1
|
An R, Liu F, Dai N, Li F, Liu X, Cai H, Chen L, Du J. Toxoplasma calcium-dependent protein kinases 3 mediates M1 macrophage polarization by targeting host Arginase-1. Parasit Vectors 2025; 18:181. [PMID: 40394721 DOI: 10.1186/s13071-025-06799-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 04/12/2025] [Indexed: 05/22/2025] Open
Abstract
BACKGROUND Toxoplasma gondii, an obligate intracellular parasite, has developed sophisticated ways to manipulate host immunity, resulting in long-lasting infection and causing serious public health problems in humans and animals. T. gondii type II is the type most frequently associated with human diseases, but the mechanism remains unclear. Toxoplasma calcium-dependent protein kinase 3(CDPK3), a protein located on the T. gondii parasite periphery, is highly expressed in type II strains. Although TgCDPK3 regulates parasite egress from host cells, calcium-based infiltration, and development of tissue cysts, the host target proteins that it modulates are still unclear. METHODS Firstly, mass spectrometry was used to analyze proteins that selectively bind to TgCDPK3. Subsequently, GST (glutathione-s-transferase) pull-down, immunoprecipitation, and immunofluorescence assay were used to confirm the interaction and colocalization between TgCDPK3 and Arginase-1. Western blotting and Argininaseactivity assays were performed to detect the relative levels of endogenous Arginase-1 and inducible nitric oxide synthase (iNOS) in a murine microglial cell line. Fluorescence activated cell sorting (FACS) assays and enzyme-linked immunosorbent assay (ELISA) analysis were performed to confirm the association of interaction between TgCDPK3 and Arginase-1 within an M1/M2-polarized macrophage. Intracellular multiplication assays and plaque assays were performed to test whether the interaction between TgCDPK3 and Arginase-1 affected intercellular parasite growth. RESULTS The interaction between TgCDPK3 and Arginase-1 is functionally correlated and leads to a reduction in Arginase-1 activity, ultimately, contributing to the M1-biased phenotype of the host macrophages, which is related to restraining the proliferation of parasites. CONCLUSIONS Our data showed that CDPK3 mediates M1 macrophage polarization by targeting host Arginase-1, which is beneficial to understanding the mechanism for long term latency establishment of less virulent strains of Toxoplasma.
Collapse
Affiliation(s)
- Ran An
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
- The Research Center for Infectious Diseases, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
- The Provincial Key Laboratory of Zoonoses of High Institutions of Anhui, Anhui Medical University, Hefei, 230032, China
| | - Fang Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
- The Research Center for Infectious Diseases, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
- The Provincial Key Laboratory of Zoonoses of High Institutions of Anhui, Anhui Medical University, Hefei, 230032, China
| | - Niuniu Dai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
- The Research Center for Infectious Diseases, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
- The Provincial Key Laboratory of Zoonoses of High Institutions of Anhui, Anhui Medical University, Hefei, 230032, China
| | - Fangmin Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
- The Research Center for Infectious Diseases, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
- The Provincial Key Laboratory of Zoonoses of High Institutions of Anhui, Anhui Medical University, Hefei, 230032, China
| | - Xingyun Liu
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Haijian Cai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
- The Research Center for Infectious Diseases, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
- The Provincial Key Laboratory of Zoonoses of High Institutions of Anhui, Anhui Medical University, Hefei, 230032, China
| | - Lijian Chen
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China.
| | - Jian Du
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
- The Research Center for Infectious Diseases, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
- The Provincial Key Laboratory of Zoonoses of High Institutions of Anhui, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
2
|
Canè S, Geiger R, Bronte V. The roles of arginases and arginine in immunity. Nat Rev Immunol 2025; 25:266-284. [PMID: 39420221 DOI: 10.1038/s41577-024-01098-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2024] [Indexed: 10/19/2024]
Abstract
Arginase activity and arginine metabolism in immune cells have important consequences for health and disease. Their dysregulation is commonly observed in cancer, autoimmune disorders and infectious diseases. Following the initial description of a role for arginase in the dysfunction of T cells mounting an antitumour response, numerous studies have broadened our understanding of the regulation and expression of arginases and their integration with other metabolic pathways. Here, we highlight the differences in arginase compartmentalization and storage between humans and rodents that should be taken into consideration when assessing the effects of arginase activity. We detail the roles of arginases, arginine and its metabolites in immune cells and their effects in the context of cancer, autoimmunity and infectious disease. Finally, we explore potential therapeutic strategies targeting arginases and arginine.
Collapse
Affiliation(s)
- Stefania Canè
- The Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Roger Geiger
- Institute for Research in Biomedicine (IRB), Università della Svizzera italiana, Bellinzona, Switzerland
- Institute of Oncology Research (IOR), Università della Svizzera italiana, Bellinzona, Switzerland
| | | |
Collapse
|
3
|
Markova E, Wolowczyk C, Mohamed A, Sofias AM, Martin-Armas M, Sundset R, Berndtsson J, Hak S, Škalko-Basnet N. Liposomal Nω-hydroxy-l-norarginine, a proof-of-concept: Arginase inhibitors can be incorporated in liposomes while retaining their therapeutic activity ex vivo. Eur J Pharm Sci 2025; 204:106959. [PMID: 39521192 DOI: 10.1016/j.ejps.2024.106959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/02/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Cancer immunotherapy has evolved significantly over the last decade, with therapeutics targeting the adaptive immune system showing exciting effects in clinics. Yet, the modulation of the innate immune system, particularly the tumor-associated innate immune cells which are an integral part of immune responses in cancer, remains less understood. The arginase 1 (Arg1) pathway is a pivotal metabolic pathway that tumor-associated innate immune cells exploit to create an immunosuppressive tumor microenvironment, leading to the evasion of immune surveillance. The inhibition of Arg1 presents a therapeutic opportunity to reverse this immunosuppression, and Nω‑hydroxy-l-norarginine (nor-NOHA) has emerged as a potent arginase inhibitor with promising in vivo efficacy. However, the rapid systemic clearance of nor-NOHA poses a significant challenge for its therapeutic application. This study pioneers the encapsulation of nor-NOHA in liposomes, aiming to enhance its bioavailability and prolong its inhibitory activity against Arg1. Historically, the extensive interaction between innate immune cells and nanoparticles has been one of the biggest drawbacks in nanomedicine. Here we seek to utilize this effect and deliver liposomal nor-NOHA to the arginase 1 expressing innate immune cells. We systematically investigated the effect of lipid composition, acyl chain length, manufacturing and loading methodology on the encapsulation efficiency (EE%) and release profile of nor-NOHA. Our results indicate that while the manufacturing method and lipid acyl chain length do not significantly impact EE%, they crucially influence the release kinetics of nor-NOHA, with longer acyl chains demonstrating a more sustained release of nor-NOHA from liposomes enabling continuous inhibition of Arg1. Our findings suggest that liposomal nor-NOHA retains its functional inhibitory activity and could offer improved pharmacokinetic properties, making it a compelling base for iterations for further innovative cancer immunotherapeutic strategies in preclinical and clinical evaluations.
Collapse
Affiliation(s)
- Elena Markova
- Nuclear Medicine and Radiation Biology Research Group, Department of Clinical Medicine, Faculty of Health Science, UiT The Arctic University of Norway, Tromsø, Norway; PET Imaging Center Tromsø, University Hospital of North Norway (UNN), Tromsø, Norway.
| | - Camilla Wolowczyk
- Department of Biomedical Laboratory Science, Faculty of Natural Sciences & Centre of Molecular Inflammation Research (CEMIR), Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Aly Mohamed
- Drug Transport and Delivery Research Group, Department of Pharmacy, Faculty of Health Science, UiT The Arctic University of Norway, Tromsø, Norway
| | - Alexandros Marios Sofias
- Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Hospital, Aachen, Germany
| | - Montserrat Martin-Armas
- Nuclear Medicine and Radiation Biology Research Group, Department of Clinical Medicine, Faculty of Health Science, UiT The Arctic University of Norway, Tromsø, Norway; PET Imaging Center Tromsø, University Hospital of North Norway (UNN), Tromsø, Norway
| | - Rune Sundset
- Nuclear Medicine and Radiation Biology Research Group, Department of Clinical Medicine, Faculty of Health Science, UiT The Arctic University of Norway, Tromsø, Norway; PET Imaging Center Tromsø, University Hospital of North Norway (UNN), Tromsø, Norway
| | - Jens Berndtsson
- Centre for Cellular Imaging, Core Facility, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Sjoerd Hak
- Department of Biotechnology and Nanomedicine, SINTEF Industry & Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Nataša Škalko-Basnet
- Drug Transport and Delivery Research Group, Department of Pharmacy, Faculty of Health Science, UiT The Arctic University of Norway, Tromsø, Norway.
| |
Collapse
|
4
|
Guo R, Wang R, Zhang W, Li Y, Wang Y, Wang H, Li X, Song J. Macrophage Polarisation in the Tumour Microenvironment: Recent Research Advances and Therapeutic Potential of Different Macrophage Reprogramming. Cancer Control 2025; 32:10732748251316604. [PMID: 39849988 PMCID: PMC11758544 DOI: 10.1177/10732748251316604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/18/2024] [Accepted: 01/06/2025] [Indexed: 01/25/2025] Open
Abstract
BACKGROUND Macrophages are a critical component of the innate immune system, derived from monocytes, with significant roles in anti-inflammatory and anti-tumour activities. In the tumour microenvironment, however, macrophages are often reprogrammed into tumour-associated macrophages (TAMs), which promote tumour growth, metastasis, and therapeutic resistance. PURPOSE To review recent advancements in the understanding of macrophage polarisation and reprogramming, highlighting their role in tumour progression and potential as therapeutic targets. RESEARCH DESIGN This is a review article synthesising findings from recent studies on macrophage polarisation and reprogramming in tumour biology. STUDY SAMPLE Not applicable (review of existing literature). DATA COLLECTION AND/OR ANALYSIS Key studies were identified and summarised to explore mechanisms of macrophage polarisation and reprogramming, focusing on M1/M2 polarisation, metabolic and epigenetic changes, and pathway regulation. RESULTS Macrophage reprogramming in the tumour microenvironment involves complex mechanisms, including phenotypic and functional alterations. These processes are influenced by M1/M2 polarisation, metabolic and epigenetic reprogramming, and various signalling pathways. TAMs play a pivotal role in tumour progression, metastasis, and therapy resistance, making them prime targets for combination therapies. CONCLUSIONS Understanding the mechanisms underlying macrophage polarisation and reprogramming offers promising avenues for developing therapies to counteract tumour progression. Future research should focus on translating these insights into clinical applications for effective cancer treatment.
Collapse
Affiliation(s)
- Rongqi Guo
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Medical School of Nantong University, Nantong, PR China
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, PR China
| | - Rui Wang
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Medical School of Nantong University, Nantong, PR China
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, PR China
| | - Weisong Zhang
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Medical School of Nantong University, Nantong, PR China
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, PR China
| | - Yangyang Li
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Medical School of Nantong University, Nantong, PR China
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, PR China
| | - Yihao Wang
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Medical School of Nantong University, Nantong, PR China
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, PR China
| | - Hao Wang
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Medical School of Nantong University, Nantong, PR China
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, PR China
| | - Xia Li
- Department of General Medicine, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, PR China
| | - Jianxiang Song
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Medical School of Nantong University, Nantong, PR China
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, PR China
| |
Collapse
|
5
|
Marzęta-Assas P, Jacenik D, Zasłona Z. Pathophysiology of Arginases in Cancer and Efforts in Their Pharmacological Inhibition. Int J Mol Sci 2024; 25:9782. [PMID: 39337272 PMCID: PMC11431790 DOI: 10.3390/ijms25189782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Arginases are key enzymes that hydrolyze L-arginine to urea and L-ornithine in the urea cycle. The two arginase isoforms, arginase 1 (ARG1) and arginase 2 (ARG2), regulate the proliferation of cancer cells, migration, and apoptosis; affect immunosuppression; and promote the synthesis of polyamines, leading to the development of cancer. Arginases also compete with nitric oxide synthase (NOS) for L-arginine, and their participation has also been confirmed in cardiovascular diseases, stroke, and inflammation. Due to the fact that arginases play a crucial role in the development of various types of diseases, finding an appropriate candidate to inhibit the activity of these enzymes would be beneficial for the therapy of many human diseases. In this review, based on numerous experimental, preclinical, and clinical studies, we provide a comprehensive overview of the biological and physiological functions of ARG1 and ARG2, their molecular mechanisms of action, and affected metabolic pathways. We summarize the recent clinical trials' advances in targeting arginases and describe potential future drugs.
Collapse
Affiliation(s)
| | - Damian Jacenik
- Molecure S.A., 101 Żwirki i Wigury St., 02-089 Warsaw, Poland
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland
| | | |
Collapse
|
6
|
He Y, Xu H, Liu Y, Kempa S, Vechiatto C, Schmidt R, Yilmaz EY, Heidemann L, Schnorr J, Metzkow S, Schellenberger E, Häckel A, Patzak A, Müller DN, Savic LJ. The Effects of Hypoxia on the Immune-Metabolic Interplay in Liver Cancer. Biomolecules 2024; 14:1024. [PMID: 39199411 PMCID: PMC11352590 DOI: 10.3390/biom14081024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/28/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024] Open
Abstract
M2-like macrophages promote tumor growth and cancer immune evasion. This study used an in vitro model to investigate how hypoxia and tumor metabolism affect macrophage polarization. Liver cancer cells (HepG2 and VX2) and macrophages (THP1) were cultured under hypoxic (0.1% O2) and normoxic (21% O2) conditions with varying glucose levels (2 g/L or 4.5 g/L). Viability assays and extracellular pH (pHe) measurements were conducted over 96 hours. Macrophages were exposed to the tumor-conditioned medium (TCM) from the cancer cells, and polarization was assessed using arginase and nitrite assays. GC-MS-based metabolic profiling quantified TCM meta-bolites and correlated them with M2 polarization. The results showed that pHe in TCMs decreased more under hypoxia than normoxia (p < 0.0001), independent of glucose levels. The arginase assay showed hypoxia significantly induced the M2 polarization of macrophages (control group: p = 0.0120,0.1%VX2-TCM group: p = 0.0149, 0.1%HepG2-TCM group: p < 0.0001, 0.1%VX2-TCMHG group: p = 0.0001, and 0.1%HepG2-TCMHG group: p < 0.0001). TCMs also induced M2 polarization under normoxic conditions, but the strongest M2 polarization occurred when both tumor cells and macrophages were incubated under hypoxia with high glucose levels. Metabolomics revealed that several metabolites, particularly lactate, were correlated with hypoxia and M2 polarization. Under normoxia, elevated 2-amino-butanoic acid (2A-BA) strongly correlated with M2 polarization. These findings suggest that targeting tumor hypoxia could mitigate immune evasion in liver tumors. Lactate drives acidity in hypoxic tumors, while 2A-BA could be a therapeutic target for overcoming immunosuppression in normoxic conditions.
Collapse
Affiliation(s)
- Yubei He
- Department of Radiology, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, 13353 Berlin, Germany; (Y.H.); (H.X.); (Y.L.); (R.S.); (E.Y.Y.); (L.H.); (J.S.); (S.M.); (E.S.); (A.H.)
- Experimental and Clinical Research Center, A Joint Cooperation of Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, 13125 Berlin, Germany;
| | - Han Xu
- Department of Radiology, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, 13353 Berlin, Germany; (Y.H.); (H.X.); (Y.L.); (R.S.); (E.Y.Y.); (L.H.); (J.S.); (S.M.); (E.S.); (A.H.)
| | - Yu Liu
- Department of Radiology, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, 13353 Berlin, Germany; (Y.H.); (H.X.); (Y.L.); (R.S.); (E.Y.Y.); (L.H.); (J.S.); (S.M.); (E.S.); (A.H.)
- Experimental and Clinical Research Center, A Joint Cooperation of Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, 13125 Berlin, Germany;
| | - Stefan Kempa
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 10115 Berlin, Germany; (S.K.); (C.V.)
| | - Carolina Vechiatto
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 10115 Berlin, Germany; (S.K.); (C.V.)
| | - Robin Schmidt
- Department of Radiology, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, 13353 Berlin, Germany; (Y.H.); (H.X.); (Y.L.); (R.S.); (E.Y.Y.); (L.H.); (J.S.); (S.M.); (E.S.); (A.H.)
- Experimental and Clinical Research Center, A Joint Cooperation of Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, 13125 Berlin, Germany;
| | - Emine Yaren Yilmaz
- Department of Radiology, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, 13353 Berlin, Germany; (Y.H.); (H.X.); (Y.L.); (R.S.); (E.Y.Y.); (L.H.); (J.S.); (S.M.); (E.S.); (A.H.)
- Experimental and Clinical Research Center, A Joint Cooperation of Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, 13125 Berlin, Germany;
| | - Luisa Heidemann
- Department of Radiology, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, 13353 Berlin, Germany; (Y.H.); (H.X.); (Y.L.); (R.S.); (E.Y.Y.); (L.H.); (J.S.); (S.M.); (E.S.); (A.H.)
- Experimental and Clinical Research Center, A Joint Cooperation of Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, 13125 Berlin, Germany;
| | - Jörg Schnorr
- Department of Radiology, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, 13353 Berlin, Germany; (Y.H.); (H.X.); (Y.L.); (R.S.); (E.Y.Y.); (L.H.); (J.S.); (S.M.); (E.S.); (A.H.)
| | - Susanne Metzkow
- Department of Radiology, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, 13353 Berlin, Germany; (Y.H.); (H.X.); (Y.L.); (R.S.); (E.Y.Y.); (L.H.); (J.S.); (S.M.); (E.S.); (A.H.)
| | - Eyk Schellenberger
- Department of Radiology, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, 13353 Berlin, Germany; (Y.H.); (H.X.); (Y.L.); (R.S.); (E.Y.Y.); (L.H.); (J.S.); (S.M.); (E.S.); (A.H.)
| | - Akvile Häckel
- Department of Radiology, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, 13353 Berlin, Germany; (Y.H.); (H.X.); (Y.L.); (R.S.); (E.Y.Y.); (L.H.); (J.S.); (S.M.); (E.S.); (A.H.)
| | - Andreas Patzak
- Institute of Translational Physiology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany;
| | - Dominik N. Müller
- Experimental and Clinical Research Center, A Joint Cooperation of Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, 13125 Berlin, Germany;
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 10115 Berlin, Germany; (S.K.); (C.V.)
| | - Lynn Jeanette Savic
- Department of Radiology, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, 13353 Berlin, Germany; (Y.H.); (H.X.); (Y.L.); (R.S.); (E.Y.Y.); (L.H.); (J.S.); (S.M.); (E.S.); (A.H.)
- Experimental and Clinical Research Center, A Joint Cooperation of Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, 13125 Berlin, Germany;
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| |
Collapse
|
7
|
Bernabeu M, Prieto A, Salguero D, Miró L, Cabrera-Rubio R, Collado MC, Hüttener M, Pérez-Bosque A, Juárez A. Infection of mice by the enteroaggregative E. coli strain 042 and two mutant derivatives overexpressing virulence factors: impact on disease markers, gut microbiota and concentration of SCFAs in feces. Sci Rep 2024; 14:16945. [PMID: 39043759 PMCID: PMC11266498 DOI: 10.1038/s41598-024-67731-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/15/2024] [Indexed: 07/25/2024] Open
Abstract
Several pathogenic Escherichia coli strains cause diarrhea. Enteroaggregative E. coli (EAEC) strains are one of the diarrheagenic pathotypes. EAEC cells form a "stacked-brick" arrangement over the intestinal epithelial cells. EAEC isolates express, among other virulence determinants, the AggR transcriptional activator and the aggregative adherence fimbriae (AAF). Overexpression of the aggR gene results in increased expression of virulence factors such as the aff genes, as well as several genes involved in specific metabolic pathways such as fatty acid degradation (fad) and arginine degradation (ast). To support the hypothesis that induction of the expression of some of these pathways may play a role in EAEC virulence, in this study we used a murine infection model to evaluate the impact of the expression of these pathways on infection parameters. Mice infected with a mutant derivative of the EAEC strain 042, characterized by overexpression of the aggR gene, showed increased disease symptoms compared to those exhibited by mice infected with the wild type (wt) strain 042. Several of these symptoms were not increased when the infecting mutant, which overexpressed aggR, lacked the fad and ast pathways. Therefore, our results support the hypothesis that different metabolic pathways contribute to EAEC virulence.
Collapse
Affiliation(s)
- M Bernabeu
- Department of Biotechnology, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Paterna, Valencia, Spain
| | - A Prieto
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Barcelona, Spain
| | - D Salguero
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Barcelona, Spain
| | - L Miró
- Department of Biochemistry and Physiology, Universitat de Barcelona, Barcelona, Spain
- Institut de Nutrició I Seguretat Alimentària, Universitat de Barcelona, Barcelona, Spain
| | - R Cabrera-Rubio
- Department of Biotechnology, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Paterna, Valencia, Spain
| | - M C Collado
- Department of Biotechnology, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Paterna, Valencia, Spain
| | - M Hüttener
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Barcelona, Spain
| | - A Pérez-Bosque
- Department of Biochemistry and Physiology, Universitat de Barcelona, Barcelona, Spain.
- Institut de Nutrició I Seguretat Alimentària, Universitat de Barcelona, Barcelona, Spain.
| | - A Juárez
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Barcelona, Spain.
- Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona, Spain.
| |
Collapse
|
8
|
Chauhan S, Nusbaum RJ, Huante MB, Holloway AJ, Endsley MA, Gelman BB, Lisinicchia JG, Endsley JJ. Therapeutic Modulation of Arginase with nor-NOHA Alters Immune Responses in Experimental Mouse Models of Pulmonary Tuberculosis including in the Setting of Human Immunodeficiency Virus (HIV) Co-Infection. Trop Med Infect Dis 2024; 9:129. [PMID: 38922041 PMCID: PMC11209148 DOI: 10.3390/tropicalmed9060129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 06/27/2024] Open
Abstract
L-arginine metabolism is strongly linked with immunity to mycobacteria, primarily through the antimicrobial activity of nitric oxide (NO). The potential to modulate tuberculosis (TB) outcomes through interventions that target L-arginine pathways are limited by an incomplete understanding of mechanisms and inadequate in vivo modeling. These gaps in knowledge are compounded for HIV and Mtb co-infections, where activation of arginase-1 due to HIV infection may promote survival and replication of both Mtb and HIV. We utilized in vitro and in vivo systems to determine how arginase inhibition using Nω-hydroxy-nor-L-arginine (nor-NOHA) alters L-arginine pathway metabolism relative to immune responses and disease outcomes following Mtb infection. Treatment with nor-NOHA polarized murine macrophages (RAW 264.7) towards M1 phenotype, increased NO, and reduced Mtb in RAW macrophages. In Balb/c mice, nor-NOHA reduced pulmonary arginase and increased the antimicrobial metabolite spermine in association with a trend towards reduced Mtb CFU in lung. In humanized immune system (HIS) mice, HIV infection increased plasma arginase and heightened the pulmonary arginase response to Mtb. Treatment with nor-NOHA increased cytokine responses to Mtb and Mtb/HIV in lung tissue but did not significantly alter bacterial burden or viral load. Our results suggest that L-arginine pathway modulators may have potential as host-directed therapies to augment antibiotics in TB chemotherapy.
Collapse
Affiliation(s)
- Sadhana Chauhan
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (S.C.); (R.J.N.); (M.B.H.); (A.J.H.); (M.A.E.)
| | - Rebecca J. Nusbaum
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (S.C.); (R.J.N.); (M.B.H.); (A.J.H.); (M.A.E.)
| | - Matthew B. Huante
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (S.C.); (R.J.N.); (M.B.H.); (A.J.H.); (M.A.E.)
| | - Alex J. Holloway
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (S.C.); (R.J.N.); (M.B.H.); (A.J.H.); (M.A.E.)
| | - Mark A. Endsley
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (S.C.); (R.J.N.); (M.B.H.); (A.J.H.); (M.A.E.)
| | - Benjamin B. Gelman
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; (B.B.G.); (J.G.L.)
| | - Joshua G. Lisinicchia
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; (B.B.G.); (J.G.L.)
| | - Janice J. Endsley
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (S.C.); (R.J.N.); (M.B.H.); (A.J.H.); (M.A.E.)
| |
Collapse
|
9
|
Cheng Q, Han Y, Xiao Y, Li Z, Qin A, Ji S, Kan B, Liang W. The ArgR-Regulated ADI Pathway Facilitates the Survival of Vibrio fluvialis under Acidic Conditions. Int J Mol Sci 2024; 25:5679. [PMID: 38891866 PMCID: PMC11172107 DOI: 10.3390/ijms25115679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Vibrio fluvialis is an emerging foodborne pathogenic bacterium that can cause severe cholera-like diarrhea and various extraintestinal infections, posing challenges to public health and food safety worldwide. The arginine deiminase (ADI) pathway plays an important role in bacterial environmental adaptation and pathogenicity. However, the biological functions and regulatory mechanisms of the pathway in V. fluvialis remain unclear. In this study, we demonstrate that L-arginine upregulates the expression of the ADI gene cluster and promotes the growth of V. fluvialis. The ADI gene cluster, which we proved to be comprised of two operons, arcD and arcACB, significantly enhances the survival of V. fluvialis in acidic environments both in vitro (in culture medium and in macrophage) and in vivo (in mice). The mRNA level and reporter gene fusion analyses revealed that ArgR, a transcriptional factor, is necessary for the activation of both arcD and arcACB transcriptions. Bioinformatic analysis predicted the existence of multiple potential ArgR binding sites at the arcD and arcACB promoter regions that were further confirmed by electrophoretic mobility shift assay, DNase I footprinting, or point mutation analyses. Together, our study provides insights into the important role of the ArgR-ADI pathway in the survival of V. fluvialis under acidic conditions and the detailed molecular mechanism. These findings will deepen our understanding of how environmental changes and gene expression interact to facilitate bacterial adaptations and virulence.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Biao Kan
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Weili Liang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| |
Collapse
|
10
|
Muller J, Marchisio L, Attia R, Zedet A, Maradan R, Vallet M, Aebischer A, Harakat D, Senejoux F, Ramseyer C, Foley S, Cardey B, Girard C, Pudlo M. A colorimetric assay adapted to fragment screening revealing aurones and chalcones as new arginase inhibitors. RSC Med Chem 2024; 15:1722-1730. [PMID: 38784454 PMCID: PMC11110760 DOI: 10.1039/d3md00713h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/23/2024] [Indexed: 05/25/2024] Open
Abstract
Arginase, a difficult-to-target metalloenzyme, is implicated in a wide range of diseases, including cancer, infectious, and cardiovascular diseases. Despite the medical need, existing inhibitors have limited structural diversity, consisting predominantly of amino acids and their derivatives. The search for innovative arginase inhibitors has now extended to screening approaches. Due to the small and narrow active site of arginase, screening must meet the criteria of fragment-based screening. However, the limited binding capacity of fragments requires working at high concentrations, which increases the risk of interference and false positives. In this study, we investigated three colorimetric assays and selected one based on interference for screening under these challenging conditions. The subsequent adaptation and application to the screening a library of metal chelator fragments resulted in the identification of four compounds with moderate activity. The synthesis and evaluation of a series of compounds from one of the hits led to compound 21a with an IC50 value of 91.1 μM close to the reference compound piceatannol. Finally, molecular modelling supports the potential binding of aurones and chalcones to the active site of arginase, suggesting them as new candidates for the development of novel arginase inhibitors.
Collapse
Affiliation(s)
- Jason Muller
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT F-25000 Besançon France
| | - Luca Marchisio
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT F-25000 Besançon France
| | - Rym Attia
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT F-25000 Besançon France
| | - Andy Zedet
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT F-25000 Besançon France
| | - Robin Maradan
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT F-25000 Besançon France
| | - Maxence Vallet
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT F-25000 Besançon France
| | - Alison Aebischer
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT F-25000 Besançon France
| | - Dominique Harakat
- URCATech, ICMR, CNRS UMR 7312 URCA Bât 18, BP 1039, Cedex 2 51687 Reims France
| | - François Senejoux
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT F-25000 Besançon France
| | - Christophe Ramseyer
- Chrono-environnement UMR6249, CNRS Université de Franche-Comté F-25000 Besançon France
| | - Sarah Foley
- Chrono-environnement UMR6249, CNRS Université de Franche-Comté F-25000 Besançon France
| | - Bruno Cardey
- Chrono-environnement UMR6249, CNRS Université de Franche-Comté F-25000 Besançon France
| | - Corine Girard
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT F-25000 Besançon France
| | - Marc Pudlo
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT F-25000 Besançon France
| |
Collapse
|
11
|
Xu B, Liu Y, Li N, Geng Q. Lactate and lactylation in macrophage metabolic reprogramming: current progress and outstanding issues. Front Immunol 2024; 15:1395786. [PMID: 38835758 PMCID: PMC11148263 DOI: 10.3389/fimmu.2024.1395786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/07/2024] [Indexed: 06/06/2024] Open
Abstract
It is commonly known that different macrophage phenotypes play specific roles in different pathophysiological processes. In recent years, many studies have linked the phenotypes of macrophages to their characteristics in different metabolic pathways, suggesting that macrophages can perform different functions through metabolic reprogramming. It is now gradually recognized that lactate, previously overlooked as a byproduct of glycolytic metabolism, acts as a signaling molecule in regulating multiple biological processes, including immunological responses and metabolism. Recently, lactate has been found to mediate epigenetic changes in macrophages through a newfound lactylation modification, thereby regulating their phenotypic transformation. This novel finding highlights the significant role of lactate metabolism in macrophage function. In this review, we summarize the features of relevant metabolic reprogramming in macrophages and the role of lactate metabolism therein. We also review the progress of research on the regulation of macrophage metabolic reprogramming by lactylation through epigenetic mechanisms.
Collapse
Affiliation(s)
- Bangjun Xu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yi Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
12
|
Lee JJ, Abdullah M, Liu J, Carvalho IA, Junior AS, Moreira MAS, Mohammed H, DeLisa MP, McDonough SP, Chang YF. Proteomic profiling of membrane vesicles from Mycobacterium avium subsp. paratuberculosis: Navigating towards an insilico design of a multi-epitope vaccine targeting membrane vesicle proteins. J Proteomics 2024; 292:105058. [PMID: 38065354 DOI: 10.1016/j.jprot.2023.105058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 11/21/2023] [Accepted: 12/01/2023] [Indexed: 01/01/2024]
Abstract
Bacteria typically produce membrane vesicles (MVs) at varying levels depending on the surrounding environments. Gram-negative bacterial outer membrane vesicles (OMVs) have been extensively studied for over 30 years, but MVs from Gram-positive bacteria only recently have been a focus of research. In the present study, we isolated MVs from Mycobacterium avium subsp. paratuberculosis (MAP) and analyzed their protein composition using LC-MS/MS. A total of 316 overlapping proteins from two independent preparations were identified in our study, and topology prediction showed these cargo proteins have different subcellular localization patterns. When MVs were administered to bovine-derived macrophages, significant up-regulation of pro-inflammatory cytokines was observed via qRT-PCR. Proteome functional annotation revealed that many of these proteins are involved in the cellular protein metabolic process, tRNA aminoacylation, and ATP synthesis. Secretory proteins with high antigenicity and adhesion capability were mapped for B-cell and T-cell epitopes. Antigenic, Immunogenic and IFN-γ inducing B-cell, MHC-I, and MHC-II epitopes were stitched together through linkers to form multi-epitope vaccine (MEV) construct against MAP. Strong binding energy was observed during the docking of the 3D structure of the MEV with the bovine TLR2, suggesting that the putative MEV may be a promising vaccine candidate against MAP. However, in vitro and in vivo analysis is required to prove the immunogenic concept of the MEV which we will follow in our future studies. SIGNIFICANCE: Johne's disease is a chronic infection caused by Mycobacterium avium subsp. paratuberculosis that has a potential link to Crohn's disease in humans. The disease is characterized by persistent diarrhea and enteritis, resulting in significant economic losses due to reduced milk yield and premature culling of infected animals. The dairy industry in the United States alone experiences losses of approximately USD 250 million due to Johne's disease. The current vaccine against Johne's disease is limited by several factors, including variable efficacy, limited duration of protection, interference with diagnostic tests, inability to prevent infection, and logistical and cost-related challenges. Nevertheless, a multiepitope vaccine design approach targeting M. avium subsp. paratuberculosis has the potential to overcome these challenges and offer improved protection against Johne's disease.
Collapse
Affiliation(s)
- Jen-Jie Lee
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853, United States
| | - Mohd Abdullah
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853, United States
| | - Jinjing Liu
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853, United States
| | - Isabel Azevedo Carvalho
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853, United States
| | - Abelardo Silva Junior
- Laboratory of Research in Virology and Immunology, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceió, AL CEP 57072-900, Brazil
| | | | - Hussni Mohammed
- Departement of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, United States
| | - Matthew P DeLisa
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, United States; Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY 14853, United States; Cornell Institute of Biotechnology, Cornell University, Ithaca, NY 14853, United States
| | - Sean P McDonough
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853, United States
| | - Yung-Fu Chang
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853, United States.
| |
Collapse
|
13
|
Yusof NY, Quay DHX, Kamaruddin S, Jonet MA, Md Illias R, Mahadi NM, Firdaus-Raih M, Abu Bakar FD, Abdul Murad AM. Biochemical and in silico structural characterization of a cold-active arginase from the psychrophilic yeast, Glaciozyma antarctica PI12. Extremophiles 2024; 28:15. [PMID: 38300354 DOI: 10.1007/s00792-024-01333-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 12/30/2023] [Indexed: 02/02/2024]
Abstract
Glaciozyma antarctica PI12 is a psychrophilic yeast isolated from Antarctica. In this work, we describe the heterologous production, biochemical properties and in silico structure analysis of an arginase from this yeast (GaArg). GaArg is a metalloenzyme that catalyses the hydrolysis of L-arginine to L-ornithine and urea. The cDNA of GaArg was reversed transcribed, cloned, expressed and purified as a recombinant protein in Escherichia coli. The purified protein was active against L-arginine as its substrate in a reaction at 20 °C, pH 9. At 10-35 °C and pH 7-9, the catalytic activity of the protein was still present around 50%. Mn2+, Ni2+, Co2+ and K+ were able to enhance the enzyme activity more than two-fold, while GaArg is most sensitive to SDS, EDTA and DTT. The predicted structure model of GaArg showed a very similar overall fold with other known arginases. GaArg possesses predominantly smaller and uncharged amino acids, fewer salt bridges, hydrogen bonds and hydrophobic interactions compared to the other counterparts. GaArg is the first reported arginase that is cold-active, facilitated by unique structural characteristics for its adaptation of catalytic functions at low-temperature environments. The structure and function of cold-active GaArg provide insights into the potentiality of new applications in various biotechnology and pharmaceutical industries.
Collapse
Affiliation(s)
- Nik Yusnoraini Yusof
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, Kubang Kerian, 16150, Kelantan, Malaysia.
- Department of Biological Sciences & Biotechnology, Faculty of Sciences and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia.
| | - Doris Huai Xia Quay
- Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia.
| | - Shazilah Kamaruddin
- Department of Biological Sciences & Biotechnology, Faculty of Sciences and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Mohd Anuar Jonet
- Malaysia Genome and Vaccine Institute, Jalan Bangi Lama, 43000, Kajang, Selangor, Malaysia
| | - Rosli Md Illias
- Department of Bioprocess Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81300, Skudai, Johor, Malaysia
| | - Nor Muhammad Mahadi
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Mohd Firdaus-Raih
- Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Farah Diba Abu Bakar
- Department of Biological Sciences & Biotechnology, Faculty of Sciences and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Abdul Munir Abdul Murad
- Department of Biological Sciences & Biotechnology, Faculty of Sciences and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| |
Collapse
|
14
|
Cheng M, Zheng Y, Wu G, Tan L, Xu F, Zhang Y, Chen X, Zhu K. Protective Effect of Artocarpus heterophyllus Lam. (Jackfruit) Polysaccharides on Liver Injury Induced by Cyclophosphamide in Mice. Nutrients 2024; 16:166. [PMID: 38201995 PMCID: PMC10780714 DOI: 10.3390/nu16010166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/27/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
In recent years, Artocarpus heterophyllus Lam. (jackfruit) polysaccharides (namely JFP-Ps) have attracted much attention due to their multiple biological activities. This study aimed to explore the protective effects and the underlying mechanisms of JFP-Ps on cyclophosphamide (Cp)-induced liver damage. The protective effect of JFP-Ps was evaluated using HE staining, antioxidant testing, enzyme-linked immunosorbent assay (ELISA), real-time quantitative polymerase chain reaction (RT-qPCR), Western blot and ultra-performance liquid chromatography equipped with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS/MS) metabolomics analysis. The results showed that Cp caused pathological liver damage, activated oxidative stress and downregulated cytokine expression, while JFP-Ps treatment was found to exert antioxidant effects and play immune regulatory roles through mitogen-activated protein kinase/nuclear factor-κB (MAPK/NF-κB) related inflammation and cell apoptosis pathways to protect the Cp-induced liver injury. Metabolomic results showed that the liver-protective effects of JFP-Ps were mainly related to aminoacyl transfer ribonucleic acid (tRNA) biosynthesis, sphingolipid metabolism, purine metabolism and the citrate cycle. These results indicate that JFP-Ps have great potential application in alleviating liver injury.
Collapse
Affiliation(s)
- Ming Cheng
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Yifan Zheng
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Gang Wu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China
- National Center of Important Tropical Crops Engineering and Technology Research, Wanning 571533, China
| | - Lehe Tan
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China
| | - Fei Xu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China
- National Center of Important Tropical Crops Engineering and Technology Research, Wanning 571533, China
- Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning 571533, China
| | - Yanjun Zhang
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China
- National Center of Important Tropical Crops Engineering and Technology Research, Wanning 571533, China
- Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning 571533, China
| | - Xiaoai Chen
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China
- National Center of Important Tropical Crops Engineering and Technology Research, Wanning 571533, China
- Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning 571533, China
| | - Kexue Zhu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China
- National Center of Important Tropical Crops Engineering and Technology Research, Wanning 571533, China
- Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning 571533, China
| |
Collapse
|
15
|
Ni D, Zhou H, Wang P, Xu F, Li C. Visualizing Macrophage Phenotypes and Polarization in Diseases: From Biomarkers to Molecular Probes. PHENOMICS (CHAM, SWITZERLAND) 2023; 3:613-638. [PMID: 38223685 PMCID: PMC10781933 DOI: 10.1007/s43657-023-00129-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 08/06/2023] [Accepted: 08/10/2023] [Indexed: 01/16/2024]
Abstract
Macrophage is a kind of immune cell and performs multiple functions including pathogen phagocytosis, antigen presentation and tissue remodeling. To fulfill their functionally distinct roles, macrophages undergo polarization towards a spectrum of phenotypes, particularly the classically activated (M1) and alternatively activated (M2) subtypes. However, the binary M1/M2 phenotype fails to capture the complexity of macrophages subpopulations in vivo. Hence, it is crucial to employ spatiotemporal imaging techniques to visualize macrophage phenotypes and polarization, enabling the monitoring of disease progression and assessment of therapeutic responses to drug candidates. This review begins by discussing the origin, function and diversity of macrophage under physiological and pathological conditions. Subsequently, we summarize the identified macrophage phenotypes and their specific biomarkers. In addition, we present the imaging probes locating the lesions by visualizing macrophages with specific phenotype in vivo. Finally, we discuss the challenges and prospects associated with monitoring immune microenvironment and disease progression through imaging of macrophage phenotypes.
Collapse
Affiliation(s)
- Dan Ni
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, 201203 China
| | - Heqing Zhou
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Pengwei Wang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, 201203 China
| | - Fulin Xu
- Minhang Hospital, Fudan University, Shanghai, 201199 China
| | - Cong Li
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, 201203 China
- State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 201203 China
- Innovative Center for New Drug Development of Immune Inflammatory Diseases, Ministry of Education, Shanghai, 201203 China
| |
Collapse
|
16
|
Oladosu OJ, Correia BSB, Grafl B, Liebhart D, Metges CC, Bertram HC, Daş G. 1H-NMR based-metabolomics reveals alterations in the metabolite profiles of chickens infected with ascarids and concurrent histomonosis infection. Gut Pathog 2023; 15:56. [PMID: 37978563 PMCID: PMC10655416 DOI: 10.1186/s13099-023-00584-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Gut infections of chickens caused by Ascaridia galli and Heterakis gallinarum are associated with impaired host performance, particularly in high-performing genotypes. Heterakis gallinarum is also a vector of Histomonas meleagridis that is often co-involved with ascarid infections. Here, we provide a first insight into the alteration of the chicken plasma and liver metabolome as a result of gastrointestinal nematode infections with concomitant histomonosis. 1H nuclear magnetic resonance (1H-NMR) based-metabolomics coupled with a bioinformatics analysis was applied to explore the variation in the metabolite profiles of the liver (N = 105) and plasma samples from chickens (N = 108) experimentally infected with A. galli and H. gallinarum (+H. meleagridis). This was compared with uninfected chickens at different weeks post-infection (wpi 2, 4, 6, 10, 14, 18) representing different developmental stages of the worms. RESULTS A total of 31 and 54 metabolites were quantified in plasma and aqueous liver extracts, respectively. Statistical analysis showed no significant differences (P > 0.05) in any of the 54 identified liver metabolites between infected and uninfected hens. In contrast, 20 plasma metabolites including, amino acids, sugars, and organic acids showed significantly elevated concentrations in the infected hens (P < 0.05). Alterations of plasma metabolites occurred particularly in wpi 2, 6 and 10, covering the pre-patent period of worm infections. Plasma metabolites with the highest variation at these time points included glutamate, succinate, trimethylamine-N-oxide, myo-inositol, and acetate. Differential pathway analysis suggested that infection induced changes in (1) phenylalanine, tyrosine, and tryptophan metabolism, (2) alanine, aspartate and glutamate metabolism; and 3) arginine and proline metabolism (Pathway impact > 0.1 with FDR adjusted P-value < 0.05). CONCLUSION In conclusion, 1H-NMR based-metabolomics revealed significant alterations in the plasma metabolome of high performing chickens infected with gut pathogens-A. galli and H. gallinarum. The alterations suggested upregulation of key metabolic pathways mainly during the patency of infections. This approach extends our understanding of host interactions with gastrointestinal nematodes at the metabolic level.
Collapse
Affiliation(s)
- Oyekunle John Oladosu
- Research Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology 'Oskar Kellner', Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | | | - Beatrice Grafl
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Dieter Liebhart
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Cornelia C Metges
- Research Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology 'Oskar Kellner', Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | | | - Gürbüz Daş
- Research Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology 'Oskar Kellner', Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany.
| |
Collapse
|
17
|
Popovic A, Cao EY, Han J, Nursimulu N, Alves-Ferreira EVC, Burrows K, Kennard A, Alsmadi N, Grigg ME, Mortha A, Parkinson J. The commensal protist Tritrichomonas musculus exhibits a dynamic life cycle that induces extensive remodeling of the gut microbiota. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.06.528774. [PMID: 37090671 PMCID: PMC10120700 DOI: 10.1101/2023.03.06.528774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Commensal protists and gut bacterial communities exhibit complex relationships, mediated at least in part through host immunity. To improve our understanding of this tripartite interplay, we investigated community and functional dynamics between the murine protist Tritrichomonas musculus ( T. mu ) and intestinal bacteria in healthy and B cell-deficient mice. We identified dramatic, protist-driven remodeling of resident microbiome growth and activities, in parallel with T. mu functional changes, accelerated in the absence of B cells. Metatranscriptomic data revealed nutrient-based competition between bacteria and the protist. Single cell transcriptomics identified distinct T. mu life stages, providing new evidence for trichomonad sexual replication and the formation of pseudocysts. Unique cell states were validated in situ through microscopy and flow cytometry. Our results reveal complex microbial dynamics during the establishment of a commensal protist in the gut, and provide valuable datasets to drive future mechanistic studies.
Collapse
|
18
|
West EE, Merle NS, Kamiński MM, Palacios G, Kumar D, Wang L, Bibby JA, Overdahl K, Jarmusch AK, Freeley S, Lee DY, Thompson JW, Yu ZX, Taylor N, Sitbon M, Green DR, Bohrer A, Mayer-Barber KD, Afzali B, Kazemian M, Scholl-Buergi S, Karall D, Huemer M, Kemper C. Loss of CD4 + T cell-intrinsic arginase 1 accelerates Th1 response kinetics and reduces lung pathology during influenza infection. Immunity 2023; 56:2036-2053.e12. [PMID: 37572656 PMCID: PMC10576612 DOI: 10.1016/j.immuni.2023.07.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 06/01/2023] [Accepted: 07/19/2023] [Indexed: 08/14/2023]
Abstract
Arginase 1 (Arg1), the enzyme catalyzing the conversion of arginine to ornithine, is a hallmark of IL-10-producing immunoregulatory M2 macrophages. However, its expression in T cells is disputed. Here, we demonstrate that induction of Arg1 expression is a key feature of lung CD4+ T cells during mouse in vivo influenza infection. Conditional ablation of Arg1 in CD4+ T cells accelerated both virus-specific T helper 1 (Th1) effector responses and its resolution, resulting in efficient viral clearance and reduced lung pathology. Using unbiased transcriptomics and metabolomics, we found that Arg1-deficiency was distinct from Arg2-deficiency and caused altered glutamine metabolism. Rebalancing this perturbed glutamine flux normalized the cellular Th1 response. CD4+ T cells from rare ARG1-deficient patients or CRISPR-Cas9-mediated ARG1-deletion in healthy donor cells phenocopied the murine cellular phenotype. Collectively, CD4+ T cell-intrinsic Arg1 functions as an unexpected rheostat regulating the kinetics of the mammalian Th1 lifecycle with implications for Th1-associated tissue pathologies.
Collapse
Affiliation(s)
- Erin E West
- Complement and Inflammation Research Section (CIRS), National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA.
| | - Nicolas S Merle
- Complement and Inflammation Research Section (CIRS), National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Marcin M Kamiński
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Gustavo Palacios
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Dhaneshwar Kumar
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA
| | - Luopin Wang
- Departments of Biochemistry and Computer Science, Purdue University, West Lafayette, IN, USA
| | - Jack A Bibby
- Complement and Inflammation Research Section (CIRS), National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Kirsten Overdahl
- Immunity, Inflammation, and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences (NIEHS), NIH, Research Triangle Park, NC, USA
| | - Alan K Jarmusch
- Immunity, Inflammation, and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences (NIEHS), NIH, Research Triangle Park, NC, USA
| | - Simon Freeley
- School of Immunology and Microbial Sciences, King's College London, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK
| | | | - J Will Thompson
- Proteomics and Metabolomics Shared Resource, Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Zu-Xi Yu
- Pathology Core, NHLBI, NIH, Bethesda, MD, USA
| | - Naomi Taylor
- Pediatric Oncology Branch, Rare Tumor Initiative, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, MD, USA; Institut de Génétique Moléculaire de Montpellier (IGMM), Université de Montpellier, CNRS, Montpellier, France
| | - Marc Sitbon
- Pediatric Oncology Branch, Rare Tumor Initiative, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, MD, USA; Institut de Génétique Moléculaire de Montpellier (IGMM), Université de Montpellier, CNRS, Montpellier, France
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Andrea Bohrer
- Inflammation and Innate Immunity Unit, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, USA
| | - Katrin D Mayer-Barber
- Inflammation and Innate Immunity Unit, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, USA
| | - Behdad Afzali
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA
| | - Majid Kazemian
- Departments of Biochemistry and Computer Science, Purdue University, West Lafayette, IN, USA
| | - Sabine Scholl-Buergi
- Clinic for Pediatrics I, Inherited Metabolic Disorders, Medical University of Innsbruck, Innsbruck, Austria
| | - Daniela Karall
- Clinic for Pediatrics I, Inherited Metabolic Disorders, Medical University of Innsbruck, Innsbruck, Austria
| | - Martina Huemer
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland; Department of Pediatric Endocrinology and Diabetology, University Children's Hospital Basel, Basel, Switzerland; Department of Pediatrics, Landeskrankenhaus (LKH) Bregenz, Bregenz, Austria
| | - Claudia Kemper
- Complement and Inflammation Research Section (CIRS), National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
19
|
Li B, Liao Y, Su X, Chen S, Wang X, Shen B, Song H, Yue P. Powering mesoporous silica nanoparticles into bioactive nanoplatforms for antibacterial therapies: strategies and challenges. J Nanobiotechnology 2023; 21:325. [PMID: 37684605 PMCID: PMC10485977 DOI: 10.1186/s12951-023-02093-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
Bacterial infection has been a major threat to worldwide human health, in particular with the ever-increasing level of antimicrobial resistance. Given the complex microenvironment of bacterial infections, conventional use of antibiotics typically renders a low efficacy in infection control, thus calling for novel strategies for effective antibacterial therapies. As an excellent candidate for antibiotics delivery, mesoporous silica nanoparticles (MSNs) demonstrate unique physicochemical advantages in antibacterial therapies. Beyond the delivery capability, extensive efforts have been devoted in engineering MSNs to be bioactive to further synergize the therapeutic effect in infection control. In this review, we critically reviewed the essential properties of MSNs that benefit their antibacterial application, followed by a themed summary of strategies in manipulating MSNs into bioactive nanoplatforms for enhanced antibacterial therapies. The chemically functionalized platform, photo-synergized platform, physical antibacterial platform and targeting-directed platform are introduced in details, where the clinical translation challenges of these MSNs-based antibacterial nanoplatforms are briefly discussed afterwards. This review provides critical information of the emerging trend in turning bioinert MSNs into bioactive antibacterial agents, paving the way to inspire and translate novel MSNs-based nanotherapies in combating bacterial infection diseases.
Collapse
Affiliation(s)
- Biao Li
- Lab of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, 1688 MEILING Avenue, Nanchang, 330004, China
| | - Yan Liao
- Lab of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, 1688 MEILING Avenue, Nanchang, 330004, China
| | - Xiaoyu Su
- Lab of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, 1688 MEILING Avenue, Nanchang, 330004, China
| | - Shuiyan Chen
- Lab of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, 1688 MEILING Avenue, Nanchang, 330004, China
| | - Xinmin Wang
- Lab of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, 1688 MEILING Avenue, Nanchang, 330004, China
| | - Baode Shen
- Lab of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, 1688 MEILING Avenue, Nanchang, 330004, China
| | - Hao Song
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Pengfei Yue
- Lab of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, 1688 MEILING Avenue, Nanchang, 330004, China.
| |
Collapse
|
20
|
Fei Y, Wang Q, Lu J, Ouyang L, Li W, Hu R, Chen L. Identification of antibacterial activity of LEAP2 from Antarctic icefish Chionodraco hamatus. JOURNAL OF FISH DISEASES 2023; 46:905-916. [PMID: 37245215 DOI: 10.1111/jfd.13797] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/22/2023] [Accepted: 04/28/2023] [Indexed: 05/30/2023]
Abstract
Liver-expressed antimicrobial peptide 2 (LEAP2) is a small peptide, which is consisted of signal peptide, pro-peptide and the bioactive mature peptide. Mature LEAP2 is an antibacterial peptide with four highly conserved cysteines forming two intramolecular disulfide bonds. Chionodraco hamatus, an Antarctic notothenioid fish that lives in the coldest water, has white blood unlike most fish of the world. In this study, the LEAP2 coding sequence was cloned from C. hamatus, including a 29 amino acids signal peptide and mature peptide of 46 amino acids. High levels of LEAP2 mRNA were detected in the skin and liver. Mature peptide was obtained by chemical synthesis in vitro, displayed selective antimicrobial activities against Escherichia coli, Aeromonas hydrophila, Staphylococcus aureus and Streptococcus agalactiae. Liver-expressed antimicrobial peptide 2 showed bactericidal activity by destroying the cell membrane integrity and robustly combined with bacterial genomic DNA. In addition, overexpression of the Tol-LEAP2-EGFP in zebrafish larva showed stronger antimicrobial activity in C. hamatus than in zebrafish, accompanied by lower bacterial load and expression of pro-inflammatory factors. This is the first demonstration of the antimicrobial activity of LEAP2 from C. hamatus, which is of useful value in improving resistance to pathogens.
Collapse
Affiliation(s)
- Yueyue Fei
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Qin Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jigang Lu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Linyue Ouyang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Wei Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Ruiqin Hu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Liangbiao Chen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
21
|
Margarita V, Congiargiu A, Diaz N, Fiori PL, Rappelli P. Mycoplasma hominis and Candidatus Mycoplasma girerdii in Trichomonas vaginalis: Peaceful Cohabitants or Contentious Roommates? Pathogens 2023; 12:1083. [PMID: 37764891 PMCID: PMC10535475 DOI: 10.3390/pathogens12091083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/20/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
Trichomonas vaginalis is a pathogenic protozoan diffused worldwide capable of infecting the urogenital tract in humans, causing trichomoniasis. One of its most intriguing aspects is the ability to establish a close relationship with endosymbiotic microorganisms: the unique association of T. vaginalis with the bacterium Mycoplasma hominis represents, to date, the only example of an endosymbiosis involving two true human pathogens. Since its discovery, several aspects of the symbiosis between T. vaginalis and M. hominis have been characterized, demonstrating that the presence of the intracellular guest strongly influences the pathogenic characteristics of the protozoon, making it more aggressive towards host cells and capable of stimulating a stronger proinflammatory response. The recent description of a further symbiont of the protozoon, the newly discovered non-cultivable mycoplasma Candidatus Mycoplasma girerdii, makes the picture even more complex. This review provides an overview of the main aspects of this complex microbial consortium, with particular emphasis on its effect on protozoan pathobiology and on the interplays among the symbionts.
Collapse
Affiliation(s)
- Valentina Margarita
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (V.M.); (A.C.); (N.D.); (P.L.F.)
- Mediterranean Centre for Disease Control (MCDC), 07110 Sassari, Italy
| | - Antonella Congiargiu
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (V.M.); (A.C.); (N.D.); (P.L.F.)
| | - Nicia Diaz
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (V.M.); (A.C.); (N.D.); (P.L.F.)
| | - Pier Luigi Fiori
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (V.M.); (A.C.); (N.D.); (P.L.F.)
- Mediterranean Centre for Disease Control (MCDC), 07110 Sassari, Italy
- Microbiology Unit, University Hospital of Sassari (AOU), 07110 Sassari, Italy
| | - Paola Rappelli
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (V.M.); (A.C.); (N.D.); (P.L.F.)
- Mediterranean Centre for Disease Control (MCDC), 07110 Sassari, Italy
- Microbiology Unit, University Hospital of Sassari (AOU), 07110 Sassari, Italy
| |
Collapse
|
22
|
Ming S, Qu S, Wu Y, Wei J, Zhang G, Jiang G, Huang X. COVID-19 Metabolomic-Guided Amino Acid Therapy Protects from Inflammation and Disease Sequelae. Adv Biol (Weinh) 2023; 7:e2200265. [PMID: 36775870 DOI: 10.1002/adbi.202200265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/06/2022] [Indexed: 02/14/2023]
Abstract
The outbreak of coronavirus disease 2019 (COVID-19) has caused a worldwide pandemic since 2019. A metabolic disorder is a contributing factor to deaths from COVID-19. However, the underlying mechanism of metabolic dysfunction in COVID-19 patients and the potential interventions are not elucidated. Here targeted plasma metabolomic is performed, and the metabolite profiles among healthy controls, and asymptomatic, moderate, and severe COVID-19 patients are compared. Among the altered metabolites, arachidonic acid and linolenic acid pathway metabolites are profoundly up-regulated in COVID-19 patients. Arginine biosynthesis, alanine, aspartate, and glutamate metabolism pathways are significantly disturbed in asymptomatic patients. In the comparison of metabolite variances among the groups, higher levels of l-citrulline and l-glutamine are found in asymptomatic carriers and moderate or severe patients at the remission stage. Furthermore, l-citrulline and l-glutamine combination therapy is demonstrated to effectively protect mice from coronavirus infection and endotoxin-induced sepsis, and is observed to efficiently prevent the occurrence of pulmonary fibrosis and central nervous system damage. Collectively, the data reveal the metabolite profile of asymptomatic COVID-19 patients and propose a potential strategy for COVID-19 treatment.
Collapse
Affiliation(s)
- Siqi Ming
- Center for Infection and Immunity and Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, Guangdong Province, 518100, China
| | - Siying Qu
- Center for Infection and Immunity and Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
| | - Yongjian Wu
- Center for Infection and Immunity and Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
| | - Jiayou Wei
- Center for Infection and Immunity and Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
| | - Guoliang Zhang
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, Guangdong Province, 518100, China
| | - Guanmin Jiang
- Center for Infection and Immunity and Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
| | - Xi Huang
- Center for Infection and Immunity and Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, Guangdong Province, 518100, China
| |
Collapse
|
23
|
Starikova EA, Rubinstein AA, Mammedova JT, Isakov DV, Kudryavtsev IV. Regulated Arginine Metabolism in Immunopathogenesis of a Wide Range of Diseases: Is There a Way to Pass between Scylla and Charybdis? Curr Issues Mol Biol 2023; 45:3525-3551. [PMID: 37185755 PMCID: PMC10137093 DOI: 10.3390/cimb45040231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
More than a century has passed since arginine was discovered, but the metabolism of the amino acid never ceases to amaze researchers. Being a conditionally essential amino acid, arginine performs many important homeostatic functions in the body; it is involved in the regulation of the cardiovascular system and regeneration processes. In recent years, more and more facts have been accumulating that demonstrate a close relationship between arginine metabolic pathways and immune responses. This opens new opportunities for the development of original ways to treat diseases associated with suppressed or increased activity of the immune system. In this review, we analyze the literature describing the role of arginine metabolism in the immunopathogenesis of a wide range of diseases, and discuss arginine-dependent processes as a possible target for therapeutic approaches.
Collapse
Affiliation(s)
- Eleonora A Starikova
- Laboratory of Cellular Immunology, Department of Immunology, Institute of Experimental Medicine, Akademika Pavlova 12, 197376 Saint Petersburg, Russia
- Medical Faculty, First Saint Petersburg State I. Pavlov Medical University, L'va Tolstogo St. 6-8, 197022 Saint Petersburg, Russia
| | - Artem A Rubinstein
- Laboratory of Cellular Immunology, Department of Immunology, Institute of Experimental Medicine, Akademika Pavlova 12, 197376 Saint Petersburg, Russia
| | - Jennet T Mammedova
- Laboratory of General Immunology, Department of Immunology, Institute of Experimental Medicine, Akademika Pavlova 12, 197376 Saint Petersburg, Russia
| | - Dmitry V Isakov
- Medical Faculty, First Saint Petersburg State I. Pavlov Medical University, L'va Tolstogo St. 6-8, 197022 Saint Petersburg, Russia
| | - Igor V Kudryavtsev
- Laboratory of Cellular Immunology, Department of Immunology, Institute of Experimental Medicine, Akademika Pavlova 12, 197376 Saint Petersburg, Russia
- School of Biomedicine, Far Eastern Federal University, FEFU Campus, 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russia
| |
Collapse
|
24
|
Brigo N, Neumaier E, Pfeifhofer-Obermair C, Grubwieser P, Engl S, Berger S, Seifert M, Reinstadler V, Oberacher H, Weiss G. Timing of Interleukin-4 Stimulation of Macrophages Determines Their Anti-Microbial Activity during Infection with Salmonella enterica Serovar Typhimurium. Cells 2023; 12:1164. [PMID: 37190073 PMCID: PMC10137269 DOI: 10.3390/cells12081164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
Priming of macrophages with interferon-gamma (IFNγ) or interleukin-4 (IL-4) leads to polarisation into pro-inflammatory or anti-inflammatory subtypes, which produce key enzymes such as inducible nitric oxide synthase (iNOS) and arginase 1 (ARG1), respectively, and in this way determine host responses to infection. Importantly, L-arginine is the substrate for both enzymes. ARG1 upregulation is associated with increased pathogen load in different infection models. However, while differentiation of macrophages with IL-4 impairs host resistance to the intracellular bacterium Salmonella enterica serovar Typhimurium (S.tm), little is known on the effects of IL-4 on unpolarised macrophages during infection. Therefore, bone-marrow-derived macrophages (BMDM) from C57BL/6N, Tie2Cre+/-ARG1fl/fl (KO), Tie2Cre-/-ARG1fl/fl (WT) mice were infected with S.tm in the undifferentiated state and then stimulated with IL-4 or IFNγ. In addition, BMDM of C57BL/6N mice were first polarised upon stimulation with IL-4 or IFNγ and then infected with S.tm. Interestingly, in contrast to polarisation of BMDM with IL-4 prior to infection, treatment of non-polarised S.tm-infected BMDM with IL-4 resulted in improved infection control whereas stimulation with IFNγ led to an increase in intracellular bacterial numbers compared to unstimulated controls. This effect of IL-4 was paralleled by decreased ARG1 levels and increased iNOS expression. Furthermore, the L-arginine pathway metabolites ornithine and polyamines were enriched in unpolarised cells infected with S.tm and stimulated with IL-4. Depletion of L-arginine reversed the protective effect of IL-4 toward infection control. Our data show that stimulation of S.tm-infected macrophages with IL-4 reduced bacterial multiplication via metabolic re-programming of L-arginine-dependent pathways.
Collapse
Affiliation(s)
- Natascha Brigo
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Emely Neumaier
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Christa Pfeifhofer-Obermair
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Philipp Grubwieser
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Sabine Engl
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Sylvia Berger
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Markus Seifert
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
- Christian Doppler Laboratory for Iron Metabolism and Anemia Research, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Vera Reinstadler
- Institute of Legal Medicine and Core Facility Metabolomics, Medical University of Innsbruck, Muellerstrasse 44, 6020 Innsbruck, Austria
| | - Herbert Oberacher
- Institute of Legal Medicine and Core Facility Metabolomics, Medical University of Innsbruck, Muellerstrasse 44, 6020 Innsbruck, Austria
| | - Günter Weiss
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
- Christian Doppler Laboratory for Iron Metabolism and Anemia Research, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| |
Collapse
|
25
|
Gong J, Yu J, Yin S, Ke J, Wu J, Liu C, Luo Z, Cheng WM, Xie Y, Chen Y, He Z, Lan P. Mesenteric Adipose Tissue-Derived Klebsiella variicola Disrupts Intestinal Barrier and Promotes Colitis by Type VI Secretion System. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205272. [PMID: 36802200 PMCID: PMC10131791 DOI: 10.1002/advs.202205272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Mesenteric adipose tissue (MAT) in Crohn's disease (CD) is associated with transmural inflammation. Extended mesenteric excision can reduce surgical recurrence and improve long-term outcomes, indicating that MAT plays an important role in the pathogenesis of CD. Bacterial translocation has been reported to occur in the MAT of patients with CD (CD-MAT), but the mechanisms by which translocated bacteria lead to intestinal colitis remain unclear. Here it is shown that members of Enterobacteriaceae are highly enriched in CD-MAT compared with non-CD controls. Viable Klebsiella variicola in Enterobacteriaceae is isolated exclusively in CD-MAT and can induce a pro-inflammatory response in vitro and exacerbates colitis both in dextran sulfate sodium (DSS)-induced colitis mice model and IL-10-/- spontaneous colitis mice model. Mechanistically, active type VI secretion system (T6SS) is identified in the genome of K. variicola, which can impair the intestinal barrier by inhibiting the zonula occludens (ZO-1) expression. Dysfunction of T6SS by CRISPR interference system alleviates the inhibitory effect of K. variicola on ZO-1 expression and attenuated colitis in mice. Overall, these findings demonstrate that a novel colitis-promoting bacteria exist in the mesenteric adipose tissue of CD, opening a new therapeutic avenue for colitis management.
Collapse
Affiliation(s)
- Junli Gong
- Department of Colorectal SurgeryThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655P. R. China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655P. R. China
- Guangdong Institute of GastroenterologyGuangzhouGuangdong510655P. R. China
| | - Jing Yu
- Department of Colorectal SurgeryThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655P. R. China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655P. R. China
| | - Shengmei Yin
- School of MedicineSun Yat‐sen UniversityGuangzhouGuangdong510275P. R. China
| | - Jia Ke
- Department of Colorectal SurgeryThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655P. R. China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655P. R. China
| | - Jinjie Wu
- Department of Colorectal SurgeryThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655P. R. China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655P. R. China
| | - Chen Liu
- Department of Colorectal SurgeryThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655P. R. China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655P. R. China
- Guangdong Institute of GastroenterologyGuangzhouGuangdong510655P. R. China
| | - Zhanhao Luo
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655P. R. China
- Guangdong Institute of GastroenterologyGuangzhouGuangdong510655P. R. China
| | - Wai Ming Cheng
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655P. R. China
- Guangdong Institute of GastroenterologyGuangzhouGuangdong510655P. R. China
| | - Yaozu Xie
- Department of Colorectal SurgeryThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655P. R. China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655P. R. China
| | - Yuan Chen
- School of MedicineSun Yat‐sen UniversityGuangzhouGuangdong510275P. R. China
| | - Zhen He
- Department of Colorectal SurgeryThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655P. R. China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655P. R. China
| | - Ping Lan
- Department of Colorectal SurgeryThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655P. R. China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655P. R. China
- Guangdong Institute of GastroenterologyGuangzhouGuangdong510655P. R. China
| |
Collapse
|
26
|
Liu M, Yang Y, Zhu W, Wu J, Yu X, Li W. Specific TLR-mediated HSP70 activation plays a potential role in host defense against the intestinal parasite Giardia duodenalis. Front Microbiol 2023; 14:1120048. [PMID: 36937289 PMCID: PMC10017776 DOI: 10.3389/fmicb.2023.1120048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
Giardia duodenalis, an important flagellated noninvasive protozoan parasite, infects the upper small intestine and causes a disease termed giardiasis globally. Few members of the heat shock protein (HSP) family have been shown to function as potential defenders against microbial pathogens, while such information is lacking for Giardia. Here we initially screened and indicated that in vitro Giardia challenge induced a marked early upregulation of HSP70 in intestinal epithelial cells (IECs). As noted previously, apoptotic resistance, nitric oxide (NO)-dependent cytostatic effect and parasite clearance, and epithelial barrier integrity represent effective anti-Giardia host defense mechanisms. We then explored the function of HSP70 in modulating apoptosis, NO release, and tight junction (TJ) protein levels in Giardia-IEC interactions. HSP70 inhibition by quercetin promoted Giardia-induced IEC apoptosis, viability decrease, NO release reduction, and ZO-1 and occludin downregulation, while the agonist celastrol could reverse these Giardia-evoked effects. The results demonstrated that HSP70 played a previously unrecognized and important role in regulating anti-Giardia host defense via attenuating apoptosis, promoting cell survival, and maintaining NO and TJ levels. Owing to the significance of apoptotic resistance among those defense-related factors mentioned earlier, we then elucidated the anti-apoptotic mechanism of HSP70. It was evident that HSP70 could negatively regulate apoptosis in an intrinsic way via direct inhibition of Apaf-1 or ROS-Bax/Bcl-2-Apaf-1 axis, and in an extrinsic way via cIAP2-mediated inhibition of RIP1 activity. Most importantly, it was confirmed that HSP70 exerted its host defense function by downregulating apoptosis via Toll-like receptor 4 (TLR4) activation, upregulating NO release via TLR4/TLR2 activation, and upregulating TJ protein expression via TLR2 activation. HSP70 represented a checkpoint regulator providing the crucial link between specific TLR activation and anti-Giardia host defense responses. Strikingly, independent of the checkpoint role of HSP70, TLR4 activation was proven to downregulate TJ protein expression, and TLR2 activation to accelerate apoptosis. Altogether, this study identified HSP70 as a potentially vital defender against Giardia, and revealed its correlation with specific TLR activation. The clinical importance of HSP70 has been extensively demonstrated, while its role as an effective therapeutic target in human giardiasis remains elusive and thus needs to be further clarified.
Collapse
|
27
|
Distinct binding pattern of nor-NOHA inhibitor to liver arginase in aqueous solution – Perspectives from molecular dynamics simulations. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2022.121014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
28
|
Değirmençay Ş, Küçükler S, Özdemir S, Kaman R. Evaluation of erythrocyte arginase activity, plasma nitric oxide concentration and oxidative stress status in cattle with anaplasmosis. Vet Parasitol 2023; 314:109855. [PMID: 36528965 DOI: 10.1016/j.vetpar.2022.109855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
Bovine anaplasmosis is an arthropod-borne disease characterized by high fever, anaemia and sometimes jaundice. The role of oxidative stress in anaplasmosis has been investigated, but erythrocyte arginase (ARG) activity has not been studied. In this study, we aimed to investigate the changes in haematological parameters, erythrocyte ARG activity, plasma nitric oxide (NO) levels and oxidative stress parameters and explain the relationship between each other in cattle with anaplasmosis. The material of this study consisted of 14 cattle, aged 10-12 months with anaplasmosis (infected group) and 14 healthy cattle aged 10-12 months (control group). Our data revealed that leukocyte parameters and plasma NO levels and serum malondialdehyde (MDA), total oxidant status (TOS) and oxidative stress index (OSI) levels were higher while erythrocyte parameters, erythrocyte ARG activity and serum total antioxidant status (TAS) and glutathione (GSH) levels were lower in the infected group compared to the control group. There was a strong correlation between erythrocyte ARG activity and NO, MDA, TOS, OSI, TAS and GSH. ROC analysis and correlation results suggest that erythrocyte ARG activity is an effective oxidative stress marker. We concluded that severe oxidative stress occurs in anaplasmosis. As the severity of anaemia increases, erythrocyte ARG activity plummets while plasma NO level elevates. These two parameters may also be used as prognostic and oxidative stress markers. Although decreased erythrocyte ARG activity is a disadvantage in haemolytic diseases, this situation can be compensated by increased NO. Thus, homeostasis of these two parameters may contribute to the elimination of the infection.
Collapse
Affiliation(s)
- Şükrü Değirmençay
- Department of Internal Medicine, Faculty of Veterinary Medicine, Atatürk University, 25240 Erzurum, Turkey.
| | - Sefa Küçükler
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, 25240 Erzurum, Turkey
| | - Selçuk Özdemir
- Department of Genetics, Faculty of Veterinary Medicine, Atatürk University, 25240 Erzurum, Turkey
| | - Ramazan Kaman
- Department of Internal Medicine, Faculty of Veterinary Medicine, Atatürk University, 25240 Erzurum, Turkey
| |
Collapse
|
29
|
Guo C, Zhang X, Li Y, Xie J, Gao P, Hao P, Han L, Zhang J, Wang W, Liu P, Ding J, Chang Y. Whole-genome resequencing reveals genetic differences and the genetic basis of parapodium number in Russian and Chinese Apostichopus japonicus. BMC Genomics 2023; 24:25. [PMID: 36647018 PMCID: PMC9843871 DOI: 10.1186/s12864-023-09113-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 01/04/2023] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Apostichopus japonicus is an economically important species in the global aquaculture industry. Russian A. japonicus, mainly harvested in the Vladivostok region, exhibits significant phenotypic differentiation, including in many economically important traits, compared with Chinese A. japonicus owing to differences in their habitat. However, both the genetic basis for the phenotypic divergence and the population genetic structure of Russian and Chinese A. japonicus are unknown. RESULT In this study, 210 individuals from seven Russian and Chinese A. japonicus populations were sampled for whole-genome resequencing. The genetic structure analysis differentiated the Russian and Chinese A. japonicus into two groups. Population genetic analyses indicated that the Russian population showed a high degree of allelic linkage and had undergone stronger positive selection compared with the Chinese populations. Gene ontology terms enriched among candidate genes with group selection analysis were mainly involved in immunity, such as inflammatory response, antimicrobial peptides, humoral immunity, and apoptosis. Genome-wide association analysis yielded eight single-nucleotide polymorphism loci significantly associated with parapodium number, and these loci are located in regions with a high degree of genomic differentiation between the Chinese and Russia populations. These SNPs were associated with five genes. Gene expression validation revealed that three of these genes were significantly differentially expressed in individuals differing in parapodium number. AJAP08772 and AJAP08773 may directly affect parapodium production by promoting endothelial cell proliferation and metabolism, whereas AJAP07248 indirectly affects parapodium production by participating in immune responses. CONCLUSIONS This study, we performed population genetic structure and GWAS analysis on Chinese and Russian A. japonicus, and found three candidate genes related to the number of parapodium. The results provide an in-depth understanding of the differences in the genetic structure of A. japonicus populations in China and Russia, and provide important information for subsequent genetic analysis and breeding of this species.
Collapse
Affiliation(s)
- Chao Guo
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, People's Republic of China
| | - Xianglei Zhang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, People's Republic of China
| | - Yuanxin Li
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, People's Republic of China
| | - Jiahui Xie
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, People's Republic of China
| | - Pingping Gao
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, People's Republic of China
| | - Pengfei Hao
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, People's Republic of China
| | - Lingshu Han
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, People's Republic of China
- Ningbo University, Ningbo, Zhejiang, 315211, People's Republic of China
| | - Jinyuan Zhang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, People's Republic of China
| | - Wenpei Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, People's Republic of China
| | - Peng Liu
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, People's Republic of China
| | - Jun Ding
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, People's Republic of China.
| | - Yaqing Chang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, People's Republic of China.
| |
Collapse
|
30
|
Greiner L, Humphrey D, Kerr B, Becker S, Breuer S, Hagen C, Elefson S, Haydon K. Water- and feed-based arginine impacts on gut integrity in weanling pigs. Transl Anim Sci 2023; 7:txad059. [PMID: 37469622 PMCID: PMC10353297 DOI: 10.1093/tas/txad059] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 05/25/2023] [Indexed: 07/21/2023] Open
Abstract
Two hundred and forty newly weaned pigs (PIC, Hendersonville, TN) were used to determine if supplementing additional arginine (Arg) either in the water or in the feed, and the combinations thereof, improved intestinal integrity and growth performance in nursery pigs. Each of the 80 pens contained three pigs (21 ± 2 d of age) which were randomly allotted to treatments in 4 × 3 factorial arrangement consisting of four water treatments (0%, 4%, 8%, and 12% Arg stock delivered through a 1:128 medication delivery system) in combination with three dietary Arg treatments (1.35%, 1.55%, and 1.75% standardized ileal digestible Arg; SID). Pigs and feeders were weighed at the d0, d6 (water and diet change), d20 (diet change), and d41 for the calculation of average daily gain (ADG), average daily feed intake (ADFI), and feed efficiency (G:F). Eighty pigs, 1 pig/pen, were euthanized at d6 for ileum evaluation of villus height and crypt depth. The remaining pigs were taken off the Arg-water treatment and fed phase-2 diets formulated to contain 1.35%, 1.55%, and 1.75% SID Arg. All pigs received a common diet from d20 to d41. Data were analyzed by pen as repeated measures (SAS 9.4). No interaction between water- and dietary-Arg was detected on nursery pig growth performance. There was a significant quadratic effect of SID Arg in the feed on pig final body weight (BW), ADG, ADFI, and G:F (P ≤ 0.037), where feeding 1.55% dietary Arg tended to improve growth performance compared to the 1.35% level for the 41 d of the trial (P ≤ 0.088). The use of the stock 8% Arg in the water resulted in a reduction in crypt depth (0:132.5, 4:140.7, 8:117.3, 12:132.0; P ≤ 0.01) and an improvement in intestinal permeability. The 4% oral Arg significantly reduced villous height:crypt depth ratio (0:2.50, 4:2.09, 8:2.56, 12:2.43; P ≤ 0.02). In conclusion, the feeding of 1.55% Arg resulted in an improvement in nursery pig ADG, ADFI, G:F, and final BW but did not alter intestinal villi morphology; however, the use of Arg in the water resulted in an improvement in intestinal villi, but no phenotypical change in piglet growth in the nursery.
Collapse
Affiliation(s)
- Laura Greiner
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Dalton Humphrey
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Brian Kerr
- USDA ARS, ARS National Laboratory for Agriculture and Environment, Ames, IA 50011, USA
| | - Spenser Becker
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Sophie Breuer
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Chloe Hagen
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Sarah Elefson
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | | |
Collapse
|
31
|
Nüse B, Holland T, Rauh M, Gerlach RG, Mattner J. L-arginine metabolism as pivotal interface of mutual host-microbe interactions in the gut. Gut Microbes 2023; 15:2222961. [PMID: 37358082 PMCID: PMC10294761 DOI: 10.1080/19490976.2023.2222961] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 06/05/2023] [Indexed: 06/27/2023] Open
Abstract
L-arginine (L-arg) is a versatile amino acid and a central intestinal metabolite in mammalian and microbial organisms. Thus, L-arg participates as precursor of multiple metabolic pathways in the regulation of cell division and growth. It also serves as a source of carbon, nitrogen, and energy or as a substrate for protein synthesis. Consequently, L-arg can simultaneously modify mammalian immune functions, intraluminal metabolism, intestinal microbiota, and microbial pathogenesis. While dietary intake, protein turnover or de novo synthesis usually supply L-arg in sufficient amounts, the expression of several key enzymes of L-arg metabolism can change rapidly and dramatically following inflammation, sepsis, or injury. Consequently, the availability of L-arg can be restricted due to increased catabolism, transforming L-arg into an essential amino acid. Here, we review the enzymatic pathways of L-arg metabolism in microbial and mammalian cells and their role in immune function, intraluminal metabolism, colonization resistance, and microbial pathogenesis in the gut.
Collapse
Affiliation(s)
- Björn Nüse
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Tim Holland
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Manfred Rauh
- Department of Pediatrics and Adolescent Medicine, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Roman G. Gerlach
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Jochen Mattner
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Medical Immunology Campus Erlangen, FAUErlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
32
|
Wang Y, Wang D, Yang L, Zhang Y. Metabolic reprogramming in the immunosuppression of tumor-associated macrophages. Chin Med J (Engl) 2022; 135:2405-2416. [PMID: 36385099 PMCID: PMC9945195 DOI: 10.1097/cm9.0000000000002426] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Indexed: 11/18/2022] Open
Abstract
Tumor-associated macrophages (TAMs) are an essential proportion of tumor-infiltrating immune cells in the tumor microenvironment (TME) and have immunosuppressive functions. The high plasticity and corresponding phenotypic transformation of TAMs facilitate oncogenesis and progression, and suppress antineoplastic responses. Due to the uncontrolled proliferation of tumor cells, metabolism homeostasis is regulated, leading to a series of alterations in the metabolite profiles in the TME, which have a commensurate influence on immune cells. Metabolic reprogramming of the TME has a profound impact on the polarization and function of TAMs, and can alter their metabolic profiles. TAMs undergo a series of metabolic reprogramming processes, involving glucose, lipid, and amino acid metabolism, and other metabolic pathways, which terminally promote the development of the immunosuppressive phenotype. TAMs express a pro-tumor phenotype by increasing glycolysis, fatty acid oxidation, cholesterol efflux, and arginine, tryptophan, glutamate, and glutamine metabolism. Previous studies on the metabolism of TAMs demonstrated that metabolic reprogramming has intimate crosstalk with anti-tumor or pro-tumor phenotypes and is crucial for the function of TAMs themselves. Targeting metabolism-related pathways is emerging as a promising therapeutic modality because of the massive metabolic remodeling that occurs in malignant cells and TAMs. Evidence reveals that the efficacy of immune checkpoint inhibitors is improved when combined with therapeutic strategies targeting metabolism-related pathways. In-depth research on metabolic reprogramming and potential therapeutic targets provides more options for anti-tumor treatment and creates new directions for the development of new immunotherapy methods. In this review, we elucidate the metabolic reprogramming of TAMs and explore how they sustain immunosuppressive phenotypes to provide a perspective for potential metabolic therapies.
Collapse
Affiliation(s)
- Ying Wang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Dan Wang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Li Yang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, Henan 450052, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yi Zhang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, Henan 450052, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan 450052, China
| |
Collapse
|
33
|
Fernández-Lainez C, de la Mora-de la Mora I, Enríquez-Flores S, García-Torres I, Flores-López LA, Gutiérrez-Castrellón P, de Vos P, López-Velázquez G. The Giardial Arginine Deiminase Participates in Giardia-Host Immunomodulation in a Structure-Dependent Fashion via Toll-like Receptors. Int J Mol Sci 2022; 23:ijms231911552. [PMID: 36232855 PMCID: PMC9569872 DOI: 10.3390/ijms231911552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 11/30/2022] Open
Abstract
Beyond the problem in public health that protist-generated diseases represent, understanding the variety of mechanisms used by these parasites to interact with the human immune system is of biological and medical relevance. Giardia lamblia is an early divergent eukaryotic microorganism showing remarkable pathogenic strategies for evading the immune system of vertebrates. Among various multifunctional proteins in Giardia, arginine deiminase is considered an enzyme that plays multiple regulatory roles during the life cycle of this parasite. One of its most important roles is the crosstalk between the parasite and host. Such a molecular "chat" is mediated in human cells by membrane receptors called Toll-like receptors (TLRs). Here, we studied the importance of the 3D structure of giardial arginine deiminase (GlADI) to immunomodulate the human immune response through TLRs. We demonstrated the direct effect of GlADI on human TLR signaling. We predicted its mode of interaction with TLRs two and four by using the AlphaFold-predicted structure of GlADI and molecular docking. Furthermore, we showed that the immunomodulatory capacity of this virulent factor of Giardia depends on the maintenance of its 3D structure. Finally, we also showed the influence of this enzyme to exert specific responses on infant-like dendritic cells.
Collapse
Affiliation(s)
- Cynthia Fernández-Lainez
- Laboratorio de Errores Innatos del Metabolismo y Tamiz, Instituto Nacional de Pediatria, Ciudad de México 04530, Mexico
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, 9700 Groningen, The Netherlands
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | | | - Sergio Enríquez-Flores
- Laboratorio de Biomoleculas y Salud Infantil, Instituto Nacional de Pediatria, Ciudad de México 04530, Mexico
| | - Itzhel García-Torres
- Laboratorio de Biomoleculas y Salud Infantil, Instituto Nacional de Pediatria, Ciudad de México 04530, Mexico
| | - Luis A. Flores-López
- Laboratorio de Biomoleculas y Salud Infantil, Instituto Nacional de Pediatria, Ciudad de México 04530, Mexico
- CONACYT-Instituto Nacional de Pediatria, Secretaria de Salud, Ciudad de México 04530, Mexico
| | | | - Paul de Vos
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, 9700 Groningen, The Netherlands
| | - Gabriel López-Velázquez
- Laboratorio de Biomoleculas y Salud Infantil, Instituto Nacional de Pediatria, Ciudad de México 04530, Mexico
- Correspondence: ; Tel.: +52-5510840900 (ext. 1726)
| |
Collapse
|
34
|
The Retrospective on Atypical Brucella Species Leads to Novel Definitions. Microorganisms 2022; 10:microorganisms10040813. [PMID: 35456863 PMCID: PMC9025488 DOI: 10.3390/microorganisms10040813] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 02/01/2023] Open
Abstract
The genus Brucella currently comprises twelve species of facultative intracellular bacteria with variable zoonotic potential. Six of them have been considered as classical, causing brucellosis in terrestrial mammalian hosts, with two species originated from marine mammals. In the past fifteen years, field research as well as improved pathogen detection and typing have allowed the identification of four new species, namely Brucella microti, Brucella inopinata, Brucella papionis, Brucella vulpis, and of numerous strains, isolated from a wide range of hosts, including for the first time cold-blooded animals. While their genome sequences are still highly similar to those of classical strains, some of them are characterized by atypical phenotypes such as higher growth rate, increased resistance to acid stress, motility, and lethality in the murine infection model. In our review, we provide an overview of state-of-the-art knowledge about these novel Brucella sp., with emphasis on their phylogenetic positions in the genus, their metabolic characteristics, acid stress resistance mechanisms, and their behavior in well-established in cellulo and in vivo infection models. Comparison of phylogenetic classification and phenotypical properties between classical and novel Brucella species and strains finally lead us to propose a more adapted terminology, distinguishing between core and non-core, and typical versus atypical brucellae, respectively.
Collapse
|
35
|
The arginine deaminase system plays distinct roles in Borrelia burgdorferi and Borrelia hermsii. PLoS Pathog 2022; 18:e1010370. [PMID: 35286343 PMCID: PMC8947608 DOI: 10.1371/journal.ppat.1010370] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/24/2022] [Accepted: 02/14/2022] [Indexed: 11/23/2022] Open
Abstract
Borrelia species are amino acid auxotrophs that utilize di- and tri- peptides obtained through their oligopeptide transport system to supply amino acids for replicative growth during their enzootic cycles. However, Borrelia species from both the Lyme disease (LD) and relapsing fever (RF) groups harbor an amino acid transport and catabolism system, the Arginine Deiminase System (ADI), that could potentially augment intracellular L-arginine required for growth. RF spirochetes contain a “complete”, four gene ADI (arcA, B, D, and C) while LD spirochetes harbor arcA, B, and sometimes D but lack arcC (encoding carbamate kinase). In this study, we evaluated the role of the ADI system in bacterial survival and virulence and discovered important differences in RF and LD ADIs. Both in vitro and in a murine model of infection, B. hermsii cells significantly reduced extracellular L-arginine levels and that reduction was dependent on arginine deiminase expression. Conversely, B. burgdorferi did not reduce the concentration of L-arginine during in vitro growth experiments nor during infection of the mammalian host, suggesting a fundamental difference in the ability to directly utilize L-arginine compared to B. hermsii. Further experiments using a panel of mutants generated in both B. burgdorferi and B. hermsii, identified important differences in growth characteristics and ADI transcription and protein expression. We also found that the ADI system plays a key role in blood and spleen colonization in RF spirochetes. In this study we have identified divergent metabolic strategies in two closely related human pathogens, that ultimately impacts the host-pathogen interface during infection. Reports of tick-borne diseases have been steadily increasing in the US and the number of Lyme disease cases caused by B. burgdorferi have tripled since the late 1990’s. Although less common, cases of tick-borne relapsing fever, caused by B. hermsii and B. turicatae in the US, have increased as well. While transmitted by different ticks and maintained in unique enzootic cycles, the closely related spirochetes B. burgdorferi and B. hermsii share numerous genetic features including a truncated and streamlined capacity for metabolic activity. In this study we combine genetic and biochemical assays to define the role of the ADI in the infective cycles of B. burgdorferi and B. hermsii. When we compared B. burgdorferi and B. hermsii, we identified important differences in their respective ADI’s including operon arrangement, sensitivity to L-arginine and L-ornithine levels, as well as gene and protein expression. In addition, we show that arginine deiminase is required to reduce host L-arginine levels during murine infection with B. hermsii. This study provides new insights into the metabolic activities of two medically relevant spirochetes and highlights the dynamic nature of host-pathogen interactions.
Collapse
|
36
|
Kim JK, Park EJ, Jo EK. Itaconate, Arginine, and Gamma-Aminobutyric Acid: A Host Metabolite Triad Protective Against Mycobacterial Infection. Front Immunol 2022; 13:832015. [PMID: 35185924 PMCID: PMC8855927 DOI: 10.3389/fimmu.2022.832015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/13/2022] [Indexed: 12/29/2022] Open
Abstract
Immune metabolic regulation shapes the host-pathogen interaction during infection with Mycobacterium tuberculosis (Mtb), the pathogen of human tuberculosis (TB). Several immunometabolites generated by metabolic remodeling in macrophages are implicated in innate immune protection against Mtb infection by fine-tuning defensive pathways. Itaconate, produced by the mitochondrial enzyme immunoresponsive gene 1 (IRG1), has antimicrobial and anti-inflammatory effects, restricting intracellular mycobacterial growth. L-arginine, a component of the urea cycle, is critical for the synthesis of nitric oxide (NO) and is implicated in M1-mediated antimycobacterial responses in myeloid cells. L-citrulline, a by-product of NO production, contributes to host defense and generates L-arginine in myeloid cells. In arginase 1-expressing cells, L-arginine can be converted into ornithine, a polyamine precursor that enhances autophagy and antimicrobial protection against Mtb in Kupffer cells. Gamma-aminobutyric acid (GABA), a metabolite and neurotransmitter, activate autophagy to induce antimycobacterial host defenses. This review discusses the recent updates of the functions of the three metabolites in host protection against mycobacterial infection. Understanding the mechanisms by which these metabolites promote host defense will facilitate the development of novel host-directed therapeutics against Mtb and drug-resistant bacteria.
Collapse
Affiliation(s)
- Jin Kyung Kim
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, South Korea
- Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon, South Korea
| | - Eun-Jin Park
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, South Korea
- Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon, South Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, South Korea
- Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon, South Korea
- *Correspondence: Eun-Kyeong Jo,
| |
Collapse
|
37
|
Huang Z, Zhang Y, Zheng X, Liu Z, Yao D, Zhao Y, Chen X, Aweya JJ. Functional characterization of arginine metabolic pathway enzymes in the antibacterial immune response of penaeid shrimp. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 127:104293. [PMID: 34648768 DOI: 10.1016/j.dci.2021.104293] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/09/2021] [Accepted: 10/10/2021] [Indexed: 06/13/2023]
Abstract
Arginine metabolism pathway enzymes and products are important modulators of several physiological processes in animals, including immune response. Although some components of the arginine metabolic pathway have been reported in penaeid shrimps, no systematic study has explored all the key pathway enzymes involved in shrimp antimicrobial response. Here, we explored the role of the three key arginine metabolism enzymes (nitric-oxide synthase (NOS), arginase (ARG), agmatinase (AGM)) in Penaeus vannamei antimicrobial immunity. First, P. vannamei homologs of ARG and AGM (PvARG and PvAGM) were cloned and found to be evolutionally conserved with invertebrate counterparts. Transcript levels of PvARG, PvAGM, and PvNOS were ubiquitously expressed in healthy shrimp tissues and induced in hemocytes and hepatopancreas upon challenge with Gram-negative (Vibrio parahaemolyticus) and Gram-positive (Streptoccocus iniae) bacteria, suggesting their involvement in shrimp antimicrobial immune response. Besides, RNA interference knockdown and enzyme activity assay revealed an antagonistic relationship between PvARG/PvAGM and PvNOS, while this relationship was broken upon pathogen stimulation. Interestingly, knockdown of PvNOS increased Vibrio abundance in shrimp hemolymph, whereas knockdown of PvAGR reduced Vibrio abundance. Taken together, our present data shows that homologs of the key arginine metabolism pathway enzymes in penaeid shrimp (PvARG, PvAGM, and PvNOS) work synergistically and/or antagonistically to modulate antibacterial immune response.
Collapse
Affiliation(s)
- Zishu Huang
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Yueling Zhang
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, China
| | - Xiaoyu Zheng
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Zhuoyan Liu
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Defu Yao
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Yongzhen Zhao
- Guangxi Academy of Fishery Sciences, Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Nanning, 530021, China
| | - Xiaohan Chen
- Guangxi Academy of Fishery Sciences, Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Nanning, 530021, China
| | - Jude Juventus Aweya
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China.
| |
Collapse
|
38
|
Pruss KM, Enam F, Battaglioli E, DeFeo M, Diaz OR, Higginbottom SK, Fischer CR, Hryckowian AJ, Van Treuren W, Dodd D, Kashyap P, Sonnenburg JL. Oxidative ornithine metabolism supports non-inflammatory C. difficile colonization. Nat Metab 2022; 4:19-28. [PMID: 34992297 PMCID: PMC8803604 DOI: 10.1038/s42255-021-00506-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 11/12/2021] [Indexed: 01/08/2023]
Abstract
The enteric pathogen Clostridioides difficile (Cd) is responsible for a toxin-mediated infection that causes more than 200,000 recorded hospitalizations and 13,000 deaths in the United States every year1. However, Cd can colonize the gut in the absence of disease symptoms. Prevalence of asymptomatic colonization by toxigenic Cd in healthy populations is high; asymptomatic carriers are at increased risk of infection compared to noncolonized individuals and may be a reservoir for transmission of Cd infection2,3. Elucidating the molecular mechanisms by which Cd persists in the absence of disease is necessary for understanding pathogenesis and developing refined therapeutic strategies. Here, we show with gut microbiome metatranscriptomic analysis that mice recalcitrant to Cd infection and inflammation exhibit increased community-wide expression of arginine and ornithine metabolic pathways. To query Cd metabolism specifically, we leverage RNA sequencing in gnotobiotic mice infected with two wild-type strains (630 and R20291) and isogenic toxin-deficient mutants of these strains to differentiate inflammation-dependent versus -independent transcriptional states. A single operon encoding oxidative ornithine degradation is consistently upregulated across non-toxigenic Cd strains. Combining untargeted and targeted metabolomics with bacterial and host genetics, we demonstrate that both diet- and host-derived sources of ornithine provide a competitive advantage to Cd, suggesting a mechanism for Cd persistence within a non-inflammatory, healthy gut.
Collapse
Affiliation(s)
- Kali M Pruss
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Fatima Enam
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Eric Battaglioli
- Department of Medicine, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA, USA
| | - Mary DeFeo
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Oscar R Diaz
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Steven K Higginbottom
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Curt R Fischer
- ChEM-H, Stanford University, Stanford, CA, USA
- Octant Bio, Emeryville, CA, USA
| | - Andrew J Hryckowian
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - William Van Treuren
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Dylan Dodd
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Purna Kashyap
- Department of Medicine, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Justin L Sonnenburg
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.
- Center for Human Microbiome Studies, Stanford, CA, USA.
| |
Collapse
|
39
|
Muller J, Attia R, Zedet A, Girard C, Pudlo M. An Update on Arginase Inhibitors and Inhibitory Assays. Mini Rev Med Chem 2021; 22:1963-1976. [PMID: 34967285 DOI: 10.2174/1389557522666211229105703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/18/2021] [Accepted: 10/22/2021] [Indexed: 11/22/2022]
Abstract
Arginase, which converts arginine into ornithine and urea, is a promising therapeutic target. Arginase is involved in cardiovascular diseases, parasitic infections and, through a critical role in immunity, in some cancers. There is a need to develop effective arginase inhibitors and therefore efforts to identify and optimize new inhibitors are increasing. Several methods of evaluating arginase activity are available, but few directly measure the product. Radiometric assays need to separate urea and dying reactions require acidic conditions and sometimes heating. Hence, there are a variety of different approaches available, and each approach has its own limits and benefits. In this review, we provide an update on arginase inhibitors, followed by a discussion on available arginase assays and alternative methods, with a focus on the intrinsic biases and parameters that are likely to impact results.
Collapse
Affiliation(s)
- Jason Muller
- PEPITE EA4267, Université de Bourgogne Franche-Comté, F-25030 Besançon, France
| | - Rym Attia
- PEPITE EA4267, Université de Bourgogne Franche-Comté, F-25030 Besançon, France
| | - Andy Zedet
- PEPITE EA4267, Université de Bourgogne Franche-Comté, F-25030 Besançon, France
| | - Corine Girard
- PEPITE EA4267, Université de Bourgogne Franche-Comté, F-25030 Besançon, France
| | - Marc Pudlo
- PEPITE EA4267, Université de Bourgogne Franche-Comté, F-25030 Besançon, France
| |
Collapse
|
40
|
Cheng J, Cai W, Zong S, Yu Y, Wei F. Metabolite transporters as regulators of macrophage polarization. Naunyn Schmiedebergs Arch Pharmacol 2021; 395:13-25. [PMID: 34851450 DOI: 10.1007/s00210-021-02173-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/27/2021] [Indexed: 12/20/2022]
Abstract
Macrophages are myeloid immune cells, present in virtually all tissues which exhibit considerable functional plasticity and diversity. Macrophages are often subdivided into two distinct subsets described as classically activated (M1) and alternatively activated (M2) macrophages. It has recently emerged that metabolites regulate the polarization and function of macrophages by altering metabolic pathways. These metabolites often cannot freely pass the cell membrane and are therefore transported by the corresponding metabolite transporters. Here, we reviewed how glucose, glutamate, lactate, fatty acid, and amino acid transporters are involved in the regulation of macrophage polarization. Understanding the interactions among metabolites, metabolite transporters, and macrophage function under physiological and pathological conditions may provide further insights for novel drug targets for the treatment of macrophage-associated diseases. In Brief Recent studies have shown that the polarization and function of macrophages are regulated by metabolites, most of which cannot pass freely through biofilms. Therefore, metabolite transporters required for the uptake of metabolites have emerged seen as important regulators of macrophage polarization and may represent novel drug targets for the treatment of macrophage-associated diseases. Here, we summarize the role of metabolite transporters as regulators of macrophage polarization.
Collapse
Affiliation(s)
- Jingwen Cheng
- School of Pharmacy, Bengbu Medical College, Donghai Avenue, Bengbu, 2600233030, Anhui, China
| | - Weiwei Cai
- School of Pharmacy, Bengbu Medical College, Donghai Avenue, Bengbu, 2600233030, Anhui, China
| | - Shiye Zong
- School of Pharmacy, Bengbu Medical College, Donghai Avenue, Bengbu, 2600233030, Anhui, China
| | - Yun Yu
- School of Pharmacy, Bengbu Medical College, Donghai Avenue, Bengbu, 2600233030, Anhui, China
| | - Fang Wei
- School of Pharmacy, Bengbu Medical College, Donghai Avenue, Bengbu, 2600233030, Anhui, China. .,Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, 2600 Donghai Avenue, Bengbu, 233030, Anhui, China.
| |
Collapse
|
41
|
Marselli L, Bosi E, De Luca C, Del Guerra S, Tesi M, Suleiman M, Marchetti P. Arginase 2 and Polyamines in Human Pancreatic Beta Cells: Possible Role in the Pathogenesis of Type 2 Diabetes. Int J Mol Sci 2021; 22:ijms222212099. [PMID: 34829980 PMCID: PMC8625980 DOI: 10.3390/ijms222212099] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/16/2021] [Accepted: 10/26/2021] [Indexed: 12/12/2022] Open
Abstract
Arginase 2 (ARG2) is a manganese metalloenzyme involved in several tissue specific processes, from physiology to pathophysiology. It is variably expressed in extra-hepatic tissues and is located in the mitochondria. In human pancreatic beta cells, ARG2 is downregulated in type 2 diabetes. The enzyme regulates the synthesis of polyamines, that are involved in pancreas development and regulation of beta cell function. Here, we discuss several features of ARG2 and polyamines, which can be relevant to the pathophysiology of type 2 diabetes.
Collapse
|
42
|
Massier S, Robin B, Mégroz M, Wright A, Harper M, Hayes B, Cosette P, Broutin I, Boyce JD, Dé E, Hardouin J. Phosphorylation of Extracellular Proteins in Acinetobacter baumannii in Sessile Mode of Growth. Front Microbiol 2021; 12:738780. [PMID: 34659171 PMCID: PMC8517400 DOI: 10.3389/fmicb.2021.738780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/30/2021] [Indexed: 11/21/2022] Open
Abstract
Acinetobacter baumannii is a problematic nosocomial pathogen owing to its increasing resistance to antibiotics and its great ability to survive in the hospital environment, which is linked to its capacity to form biofilms. Structural and functional investigations of post-translational modifications, such as phosphorylations, may lead to identification of candidates for therapeutic targets against this pathogen. Here, we present the first S/T/Y phosphosecretome of two A. baumannii strains, the reference strain ATCC 17978 and the virulent multi-drug resistant strain AB0057, cultured in two modes of growth (planktonic and biofilm) using TiO2 chromatography followed by high resolution mass spectrometry. In ATCC 17978, we detected a total of 137 (97 phosphoproteins) and 52 (33 phosphoproteins) phosphosites in biofilm and planktonic modes of growth, respectively. Similarly, in AB0057, 155 (119 phosphoproteins) and 102 (74 phosphoproteins) phosphosites in biofilm and planktonic modes of growth were identified, respectively. Both strains in the biofilm mode of growth showed a higher number of phosphosites and phosphoproteins compared to planktonic growth. Several phosphorylated sites are localized in key regions of proteins involved in either drug resistance (β-lactamases), adhesion to host tissues (pilins), or protein secretion (Hcp). Site-directed mutagenesis of the Hcp protein, essential for type VI secretion system-mediated interbacterial competition, showed that four of the modified residues are essential for type VI secretion system activity.
Collapse
Affiliation(s)
- Sébastien Massier
- Normandie Univ., UNIROUEN, INSA Rouen, CNRS, Polymers, Biopolymers, Surfaces Laboratory, Rouen, France
- PISSARO Proteomic Facility, IRIB, Mont-Saint-Aignan, France
| | - Brandon Robin
- Normandie Univ., UNIROUEN, INSA Rouen, CNRS, Polymers, Biopolymers, Surfaces Laboratory, Rouen, France
| | - Marianne Mégroz
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Amy Wright
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Marina Harper
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Brooke Hayes
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Pascal Cosette
- Normandie Univ., UNIROUEN, INSA Rouen, CNRS, Polymers, Biopolymers, Surfaces Laboratory, Rouen, France
- PISSARO Proteomic Facility, IRIB, Mont-Saint-Aignan, France
| | | | - John D. Boyce
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Emmanuelle Dé
- Normandie Univ., UNIROUEN, INSA Rouen, CNRS, Polymers, Biopolymers, Surfaces Laboratory, Rouen, France
| | - Julie Hardouin
- Normandie Univ., UNIROUEN, INSA Rouen, CNRS, Polymers, Biopolymers, Surfaces Laboratory, Rouen, France
- PISSARO Proteomic Facility, IRIB, Mont-Saint-Aignan, France
| |
Collapse
|
43
|
Stanojević S, Blagojević V, Ćuruvija I, Vujić V. Lactobacillus rhamnosus Affects Rat Peritoneal Cavity Cell Response to Stimulation with Gut Microbiota: Focus on the Host Innate Immunity. Inflammation 2021; 44:2429-2447. [PMID: 34505975 DOI: 10.1007/s10753-021-01513-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 07/05/2021] [Indexed: 12/01/2022]
Abstract
Gut microbiota contribute to shaping the immune repertoire of the host, whereas probiotics may exert beneficial effects by modulating immune responses. Having in mind the differences in both the composition of gut microbiota and the immune response between rats of Albino Oxford (AO) and Dark Agouti (DA) rat strains, we investigated if intraperitoneal (i.p.) injection of live Lactobacillus rhamnosus (LB) may influence peritoneal cavity cell response to in vitro treatments with selected microbiota in the rat strain-dependent manner. Peritoneal cavity cells from AO and DA rats were lavaged two (d2) and seven days (d7) following i.p. injection with LB and tested for NO, urea, and H2O2 release basally, or upon in vitro stimulation with autologous E.coli and Enterococcus spp. Whereas the single i.p. injection of LB nearly depleted resident macrophages and increased the proportion of small inflammatory macrophages and monocytes on d2 in both rat strains, greater proportion of MHCIIhiCD163- and CCR7+ cells and increased NO/diminished H2O2 release in DA compared with AO rats suggest a more intense inflammatory priming by LB in this rat strain. Even though E.coli- and/or Enterococcus spp.-induced rise in H2O2 release in vitro was abrogated by LB in cells from both rat strains, LB prevented microbiota-induced increase in NO/urea ratio only in cells from AO and augmented it in cells from DA rats. Thus, the immunomodulatory properties may not be constant for particular probiotic bacteria, but shaped by innate immunity of the host.
Collapse
Affiliation(s)
- Stanislava Stanojević
- Immunology Research Centre "Branislav Janković, Institute of Virology, Vaccines and Sera "Torlak, Belgrade, Serbia. .,Immunology Research Centre "Branislav Janković, Institute of Virology, Vaccines and Sera "Torlak, Belgrade, Serbia.
| | - Veljko Blagojević
- Immunology Research Centre "Branislav Janković, Institute of Virology, Vaccines and Sera "Torlak, Belgrade, Serbia
| | - Ivana Ćuruvija
- Immunology Research Centre "Branislav Janković, Institute of Virology, Vaccines and Sera "Torlak, Belgrade, Serbia
| | - Vesna Vujić
- Department of Chemistry, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
44
|
Li H, Zhang M, Jiang H, Fan Y, Li X, Wang R, Qian Y, Li M. Arginase plays an important role in ammonia detoxification of yellow catfish Pelteobagrus fulvidraco. FISH & SHELLFISH IMMUNOLOGY 2021; 115:171-178. [PMID: 34146674 DOI: 10.1016/j.fsi.2021.06.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/02/2021] [Accepted: 06/07/2021] [Indexed: 06/12/2023]
Abstract
A two-stage study was carried out to test the mechanism of arginase in ammonia detoxification of yellow catfish. At stage 1, fish was injected lethal half concentration ammonium acetate and 0.9% sodium chloride respectively every 12 h in six replicates for 72 h. The result found that no significant different in serum ammonia contents of fish in ammonium acetate group at hours 12, 24, 36, 48, 60 and 72. At stage 2, ammonium acetate group was split in two, one continued to injected with ammonium acetate (NH3 group) and the other with ammonium acetate and valine (an inhibitor of arginase; Val group); Sodium chloride group also was split in two, one continued to injected with sodium chloride (NaCl group) and the other with sodium chloride and valine (NaCl + Val group). The experiment continued for 12 h. Serum ammonia and liver arginine contents of fish in Val group were higher than those of fish in NH3 group; Compared with NaCl group, arginase activity and ARG 1 expression in liver of fish in Val group were lower; Fish in NaCl and NaCl + Val groups had the lowest serum superoxide dismutase activities, malondialdehyde, tumor necrosis factor-α, interleukin 1 and 8 contents, TNF-α, IL-1 and IL-8 expressions than fish in NH3 and Val groups, and had the higher lysozyme activities, complement 3 and 4 contents. This study indicates that ammonia poisoning would lead to oxidative damage, immunosuppression and inflammation in yellow catfish; Arginase may be an important target of ammonia toxicity in yellow catfish; Exogenous arginine supplementation might alleviate the symptoms of ammonia poisoning in yellow catfish.
Collapse
Affiliation(s)
- Haolong Li
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Muzi Zhang
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Haibo Jiang
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Yuwen Fan
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Xue Li
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Rixin Wang
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Yunxia Qian
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Ming Li
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
45
|
Sellau J, Groneberg M, Hoenow S, Lotter H. The underlying cellular immune pathology of Entamoeba histolytica-induced hepatic amoebiasis. J Hepatol 2021; 75:481-482. [PMID: 34120776 DOI: 10.1016/j.jhep.2021.03.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/11/2021] [Accepted: 03/22/2021] [Indexed: 12/04/2022]
Affiliation(s)
- Julie Sellau
- Department of Molecular Biology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.
| | - Marie Groneberg
- Department of Molecular Biology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Stefan Hoenow
- Department of Molecular Biology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Hannelore Lotter
- Department of Molecular Biology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.
| |
Collapse
|
46
|
Host-pathogen interaction between macrophage co-cultures with Staphylococcus aureus biofilms. Eur J Clin Microbiol Infect Dis 2021; 40:2563-2574. [PMID: 34312744 DOI: 10.1007/s10096-021-04306-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 07/05/2021] [Indexed: 10/20/2022]
Abstract
The ability of Staphylococcus aureus to form biofilms is an important virulence factor. During the infectious process, the interaction between biofilms and immune cells is determinant; however, the properties that make biofilms resistant to the immune system are not well characterized. In order to better understand this, we evaluated the in vitro interaction of macrophages during the early stages of S. aureus biofilm formation. Biofilm formation was evaluated by crystal violet staining, light microscopy, and confocal scanning laser microscopy. Furthermore, different activation on L-arginine pathways such as nitric oxide (NO•) release and the arginase, the production of reactive oxygen species (ROS), the total oxidative stress response (OSR), and levels of cytokine liberation, were determined. Our findings show that the interaction between biofilms and macrophages results in stimuli for catabolism of L-arginine via arginase, but not for NO•, an increase of ROS production, and activation of the non-enzymatic OSR. We also observed the production of IL-6, but not of TNFα o IL-10 in these co-cultures. These results contribute to a better understanding of host-pathogen interactions and suggest that biofilms increase resistance against immune cell mechanisms, a phenomenon that could contribute to the ability of S. aureus biofilms to establish mature biofilms.
Collapse
|
47
|
Brigo N, Pfeifhofer-Obermair C, Tymoszuk P, Demetz E, Engl S, Barros-Pinkelnig M, Dichtl S, Fischer C, Valente De Souza L, Petzer V, von Raffay L, Hilbe R, Berger S, Seifert M, Schleicher U, Bogdan C, Weiss G. Cytokine-Mediated Regulation of ARG1 in Macrophages and Its Impact on the Control of Salmonella enterica Serovar Typhimurium Infection. Cells 2021; 10:1823. [PMID: 34359992 PMCID: PMC8307077 DOI: 10.3390/cells10071823] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 07/06/2021] [Accepted: 07/13/2021] [Indexed: 12/24/2022] Open
Abstract
Arginase 1 (ARG1) is a cytosolic enzyme that cleaves L-arginine, the substrate of inducible nitric oxide synthase (iNOS), and thereby impairs the control of various intracellular pathogens. Herein, we investigated the role of ARG1 during infection with Salmonella enterica serovar Typhimurium (S.tm). To study the impact of ARG1 on Salmonella infections in vitro, bone marrow-derived macrophages (BMDM) from C57BL/6N wild-type, ARG1-deficient Tie2Cre+/-ARG1fl/fl and NRAMPG169 C57BL/6N mice were infected with S.tm. In wild-type BMDM, ARG1 was induced by S.tm and further upregulated by the addition of interleukin (IL)-4, whereas interferon-γ had an inhibitory effect. Deletion of ARG1 did not result in a reduction in bacterial numbers. In vivo, Arg1 mRNA was upregulated in the spleen, but not in the liver of C57BL/6N mice following intraperitoneal S.tm infection. The genetic deletion of ARG1 (Tie2Cre+/-ARG1fl/fl) or its pharmacological inhibition with CB-1158 neither affected the numbers of S.tm in spleen, liver and blood nor the expression of host response genes such as iNOS, IL-6 or tumour necrosis factor (TNF). Furthermore, ARG1 was dispensable for pathogen control irrespective of the presence or absence of the phagolysosomal natural resistance-associated macrophage protein 1 (NRAMP1). Thus, unlike the detrimental function of ARG1 seen during infections with other intraphagosomal microorganisms, ARG1 did not support bacterial survival in systemic salmonellosis, indicating differential roles of arginine metabolism for host immune response and microbe persistence depending on the type of pathogen.
Collapse
Affiliation(s)
- Natascha Brigo
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria; (N.B.); (C.P.-O.); (P.T.); (E.D.); (S.E.); (M.B.-P.); (S.D.); (C.F.); (L.V.D.S.); (V.P.); (L.v.R.); (R.H.); (S.B.); (M.S.)
| | - Christa Pfeifhofer-Obermair
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria; (N.B.); (C.P.-O.); (P.T.); (E.D.); (S.E.); (M.B.-P.); (S.D.); (C.F.); (L.V.D.S.); (V.P.); (L.v.R.); (R.H.); (S.B.); (M.S.)
| | - Piotr Tymoszuk
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria; (N.B.); (C.P.-O.); (P.T.); (E.D.); (S.E.); (M.B.-P.); (S.D.); (C.F.); (L.V.D.S.); (V.P.); (L.v.R.); (R.H.); (S.B.); (M.S.)
| | - Egon Demetz
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria; (N.B.); (C.P.-O.); (P.T.); (E.D.); (S.E.); (M.B.-P.); (S.D.); (C.F.); (L.V.D.S.); (V.P.); (L.v.R.); (R.H.); (S.B.); (M.S.)
| | - Sabine Engl
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria; (N.B.); (C.P.-O.); (P.T.); (E.D.); (S.E.); (M.B.-P.); (S.D.); (C.F.); (L.V.D.S.); (V.P.); (L.v.R.); (R.H.); (S.B.); (M.S.)
| | - Marina Barros-Pinkelnig
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria; (N.B.); (C.P.-O.); (P.T.); (E.D.); (S.E.); (M.B.-P.); (S.D.); (C.F.); (L.V.D.S.); (V.P.); (L.v.R.); (R.H.); (S.B.); (M.S.)
| | - Stefanie Dichtl
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria; (N.B.); (C.P.-O.); (P.T.); (E.D.); (S.E.); (M.B.-P.); (S.D.); (C.F.); (L.V.D.S.); (V.P.); (L.v.R.); (R.H.); (S.B.); (M.S.)
| | - Christine Fischer
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria; (N.B.); (C.P.-O.); (P.T.); (E.D.); (S.E.); (M.B.-P.); (S.D.); (C.F.); (L.V.D.S.); (V.P.); (L.v.R.); (R.H.); (S.B.); (M.S.)
| | - Lara Valente De Souza
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria; (N.B.); (C.P.-O.); (P.T.); (E.D.); (S.E.); (M.B.-P.); (S.D.); (C.F.); (L.V.D.S.); (V.P.); (L.v.R.); (R.H.); (S.B.); (M.S.)
- Christian Doppler Laboratory for Iron Metabolism and Anemia Research, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Verena Petzer
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria; (N.B.); (C.P.-O.); (P.T.); (E.D.); (S.E.); (M.B.-P.); (S.D.); (C.F.); (L.V.D.S.); (V.P.); (L.v.R.); (R.H.); (S.B.); (M.S.)
| | - Laura von Raffay
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria; (N.B.); (C.P.-O.); (P.T.); (E.D.); (S.E.); (M.B.-P.); (S.D.); (C.F.); (L.V.D.S.); (V.P.); (L.v.R.); (R.H.); (S.B.); (M.S.)
| | - Richard Hilbe
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria; (N.B.); (C.P.-O.); (P.T.); (E.D.); (S.E.); (M.B.-P.); (S.D.); (C.F.); (L.V.D.S.); (V.P.); (L.v.R.); (R.H.); (S.B.); (M.S.)
| | - Sylvia Berger
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria; (N.B.); (C.P.-O.); (P.T.); (E.D.); (S.E.); (M.B.-P.); (S.D.); (C.F.); (L.V.D.S.); (V.P.); (L.v.R.); (R.H.); (S.B.); (M.S.)
| | - Markus Seifert
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria; (N.B.); (C.P.-O.); (P.T.); (E.D.); (S.E.); (M.B.-P.); (S.D.); (C.F.); (L.V.D.S.); (V.P.); (L.v.R.); (R.H.); (S.B.); (M.S.)
- Christian Doppler Laboratory for Iron Metabolism and Anemia Research, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Ulrike Schleicher
- Mikrobiologisches Institut—Klinische Mikrobiologie, Immunologie, und Hygiene, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Wasserturmstraße 3/5, 91054 Erlangen, Germany; (U.S.); (C.B.)
- Medical Immunology Campus Erlangen, FAU Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Christian Bogdan
- Mikrobiologisches Institut—Klinische Mikrobiologie, Immunologie, und Hygiene, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Wasserturmstraße 3/5, 91054 Erlangen, Germany; (U.S.); (C.B.)
- Medical Immunology Campus Erlangen, FAU Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Günter Weiss
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria; (N.B.); (C.P.-O.); (P.T.); (E.D.); (S.E.); (M.B.-P.); (S.D.); (C.F.); (L.V.D.S.); (V.P.); (L.v.R.); (R.H.); (S.B.); (M.S.)
- Christian Doppler Laboratory for Iron Metabolism and Anemia Research, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| |
Collapse
|
48
|
Hernández VM, Arteaga A, Dunn MF. Diversity, properties and functions of bacterial arginases. FEMS Microbiol Rev 2021; 45:6308370. [PMID: 34160574 DOI: 10.1093/femsre/fuab034] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/17/2021] [Indexed: 02/07/2023] Open
Abstract
The metalloenzyme arginase hydrolyzes L-arginine to produce L-ornithine and urea. In bacteria, arginase has important functions in basic nitrogen metabolism and redistribution, production of the key metabolic precursor L-ornithine, stress resistance and pathogenesis. We describe the regulation and specific functions of the arginase pathway as well as summarize key characteristics of related arginine catabolic pathways. The use of arginase-derived ornithine as a precursor molecule is reviewed. We discuss the biochemical and transcriptional regulation of arginine metabolism, including arginase, with the latter topic focusing on the RocR and AhrC transcriptional regulators in the model organism Bacillus subtilis. Finally, we consider similarities and contrasts in the structure and catalytic mechanism of the arginases from Bacillus caldovelox and Helicobacter pylori. The overall aim of this review is to provide a panorama of the diversity of physiological functions, regulation, and biochemical features of arginases in a variety of bacterial species.
Collapse
Affiliation(s)
- Victor M Hernández
- Programa de Genómica Funcional de Procariotes, Centro de Ciencias Genómicas-Universidad Nacional Autonoma de México, Cuernavaca, Morelos, C.P. 62210, Mexico
| | - Alejandra Arteaga
- Programa de Genómica Funcional de Procariotes, Centro de Ciencias Genómicas-Universidad Nacional Autonoma de México, Cuernavaca, Morelos, C.P. 62210, Mexico
| | - Michael F Dunn
- Programa de Genómica Funcional de Procariotes, Centro de Ciencias Genómicas-Universidad Nacional Autonoma de México, Cuernavaca, Morelos, C.P. 62210, Mexico
| |
Collapse
|
49
|
Luo M, Xu L, Qian Z, Sun X. Infection-Associated Thymic Atrophy. Front Immunol 2021; 12:652538. [PMID: 34113341 PMCID: PMC8186317 DOI: 10.3389/fimmu.2021.652538] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 05/07/2021] [Indexed: 12/17/2022] Open
Abstract
The thymus is a vital organ of the immune system that plays an essential role in thymocyte development and maturation. Thymic atrophy occurs with age (physiological thymic atrophy) or as a result of viral, bacterial, parasitic or fungal infection (pathological thymic atrophy). Thymic atrophy directly results in loss of thymocytes and/or destruction of the thymic architecture, and indirectly leads to a decrease in naïve T cells and limited T cell receptor diversity. Thus, it is important to recognize the causes and mechanisms that induce thymic atrophy. In this review, we highlight current progress in infection-associated pathogenic thymic atrophy and discuss its possible mechanisms. In addition, we discuss whether extracellular vesicles/exosomes could be potential carriers of pathogenic substances to the thymus, and potential drugs for the treatment of thymic atrophy. Having acknowledged that most current research is limited to serological aspects, we look forward to the possibility of extending future work regarding the impact of neural modulation on thymic atrophy.
Collapse
Affiliation(s)
- Mingli Luo
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Lingxin Xu
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Zhengyu Qian
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Xi Sun
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| |
Collapse
|
50
|
Abd-Elhamid TH, Abdel-Rahman IAM, Mahmoud AR, Allemailem KS, Almatroudi A, Fouad SS, Abdella OH, Elshabrawy HA, El-Kady AM. A Complementary Herbal Product for Controlling Giardiasis. Antibiotics (Basel) 2021; 10:477. [PMID: 33919165 PMCID: PMC8143091 DOI: 10.3390/antibiotics10050477] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 01/18/2023] Open
Abstract
Giardiasis is an intestinal protozoal disease caused by Giardia lamblia. The disease became a global health issue due to development of resistance to commonly used drugs. Since many plant-derived products have been used to treat many parasitic infestations, we aimed to assess the therapeutic utility of Artemisia annua (A. annua) for giardiasis. We showed that NO production was significantly reduced whereas serum levels of IL-6, IFN-γ, and TNF-α were elevated in infected hamsters compared to uninfected ones. Additionally, infection resulted in increased numbers of intraepithelial lymphocytes and reduced villi heights, goblet cell numbers, and muscularis externa thickness. We also showed that inducible NO synthase (iNOS) and caspase-3 were elevated in the intestine of infected animals. However, treatment with A. annua significantly reduced the intestinal trophozoite counts and IEL numbers, serum IL-6, IFN-γ, and TNF-α, while increasing NO and restoring villi heights, GC numbers, and ME thickness. Moreover, A. annua treatment resulted in lower levels of caspase-3, which indicates a protective effect from apoptotic cell death. Interestingly, A. annua therapeutic effects are comparable to metronidazole. In conclusion, our results show that A. annua extract is effective in alleviating infection-induced intestinal inflammation and pathological effects, which implies its potential therapeutic utility in controlling giardiasis.
Collapse
Affiliation(s)
- Tarek Hamdy Abd-Elhamid
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt;
| | - Iman A. M. Abdel-Rahman
- Department of Pharmacognosy, Faculty of Pharmacy, South Valley University, Qena 83523, Egypt;
| | - Amany Refaat Mahmoud
- Department of Human Anatomy and Embryology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt;
- Department of Basic Medical Sciences, Unaizah College of Medicine and Medical Sciences, Qassim University, Unaizah 51911, Saudi Arabia
| | - Khaled S. Allemailem
- Department of Medical laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (K.S.A.); (A.A.)
| | - Ahmad Almatroudi
- Department of Medical laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (K.S.A.); (A.A.)
| | - Samer S. Fouad
- Qena University Hospital, South Valley University, Qena 83523, Egypt;
| | - Osama H. Abdella
- Department of Medical Parasitology, Faculty of Medicine, South Valley University, Qena 83523, Egypt;
| | - Hatem A. Elshabrawy
- Department of Molecular and Cellular Biology, College of Osteopathic Medicine, Sam Houston State University, Conroe, TX 77304, USA
| | - Asmaa M. El-Kady
- Department of Medical Parasitology, Faculty of Medicine, South Valley University, Qena 83523, Egypt;
| |
Collapse
|