Cervi
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), CONICET, Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, Argentina
| | - Claudia Cristina Motran
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), CONICET, Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, Argentina
| |
Collapse
|
22
|
Lopez M, Tanowitz HB, Garg NJ. Pathogenesis of Chronic Chagas Disease: Macrophages, Mitochondria, and Oxidative Stress. CURRENT CLINICAL MICROBIOLOGY REPORTS 2018; 5:45-54. [PMID: 29868332 PMCID: PMC5983038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
PURPOSE OF REVIEW Trypanosoma cruzi is the causative agent of Chagas disease. Decades after initial infection, ~30% of individuals can develop chronic chagasic cardiomyopathy. There are several proposed mechanisms for pathogenesis of Chagas disease, including parasite persistence, immune responses against parasite or self that continue in the heart, vascular compromise, and involvement of autonomous and central nervous system. Herein, we will focus on the significance of macrophages, mitochondrial dysfunction, and oxidative stress in progression of chagasic cardiomyopathy. RECENT FINDINGS The current literature suggests that T. cruzi prevents cytotoxic activities of the innate immune cells and persists in the host, contributing to mitochondrial oxidative stress. We discuss how the neoantigens generated due to cellular oxidative damage contribute to chronic inflammatory stress in chagasic disease. SUMMARY We propose that metabolic regulators, PARP-1/SIRT1, determine the disease outcome by modulating the mitochondrial and macrophage stress and antioxidant/oxidant imbalance, and offer a potential new therapy against chronic Chagas disease.
Collapse
Affiliation(s)
- Marcos Lopez
- Translational Biomedical Research Group, Fundación Cardiovascular de Colombia, Floridablanca, Colombia and Graduate Program in Biomedical Sciencies, Faculty of Health, Universidad del Valle, Cali, Colombia
| | - Herbert B Tanowitz
- Departments of Pathology and Medicine, Albert Einstein College of Medicine, Bronx, New York
| | - Nisha J Garg
- Departments of Microbiology and Immunology and Pathology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas 77555-1070
| |
Collapse
|
23
|
Koo SJ, Szczesny B, Wan X, Putluri N, Garg NJ. Pentose Phosphate Shunt Modulates Reactive Oxygen Species and Nitric Oxide Production Controlling Trypanosoma cruzi in Macrophages. Front Immunol 2018; 9:202. [PMID: 29503646 PMCID: PMC5820298 DOI: 10.3389/fimmu.2018.00202] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/23/2018] [Indexed: 12/15/2022] Open
Abstract
Metabolism provides substrates for reactive oxygen species (ROS) and nitric oxide (NO) generation, which are a part of the macrophage (Mφ) anti-microbial response. Mφs infected with Trypanosoma cruzi (Tc) produce insufficient levels of oxidative species and lower levels of glycolysis compared to classical Mφs. How Mφs fail to elicit a potent ROS/NO response during infection and its link to glycolysis is unknown. Herein, we evaluated for ROS, NO, and cytokine production in the presence of metabolic modulators of glycolysis and the Krebs cycle. Metabolic status was analyzed by Seahorse Flux Analyzer and mass spectrometry and validated by RNAi. Tc infection of RAW264.7 or bone marrow-derived Mφs elicited a substantial increase in peroxisome proliferator-activated receptor (PPAR)-α expression and pro-inflammatory cytokine release, and moderate levels of ROS/NO by 18 h. Interferon (IFN)-γ addition enhanced the Tc-induced ROS/NO release and shut down mitochondrial respiration to the levels noted in classical Mφs. Inhibition of PPAR-α attenuated the ROS/NO response and was insufficient for complete metabolic shift. Deprivation of glucose and inhibition of pyruvate transport showed that Krebs cycle and glycolysis support ROS/NO generation in Tc + IFN-γ stimulated Mφs. Metabolic profiling and RNAi studies showed that glycolysis-pentose phosphate pathway (PPP) at 6-phosphogluconate dehydrogenase was essential for ROS/NO response and control of parasite replication in Mφ. We conclude that IFN-γ, but not inhibition of PPAR-α, supports metabolic upregulation of glycolytic-PPP for eliciting potent ROS/NO response in Tc-infected Mφs. Chemical analogs enhancing the glucose-PPP will be beneficial in controlling Tc replication and dissemination by Mφs.
Collapse
Affiliation(s)
- Sue-Jie Koo
- Department of Pathology, University of Texas Medical Branch (UTMB), Galveston, TX, United States
| | - Bartosz Szczesny
- Department of Anesthesiology, University of Texas Medical Branch (UTMB), Galveston, TX, United States
| | - Xianxiu Wan
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, TX, United States
| | - Nagireddy Putluri
- Department of Molecular and Cell Biology, Baylor College of Medicine, Houston, TX, United States
| | - Nisha Jain Garg
- Department of Pathology, University of Texas Medical Branch (UTMB), Galveston, TX, United States.,Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, TX, United States.,Institute for Human Infections and Immunity, University of Texas Medical Branch (UTMB), Galveston, TX, United States
| |
Collapse
|
24
|
Lopez M, Tanowitz HB, Garg NJ. Pathogenesis of Chronic Chagas Disease: Macrophages, Mitochondria, and Oxidative Stress. CURRENT CLINICAL MICROBIOLOGY REPORTS 2018. [DOI: 10.1007/s40588-018-0081-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
25
|
Magalhães LMD, Viana A, de Jesus AC, Chiari E, Galvão L, Gomes JA, Gollob KJ, Dutra WO. Distinct Trypanosoma cruzi isolates induce activation and apoptosis of human neutrophils. PLoS One 2017; 12:e0188083. [PMID: 29176759 PMCID: PMC5703490 DOI: 10.1371/journal.pone.0188083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 10/31/2017] [Indexed: 11/18/2022] Open
Abstract
Neutrophils are critical players in the first line of defense against pathogens and in the activation of subsequent cellular responses. We aimed to determine the effects of the interaction of Trypanosoma cruzi with human neutrophils, using isolates of the two major discrete type units (DTUs) associated with Chagas’ disease in Latin America (clone Col1.7G2 and Y strain, DTU I and II, respectively). Thus, we used CFSE-stained trypomastigotes to measure neutrophil-T. cruzi interaction, neutrophil activation, cytokine expression and death, after infection with Col1.7G2 and Y strain. Our results show that the frequency of CFSE+ neutrophils, indicative of interaction, and CFSE intensity on a cell-per-cell basis were similar when comparing Col1.7G2 and Y strains. Interaction with T. cruzi increased neutrophil activation, as measured by CD282, CD284, TNF and IL-12 expression, although at different levels between the two strains. No change in IL-10 expression was observed after interaction of neutrophils with either strain. We observed that exposure to Y and Col1.7G2 caused marked neutrophil death. This was specific to neutrophils, since interaction of either strain with monocytes did not cause death. Our further analysis showed that neutrophil death was a result of apoptosis, which was associated with an upregulation of TNF-receptor, TNF and FasLigand, but not of Fas. Induction of TNF-associated neutrophil apoptosis by the different T. cruzi isolates may act as an effective common mechanism to decrease the host’s immune response and favor parasite survival.
Collapse
Affiliation(s)
- Luísa M. D. Magalhães
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Agostinho Viana
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Augusto C. de Jesus
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Egler Chiari
- Laboratório de Biologia do Trypanosoma cruzi e doença de Chagas, Departamento de Parasitologia, Instituto de Ciências Biológicas, Belo Horizonte, Minas Gerais, Brazil
| | - Lúcia Galvão
- Laboratório de Biologia do Trypanosoma cruzi e doença de Chagas, Departamento de Parasitologia, Instituto de Ciências Biológicas, Belo Horizonte, Minas Gerais, Brazil
| | - Juliana A. Gomes
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Kenneth J. Gollob
- Núcleo de Ensino e Pesquisa, Instituto Mario Pena, Belo Horizonte, Minas Gerais, Brazil
- BRISA Diagnósticos, Belo Horizonte, Minas Gerais, Brazil
- AC Camargo Cancer Center, International Center for Research, São Paulo, São Paulo, Brazil
- INCT-DT, Belo Horizonte, Minas Gerais, Brazil
| | - Walderez O. Dutra
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- INCT-DT, Belo Horizonte, Minas Gerais, Brazil
- * E-mail:
| |
Collapse
|
26
|
Oliveira AC, Gomes-Neto JF, Barbosa CHD, Granato A, Reis BS, Santos BM, Fucs R, Canto FB, Nakaya HI, Nóbrega A, Bellio M. Crucial role for T cell-intrinsic IL-18R-MyD88 signaling in cognate immune response to intracellular parasite infection. eLife 2017; 6:30883. [PMID: 28895840 PMCID: PMC5629024 DOI: 10.7554/elife.30883] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 09/12/2017] [Indexed: 12/29/2022] Open
Abstract
MyD88 is the main adaptor molecule for TLR and IL-1R family members. Here, we demonstrated that T-cell intrinsic MyD88 signaling is required for proliferation, protection from apoptosis and expression of activation/memory genes during infection with the intracellular parasite Trypanosoma cruzi, as evidenced by transcriptome and cytometry analyses in mixed bone-marrow (BM) chimeras. The lack of direct IL-18R signaling in T cells, but not of IL-1R, phenocopied the absence of the MyD88 pathway, indicating that IL-18R is a critical MyD88-upstream pathway involved in the establishment of the Th1 response against an in vivo infection, a presently controvert subject. Accordingly, Il18r1−/− mice display lower levels of Th1 cells and are highly susceptible to infection, but can be rescued from mortality by the adoptive transfer of WT CD4+ T cells. Our findings establish the T-cell intrinsic IL-18R/MyD88 pathway as a crucial element for induction of cognate Th1 responses against an important human pathogen.
Collapse
Affiliation(s)
- Ana-Carolina Oliveira
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - João Francisco Gomes-Neto
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Alessandra Granato
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Bruno Maia Santos
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rita Fucs
- Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
| | - Fábio B Canto
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Helder I Nakaya
- Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil.,Instituto Nacional de Ciência e Tecnologia de Vacinas, CNPq-MCT, Belo Horizonte, Brazil.,Department of Pathology, Emory University School of Medicine, Atlanta, United States
| | - Alberto Nóbrega
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria Bellio
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia de Vacinas, CNPq-MCT, Belo Horizonte, Brazil
| |
Collapse
|
27
|
Chowdhury IH, Koo SJ, Gupta S, Liang LY, Bahar B, Silla L, Nuñez-Burgos J, Barrientos N, Zago MP, Garg NJ. Gene Expression Profiling and Functional Characterization of Macrophages in Response to Circulatory Microparticles Produced during Trypanosoma cruzi Infection and Chagas Disease. J Innate Immun 2016; 9:203-216. [PMID: 27902980 DOI: 10.1159/000451055] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 09/27/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Chronic inflammation and oxidative stress are hallmarks of chagasic cardiomyopathy (CCM). In this study, we determined if microparticles (MPs) generated during Trypanosoma cruzi (Tc) infection carry the host's signature of the inflammatory/oxidative state and provide information regarding the progression of clinical disease. METHODS MPs were harvested from supernatants of human peripheral blood mononuclear cells in vitro incubated with Tc (control: LPS treated), plasma of seropositive humans with a clinically asymptomatic (CA) or symptomatic (CS) disease state (vs. normal/healthy [NH] controls), and plasma of mice immunized with a protective vaccine before challenge infection (control: unvaccinated/infected). Macrophages (mφs) were incubated with MPs, and we probed the gene expression profile using the inflammatory signaling cascade and cytokine/chemokine arrays, phenotypic markers of mφ activation by flow cytometry, cytokine profile by means of an ELISA and Bioplex assay, and oxidative/nitrosative stress and mitotoxicity by means of colorimetric and fluorometric assays. RESULTS Tc- and LPS-induced MPs stimulated proliferation, inflammatory gene expression profile, and nitric oxide (∙NO) release in human THP-1 mφs. LPS-MPs were more immunostimulatory than Tc-MPs. Endothelial cells, T lymphocytes, and mφs were the major source of MPs shed in the plasma of chagasic humans and experimentally infected mice. The CS and CA (vs. NH) MPs elicited >2-fold increase in NO and mitochondrial oxidative stress in THP-1 mφs; however, CS (vs. CA) MPs elicited a more pronounced and disease-state-specific inflammatory gene expression profile (IKBKB, NR3C1, and TIRAP vs. CCR4, EGR2, and CCL3), cytokine release (IL-2 + IFN-γ > GCSF), and surface markers of mφ activation (CD14 and CD16). The circulatory MPs of nonvaccinated/infected mice induced 7.5-fold and 40% increases in ∙NO and IFN-γ production, respectively, while these responses were abolished when RAW264.7 mφs were incubated with circulatory MPs of vaccinated/infected mice. CONCLUSION Circulating MPs reflect in vivo levels of an oxidative, nitrosative, and inflammatory state, and have potential utility in evaluating disease severity and the efficacy of vaccines and drug therapies against CCM.
Collapse
Affiliation(s)
- Imran H Chowdhury
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, TX, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Vaux R, Schnoeller C, Berkachy R, Roberts LB, Hagen J, Gounaris K, Selkirk ME. Modulation of the Immune Response by Nematode Secreted Acetylcholinesterase Revealed by Heterologous Expression in Trypanosoma musculi. PLoS Pathog 2016; 12:e1005998. [PMID: 27802350 PMCID: PMC5089771 DOI: 10.1371/journal.ppat.1005998] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 10/13/2016] [Indexed: 12/19/2022] Open
Abstract
Nematode parasites secrete molecules which regulate the mammalian immune system, but their genetic intractability is a major impediment to identifying and characterising the biological effects of these molecules. We describe here a novel system for heterologous expression of helminth secreted proteins in the natural parasite of mice, Trypanosoma musculi, which can be used to analyse putative immunomodulatory functions. Trypanosomes were engineered to express a secreted acetylcholinesterase from Nippostrongylus brasiliensis. Infection of mice with transgenic parasites expressing acetylcholinesterase resulted in truncated infection, with trypanosomes cleared early from the circulation. Analysis of cellular phenotypes indicated that exposure to acetylcholinesterase in vivo promoted classical activation of macrophages (M1), with elevated production of nitric oxide and lowered arginase activity. This most likely occurred due to the altered cytokine environment, as splenocytes from mice infected with T. musculi expressing acetylcholinesterase showed enhanced production of IFNγ and TNFα, with diminished IL-4, IL-13 and IL-5. These results suggest that one of the functions of nematode secreted acetylcholinesterase may be to alter the cytokine environment in order to inhibit development of M2 macrophages which are deleterious to parasite survival. Transgenic T. musculi represents a valuable new vehicle to screen for novel immunoregulatory proteins by extracellular delivery in vivo to the murine host.
Collapse
Affiliation(s)
- Rachel Vaux
- Department of Life Sciences, Imperial College London
| | | | - Rita Berkachy
- Department of Life Sciences, Imperial College London
| | | | - Jana Hagen
- Department of Life Sciences, Imperial College London
| | | | | |
Collapse
|
29
|
Gil-Jaramillo N, Motta FN, Favali CBF, Bastos IMD, Santana JM. Dendritic Cells: A Double-Edged Sword in Immune Responses during Chagas Disease. Front Microbiol 2016; 7:1076. [PMID: 27471496 PMCID: PMC4943928 DOI: 10.3389/fmicb.2016.01076] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 06/27/2016] [Indexed: 01/24/2023] Open
Abstract
Dendritic cells (DCs) are the most important member of the antigen presenting cells group due to their ability to recognize antigen at the infection site and their high specialized antigen internalization capacity. These cells have central role in connecting the innate and adaptive immune responses against Trypanosoma cruzi, the causative agent of Chagas disease. These first line defense cells modulate host immune response depending on type, maturation level, cytokine milieu and DC receptor involved in the interactions with T. cruzi, influencing the development of the disease clinic forms. Here, we present a review of DCs-T. cruzi interactions both in human and murine models, pointing out the parasite ability to manipulate DCs activity for the purpose of evading innate immune response and assuring its own survival and persistence.
Collapse
Affiliation(s)
- Natalia Gil-Jaramillo
- Laboratório de Interação Patógeno-Hospedeiro, Instituto de Biologia, Universidade de BrasíliaBrasília, Brazil
| | - Flávia N. Motta
- Laboratório de Interação Patógeno-Hospedeiro, Instituto de Biologia, Universidade de BrasíliaBrasília, Brazil
- Faculdade de Ceilândia, Universidade de BrasíliaBrasília, Brazil
| | - Cecília B. F. Favali
- Laboratório de Biologia do Gene, Instituto de Biologia, Universidade de BrasíliaBrasília, Brazil
| | - Izabela M. D. Bastos
- Laboratório de Interação Patógeno-Hospedeiro, Instituto de Biologia, Universidade de BrasíliaBrasília, Brazil
| | - Jaime M. Santana
- Laboratório de Interação Patógeno-Hospedeiro, Instituto de Biologia, Universidade de BrasíliaBrasília, Brazil
| |
Collapse
|
30
|
Ersching J, Vasconcelos JR, Ferreira CP, Caetano BC, Machado AV, Bruna–Romero O, Baron MA, Ferreira LRP, Cunha-Neto E, Rock KL, Gazzinelli RT, Rodrigues MM. The Combined Deficiency of Immunoproteasome Subunits Affects Both the Magnitude and Quality of Pathogen- and Genetic Vaccination-Induced CD8+ T Cell Responses to the Human Protozoan Parasite Trypanosoma cruzi. PLoS Pathog 2016; 12:e1005593. [PMID: 27128676 PMCID: PMC4851296 DOI: 10.1371/journal.ppat.1005593] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 04/01/2016] [Indexed: 11/18/2022] Open
Abstract
The β1i, β2i and β5i immunoproteasome subunits have an important role in defining the repertoire of MHC class I-restricted epitopes. However, the impact of combined deficiency of the three immunoproteasome subunits in the development of protective immunity to intracellular pathogens has not been investigated. Here, we demonstrate that immunoproteasomes play a key role in host resistance and genetic vaccination-induced protection against the human pathogen Trypanosoma cruzi (the causative agent of Chagas disease), immunity to which is dependent on CD8+ T cells and IFN-γ (the classical immunoproteasome inducer). We observed that infection with T. cruzi triggers the transcription of immunoproteasome genes, both in mice and humans. Importantly, genetically vaccinated or T. cruzi-infected β1i, β2i and β5i triple knockout (TKO) mice presented significantly lower frequencies and numbers of splenic CD8+ effector T cells (CD8+CD44highCD62Llow) specific for the previously characterized immunodominant (VNHRFTLV) H-2Kb-restricted T. cruzi epitope. Not only the quantity, but also the quality of parasite-specific CD8+ T cell responses was altered in TKO mice. Hence, the frequency of double-positive (IFN-γ+/TNF+) or single-positive (IFN-γ+) cells specific for the H-2Kb-restricted immunodominant as well as subdominant T. cruzi epitopes were higher in WT mice, whereas TNF single-positive cells prevailed among CD8+ T cells from TKO mice. Contrasting with their WT counterparts, TKO animals were also lethally susceptible to T. cruzi challenge, even after an otherwise protective vaccination with DNA and adenoviral vectors. We conclude that the immunoproteasome subunits are key determinants in host resistance to T. cruzi infection by influencing both the magnitude and quality of CD8+ T cell responses. CD8+ t lymphocytes are cells of the immune system that mediate control of intracellular infections by viruses, prokaryote as well as eukaryote pathogens. To confer protection, these lymphocytes need to be elicited by pathogen peptides that are presented in association with MHC class I molecules. The degradation of self and microbial proteins by catalytic domains of the cytosolic proteasome β1, β2 and β5 subunits is intimately linked to the generation of MHC class I-restricted epitopes, which in turn are important determinants of the kinetics, specificity and efficiency of CD8+ T cell-mediated immunity. Importantly, inflammatory stimuli trigger the expression of the inducible alternative β1i, β2i and β5i subunits that form the immunoproteasomes. The qualitative and quantitative importance of immunoproteasomes in generating CD8+ T cell epitopes has recently been demonstrated in mice that are simultaneously devoid of the β1i, β2i and β5i subunits. In this study, we explored the role of immunoproteasomes in host resistance to Trypanosoma cruzi, a protozoan parasite that causes Chagas disease. We found that β1i, β2i and β5i triply deficient mice have an impaired response of CD8+ T cells and are highly susceptible to primary infection with T. cruzi. We also demonstrated that host resistance induced by a genetic vaccine able to protect normal mice from T. cruzi challenge fails to do so in the immunoproteasome-deficient mice. Our study provides strong evidences that β1i, β2i and β5i immunoproteasome subunits are important determinants of both the magnitude and quality of CD8+ T cell responses as well as immune-mediated host resistance to a human pathogen.
Collapse
Affiliation(s)
- Jonatan Ersching
- Centro de Terapia Celular e Molecular and Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo - Escola Paulista de Medicina, São Paulo, São Paulo, Brazil
| | - José R. Vasconcelos
- Centro de Terapia Celular e Molecular and Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo - Escola Paulista de Medicina, São Paulo, São Paulo, Brazil
- Departamento de Biociências, Universidade Federal de São Paulo, Santos, São Paulo, Brazil
| | - Camila P. Ferreira
- Centro de Terapia Celular e Molecular and Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo - Escola Paulista de Medicina, São Paulo, São Paulo, Brazil
| | - Braulia C. Caetano
- Departments of Medicine and Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | | | - Oscar Bruna–Romero
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Monique A. Baron
- Instituto do Coração (InCor), Faculdade de Medicina - Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Ludmila R. P. Ferreira
- Instituto do Coração (InCor), Faculdade de Medicina - Universidade de São Paulo, São Paulo, São Paulo, Brazil
- Universidade Santo Amaro, São Paulo, São Paulo, Brazil
| | - Edécio Cunha-Neto
- Instituto do Coração (InCor), Faculdade de Medicina - Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Kenneth L. Rock
- Departments of Medicine and Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Ricardo T. Gazzinelli
- Departments of Medicine and Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Centro de Pesquisas René Rachou, FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- * E-mail:
| | - Maurício M. Rodrigues
- Centro de Terapia Celular e Molecular and Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo - Escola Paulista de Medicina, São Paulo, São Paulo, Brazil
| |
Collapse
|
31
|
Intrinsic MyD88-Akt1-mTOR Signaling Coordinates Disparate Tc17 and Tc1 Responses during Vaccine Immunity against Fungal Pneumonia. PLoS Pathog 2015; 11:e1005161. [PMID: 26367276 PMCID: PMC4569330 DOI: 10.1371/journal.ppat.1005161] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Accepted: 08/21/2015] [Indexed: 12/22/2022] Open
Abstract
Fungal infections have skyrocketed in immune-compromised patients lacking CD4+ T cells, underscoring the need for vaccine prevention. An understanding of the elements that promote vaccine immunity in this setting is essential. We previously demonstrated that vaccine-induced IL-17A+ CD8+ T cells (Tc17) are required for resistance against lethal fungal pneumonia in CD4+ T cell-deficient hosts, whereas the individual type I cytokines IFN-γ, TNF-α and GM-CSF, are dispensable. Here, we report that T cell-intrinsic MyD88 signals are crucial for these Tc17 cell responses and vaccine immunity against lethal fungal pneumonia in mice. In contrast, IFN-γ+ CD8+ cell (Tc1) responses are largely normal in the absence of intrinsic MyD88 signaling in CD8+ T cells. The poor accumulation of MyD88-deficient Tc17 cells was not linked to an early onset of contraction, nor to accelerated cell death or diminished expression of anti-apoptotic molecules Bcl-2 or Bcl-xL. Instead, intrinsic MyD88 was required to sustain the proliferation of Tc17 cells through the activation of mTOR via Akt1. Moreover, intrinsic IL-1R and TLR2, but not IL-18R, were required for MyD88 dependent Tc17 responses. Our data identify unappreciated targets for augmenting adaptive immunity against fungi. Our findings have implications for designing fungal vaccines and immune-based therapies in immune-compromised patients. Patients with AIDS, cancer or immune suppressive treatments are vulnerable to infection with invasive fungi. We have found that even when helper CD4 T cells are profoundly reduced in a mouse model that mimics this defect in AIDS, other remaining T cells are capable of mounting vaccine immunity against a deadly fungal infection, and they do so by producing the powerful, soluble product, IL-17. It has been widely believed that the activation and instruction of such cells, called Tc17 cells, is governed by another population of immune cells in the body, but we have found here that pathways within these Tc17 cells themselves mediate their activation and ability to produce the IL-17 needed for resistance to infection. We have also identified elements of the circuitry controlling this pathway—elements called MyD88, Akt1 and mTOR—and found that they control the production of IL-17 and not other products such as IFN-γ often produced by these cells. Further, we determined that this circuitry controls the development of Tc17 cells by regulating their ability to divide and expand. Thus, in a mouse model of vaccination against lethal fungal pneumonia caused by Blastomyces dermatitidis, we uncovered an important cellular arsenal that can be recruited to bolster resistance against a fungal infection, and identified novel ways in which the cells develop and expand into potent killers of fungi.
Collapse
|
32
|
Effects of artesunate against Trypanosma cruzi. Exp Parasitol 2015; 156:26-31. [PMID: 26024969 DOI: 10.1016/j.exppara.2015.05.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 04/21/2015] [Accepted: 05/21/2015] [Indexed: 12/16/2022]
Abstract
Therapy against Trypanosma cruzi relies on only two chemically related nitro-derivative drugs, benznidazole and nifurtimox, both limited by poor efficacy and toxicity. It is suspected that with prolonged usage of these drugs, resistant parasites will be selected, which results in risk for treatment failure over the time. Herein, we studied the in vitro activity of artesunate, the most effective drug to treat severe P. falciparum and chloroquine-resistant P. vivax, on three strains of T. cruzi originated in different regions of Latin America (Argentina, Nicaragua and Brazil). The results of these assays showed that artesunate inhibits multiplication of epimastigotes (IC50 = 50, 6.10 and 23 µM, respectively) and intracellular amastigotes (IC50 = 15, 0.12 and 6.90 µM, respectively), indicating that it represents a potent anti-T. cruzi compound in terms of inhibiting parasite multiplication in vitro. We then tested the effect of artesunate in Balb/c mice infected with Brazil strain and found that it failed to cure the infection, suggesting that the drug may be unsuitable for in vivo treatment. When infected mice were treated with high doses AS + BZ, the outcome of infection was similar to that observed in mice treated with BZ alone. Nevertheless, understanding of structure-activity relationship of artesunate might lead to the development of new and effective drugs against T. cruzi.
Collapse
|
33
|
Pineda MA, Cuervo H, Fresno M, Soto M, Bonay P. Lack of Galectin-3 Prevents Cardiac Fibrosis and Effective Immune Responses in a Murine Model ofTrypanosoma cruziInfection. J Infect Dis 2015; 212:1160-71. [DOI: 10.1093/infdis/jiv185] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 03/16/2015] [Indexed: 11/14/2022] Open
|
34
|
Dey N, Sinha M, Gupta S, Gonzalez MN, Fang R, Endsley JJ, Luxon BA, Garg NJ. Caspase-1/ASC inflammasome-mediated activation of IL-1β-ROS-NF-κB pathway for control of Trypanosoma cruzi replication and survival is dispensable in NLRP3-/- macrophages. PLoS One 2014; 9:e111539. [PMID: 25372293 PMCID: PMC4221042 DOI: 10.1371/journal.pone.0111539] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 09/27/2014] [Indexed: 12/15/2022] Open
Abstract
In this study, we have utilized wild-type (WT), ASC-/-, and NLRP3-/- macrophages and inhibition approaches to investigate the mechanisms of inflammasome activation and their role in Trypanosoma cruzi infection. We also probed human macrophages and analyzed published microarray datasets from human fibroblasts, and endothelial and smooth muscle cells for T. cruzi-induced changes in the expression genes included in the RT Profiler Human Inflammasome arrays. T. cruzi infection elicited a subdued and delayed activation of inflammasome-related gene expression and IL-1β production in mφs in comparison to LPS-treated controls. When WT and ASC-/- macrophages were treated with inhibitors of caspase-1, IL-1β, or NADPH oxidase, we found that IL-1β production by caspase-1/ASC inflammasome required reactive oxygen species (ROS) as a secondary signal. Moreover, IL-1β regulated NF-κB signaling of inflammatory cytokine gene expression and, subsequently, intracellular parasite replication in macrophages. NLRP3-/- macrophages, despite an inability to elicit IL-1β activation and inflammatory cytokine gene expression, exhibited a 4-fold decline in intracellular parasites in comparison to that noted in matched WT controls. NLRP3-/- macrophages were not refractory to T. cruzi, and instead exhibited a very high basal level of ROS (>100-fold higher than WT controls) that was maintained after infection in an IL-1β-independent manner and contributed to efficient parasite killing. We conclude that caspase-1/ASC inflammasomes play a significant role in the activation of IL-1β/ROS and NF-κB signaling of cytokine gene expression for T. cruzi control in human and mouse macrophages. However, NLRP3-mediated IL-1β/NFκB activation is dispensable and compensated for by ROS-mediated control of T. cruzi replication and survival in macrophages.
Collapse
Affiliation(s)
- Nilay Dey
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, Texas, United States of America
- * E-mail: (ND); (NJG)
| | - Mala Sinha
- Department of BioChemistry & Molecular Biology, UTMB, Galveston, Texas, United States of America
| | - Shivali Gupta
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, Texas, United States of America
| | - Mariela Natacha Gonzalez
- Instituto Nacional de Parasitología “Dr. Mario Fatala Chaben”, Ciudad Autónoma de Buenos Aires, Argentina
| | - Rong Fang
- Department of Pathology, UTMB, Galveston, Texas, United States of America
| | - Janice J. Endsley
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, Texas, United States of America
| | - Bruce A. Luxon
- Department of BioChemistry & Molecular Biology, UTMB, Galveston, Texas, United States of America
| | - Nisha Jain Garg
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, Texas, United States of America
- Department of Pathology, UTMB, Galveston, Texas, United States of America
- Faculty of the Institute for Human Infections and Immunity and the Center for Tropical Diseases, UTMB, Galveston, Texas, United States of America
- * E-mail: (ND); (NJG)
| |
Collapse
|
35
|
Immunomodulation by Trypanosoma cruzi: toward understanding the association of dendritic cells with infecting TcI and TcII populations. J Immunol Res 2014; 2014:962047. [PMID: 25371910 PMCID: PMC4211313 DOI: 10.1155/2014/962047] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 08/12/2014] [Accepted: 09/09/2014] [Indexed: 12/12/2022] Open
Abstract
Dendritic cells (DCs) are major immune components, and depending on how these cells are modulated, the protective host immune response changes drastically. Trypanosoma cruzi is a parasite with high genetic variability and modulates DCs by interfering with their capacity for antigen recognition, migration, and maturation. Despite recent efforts, the association between DCs and T. cruzi I (TcI) and TcII populations is unknown. Herein, it was demonstrated that AQ1.7 and MUTUM TcI strains present low rates of invasion of bone marrow-derived DCs, whereas the 1849 and 2369 TcII strains present higher rates. Whereas the four strains similarly induced the expression of PD-L1, the production and expression of IL-10 and TLR-2, respectively, in DCs were differentially increased. The production of TNF-α, IL-12, IL-6, and CCL2 and the expression of CD40, CD80, MHC-II, CCR5, and CCR7 changed depending on the strain. The 2369 strain yielded the most remarkable results because greater invasion correlated with an increase in the levels of anti-inflammatory molecules IL-10 and PD-L1 but not with a change in the levels of TNF-α, MHC-II, or CD40 molecules. These results suggest that T. cruzi strains belonging to different populations have evolved specific evasion strategies that subvert DCs and consequently the host response.
Collapse
|
36
|
Morandini AC, Ramos-Junior ES, Potempa J, Nguyen KA, Oliveira AC, Bellio M, Ojcius DM, Scharfstein J, Coutinho-Silva R. Porphyromonas gingivalis fimbriae dampen P2X7-dependent interleukin-1β secretion. J Innate Immun 2014; 6:831-45. [PMID: 24925032 DOI: 10.1159/000363338] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Accepted: 05/01/2014] [Indexed: 01/10/2023] Open
Abstract
Porphyromonas gingivalis is a major contributor to the pathogenesis of periodontitis, an infection-driven inflammatory disease that leads to bone destruction. This pathogen stimulates pro-interleukin (IL)-1β synthesis but not mature IL-1β secretion, unless the P2X7 receptor is activated by extracellular ATP (eATP). Here, we investigated the role of P. gingivalis fimbriae in eATP-induced IL-1β release. Bone marrow-derived macrophages (BMDMs) from wild-type (WT) or P2X7-deficient mice were infected with P. gingivalis (381) or isogenic fimbria-deficient (DPG3) strain with or without subsequent eATP stimulation. DPG3 induced higher IL-1β secretion after eATP stimulation compared to 381 in WT BMDMs, but not in P2X7-deficient cells. This mechanism was dependent on K(+) efflux and Ca(2+)-independent phospholipase A2 activity. Accordingly, non-fimbriated P. gingivalis failed to inhibit apoptosis via the eATP/P2X7 pathway. Furthermore, P. gingivalis-driven stimulation of IL-1β was Toll-like receptor 2 and MyD88 dependent, and not associated with fimbria expression. Fimbria-dependent down-modulation of IL-1β was selective, as levels of other cytokines remained unaffected by P2X7 deficiency. Confocal microscopy demonstrated the presence of discrete P2X7 expression in the absence of P. gingivalis stimulation, which was enhanced by 381-stimulated cells. Notably, DPG3-infected macrophages revealed a distinct pattern of P2X7 receptor expression with a marked focus formation. Collectively, these data demonstrate that eATP-induced IL-1β secretion is impaired by P. gingivalis fimbriae in a P2X7-dependent manner.
Collapse
Affiliation(s)
- Ana Carolina Morandini
- Programa de Imunobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Kurup SP, Tarleton RL. Perpetual expression of PAMPs necessary for optimal immune control and clearance of a persistent pathogen. Nat Commun 2014; 4:2616. [PMID: 24149620 PMCID: PMC4161029 DOI: 10.1038/ncomms3616] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 09/16/2013] [Indexed: 11/09/2022] Open
Abstract
Pathogen-associated molecular patterns (PAMPs) are known to be fundamental in instigating immune responses, but their role in influencing these responses beyond their initiation is less well understood. Here, using the protozoan parasite Trypanosoma cruzi, which is deficient in strong PAMPs, we demonstrate a requirement for the continuous expression of PAMPs for optimal anti-pathogen immunity. Although co-inoculating with, temporary anchoring of and transgenic expression of exogenous PAMPs all result in enhanced early adaptive immune responses, only the continuous expression of bacterial PAMPs on transgenic T. cruzi sustains these responses, resulting in enhanced pathogen clearance. These findings demonstrate that PAMPs function to potentiate adaptive immune responses well beyond their initiation and may determine the efficiency of control of pathogens capable of long-term persistence.
Collapse
Affiliation(s)
- Samarchith P Kurup
- Department of Cellular Biology and Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia 30602, USA
| | | |
Collapse
|
38
|
Prolo C, Alvarez MN, Radi R. Peroxynitrite, a potent macrophage-derived oxidizing cytotoxin to combat invading pathogens. Biofactors 2014; 40:215-25. [PMID: 24281946 PMCID: PMC3997626 DOI: 10.1002/biof.1150] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 10/10/2013] [Accepted: 10/13/2013] [Indexed: 12/19/2022]
Abstract
Macrophages are among the first cellular actors facing the invasion of microorganisms. These cells are able to internalize pathogens and destroy them by means of toxic mediators, many of which are produced enzymatically and have strong oxidizing capacity. Indeed, macrophages count on the NADPH oxidase complex activity, which is triggered during pathogen invasion and leads to the production of superoxide radical inside the phagosome. At the same time, the induction of nitric oxide synthase results in the production of nitric oxide in the cytosol which is able to readily diffuse to the phagocytic vacuole. Superoxide radical and nitric oxide react at diffusion controlled rates with each other inside the phagosome to yield peroxynitrite, a powerful oxidant capable to kill micro-organisms. Peroxynitrite toxicity resides on oxidations and nitrations of biomolecules in the target cell. The central role of peroxynitrite as a key effector molecule in the control of infections has been proven in a wide number of models. However, some microorganisms and virulent strains adapt to survive inside the potentially hostile oxidizing microenvironment of the phagosome by either impeding peroxynitrite formation or rapidly detoxifying it once formed. In this context, the outcome of the infection process is a result of the interplay between the macrophage-derived oxidizing cytotoxins such as peroxynitrite and the antioxidant defense machinery of the invading pathogens.
Collapse
Affiliation(s)
- Carolina Prolo
- Center for Free Radical and Biomedical Research, Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | | | | |
Collapse
|
39
|
Ghosh D, Stumhofer JS. Do you see what I see: Recognition of protozoan parasites by Toll-like receptors. ACTA ACUST UNITED AC 2014; 9:129-140. [PMID: 25383072 DOI: 10.2174/1573395509666131203225929] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Toll-like receptors (TLRs) are important for recognizing a variety of pathogens, including protozoan parasites, and initiating innate immune responses against them. TLRs are localized on the cell surface as well as in the endosome, and are implicated in innate sensing of these parasites. In this review, we will discuss recent findings on the identification of parasite-derived pathogen associated molecular patterns and the TLRs that bind them. The role of these TLRs in initiating the immune response against protozoan parasitic infections in vivo will be presented in the context of murine models of infection utilizing TLR-deficient mice. Additionally, we will explore evidence that TLRs and genetic variants of TLRs may impact the outcome of these parasitic infections in humans.
Collapse
Affiliation(s)
- Debopam Ghosh
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205
| | - Jason S Stumhofer
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205
| |
Collapse
|
40
|
Zhang L, Chen Y, Wang L, Chen XP, Zhang WG, Wang CY, Wu HS. Chloroquine relieves acute lung injury in rats with acute hemorrhagic necrotizing pancreatitis. ACTA ACUST UNITED AC 2013; 33:357-360. [PMID: 23771660 PMCID: PMC7101714 DOI: 10.1007/s11596-013-1124-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Indexed: 12/15/2022]
Abstract
This study preliminarily investigated the mechanism by which chloroquine (CQ) relieves acute lung injury (ALI) complicated in acute hemorrhagic necrotizing pancreatitis (AHNP). Sixty male Wistar rats were randomized into sham-operated group (group A, n=10), AHNP group (group B, n=10), L-arginine-treated group (group C, n=10), L-N-nitro-L-arginine methyl ester (NAME)-treated group (group D, n=10), CQ-treated group (group E, n=10) and CQ+L-NAME-treated group (group F, n=10). TLR4 expression was measured by using real time-PCR and Western blotting respectively. The results showed that, in the group B, the expression of TLR4 and the levels of TNF-α and IL-6 in the lungs were significantly increased, and the nitric oxide (NO) concentration was reduced, as compared with those in the group A (P<0.05 or P<0.01). Lung injury was aggravated with the increased expression of TLR4. When the inhibitor and stimulator of TLR4, namely L-Arg and L-NAME, were added respectively, lung injury was correspondingly relieved or aggravated (P<0.05 or P<0.01). In the group E, TLR4 expression was substantially lower and NO concentration higher than those in the group B (P<0.05 or P<0.01). However, in the group F, NO concentration was markedly decreased, and the inhibitory effect of CQ on TLR4 expression and the relief of lung injury were weakened when compared with those in the group E (P<0.05 or P<0.01). It was concluded that TLR4 may play an important role in the pathogenesis and development of ALI complicated in AHNP. CQ could relieve ALI by decreasing the TLR4 expression and increasing the NO release.
Collapse
Affiliation(s)
- Lei Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yan Chen
- Department of Pediatrics, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lin Wang
- Department of Pediatrics, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiao-Ping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Wan-Guang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chun-You Wang
- Center of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - He-Shui Wu
- Center of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
41
|
Iori V, Maroso M, Rizzi M, Iyer AM, Vertemara R, Carli M, Agresti A, Antonelli A, Bianchi ME, Aronica E, Ravizza T, Vezzani A. Receptor for Advanced Glycation Endproducts is upregulated in temporal lobe epilepsy and contributes to experimental seizures. Neurobiol Dis 2013; 58:102-14. [PMID: 23523633 DOI: 10.1016/j.nbd.2013.03.006] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 03/05/2013] [Accepted: 03/13/2013] [Indexed: 01/07/2023] Open
Abstract
Toll-like receptor 4 (TLR4) activation in neuron and astrocytes by High Mobility Group Box 1 (HMGB1) protein is a key mechanism of seizure generation. HMGB1 also activates the Receptor for Advanced Glycation Endproducts (RAGE), but it was unknown whether RAGE activation contributes to seizures or to HMGB1 proictogenic effects. We found that acute EEG seizures induced by 7ng intrahippocampal kainic acid (KA) were significantly reduced in Rage-/- mice relative to wild type (Wt) mice. The proictogenic effect of HMGB1 was decreased in Rage-/- mice, but less so, than in Tlr4-/- mice. In a mouse mesial temporal lobe epilepsy (mTLE) model, status epilepticus induced by 200ng intrahippocampal KA and the onset of the spontaneous epileptic activity were similar in Rage-/-, Tlr4-/- and Wt mice. However, the number of hippocampal paroxysmal episodes and their duration were both decreased in epileptic Rage-/- and Tlr4-/- mice vs Wt mice. All strains of epileptic mice displayed similar cognitive deficits in the novel object recognition test vs the corresponding control mice. CA1 neuronal cell loss was increased in epileptic Rage-/- vs epileptic Wt mice, while granule cell dispersion and doublecortin (DCX)-positive neurons were similarly affected. Notably, DCX neurons were preserved in epileptic Tlr4-/- mice. We did not find compensatory changes in HMGB1-related inflammatory signaling nor in glutamate receptor subunits in Rage-/- and Tlr4-/- naïve mice, except for ~20% NR2B subunit reduction in Rage-/- mice. RAGE was induced in neurons, astrocytes and microvessels in human and experimental mTLE hippocampi. We conclude that RAGE contributes to hyperexcitability underlying acute and chronic seizures, as well as to the proictogenic effects of HMGB1. RAGE and TLR4 play different roles in the neuropathologic sequelae developing after status epilepticus. These findings reveal new molecular mechanisms underlying seizures, cell loss and neurogenesis which involve inflammatory pathways upregulated in human epilepsy.
Collapse
Affiliation(s)
- Valentina Iori
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Scharfstein J, Andrade D, Svensjö E, Oliveira AC, Nascimento CR. The kallikrein-kinin system in experimental Chagas disease: a paradigm to investigate the impact of inflammatory edema on GPCR-mediated pathways of host cell invasion by Trypanosoma cruzi. Front Immunol 2013; 3:396. [PMID: 23355836 PMCID: PMC3555122 DOI: 10.3389/fimmu.2012.00396] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Accepted: 12/07/2012] [Indexed: 12/12/2022] Open
Abstract
Chronic chagasic myocarditis (CCM) depends on Trypanosoma cruzi persistence in the myocardium. Studies of the proteolytic mechanisms governing host/parasite balance in peripheral sites of T. cruzi infection revealed that tissue culture trypomastigotes (TCTs) elicit inflammatory edema and stimulate protective type-1 effector T cells through the activation of the kallikrein-kinin system. Molecular studies linked the proinflammatory phenotype of Dm28c TCTs to the synergistic activities of tGPI, a lipid anchor that functions as a Toll-like receptor 2 (TLR2) ligand, and cruzipain, a kinin-releasing cysteine protease. Analysis of the dynamics of inflammation revealed that TCTs activate innate sentinel cells via TLR2, releasing CXC chemokines, which in turn evoke neutrophil/CXCR2-dependent extravasation of plasma proteins, including high molecular weight kininogen (HK), in parasite-laden tissues. Further downstream, TCTs process surface bound HK, liberating lysyl-BK (LBK), which then propagates inflammatory edema via signaling of endothelial G-protein-coupled bradykinin B2 receptors (BK2R). Dm28 TCTs take advantage of the transient availability of infection-promoting peptides (e.g., bradykinin and endothelins) in inflamed tissues to invade cardiovascular cells via interdependent signaling of BKRs and endothelin receptors (ETRs). Herein we present a space-filling model whereby ceramide-enriched endocytic vesicles generated by the sphingomyelinase pathway might incorporate BK2R and ETRs, which then trigger Ca2+-driven responses that optimize the housekeeping mechanism of plasma membrane repair from cell wounding. The hypothesis predicts that the NF-κB-inducible BKR (BK1R) may integrate the multimolecular signaling platforms forged by ceramide rafts, as the chronic myocarditis progresses. Exploited as gateways for parasite invasion, BK2R, BK1R, ETAR, ETBR, and other G protein-coupled receptor partners may enable persistent myocardial parasitism in the edematous tissues at expense of adverse cardiac remodeling.
Collapse
Affiliation(s)
- Julio Scharfstein
- Laboratório de Imunologia Molecular, Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| | | | | | | | | |
Collapse
|
43
|
Congenital and oral transmission of American trypanosomiasis: an overview of physiopathogenic aspects. Parasitology 2012; 140:147-59. [PMID: 23010131 DOI: 10.1017/s0031182012001394] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chagas disease or American trypanosomiasis is a pathology affecting about 8-11 million people in Mexico, Central America, and South America, more than 300 000 persons in the United States as well as an indeterminate number of people in other non-endemic countries such as USA, Spain, Canada and Switzerland. The aetiological agent is Trypanosoma cruzi, a protozoan transmitted by multiple routes; among them, congenital route emerges as one of the most important mechanisms of spreading Chagas disease worldwide even in non-endemic countries and the oral route as the responsible of multiple outbreaks of acute Chagas disease in regions where the vectorial route has been interrupted. The aim of this review is to illustrate the recent research and advances in host-pathogen interaction making a model of how the virulence factors of the parasite would interact with the physiology and immune system components of the placental barrier and gastrointestinal tract in order to establish a response against T. cruzi infection. This review also presents the epidemiological, clinical and diagnostic features of congenital and oral Chagas disease in order to update the reader about the emerging scenarios of Chagas disease transmission.
Collapse
|
44
|
Vasconcelos JR, Bruña–Romero O, Araújo AF, Dominguez MR, Ersching J, de Alencar BCG, Machado AV, Gazzinelli RT, Bortoluci KR, Amarante-Mendes GP, Lopes MF, Rodrigues MM. Pathogen-induced proapoptotic phenotype and high CD95 (Fas) expression accompany a suboptimal CD8+ T-cell response: reversal by adenoviral vaccine. PLoS Pathog 2012; 8:e1002699. [PMID: 22615561 PMCID: PMC3355083 DOI: 10.1371/journal.ppat.1002699] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2011] [Accepted: 03/29/2012] [Indexed: 12/03/2022] Open
Abstract
MHC class Ia-restricted CD8+ T cells are important mediators of the adaptive immune response against infections caused by intracellular microorganisms. Whereas antigen-specific effector CD8+ T cells can clear infection caused by intracellular pathogens, in some circumstances, the immune response is suboptimal and the microorganisms survive, causing host death or chronic infection. Here, we explored the cellular and molecular mechanisms that could explain why CD8+ T cell-mediated immunity during infection with the human protozoan parasite Trypanosoma cruzi is not optimal. For that purpose, we compared the CD8+ T-cell mediated immune responses in mice infected with T. cruzi or vaccinated with a recombinant adenovirus expressing an immunodominant parasite antigen. Several functional and phenotypic characteristics of specific CD8+ T cells overlapped. Among few exceptions was an accelerated expansion of the immune response in adenoviral vaccinated mice when compared to infected ones. Also, there was an upregulated expression of the apoptotic-signaling receptor CD95 on the surface of specific T cells from infected mice, which was not observed in the case of adenoviral-vaccinated mice. Most importantly, adenoviral vaccine provided at the time of infection significantly reduced the upregulation of CD95 expression and the proapoptotic phenotype of pathogen-specific CD8+ cells expanded during infection. In parallel, infected adenovirus-vaccinated mice had a stronger CD8 T-cell mediated immune response and survived an otherwise lethal infection. We concluded that a suboptimal CD8+ T-cell response is associated with an upregulation of CD95 expression and a proapoptotic phenotype. Both can be blocked by adenoviral vaccination. Killer lymphocytes are important mediators of the immunological resistance against infections caused by virus, bacteria and parasites. In some circumstances, however, these lymphocytes are unable to properly eliminate the microorganisms which survive, causing death or establishing chronic infections. The purpose of our study was to understand why these killer cells do not succeed during infection with a human protozoan parasite. For that purpose, we compared the immune responses in animals infected or vaccinated. Many characteristics of these killer cells were similar. Among few exceptions was an accelerated immune response in vaccinated animals when compared to infected ones. Also, we observed on the surface of the killer lymphocytes from infected, but not from vaccinated animals, an increased expression of a protein involved in signaling cell death. Most importantly, vaccine significantly reduced the higher expression of this cell-death receptor. In parallel, these animals had a stronger immune response and cured infection. We concluded that a deficient killer cell response observed during infection was associated with an upregulation of this cell-death receptor and it was changed by vaccination.
Collapse
Affiliation(s)
- José Ronnie Vasconcelos
- Centro de Terapia Celular e Molecular (CTCMol), Universidade Federal de São Paulo-Escola Paulista de Medicina, São Paulo, São Paulo, Brazil
- Departmento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo-Escola Paulista de Medicina, São Paulo, São Paulo, Brazil
| | - Oscar Bruña–Romero
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Adriano F. Araújo
- Centro de Terapia Celular e Molecular (CTCMol), Universidade Federal de São Paulo-Escola Paulista de Medicina, São Paulo, São Paulo, Brazil
- Departmento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo-Escola Paulista de Medicina, São Paulo, São Paulo, Brazil
| | - Mariana R. Dominguez
- Centro de Terapia Celular e Molecular (CTCMol), Universidade Federal de São Paulo-Escola Paulista de Medicina, São Paulo, São Paulo, Brazil
- Departmento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo-Escola Paulista de Medicina, São Paulo, São Paulo, Brazil
| | - Jonatan Ersching
- Centro de Terapia Celular e Molecular (CTCMol), Universidade Federal de São Paulo-Escola Paulista de Medicina, São Paulo, São Paulo, Brazil
- Departmento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo-Escola Paulista de Medicina, São Paulo, São Paulo, Brazil
| | - Bruna C. G. de Alencar
- Centro de Terapia Celular e Molecular (CTCMol), Universidade Federal de São Paulo-Escola Paulista de Medicina, São Paulo, São Paulo, Brazil
- Departmento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo-Escola Paulista de Medicina, São Paulo, São Paulo, Brazil
| | | | - Ricardo T. Gazzinelli
- Centro de Pesquisas René Rachou, FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Pampulha, Belo Horizonte, Minas Gerais, Brazil
- Division of Infectious Disease and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Karina R. Bortoluci
- Centro de Terapia Celular e Molecular (CTCMol), Universidade Federal de São Paulo-Escola Paulista de Medicina, São Paulo, São Paulo, Brazil
- Departamento de Ciências Biológicas, Universidade Federal de São Paulo-Escola Paulista de Medicina, Diadema, São Paulo, Brazil
| | - Gustavo P. Amarante-Mendes
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Marcela F. Lopes
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mauricio M. Rodrigues
- Centro de Terapia Celular e Molecular (CTCMol), Universidade Federal de São Paulo-Escola Paulista de Medicina, São Paulo, São Paulo, Brazil
- Departmento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo-Escola Paulista de Medicina, São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
45
|
de Koning HD, Simon A, Zeeuwen PLJM, Schalkwijk J. Pattern recognition receptors in infectious skin diseases. Microbes Infect 2012; 14:881-93. [PMID: 22516809 DOI: 10.1016/j.micinf.2012.03.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 03/15/2012] [Accepted: 03/16/2012] [Indexed: 12/27/2022]
Abstract
During the last decade, multiple pattern recognition receptors (PRRs) have been identified. These are involved in the innate immune response against a plethora of pathogens. However, PRR functioning can also be detrimental, even during infections. This review discusses the current knowledge on PRRs that recognize dermatotropic pathogens, and potential therapeutical implications.
Collapse
Affiliation(s)
- Heleen D de Koning
- Department of Dermatology, Radboud University Nijmegen Medical Centre, PO Box 9101, 6500 HB, The Netherlands.
| | | | | | | |
Collapse
|
46
|
Dominguez MR, Ersching J, Lemos R, Machado AV, Bruna-Romero O, Rodrigues MM, de Vasconcelos JRC. Re-circulation of lymphocytes mediated by sphingosine-1-phosphate receptor-1 contributes to resistance against experimental infection with the protozoan parasite Trypanosoma cruzi. Vaccine 2012; 30:2882-91. [PMID: 22381075 DOI: 10.1016/j.vaccine.2012.02.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 01/26/2012] [Accepted: 02/15/2012] [Indexed: 12/23/2022]
Abstract
T-cell mediated immune responses are critical for acquired immunity against infection by the intracellular protozoan parasite Trypanosoma cruzi. Despite its importance, it is currently unknown where protective T cells are primed and whether they need to re-circulate in order to exert their anti-parasitic effector functions. Here, we show that after subcutaneous challenge, CD11c(+)-dependent specific CD8(+) T-cell immune response to immunodominant parasite epitopes arises almost simultaneously in the draining lymph node (LN) and the spleen. However, until day 10 after infection, we observed a clear upregulation of activation markers only on the surface of CD11C(+)PDCA1(+) cells present in the LN and not in the spleen. Therefore, we hypothesized that CD8(+) T cells re-circulated rapidly from the LN to the spleen. We investigated this phenomenon by administering FTY720 to T. cruzi-infected mice to prevent egress of T cells from the LN by interfering specifically with signalling through sphingosine-1-phosphate receptor-1. In T. cruzi-infected mice receiving FTY720, CD8 T-cell immune responses were higher in the draining LN and significantly reduced in their spleen. Most importantly, FTY720 increased susceptibility to infection, as indicated by elevated parasitemia and accelerated mortality. Similarly, administration of FTY720 to mice genetically vaccinated with an immunodominant parasite antigen significantly reduced their protective immunity, as observed by the parasitemia and survival of vaccinated mice. We concluded that re-circulation of lymphocytes mediated by sphingosine-1-phosphate receptor-1 greatly contributes to acquired and vaccine-induced protective immunity against experimental infection with a human protozoan parasite.
Collapse
Affiliation(s)
- Mariana R Dominguez
- Centro de Terapia Celular e Molecular, Universidade Federal de São Paulo-Escola Paulista de Medicina, Brazil
| | | | | | | | | | | | | |
Collapse
|
47
|
Rodrigues MM, Oliveira AC, Bellio M. The Immune Response to Trypanosoma cruzi: Role of Toll-Like Receptors and Perspectives for Vaccine Development. J Parasitol Res 2012; 2012:507874. [PMID: 22496959 PMCID: PMC3306967 DOI: 10.1155/2012/507874] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 10/31/2011] [Indexed: 02/06/2023] Open
Abstract
In the past ten years, studies have shown the recognition of Trypanosoma cruzi-associated molecular patterns by members of the Toll-like receptor (TLR) family and demonstrated the crucial participation of different TLRs during the experimental infection with this parasite. In the present review, we will focus on the role of TLR-activated pathways in the modulation of both innate and acquired immune responses to T. cruzi infection, as well as discuss the state of the art of vaccine research and development against the causative agent of Chagas disease (or American trypanosomiasis).
Collapse
Affiliation(s)
- Mauricio M. Rodrigues
- Centro de Terapia Celular e Molecular (CTCMol), Universidade Federal de São Paulo (UNIFESP), 04044-010 São Paulo, SP, Brazil
| | - Ana Carolina Oliveira
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), 21941-902 Rio de Janeiro, RJ, Brazil
| | - Maria Bellio
- Instituto de Microbiologia Paulo de Góes, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro (UFRJ), CCS, Avenida Carlos Chagas Filho, 373 Bloco D, sala 35, Cidade Universitária, 21941-902 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
48
|
Differential outcome of infection with attenuated Salmonella in MyD88-deficient mice is dependent on the route of administration. Immunobiology 2012; 218:52-63. [PMID: 22386951 DOI: 10.1016/j.imbio.2012.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 02/01/2012] [Indexed: 12/23/2022]
Abstract
Activation of the innate immune system is a prerequisite for the induction of adaptive immunity to both infectious and non-infectious agents. TLRs are key components of the innate immune recognition system and detect pathogen-associated molecular patterns. Most TLRs utilize the MyD88 adaptor for their signaling pathways. In the current study, we investigated innate and adaptive immune responses to primary as well as secondary Salmonella infections in MyD88-deficient (MyD88(-/-)) mice. Using i.p. or oral route of inoculation, we demonstrate that MyD88(-/-) mice are hypersusceptible to infection by an attenuated, double auxotrophic, mutant of Salmonella enterica serovar Typhimurium (S. typhimurium). This is manifested by 2-3 logs higher bacterial loads in target organs, delayed recruitment of phagocytic cells, and defective production of proinflammatory cytokines in MyD88(-/-) mice. Despite these deficiencies, MyD88(-/-) mice developed Salmonella-specific memory Th1 responses and produced elevated serum levels of anti-Salmonella Abs, not only of Th1-driven (IgG2c, IgG3) but also IgG1 and IgG2b isotypes. Curiously, these adaptive responses were insufficient to afford full protection against a secondary challenge with a virulent strain of S. typhimurium. In comparison with the high degree of mortality seen in MyD88(-/-) mice following i.p. inoculation, oral infections led to the establishment of a state of long-term persistence, characterized by continuous bacterial shedding in animal feces that lasted for more than 6 months, but absence from systemic organs. These findings suggest that the absent expression of MyD88 affects primarily the innate effector arm of the immune system and highlights its critical role in anti-bacterial defense.
Collapse
|
49
|
Scharfstein J, Andrade D. Infection-associated vasculopathy in experimental chagas disease pathogenic roles of endothelin and kinin pathways. ADVANCES IN PARASITOLOGY 2011; 76:101-27. [PMID: 21884889 DOI: 10.1016/b978-0-12-385895-5.00005-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Acting at the interface between microcirculation and immunity, Trypanosoma cruzi induces modifications in peripheral tissues which translate into mutual benefits to host/parasite balance. In this chapter, we will review evidence linking infection-associated vasculopathy to the proinflammatory activity of a small subset of T. cruzi molecules, namely GPI-linked mucins, cysteine proteases (cruzipain), surface glycoproteins of the trans-sialidase family and/or parasite-derived eicosanoids (thromboxane A(2)). Initial insight into pathogenesis came from research in animal models showing that myocardial fibrosis is worsened as result of endothelin upregulation by infected cardiovascular cells. Paralleling these studies, the kinin system emerged as a proteolytic mechanism that links oedematogenic inflammation to immunity. Analyses of the dynamics of inflammation revealed that tissue culture trypomastigotes elicit interstitial oedema in peripheral sites of infection through synergistic activation of toll-like 2 receptors (TLR2) and G-protein-coupled bradykinin receptors, respectively, engaged by tGPI (TLR2 ligand) and kinin peptides (bradykinin B2 receptors (BK(2)R) ligands) proteolytically generated by cruzipain. Further downstream, kinins stimulate lymph node dendritic cells via G-protein-coupled BK(2)R, thus converting these specialized antigen-presenting cells into T(H)1 inducers. Tightly regulated by angiotensin-converting enzyme, the intact kinins (BK(2)R agonists) may be processed by carboxypeptidase M/N, generating [des-Arg]-kinins, which activates BK(1)R, a subtype of GPCR that is upregulated by cardiovascular cells during inflammation. Ongoing studies may clarify if discrepancies between proinflammatory phenotypes of T. cruzi strains may be ascribed, at least in part, to variable expression of TLR2 ligands and cruzipain isoforms.
Collapse
Affiliation(s)
- Julio Scharfstein
- Instituto de Biofı´sica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, CCS, Laborato´ rio deImunologia Molecular, Cidade Universita´ ria Rio de Janeiro, Brazil
| | | |
Collapse
|
50
|
Pellegrini A, Guiñazu N, Giordanengo L, Cano RC, Gea S. The role of Toll-like receptors and adaptive immunity in the development of protective or pathological immune response triggered by the Trypanosoma cruzi protozoan. Future Microbiol 2011; 6:1521-33. [DOI: 10.2217/fmb.11.122] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Trypanosoma cruzi, the causal agent of Chagas disease, is an intracellular protozoan parasite that predominantly invades macrophages and cardiomyocytes, leading to persistent infection. Several members of the Toll-like receptor family are crucial for innate immunity to infection and are involved in maintaining tissue homeostasis. This review focuses on recent experimental findings of the innate and adaptive immune response in controlling the parasite and/or in generating heart and liver tissue injury. We also describe the importance of the host’s genetic background in the outcome of the disease and emphasize the importance of studying the response to specific parasite antigens. Understanding the dual participation of the immune response may contribute to the design of new therapies for Chagas disease.
Collapse
Affiliation(s)
- Andrea Pellegrini
- Inmunología, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, CIBICI-CONICET, Universidad Nacional de Córdoba, Ciudad Universitaria, Haya de la Torre y Medina Allende S/N, Córdoba, 5000, Argentina
| | - Natalia Guiñazu
- Inmunología, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, CIBICI-CONICET, Universidad Nacional de Córdoba, Ciudad Universitaria, Haya de la Torre y Medina Allende S/N, Córdoba, 5000, Argentina
| | - Laura Giordanengo
- Inmunología, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, CIBICI-CONICET, Universidad Nacional de Córdoba, Ciudad Universitaria, Haya de la Torre y Medina Allende S/N, Córdoba, 5000, Argentina
| | - Roxana Carolina Cano
- Inmunología, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, CIBICI-CONICET, Universidad Nacional de Córdoba, Ciudad Universitaria, Haya de la Torre y Medina Allende S/N, Córdoba, 5000, Argentina
| | | |
Collapse
|