1
|
Palmero Casanova B, Albentosa González L, Maringer K, Sabariegos R, Mas A. A conserved role for AKT in the replication of emerging flaviviruses in vertebrates and vectors. Virus Res 2024; 348:199447. [PMID: 39117146 PMCID: PMC11364138 DOI: 10.1016/j.virusres.2024.199447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/11/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
One third of all emerging infectious diseases are vector-borne, with no licensed antiviral therapies available against any vector-borne viruses. Zika virus and Usutu virus are two emerging flaviviruses transmitted primarily by mosquitoes. These viruses modulate different host pathways, including the PI3K/AKT/mTOR pathway. Here, we report the effect on ZIKV and USUV replication of two AKT inhibitors, Miransertib (ARQ-092, allosteric inhibitor) and Capivasertib (AZD5363, competitive inhibitor) in different mammalian and mosquito cell lines. Miransertib showed a stronger inhibitory effect against ZIKV and USUV than Capivasertib in mammalian cells, while Capivasertib showed a stronger effect in mosquito cells. These findings indicate that AKT plays a conserved role in flavivirus infection, in both the vertebrate host and invertebrate vector. Nevertheless, the specific function of AKT may vary depending on the host species. These findings indicate that AKT may be playing a conserved role in flavivirus infection in both, the vertebrate host and the invertebrate vector. However, the specific function of AKT may vary depending on the host species. A better understanding of virus-host interactions is therefore required to develop new treatments to prevent human disease and new approaches to control transmission by insect vectors.
Collapse
Affiliation(s)
- Blanca Palmero Casanova
- Instituto de Investigación Biomédica de la UCLM (IB-UCLM), C/Almansa 14, 02008 Albacete, Spain
| | - Laura Albentosa González
- Instituto de Investigación Biomédica de la UCLM (IB-UCLM), C/Almansa 14, 02008 Albacete, Spain; Facultad de farmacia, Universidad de Castilla-La Mancha, Av. Dr. José María Sánchez Ibáñez, s/n, 02008 Albacete, Spain
| | - Kevin Maringer
- The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 0NF, UK
| | - Rosario Sabariegos
- Instituto de Investigación Biomédica de la UCLM (IB-UCLM), C/Almansa 14, 02008 Albacete, Spain; Unidad asociada de Biomedicina UCLM-CSIC. Universidad de Castilla-La Mancha. C/Altagracia 50, 13071 Ciudad Real, Spain; Facultad de Medicina, Universidad de Castilla-La Mancha. C/Almansa 14, 02008 Albacete, Spain
| | - Antonio Mas
- Instituto de Investigación Biomédica de la UCLM (IB-UCLM), C/Almansa 14, 02008 Albacete, Spain; Facultad de farmacia, Universidad de Castilla-La Mancha, Av. Dr. José María Sánchez Ibáñez, s/n, 02008 Albacete, Spain; Unidad asociada de Biomedicina UCLM-CSIC. Universidad de Castilla-La Mancha. C/Altagracia 50, 13071 Ciudad Real, Spain.
| |
Collapse
|
2
|
Ruengket P, Roytrakul S, Tongthainan D, Taruyanon K, Sangkharak B, Limudomporn P, Pongsuchart M, Udom C, Fungfuang W. Serum proteomic profile of wild stump-tailed macaques (Macaca arctoides) infected with malaria parasites in Thailand. PLoS One 2023; 18:e0293579. [PMID: 37910477 PMCID: PMC10619813 DOI: 10.1371/journal.pone.0293579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 10/16/2023] [Indexed: 11/03/2023] Open
Abstract
The number of patients infected with simian malaria is gradually increasing in many countries of Southeast Asia and South America. The most important risk factor for a zoonotic spillover event of malarial infection is mostly influenced by the interaction between humans, monkeys, and vectors. In this study, we determine the protein expression profile of a wild stump-tailed macaque (Macaca arctoides) from a total of 32 blood samples collected from Prachuap Kiri Khan Province, Thailand. The malarial parasite was analyzed using nested polymerase chain reaction (PCR) assays by dividing the samples into three groups: non-infected, mono-infected, and multiple-infected. The identification and differential proteomic expression profiles were determined using liquid chromatography with tandem mass spectrometry (LC-MS/MS) and bioinformatics tools. A total of 9,532 proteins (total proteins) were identified with the filter-based selection methods analysis, and a subset of 440 proteins were found to be different between each group. Within these proteins, the GhostKOALA functional enrichment analysis indicated that 142 important proteins were associated with either of the organismal system (28.87%), genetic information processing (23.24%), environmental information processing (16.20%), metabolism (13.38%), cellular processes (11.97%), or causing human disease (6.34%). Additionally, using interaction network analysis, nine potential reporter proteins were identified. Here, we report the first study on the protein profiles differentially expressed in the serum of wild stump-tailed macaques between non, mono, and multiple malarial infected living in a natural transmission environment. Our findings demonstrate that differentially expressed proteins implicated in host defense through lipid metabolism, involved with TGF pathway were suppressed, while those with the apoptosis pathway, such as cytokines and proinflammation signals were increased. Including the parasite's response via induced hemolysis and disruption of myeloid cells. A greater understanding of the fundamental processes involved in a malarial infection and host response can be crucial for developing diagnostic tools, medication development, and therapies to improve the health of those affected by the disease.
Collapse
Affiliation(s)
- Pakorn Ruengket
- Genetic Engineering and Bioinformatics Program, Graduate School, Kasetsart University, Bangkok, Thailand
| | - Sittiruk Roytrakul
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Daraka Tongthainan
- Faculty of Veterinary Medicine, Rajamongala University of Technology Tawan-ok, Chonburi, Thailand
| | - Kanokwan Taruyanon
- Department of National Parks, Wildlife Conservation Division Protected Areas Regional Office, Wildlife and Plant Conservation, Ratchaburi, Thailand
| | - Bencharong Sangkharak
- Department of National Parks, Wildlife Conservation Division, Wildlife and Plant Conservation, Bangkok, Thailand
| | - Paviga Limudomporn
- Faculty of Science, Department of Zoology, Kasetsart University, Bangkok, Thailand
| | - Mongkol Pongsuchart
- Faculty of Science, Department of Zoology, Kasetsart University, Bangkok, Thailand
| | - Chanya Udom
- Faculty of Science, Department of Zoology, Kasetsart University, Bangkok, Thailand
| | - Wirasak Fungfuang
- Faculty of Science, Department of Zoology, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
3
|
Darby AM, Lazzaro BP. Interactions between innate immunity and insulin signaling affect resistance to infection in insects. Front Immunol 2023; 14:1276357. [PMID: 37915572 PMCID: PMC10616485 DOI: 10.3389/fimmu.2023.1276357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/03/2023] [Indexed: 11/03/2023] Open
Abstract
An active immune response is energetically demanding and requires reallocation of nutrients to support resistance to and tolerance of infection. Insulin signaling is a critical global regulator of metabolism and whole-body homeostasis in response to nutrient availability and energetic needs, including those required for mobilization of energy in support of the immune system. In this review, we share findings that demonstrate interactions between innate immune activity and insulin signaling primarily in the insect model Drosophila melanogaster as well as other insects like Bombyx mori and Anopheles mosquitos. These studies indicate that insulin signaling and innate immune activation have reciprocal effects on each other, but that those effects vary depending on the type of pathogen, route of infection, and nutritional status of the host. Future research will be required to further understand the detailed mechanisms by which innate immunity and insulin signaling activity impact each other.
Collapse
Affiliation(s)
- Andrea M. Darby
- Department of Entomology, Cornell University, Ithaca, NY, United States
- Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, NY, United States
| | - Brian P. Lazzaro
- Department of Entomology, Cornell University, Ithaca, NY, United States
- Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, NY, United States
| |
Collapse
|
4
|
Hoermann A, Habtewold T, Selvaraj P, Del Corsano G, Capriotti P, Inghilterra MG, Kebede TM, Christophides GK, Windbichler N. Gene drive mosquitoes can aid malaria elimination by retarding Plasmodium sporogonic development. SCIENCE ADVANCES 2022; 8:eabo1733. [PMID: 36129981 PMCID: PMC9491717 DOI: 10.1126/sciadv.abo1733] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 08/04/2022] [Indexed: 05/12/2023]
Abstract
Gene drives hold promise for the genetic control of malaria vectors. The development of vector population modification strategies hinges on the availability of effector mechanisms impeding parasite development in transgenic mosquitoes. We augmented a midgut gene of the malaria mosquito Anopheles gambiae to secrete two exogenous antimicrobial peptides, magainin 2 and melittin. This small genetic modification, capable of efficient nonautonomous gene drive, hampers oocyst development in both Plasmodium falciparum and Plasmodium berghei. It delays the release of infectious sporozoites, while it simultaneously reduces the life span of homozygous female transgenic mosquitoes. Modeling the spread of this modification using a large-scale agent-based model of malaria epidemiology reveals that it can break the cycle of disease transmission across a range of transmission intensities.
Collapse
Affiliation(s)
- Astrid Hoermann
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Tibebu Habtewold
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Prashanth Selvaraj
- Institute for Disease Modeling, Bill and Melinda Gates Foundation, Seattle, WA 98109, USA
| | | | - Paolo Capriotti
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | | | - Temesgen M. Kebede
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | | | | |
Collapse
|
5
|
Leung S, Windbichler N, Wenger EA, Bever CA, Selvaraj P. Population replacement gene drive characteristics for malaria elimination in a range of seasonal transmission settings: a modelling study. Malar J 2022; 21:226. [PMID: 35883100 PMCID: PMC9327287 DOI: 10.1186/s12936-022-04242-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 07/11/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Gene drives are a genetic engineering method where a suite of genes is inherited at higher than Mendelian rates and has been proposed as a promising new vector control strategy to reinvigorate the fight against malaria in sub-Saharan Africa. METHODS Using an agent-based model of malaria transmission with vector genetics, the impacts of releasing population-replacement gene drive mosquitoes on malaria transmission are examined and the population replacement gene drive system parameters required to achieve local elimination within a spatially-resolved, seasonal Sahelian setting are quantified. The performance of two different gene drive systems-"classic" and "integral"-are evaluated. Various transmission regimes (low, moderate, and high-corresponding to annual entomological inoculation rates of 10, 30, and 80 infectious bites per person) and other simultaneous interventions, including deployment of insecticide-treated nets (ITNs) and passive healthcare-seeking, are also simulated. RESULTS Local elimination probabilities decreased with pre-existing population target site resistance frequency, increased with transmission-blocking effectiveness of the introduced antiparasitic gene and drive efficiency, and were context dependent with respect to fitness costs associated with the introduced gene. Of the four parameters, transmission-blocking effectiveness may be the most important to focus on for improvements to future gene drive strains because a single release of classic gene drive mosquitoes is likely to locally eliminate malaria in low to moderate transmission settings only when transmission-blocking effectiveness is very high (above ~ 80-90%). However, simultaneously deploying ITNs and releasing integral rather than classic gene drive mosquitoes significantly boosts elimination probabilities, such that elimination remains highly likely in low to moderate transmission regimes down to transmission-blocking effectiveness values as low as ~ 50% and in high transmission regimes with transmission-blocking effectiveness values above ~ 80-90%. CONCLUSION A single release of currently achievable population replacement gene drive mosquitoes, in combination with traditional forms of vector control, can likely locally eliminate malaria in low to moderate transmission regimes within the Sahel. In a high transmission regime, higher levels of transmission-blocking effectiveness than are currently available may be required.
Collapse
Affiliation(s)
- Shirley Leung
- Institute for Disease Modeling, Bill & Melinda Gates Foundation, Seattle, WA, USA
| | - Nikolai Windbichler
- Department of Life Sciences, Imperial College London, South Kensington, London, UK
| | - Edward A Wenger
- Institute for Disease Modeling, Bill & Melinda Gates Foundation, Seattle, WA, USA
| | - Caitlin A Bever
- Institute for Disease Modeling, Bill & Melinda Gates Foundation, Seattle, WA, USA
| | - Prashanth Selvaraj
- Institute for Disease Modeling, Bill & Melinda Gates Foundation, Seattle, WA, USA.
| |
Collapse
|
6
|
Fofana A, Yerbanga RS, Bilgo E, Ouedraogo GA, Gendrin M, Ouedraogo JB. The Strategy of Paratransgenesis for the Control of Malaria Transmission. FRONTIERS IN TROPICAL DISEASES 2022. [DOI: 10.3389/fitd.2022.867104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Insect-borne diseases are responsible for important burdens on health worldwide particularly in Africa. Malaria alone causes close to half a million deaths every year, mostly in developing, tropical and subtropical countries, with 94% of the global deaths in 2019 occurring in the WHO African region. With several decades, vector control measures have been fundamental to fight against malaria. Considering the spread of resistance to insecticides in mosquitoes and to drugs in parasites, the need for novel strategies to inhibit the transmission of the disease is pressing. In recent years, several studies have focused on the interaction of malaria parasites, bacteria and their insect vectors. Their findings suggested that the microbiota of mosquitoes could be used to block Plasmodium transmission. A strategy, termed paratransgenesis, aims to interfere with the development of malaria parasites within their vectors through genetically-modified microbes, which produce antimalarial effectors inside the insect host. Here we review the progress of the paratransgenesis approach. We provide a historical perspective and then focus on the choice of microbial strains and on genetic engineering strategies. We finally describe the different steps from laboratory design to field implementation to fight against malaria.
Collapse
|
7
|
Kuniyori M, Sato N, Yokoyama N, Kawazu SI, Xuan X, Suzuki H, Fujisaki K, Umemiya-Shirafuji R. Vitellogenin-2 Accumulation in the Fat Body and Hemolymph of Babesia-Infected Haemaphysalis longicornis Ticks. Front Cell Infect Microbiol 2022; 12:908142. [PMID: 35800383 PMCID: PMC9253295 DOI: 10.3389/fcimb.2022.908142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
The protozoan parasite Babesia spp. invades into tick oocytes and remains in the offspring. The transovarial transmission phenomenon of Babesia in ticks has been demonstrated experimentally, but the molecular mechanisms remain unclear. Babesia invasion into oocytes occurs along with the progression of oogenesis. In the present study, to find the key tick factor(s) for Babesia transmission, we focused on molecules involved in yolk protein precursor (vitellogenin, Vg) synthesis and Vg uptake, which are crucial events in tick oogenesis. With a Haemaphysalis longicornis tick–Babesia ovata experimental model, the expression profiles of Akt, target of rapamycin, S6K, GATA, and Vg, Vg synthesis-related genes, and Vg receptor (VgR) and autophagy-related gene 6 (ATG6), Vg uptake-related genes, were analyzed using real-time PCR using tissues collected during the preovipositional period in Babesia-infected ticks. The expression levels of H. longicornis Vg-2 (HlVg-2) and HlVg-3 decreased in the fat body of Babesia-infected ticks 1 day after engorgement. In the ovary, HlVg-2 mRNA expression was significantly higher in Babesia-infected ticks than in uninfected ticks 1 and 2 days after engorgement and decreased 3 days after engorgement. HlVgR expression was significantly lower in Babesia-infected ticks than in uninfected ticks 2 and 4 days after engorgement. HlATG6 had a lower gene expression in Babesia-infected ticks compared to uninfected ticks 2 days after engorgement. Additionally, western blot analysis using protein extracts from each collected tissue revealed that H. longicornis Vg-2 (HlVg-2) accumulate in the fat body and hemolymph of Babesia-infected ticks. These results suggest that Vg uptake from the hemolymph to the ovary was suppressed in the presence of B. ovata. Moreover, HlVg-2 knockdown ticks had a lower detection rate of B. ovata DNA in the ovary and a significant reduction of B. ovata DNA in the hemolymph compared with control ticks. Taken together, our results suggest that accumulated HlVg-2 is associated with Babesia infection or transmission in the tick body. These findings, besides previous reports on VgR, provide important information to elucidate the transovarial transmission mechanisms of pathogens in tick vectors.
Collapse
Affiliation(s)
- Maki Kuniyori
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Nariko Sato
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Naoaki Yokoyama
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Shin-ichiro Kawazu
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Xuenan Xuan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Hiroshi Suzuki
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Kozo Fujisaki
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
- National Agricultural and Food Research Organization, Tsukuba, Japan
| | - Rika Umemiya-Shirafuji
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
- *Correspondence: Rika Umemiya-Shirafuji,
| |
Collapse
|
8
|
Dong Y, Dong S, Dizaji NB, Rutkowski N, Pohlenz T, Myles K, Dimopoulos G. The Aedes aegypti siRNA pathway mediates broad-spectrum defense against human pathogenic viruses and modulates antibacterial and antifungal defenses. PLoS Biol 2022; 20:e3001668. [PMID: 35679279 PMCID: PMC9182253 DOI: 10.1371/journal.pbio.3001668] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 05/11/2022] [Indexed: 01/08/2023] Open
Abstract
The mosquito's innate immune system defends against a variety of pathogens, and the conserved siRNA pathway plays a central role in the control of viral infections. Here, we show that transgenic overexpression of Dicer2 (Dcr2) or R2d2 resulted in an accumulation of 21-nucleotide viral sequences that was accompanied by a significant suppression of dengue virus (DENV), Zika virus (ZIKV), and chikungunya virus (CHIKV) replication, thus indicating the broad-spectrum antiviral response mediated by the siRNA pathway that can be applied for the development of novel arbovirus control strategies. Interestingly, overexpression of Dcr2 or R2d2 regulated the mRNA abundance of a variety of antimicrobial immune genes, pointing to additional functions of DCR2 and R2D2 as well as cross-talk between the siRNA pathway and other immune pathways. Accordingly, transgenic overexpression of Dcr2 or R2d2 resulted in a lesser proliferation of the midgut microbiota and increased resistance to bacterial and fungal infections.
Collapse
Affiliation(s)
- Yuemei Dong
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Shengzhang Dong
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Nahid Borhani Dizaji
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Natalie Rutkowski
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Tyler Pohlenz
- Texas A & M University, Department of Entomology, TAMU College Station, Texas, United States of America
| | - Kevin Myles
- Texas A & M University, Department of Entomology, TAMU College Station, Texas, United States of America
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
9
|
Pascini TV, Jeong YJ, Huang W, Pala ZR, Sá JM, Wells MB, Kizito C, Sweeney B, Alves E Silva TL, Andrew DJ, Jacobs-Lorena M, Vega-Rodríguez J. Transgenic Anopheles mosquitoes expressing human PAI-1 impair malaria transmission. Nat Commun 2022; 13:2949. [PMID: 35618711 PMCID: PMC9135733 DOI: 10.1038/s41467-022-30606-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 04/22/2022] [Indexed: 11/08/2022] Open
Abstract
In mammals, the serine protease plasmin degrades extracellular proteins during blood clot removal, tissue remodeling, and cell migration. The zymogen plasminogen is activated into plasmin by two serine proteases: tissue-type plasminogen activator (tPA) and urokinase-type plasminogen activator (uPA), a process regulated by plasminogen activator inhibitor 1 (PAI-1), a serine protease inhibitor that specifically inhibits tPA and uPA. Plasmodium gametes and sporozoites use tPA and uPA to activate plasminogen and parasite-bound plasmin degrades extracellular matrices, facilitating parasite motility in the mosquito and the mammalian host. Furthermore, inhibition of plasminogen activation by PAI-1 strongly blocks infection in both hosts. To block parasite utilization of plasmin, we engineered Anopheles stephensi transgenic mosquitoes constitutively secreting human PAI-1 (huPAI-1) in the midgut lumen, in the saliva, or both. Mosquitoes expressing huPAI-1 strongly reduced rodent and human Plasmodium parasite transmission to mosquitoes, showing that co-opting plasmin for mosquito infection is a conserved mechanism among Plasmodium species. huPAI-1 expression in saliva induced salivary gland deformation which affects sporozoite invasion and P. berghei transmission to mice, resulting in significant levels of protection from malaria. Targeting the interaction of malaria parasites with the fibrinolytic system using genetically engineered mosquitoes could be developed as an intervention to control malaria transmission.
Collapse
Affiliation(s)
- Tales V Pascini
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rm 2E20A, Rockville, MD, 20852, USA
| | - Yeong Je Jeong
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rm 2E20A, Rockville, MD, 20852, USA
| | - Wei Huang
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Zarna R Pala
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rm 2E20A, Rockville, MD, 20852, USA
| | - Juliana M Sá
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rm 2E20A, Rockville, MD, 20852, USA
| | - Michael B Wells
- Department of Cell Biology, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, G10 Hunterian, Baltimore, MD, 21205, USA
- Department of Biomedical Sciences, Idaho College of Osteopathic Medicine, Meridian, ID, 83642, USA
| | - Christopher Kizito
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Brendan Sweeney
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rm 2E20A, Rockville, MD, 20852, USA
| | - Thiago L Alves E Silva
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rm 2E20A, Rockville, MD, 20852, USA
| | - Deborah J Andrew
- Department of Cell Biology, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, G10 Hunterian, Baltimore, MD, 21205, USA
| | - Marcelo Jacobs-Lorena
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Joel Vega-Rodríguez
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rm 2E20A, Rockville, MD, 20852, USA.
| |
Collapse
|
10
|
Nanoliposomes Containing Carvacrol and Carvacrol-Rich Essential Oils as Effective Mosquitoes Larvicides. BIONANOSCIENCE 2022. [DOI: 10.1007/s12668-022-00971-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
11
|
Barletta Ferreira AB, Bahia AC, Pitaluga AN, Barros E, Gama dos Santos D, Bottino-Rojas V, Kubota MS, Oliveira PLD, Pimenta PFP, Traub-Csekö YM, Sorgine MHF. Sexual Dimorphism in Immune Responses and Infection Resistance in Aedes aegypti and Other Hematophagous Insect Vectors. FRONTIERS IN TROPICAL DISEASES 2022. [DOI: 10.3389/fitd.2022.847109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Sexual dimorphism in immune function is prevalent across different species, where males trade their ability to fight pathogens for a practical reproductive function while females favor an extended lifespan. In insects, these differences in immune function reflect an evolutionary life strategy, where females have a presumably more robust immune system than insect males. Here, we evaluate immune functioning in four male and female insect vectors, Aedes aegypti (Diptera, Culicidae), Anopheles aquasalis (Diptera, Culicidae), Lutzomyia longipalpis (Diptera, Psychodidae) and Rhodnius prolixus (Hemiptera, Reduviidae). We show evidence that challenges the concept of immune sexual dimorphism in three of these insect vectors. In the three Diptera species, A. aegypti, A. aquasalis and L. longipalpis that transmit arboviruses, Plasmodium spp. (Haemospororida, Plasmodiidae) and Leishmania spp. (Trypanosomatida, Trypanosomatidae), respectively, unchallenged adult males express higher levels of immune-related genes than adult females and immature developmental stages. The main components of the Toll, IMD, and Jak/STAT pathways and antimicrobial effectors are highly expressed in whole-body males. Additionally, males present lower midgut basal microbiota levels than females. In A. aegypti mosquitoes, the differences in immune gene expression and microbiota levels are established in adult mosquitoes but are not present at the recently emerged adults and pupal stage. Antibiotic treatment does not affect the consistently higher expression of immune genes in males, except defensin, which is reduced significantly after microbiota depletion and restored after re-introduction. Our data suggest that Diptera males have a basal state of activation of the immune system and that activation of a more robust response through systemic immune challenge acutely compromises their survival. The ones who survive clear the infection entirely. Females follow a different strategy where a moderate immune reaction render higher tolerance to infection and survival. In contrast, hematophagous adult males of the Hemiptera vector R. prolixus, which transmits Trypanosoma cruzi, present no differences in immune activation compared to females, suggesting that diet differences between males and females may influence immune sexual dimorphism. These findings expand our understanding of the biology of insect vectors of human pathogens, which can help to direct the development of new strategies to limit vector populations.
Collapse
|
12
|
Hun LV, Cheung KW, Brooks E, Zudekoff R, Luckhart S, Riehle MA. Increased insulin signaling in the Anopheles stephensi fat body regulates metabolism and enhances the host response to both bacterial challenge and Plasmodium falciparum infection. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 139:103669. [PMID: 34666189 PMCID: PMC8647039 DOI: 10.1016/j.ibmb.2021.103669] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/09/2021] [Accepted: 10/10/2021] [Indexed: 05/06/2023]
Abstract
In vertebrates and invertebrates, the insulin/insulin-like growth factor 1 (IGF1) signaling (IIS) cascade is highly conserved and plays a vital role in many different physiological processes. Among the many tissues that respond to IIS in mosquitoes, the fat body has a central role in metabolism, lifespan, reproduction, and innate immunity. We previously demonstrated that fat body specific expression of active Akt, a key IIS signaling molecule, in adult Anopheles stephensi and Aedes aegypti activated the IIS cascade and extended lifespan. Additionally, we found that transgenic females produced more vitellogenin (Vg) protein than non-transgenic mosquitoes, although this did not translate into increased fecundity. These results prompted us to further examine how IIS impacts immunity, metabolism, growth and development of these transgenic mosquitoes. We observed significant changes in glycogen, trehalose, triglycerides, glucose, and protein in young (3-5 d) transgenic mosquitoes relative to non-transgenic sibling controls, while only triglycerides were significantly changed in older (18 d) transgenic mosquitoes. More importantly, we demonstrated that enhanced fat body IIS decreased both the prevalence and intensity of Plasmodium falciparum infection in transgenic An. stephensi. Additionally, challenging transgenic An. stephensi with Gram-positive and Gram-negative bacteria altered the expression of several antimicrobial peptides (AMPs) and two anti-Plasmodium genes, nitric oxide synthase (NOS) and thioester complement-like protein (TEP1), relative to non-transgenic controls. Increased IIS in the fat body of adult female An. stephensi had little to no impact on body size, growth or development of progeny from transgenic mosquitoes relative to non-transgenic controls. This study both confirms and expands our understanding of the critical roles insulin signaling plays in regulating the diverse functions of the mosquito fat body.
Collapse
Affiliation(s)
- Lewis V Hun
- Department of Entomology, University of California Riverside, Riverside, CA, USA; Department of Entomology, University of Arizona, Tucson, AZ, USA
| | - Kong Wai Cheung
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, USA
| | - Elizabeth Brooks
- Department of Entomology, University of Arizona, Tucson, AZ, USA
| | - Rissa Zudekoff
- Department of Entomology, University of Arizona, Tucson, AZ, USA
| | - Shirley Luckhart
- Departrment of Entomology, Plant Pathology and Nematology and Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| | - Michael A Riehle
- Department of Entomology, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
13
|
Adelman ZN, Kojin BB. Malaria-Resistant Mosquitoes (Diptera: Culicidae); The Principle is Proven, But Will the Effectors Be Effective? JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:1997-2005. [PMID: 34018548 DOI: 10.1093/jme/tjab090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Indexed: 06/12/2023]
Abstract
Over the last few decades, a substantial number of anti-malarial effector genes have been evaluated for their ability to block parasite infection in the mosquito vector. While many of these approaches have yielded significant effects on either parasite intensity or prevalence of infection, just a few have been able to completely block transmission. Additionally, many approaches, while effective against the parasite, also disrupt or alter important aspects of mosquito physiology, leading to corresponding changes in lifespan, reproduction, and immunity. As the most promising approaches move towards field-based evaluation, questions of effector gene robustness and durability move to the forefront. In this forum piece, we critically evaluate past effector gene approaches with an eye towards developing a deeper pipeline to augment the current best candidates.
Collapse
Affiliation(s)
- Zach N Adelman
- Department of Entomology and AgriLife Research, Texas A&M University, College Station, TX, USA
| | - Bianca B Kojin
- Department of Entomology and AgriLife Research, Texas A&M University, College Station, TX, USA
| |
Collapse
|
14
|
Sugar feeding protects against arboviral infection by enhancing gut immunity in the mosquito vector Aedes aegypti. PLoS Pathog 2021; 17:e1009870. [PMID: 34473801 PMCID: PMC8412342 DOI: 10.1371/journal.ppat.1009870] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 08/06/2021] [Indexed: 12/27/2022] Open
Abstract
As mosquito females require a blood meal to reproduce, they can act as vectors of numerous pathogens, such as arboviruses (e.g. Zika, dengue and chikungunya viruses), which constitute a substantial worldwide public health burden. In addition to blood meals, mosquito females can also take sugar meals to get carbohydrates for their energy reserves. It is now recognised that diet is a key regulator of health and disease outcome through interactions with the immune system. However, this has been mostly studied in humans and model organisms. So far, the impact of sugar feeding on mosquito immunity and in turn, how this could affect vector competence for arboviruses has not been explored. Here, we show that sugar feeding increases and maintains antiviral immunity in the digestive tract of the main arbovirus vector Aedes aegypti. Our data demonstrate that the gut microbiota does not mediate the sugar-induced immunity but partly inhibits it. Importantly, sugar intake prior to an arbovirus-infected blood meal further protects females against infection with arboviruses from different families. Sugar feeding blocks arbovirus initial infection and dissemination from the gut and lowers infection prevalence and intensity, thereby decreasing the transmission potential of female mosquitoes. Finally, we show that the antiviral role of sugar is mediated by sugar-induced immunity. Overall, our findings uncover a crucial role of sugar feeding in mosquito antiviral immunity which in turn decreases vector competence for arboviruses. Since Ae. aegypti almost exclusively feed on blood in some natural settings, our findings suggest that this lack of sugar intake could increase the spread of mosquito-borne arboviral diseases.
Collapse
|
15
|
Caragata EP, Dong S, Dong Y, Simões ML, Tikhe CV, Dimopoulos G. Prospects and Pitfalls: Next-Generation Tools to Control Mosquito-Transmitted Disease. Annu Rev Microbiol 2021; 74:455-475. [PMID: 32905752 DOI: 10.1146/annurev-micro-011320-025557] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mosquito-transmitted diseases, including malaria and dengue, are a major threat to human health around the globe, affecting millions each year. A diverse array of next-generation tools has been designed to eliminate mosquito populations or to replace them with mosquitoes that are less capable of transmitting key pathogens. Many of these new approaches have been built on recent advances in CRISPR/Cas9-based genome editing. These initiatives have driven the development of pathogen-resistant lines, new genetics-based sexing methods, and new methods of driving desirable genetic traits into mosquito populations. Many other emerging tools involve microorganisms, including two strategies involving Wolbachia that are achieving great success in the field. At the same time, other mosquito-associated bacteria, fungi, and even viruses represent untapped sources of new mosquitocidal or antipathogen compounds. Although there are still hurdles to be overcome, the prospect that such approaches will reduce the impact of these diseases is highly encouraging.
Collapse
Affiliation(s)
- E P Caragata
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA; , , , , ,
| | - S Dong
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA; , , , , ,
| | - Y Dong
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA; , , , , ,
| | - M L Simões
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA; , , , , ,
| | - C V Tikhe
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA; , , , , ,
| | - G Dimopoulos
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA; , , , , ,
| |
Collapse
|
16
|
Wang M, An Y, Gao L, Dong S, Zhou X, Feng Y, Wang P, Dimopoulos G, Tang H, Wang J. Glucose-mediated proliferation of a gut commensal bacterium promotes Plasmodium infection by increasing mosquito midgut pH. Cell Rep 2021; 35:108992. [PMID: 33882310 PMCID: PMC8116483 DOI: 10.1016/j.celrep.2021.108992] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 12/06/2020] [Accepted: 03/24/2021] [Indexed: 12/30/2022] Open
Abstract
Plant-nectar-derived sugar is the major energy source for mosquitoes, but its influence on vector competence for malaria parasites remains unclear. Here, we show that Plasmodium berghei infection of Anopheles stephensi results in global metabolome changes, with the most significant impact on glucose metabolism. Feeding on glucose or trehalose (the main hemolymph sugars) renders the mosquito more susceptible to Plasmodium infection by alkalizing the mosquito midgut. The glucose/trehalose diets promote proliferation of a commensal bacterium, Asaia bogorensis, that remodels glucose metabolism in a way that increases midgut pH, thereby promoting Plasmodium gametogenesis. We also demonstrate that the sugar composition from different natural plant nectars influences A. bogorensis growth, resulting in a greater permissiveness to Plasmodium. Altogether, our results demonstrate that dietary glucose is an important determinant of mosquito vector competency for Plasmodium, further highlighting a key role for mosquito-microbiota interactions in regulating the development of the malaria parasite.
Collapse
Affiliation(s)
- Mengfei Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, PRC; Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200438, PRC
| | - Yanpeng An
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, PRC; State Key Laboratory of Genetic Engineering, Zhongshan Hospital and School of Life Sciences, Human Phenome Institute, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Fudan University, Shanghai 200438, PRC
| | - Li Gao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, PRC; Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200438, PRC
| | - Shengzhang Dong
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Xiaofeng Zhou
- Human Phenome Institute, Fudan University, Shanghai 200433, PRC
| | - Yuebiao Feng
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, PRC; Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200438, PRC
| | - Penghua Wang
- Department of Immunology, School of Medicine, The University of Connecticut Health Center, Farmington, CT 06030, USA
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Huiru Tang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, PRC; State Key Laboratory of Genetic Engineering, Zhongshan Hospital and School of Life Sciences, Human Phenome Institute, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Fudan University, Shanghai 200438, PRC.
| | - Jingwen Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, PRC; Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200438, PRC.
| |
Collapse
|
17
|
Hoermann A, Tapanelli S, Capriotti P, Del Corsano G, Masters EK, Habtewold T, Christophides GK, Windbichler N. Converting endogenous genes of the malaria mosquito into simple non-autonomous gene drives for population replacement. eLife 2021; 10:58791. [PMID: 33845943 PMCID: PMC8043746 DOI: 10.7554/elife.58791] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 03/21/2021] [Indexed: 12/15/2022] Open
Abstract
Gene drives for mosquito population replacement are promising tools for malaria control. However, there is currently no clear pathway for safely testing such tools in endemic countries. The lack of well-characterized promoters for infection-relevant tissues and regulatory hurdles are further obstacles for their design and use. Here we explore how minimal genetic modifications of endogenous mosquito genes can convert them directly into non-autonomous gene drives without disrupting their expression. We co-opted the native regulatory sequences of three midgut-specific loci of the malaria vector Anopheles gambiae to host a prototypical antimalarial molecule and guide-RNAs encoded within artificial introns that support efficient gene drive. We assess the propensity of these modifications to interfere with the development of Plasmodium falciparum and their effect on fitness. Because of their inherent simplicity and passive mode of drive such traits could form part of an acceptable testing pathway of gene drives for malaria eradication.
Collapse
Affiliation(s)
- Astrid Hoermann
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Sofia Tapanelli
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Paolo Capriotti
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | | | - Ellen Kg Masters
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Tibebu Habtewold
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | | | - Nikolai Windbichler
- Department of Life Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
18
|
Talyuli OAC, Bottino-Rojas V, Polycarpo CR, Oliveira PL, Paiva-Silva GO. Non-immune Traits Triggered by Blood Intake Impact Vectorial Competence. Front Physiol 2021; 12:638033. [PMID: 33737885 PMCID: PMC7960658 DOI: 10.3389/fphys.2021.638033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/08/2021] [Indexed: 11/13/2022] Open
Abstract
Blood-feeding arthropods are considered an enormous public health threat. They are vectors of a plethora of infectious agents that cause potentially fatal diseases like Malaria, Dengue fever, Leishmaniasis, and Lyme disease. These vectors shine due to their own physiological idiosyncrasies, but one biological aspect brings them all together: the requirement of blood intake for development and reproduction. It is through blood-feeding that they acquire pathogens and during blood digestion that they summon a collection of multisystemic events critical for vector competence. The literature is focused on how classical immune pathways (Toll, IMD, and JAK/Stat) are elicited throughout the course of vector infection. Still, they are not the sole determinants of host permissiveness. The dramatic changes that are the hallmark of the insect physiology after a blood meal intake are the landscape where a successful infection takes place. Dominant processes that occur in response to a blood meal are not canonical immunological traits yet are critical in establishing vector competence. These include hormonal circuitries and reproductive physiology, midgut permeability barriers, midgut homeostasis, energy metabolism, and proteolytic activity. On the other hand, the parasites themselves have a role in the outcome of these blood triggered physiological events, consistently using them in their favor. Here, to enlighten the knowledge on vector-pathogen interaction beyond the immune pathways, we will explore different aspects of the vector physiology, discussing how they give support to these long-dated host-parasite relationships.
Collapse
Affiliation(s)
- Octavio A C Talyuli
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vanessa Bottino-Rojas
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carla R Polycarpo
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Pedro L Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Gabriela O Paiva-Silva
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| |
Collapse
|
19
|
Oringanje C, Delacruz LR, Han Y, Luckhart S, Riehle MA. Overexpression of Activated AMPK in the Anopheles stephensi Midgut Impacts Mosquito Metabolism, Reproduction and Plasmodium Resistance. Genes (Basel) 2021; 12:genes12010119. [PMID: 33478058 PMCID: PMC7835765 DOI: 10.3390/genes12010119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial integrity and homeostasis in the midgut are key factors controlling mosquito fitness and anti-pathogen resistance. Targeting genes that regulate mitochondrial dynamics represents a potential strategy for limiting mosquito-borne diseases. AMP-activated protein kinase (AMPK) is a key cellular energy sensor found in nearly all eukaryotic cells. When activated, AMPK inhibits anabolic pathways that consume ATP and activates catabolic processes that synthesize ATP. In this study, we overexpressed a truncated and constitutively active α-subunit of AMPK under the control of the midgut-specific carboxypeptidase promotor in the midgut of female Anopheles stephensi. As expected, AMPK overexpression in homozygous transgenic mosquitoes was associated with changes in nutrient storage and metabolism, decreasing glycogen levels at 24 h post-blood feeding when transgene expression was maximal, and concurrently increasing circulating trehalose at the same time point. When transgenic lines were challenged with Plasmodium falciparum, we observed a significant decrease in the prevalence and intensity of infection relative to wild type controls. Surprisingly, we did not observe a significant difference in the survival of adult mosquitoes fed either sugar only or both sugar and bloodmeals throughout adult life. This may be due to the limited period that the transgene was activated before homeostasis was restored. However, we did observe a significant decrease in egg production, suggesting that manipulation of AMPK activity in the mosquito midgut resulted in the re-allocation of resources away from egg production. In summary, this work identifies midgut AMPK activity as an important regulator of metabolism, reproduction, and innate immunity in An. stephensi, a highly invasive and important malaria vector species.
Collapse
Affiliation(s)
| | | | - Yunan Han
- Department of Health Sciences, ECPI University, Virginia Beach, VA 23462, USA;
| | - Shirley Luckhart
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID 83844, USA;
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Michael A. Riehle
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA;
- Correspondence: ; Tel.: +1-520-626-8500
| |
Collapse
|
20
|
Evidence for Divergent Selection on Immune Genes between the African Malaria Vectors, Anopheles coluzzii and A. gambiae. INSECTS 2020; 11:insects11120893. [PMID: 33352887 PMCID: PMC7767042 DOI: 10.3390/insects11120893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/07/2020] [Accepted: 12/14/2020] [Indexed: 11/20/2022]
Abstract
Simple Summary A comparison of the genomes of the African malaria vectors, Anopheles gambiae and A. coluzzii, revealed that immune genes are highly diverged. Although these two species frequently co-occur within a single site, they occur in distinct larval habitats. Our results taken in the context of known differences in the larval habitats occupied by these taxa support the hypothesis that observed genetic divergence may be driven by immune response to microbial agents specific to these habitats. Strict within species mating may have subsequently evolved in part to maintain immunocompetence which might be compromised by dysregulation of immune pathways in hybrids. We conclude that the evolution of immune gene divergence among this important group of species may serve as a useful model to explore ecological speciation in general. Abstract During their life cycles, microbes infecting mosquitoes encounter components of the mosquito anti-microbial innate immune defenses. Many of these immune responses also mediate susceptibility to malaria parasite infection. In West Africa, the primary malaria vectors are Anopheles coluzzii and A. gambiae sensu stricto, which is subdivided into the Bamako and Savanna sub-taxa. Here, we performed whole genome comparisons of the three taxa as well as genotyping of 333 putatively functional SNPs located in 58 immune signaling genes. Genome data support significantly higher differentiation in immune genes compared with a randomly selected set of non-immune genes among the three taxa (permutation test p < 0.001). Among the 58 genes studied, the majority had one or more segregating mutations (72.9%) that were significantly diverged among the three taxa. Genes detected to be under selection include MAP2K4 and Raf. Despite the genome-wide distribution of immune genes, a high level of linkage disequilibrium (r2 > 0.8) was detected in over 27% of SNP pairs. We discuss the potential role of immune gene divergence as adaptations to the different larval habitats associated with A. gambiae taxa and as a potential force driving ecological speciation in this group of mosquitoes.
Collapse
|
21
|
Luckhart S, Riehle MA. Midgut Mitochondrial Function as a Gatekeeper for Malaria Parasite Infection and Development in the Mosquito Host. Front Cell Infect Microbiol 2020; 10:593159. [PMID: 33363053 PMCID: PMC7759495 DOI: 10.3389/fcimb.2020.593159] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 11/13/2020] [Indexed: 12/15/2022] Open
Abstract
Across diverse organisms, various physiologies are profoundly regulated by mitochondrial function, which is defined by mitochondrial fusion, biogenesis, oxidative phosphorylation (OXPHOS), and mitophagy. Based on our data and significant published studies from Caenorhabditis elegans, Drosophila melanogaster and mammals, we propose that midgut mitochondria control midgut health and the health of other tissues in vector mosquitoes. Specifically, we argue that trade-offs among resistance to infection, metabolism, lifespan, and reproduction in vector mosquitoes are fundamentally controlled both locally and systemically by midgut mitochondrial function.
Collapse
Affiliation(s)
- Shirley Luckhart
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, United States.,Department of Biological Sciences, University of Idaho, Moscow, ID, United States
| | - Michael A Riehle
- Department of Entomology, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
22
|
Taylor DM, Haney RS, Luckhart S. Aquatic Exposure to Abscisic Acid Transstadially Enhances Anopheles stephensi Resistance to Malaria Parasite Infection. Genes (Basel) 2020; 11:E1393. [PMID: 33255333 PMCID: PMC7761407 DOI: 10.3390/genes11121393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 11/21/2020] [Accepted: 11/22/2020] [Indexed: 12/13/2022] Open
Abstract
The ancient stress signaling molecule abscisic acid (ABA) is ubiquitous in animals and plants but is perhaps most well-known from its early discovery as a plant hormone. ABA can be released into water by plants and is found in nectar, but is also present in mammalian blood, three key contexts for mosquito biology. We previously established that addition of ABA to Anopheles stephensi larval rearing water altered immature development and life history traits of females derived from treated larvae, while addition of ABA to an infected bloodmeal increased resistance of adult female A. stephensi to human malaria parasite infection. Here we sought to determine whether larval treatment with ABA could similarly impact resistance to parasite infection in females derived from treated larvae and, if so, whether resistance could be extended to another parasite species. We examined nutrient levels and gene expression to demonstrate that ABA can transstadially alter resistance to a rodent malaria parasite with hallmarks of previously observed mechanisms of resistance following provision of ABA in blood to A. stephensi.
Collapse
Affiliation(s)
- Dean M. Taylor
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID 83844, USA; (D.M.T.); (R.S.H.)
| | - Reagan S. Haney
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID 83844, USA; (D.M.T.); (R.S.H.)
| | - Shirley Luckhart
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID 83844, USA; (D.M.T.); (R.S.H.)
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
| |
Collapse
|
23
|
Insulin Potentiates JAK/STAT Signaling to Broadly Inhibit Flavivirus Replication in Insect Vectors. Cell Rep 2020; 29:1946-1960.e5. [PMID: 31722209 PMCID: PMC6871768 DOI: 10.1016/j.celrep.2019.10.029] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 09/03/2019] [Accepted: 10/08/2019] [Indexed: 12/13/2022] Open
Abstract
The World Health Organization estimates that more than half of the world’s population is at risk for vector-borne diseases, including arboviruses. Because many arboviruses are mosquito borne, investigation of the insect immune response will help identify targets to reduce the spread of arboviruses. Here, we use a genetic screening approach to identify an insulin-like receptor as a component of the immune response to arboviral infection. We determine that vertebrate insulin reduces West Nile virus (WNV) replication in Drosophila melanogaster as well as WNV, Zika, and dengue virus titers in mosquito cells. Mechanistically, we show that insulin signaling activates the JAK/STAT, but not RNAi, pathway via ERK to control infection in Drosophila cells and Culex mosquitoes through an integrated immune response. Finally, we validate that insulin priming of adult female Culex mosquitoes through a blood meal reduces WNV infection, demonstrating an essential role for insulin signaling in insect antiviral responses to human pathogens. The world’s population is at risk for infection with several flaviviruses. Ahlers et al. use a living library of insects to determine that an insulin-like receptor controls West Nile virus infection. Insulin signaling is antiviral via the JAK/STAT pathway in both fly and mosquito models and against a range of flaviviruses.
Collapse
|
24
|
Liu WQ, Chen SQ, Bai HQ, Wei QM, Zhang SN, Chen C, Zhu YH, Yi TW, Guo XP, Chen SY, Yin MJ, Sun CF, Liang SH. The Ras/ERK signaling pathway couples antimicrobial peptides to mediate resistance to dengue virus in Aedes mosquitoes. PLoS Negl Trop Dis 2020; 14:e0008660. [PMID: 32866199 PMCID: PMC7485967 DOI: 10.1371/journal.pntd.0008660] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 09/11/2020] [Accepted: 07/29/2020] [Indexed: 12/23/2022] Open
Abstract
Aedes mosquitoes can transmit dengue and several other severe vector-borne viral diseases, thereby influencing millions of people worldwide. Insects primarily control and clear the viral infections via their innate immune systems. Mitogen-Activated Protein Kinases (MAPKs) and antimicrobial peptides (AMPs) are both evolutionarily conserved components of the innate immune systems. In this study, we investigated the role of MAPKs in Aedes mosquitoes following DENV infection by using genetic and pharmacological approaches. We demonstrated that knockdown of ERK, but not of JNK or p38, significantly enhances the viral replication in Aedes mosquito cells. The Ras/ERK signaling is activated in both the cells and midguts of Aedes mosquitoes following DENV infection, and thus plays a role in restricting the viral infection, as both genetic and pharmacological activation of the Ras/ERK pathway significantly decreases the viral titers. In contrast, inhibition of the Ras/ERK pathway enhances DENV infection. In addition, we identified a signaling crosstalk between the Ras/ERK pathway and DENV-induced AMPs in which defensin C participates in restricting DENV infection in Aedes mosquitoes. Our results reveal that the Ras/ERK signaling pathway couples AMPs to mediate the resistance of Aedes mosquitoes to DENV infection, which provides a new insight into understanding the crosstalk between MAPKs and AMPs in the innate immunity of mosquito vectors during the viral infection.
Collapse
Affiliation(s)
- Wen-Quan Liu
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Si-Qi Chen
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Hao-Qiang Bai
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qi-Mei Wei
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Sheng-Nan Zhang
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Chen Chen
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yi-Han Zhu
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Tang-Wei Yi
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiao-Pu Guo
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Si-Yuan Chen
- School of the 1 Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Meng-Jie Yin
- School of the 1 Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Chen-Feng Sun
- School of the 1 Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Shao-Hui Liang
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
- * E-mail:
| |
Collapse
|
25
|
Herren JK, Mbaisi L, Mararo E, Makhulu EE, Mobegi VA, Butungi H, Mancini MV, Oundo JW, Teal ET, Pinaud S, Lawniczak MKN, Jabara J, Nattoh G, Sinkins SP. A microsporidian impairs Plasmodium falciparum transmission in Anopheles arabiensis mosquitoes. Nat Commun 2020; 11:2187. [PMID: 32366903 PMCID: PMC7198529 DOI: 10.1038/s41467-020-16121-y] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 04/11/2020] [Indexed: 11/11/2022] Open
Abstract
A possible malaria control approach involves the dissemination in mosquitoes of inherited symbiotic microbes to block Plasmodium transmission. However, in the Anopheles gambiae complex, the primary African vectors of malaria, there are limited reports of inherited symbionts that impair transmission. We show that a vertically transmitted microsporidian symbiont (Microsporidia MB) in the An. gambiae complex can impair Plasmodium transmission. Microsporidia MB is present at moderate prevalence in geographically dispersed populations of An. arabiensis in Kenya, localized to the mosquito midgut and ovaries, and is not associated with significant reductions in adult host fecundity or survival. Field-collected Microsporidia MB infected An. arabiensis tested negative for P. falciparum gametocytes and, on experimental infection with P. falciparum, sporozoites aren't detected in Microsporidia MB infected mosquitoes. As a microbe that impairs Plasmodium transmission that is non-virulent and vertically transmitted, Microsporidia MB could be investigated as a strategy to limit malaria transmission.
Collapse
Affiliation(s)
- Jeremy K Herren
- International Centre of Insect Physiology and Ecology (ICIPE), Kasarani, Nairobi, Kenya.
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Road, Glasgow, G61 1QH, UK.
| | - Lilian Mbaisi
- International Centre of Insect Physiology and Ecology (ICIPE), Kasarani, Nairobi, Kenya
- Centre for Biotechnology and Bioinformatics (CEBIB), University of Nairobi, Nairobi, Kenya
| | - Enock Mararo
- International Centre of Insect Physiology and Ecology (ICIPE), Kasarani, Nairobi, Kenya
| | - Edward E Makhulu
- International Centre of Insect Physiology and Ecology (ICIPE), Kasarani, Nairobi, Kenya
| | - Victor A Mobegi
- Centre for Biotechnology and Bioinformatics (CEBIB), University of Nairobi, Nairobi, Kenya
- Department of Biochemistry, University of Nairobi, Nairobi, Kenya
| | - Hellen Butungi
- International Centre of Insect Physiology and Ecology (ICIPE), Kasarani, Nairobi, Kenya
- University of the Witwaterstrand, Wits Research Institute for Malaria, Johannesburg, South Africa
| | - Maria Vittoria Mancini
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Road, Glasgow, G61 1QH, UK
| | - Joseph W Oundo
- International Centre of Insect Physiology and Ecology (ICIPE), Kasarani, Nairobi, Kenya
| | - Evan T Teal
- International Centre of Insect Physiology and Ecology (ICIPE), Kasarani, Nairobi, Kenya
| | - Silvain Pinaud
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Mara K N Lawniczak
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Jordan Jabara
- International Centre of Insect Physiology and Ecology (ICIPE), Kasarani, Nairobi, Kenya
| | - Godfrey Nattoh
- International Centre of Insect Physiology and Ecology (ICIPE), Kasarani, Nairobi, Kenya
- Pan African University Institute for Basic Sciences Technology & Innovation, Nairobi, Kenya
| | - Steven P Sinkins
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Road, Glasgow, G61 1QH, UK
| |
Collapse
|
26
|
Dong Y, Simões ML, Dimopoulos G. Versatile transgenic multistage effector-gene combinations for Plasmodium falciparum suppression in Anopheles. SCIENCE ADVANCES 2020; 6:eaay5898. [PMID: 32426491 PMCID: PMC7220273 DOI: 10.1126/sciadv.aay5898] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 02/27/2020] [Indexed: 05/14/2023]
Abstract
The malaria parasite's complex journey through the Anopheles mosquito vector provides multiple opportunities for targeting Plasmodium with recombinant effectors at different developmental stages and different host tissues. We have designed and expressed transgenes that efficiently suppress Plasmodium infection by targeting the parasite with multiple independent endogenous and exogenous effectors at multiple infection stages to potentiate suppression and minimize the probability for development of resistance to develop. We have also addressed the fitness impact of transgene expression on the mosquito. We show that highly potent suppression can be achieved by targeting both pre-oocyst stages by transgenically overexpressing either the endogenous immune deficiency immune pathway transcription factor Rel2 or a polycistronic mRNA encoding multiple antiparasitic effectors and simultaneously targeting the sporozoite stages with an anti-sporozoite single-chain antibody fused to the antiparasitic protein Scorpine. Expression of the selected endogenous effector systems appears to pose a lower fitness cost than does the use of foreign genes.
Collapse
|
27
|
Investigating the Effect of Prompt Treatment on Malaria Prevalence in Children Aged below Five Years in Zambia: A Nested Case-Control Study in a Cross-Sectional Survey. ADVANCES IN PUBLIC HEALTH 2020. [DOI: 10.1155/2020/4289420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background. In a highly malaria endemic country like Zambia, prompt treatment of cases is known to reduce morbidity and mortality; however, it is not known whether it has a role as an effective prevention strategy because of the presence of asymptomatic chronic carriers who do not seek treatment and maintain the reservoirs of infection in the population. This study investigated the role of treatment of malaria cases as a prevention strategy in low, moderate, and high endemic settings. Methods. A nested case-control design was employed using datasets from a large countrywide national Malaria Indicator Survey of 2015. Self-reported malaria cases (n = 209) who took treatment in the two weeks preceding the survey were matched with controls (n = 511) who did not report malaria and did not take treatment during the same period using nearest neighbour propensity score matching for age, sex, and district. The data were analysed using conditional logistic regression in STATA version 15.1. Results. The malaria cases were more likely to be from rural areas (p=0.001), poorest households (p=0.049), and who lived in improvised housing structures (p=0.004) compared with the controls. Data from low and moderate malaria endemic areas did not have sufficient cases for the analysis to proceed; however, data from high endemic areas showed borderline evidence (p=0.054) that prompt treatment reduces the risk of malaria by almost half in the short-term aOR 0.057 (95% CI 0.32–1.01). Conclusion. We found borderline evidence which suggests that prompt treatment of malaria cases even in high endemic areas has potential to reduce the risk of malaria by almost half in the short term.
Collapse
|
28
|
Buchman A, Gamez S, Li M, Antoshechkin I, Li HH, Wang HW, Chen CH, Klein MJ, Duchemin JB, Crowe JE, Paradkar PN, Akbari OS. Broad dengue neutralization in mosquitoes expressing an engineered antibody. PLoS Pathog 2020; 16:e1008103. [PMID: 31945137 PMCID: PMC6964813 DOI: 10.1371/journal.ppat.1008103] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 09/23/2019] [Indexed: 12/11/2022] Open
Abstract
With dengue virus (DENV) becoming endemic in tropical and subtropical regions worldwide, there is a pressing global demand for effective strategies to control the mosquitoes that spread this disease. Recent advances in genetic engineering technologies have made it possible to create mosquitoes with reduced vector competence, limiting their ability to acquire and transmit pathogens. Here we describe the development of Aedes aegypti mosquitoes synthetically engineered to impede vector competence to DENV. These mosquitoes express a gene encoding an engineered single-chain variable fragment derived from a broadly neutralizing DENV human monoclonal antibody and have significantly reduced viral infection, dissemination, and transmission rates for all four major antigenically distinct DENV serotypes. Importantly, this is the first engineered approach that targets all DENV serotypes, which is crucial for effective disease suppression. These results provide a compelling route for developing effective genetic-based DENV control strategies, which could be extended to curtail other arboviruses.
Collapse
Affiliation(s)
- Anna Buchman
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, California, United States of America
| | - Stephanie Gamez
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, California, United States of America
| | - Ming Li
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, California, United States of America
| | - Igor Antoshechkin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, United States of America
| | - Hsing-Han Li
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Zhunan, Taiwan
| | - Hsin-Wei Wang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Zhunan, Taiwan
| | - Chun-Hong Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Zhunan, Taiwan
| | - Melissa J. Klein
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, VIC, Australia
| | - Jean-Bernard Duchemin
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, VIC, Australia
| | - James E. Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Departments of Pediatrics, Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Prasad N. Paradkar
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, VIC, Australia
| | - Omar S. Akbari
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, California, United States of America
- Tata Institute for Genetics and Society-UCSD, La Jolla, California, United States of America
| |
Collapse
|
29
|
Geiser DL, Thai TN, Love MB, Winzerling JJ. Iron and Ferritin Deposition in the Ovarian Tissues of the Yellow Fever Mosquito (Diptera: Culicidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2019; 19:5586715. [PMID: 31606748 PMCID: PMC6790249 DOI: 10.1093/jisesa/iez089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Indexed: 05/16/2023]
Abstract
Dengue, yellow fever, and Zika are viruses transmitted by yellow fever mosquito, Aedes aegypti [Linnaeus (Diptera: Culicidae)], to thousands of people each year. Mosquitoes transmit these viruses while consuming a blood meal that is required for oogenesis. Iron, an essential nutrient from the blood meal, is required for egg development. Mosquitoes receive a high iron load in the meal; although iron can be toxic, these animals have developed mechanisms for dealing with this load. Our previous research has shown iron from the blood meal is absorbed in the gut and transported by ferritin, the main iron transport and storage protein, to the ovaries. We now report the distribution of iron and ferritin in ovarian tissues before blood feeding and 24 and 72 h post-blood meal. Ovarian iron is observed in specific locations. Timing post-blood feeding influences the location and distribution of the ferritin heavy-chain homolog, light-chain homolog 1, and light-chain homolog 2 in ovaries. Understanding iron deposition in ovarian tissues is important to the potential use of interference in iron metabolism as a vector control strategy for reducing mosquito fecundity, decreasing mosquito populations, and thereby reducing transmission rates of vector-borne diseases.
Collapse
Affiliation(s)
- Dawn L Geiser
- Department of Nutritional Sciences, College of Agriculture and Life Sciences, The University of Arizona, Tucson, AZ
| | - Theresa N Thai
- Department of Nutritional Sciences, College of Agriculture and Life Sciences, The University of Arizona, Tucson, AZ
| | - Maria B Love
- Department of Nutritional Sciences, College of Agriculture and Life Sciences, The University of Arizona, Tucson, AZ
| | - Joy J Winzerling
- Department of Nutritional Sciences, College of Agriculture and Life Sciences, The University of Arizona, Tucson, AZ
| |
Collapse
|
30
|
Sharma A, Nuss AB, Gulia-Nuss M. Insulin-Like Peptide Signaling in Mosquitoes: The Road Behind and the Road Ahead. Front Endocrinol (Lausanne) 2019; 10:166. [PMID: 30984106 PMCID: PMC6448002 DOI: 10.3389/fendo.2019.00166] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 02/28/2019] [Indexed: 12/18/2022] Open
Abstract
Insulin signaling is a conserved pathway in all metazoans. This pathway contributed toward primordial metazoans responding to a greater diversity of environmental signals by modulating nutritional storage, reproduction, and longevity. Most of our knowledge of insulin signaling in insects comes from the vinegar fly, Drosophila melanogaster, where it has been extensively studied and shown to control several physiological processes. Mosquitoes are the most important vectors of human disease in the world and their control constitutes a significant area of research. Recent studies have shown the importance of insulin signaling in multiple physiological processes such as reproduction, innate immunity, lifespan, and vectorial capacity in mosquitoes. Although insulin-like peptides have been identified and functionally characterized from many mosquito species, a comprehensive review of this pathway in mosquitoes is needed. To fill this gap, our review provides up-to-date knowledge of this subfield.
Collapse
Affiliation(s)
- Arvind Sharma
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, United States
| | - Andrew B. Nuss
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, United States
- Department of Agriculture, Veterinary, and Rangeland Sciences, University of Nevada, Reno, NV, United States
- *Correspondence: Andrew B. Nuss
| | - Monika Gulia-Nuss
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, United States
- Monika Gulia-Nuss
| |
Collapse
|
31
|
Souvannaseng L, Hun LV, Baker H, Klyver JM, Wang B, Pakpour N, Bridgewater JM, Napoli E, Giulivi C, Riehle MA, Luckhart S. Inhibition of JNK signaling in the Asian malaria vector Anopheles stephensi extends mosquito longevity and improves resistance to Plasmodium falciparum infection. PLoS Pathog 2018; 14:e1007418. [PMID: 30496310 PMCID: PMC6264519 DOI: 10.1371/journal.ppat.1007418] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 10/18/2018] [Indexed: 11/18/2022] Open
Abstract
Malaria is a global health concern caused by infection with Plasmodium parasites. With rising insecticide and drug resistance, there is a critical need to develop novel control strategies, including strategies to block parasite sporogony in key mosquito vector species. MAPK signaling pathways regulated by extracellular signal-regulated kinases (ERKs) and the stress-activated protein kinases (SAPKs) c-Jun N-terminal kinases (JNKs) and p38 MAPKs are highly conserved across eukaryotes, including mosquito vectors of the human malaria parasite Plasmodium falciparum. Some of these pathways in mosquitoes have been investigated in detail, but the mechanisms of integration of parasite development and mosquito fitness by JNK signaling have not been elucidated. To this end, we engineered midgut-specific overexpression of MAPK phosphatase 4 (MKP4), which targets the SAPKs, and used two potent and specific JNK small molecule inhibitors (SMIs) to assess the effects of JNK signaling manipulations on Anopheles stephensi fecundity, lifespan, intermediary metabolism, and P. falciparum development. MKP4 overexpression and SMI treatment reduced the proportion of P. falciparum-infected mosquitoes and decreased oocyst loads relative to controls. SMI-treated mosquitoes exhibited no difference in lifespan compared to controls, whereas genetically manipulated mosquitoes exhibited extended longevity. Metabolomics analyses of SMI-treated mosquitoes revealed insights into putative resistance mechanisms and the physiology behind lifespan extension, suggesting for the first time that P. falciparum-induced JNK signaling reduces mosquito longevity and increases susceptibility to infection, in contrast to previously published reports, likely via a critical interplay between the invertebrate host and parasite for nutrients that play essential roles during sporogonic development. Malaria is a global health concern caused by infection with Plasmodium parasites. With rising insecticide and drug resistance, there is a critical need to develop novel control strategies. One strategy is to develop a Plasmodium-resistant mosquito through the manipulation of key signaling pathways and processes in the mosquito midgut, a critical tissue for parasite development. MAPK signaling pathways are highly conserved among eukaryotes and regulate development of the human malaria parasite Plasmodium falciparum in the mosquito vector. Here, we investigated how manipulation of Anopheles stephensi JNK signaling affects development of P. falciparum and key mosquito life history traits. We used multiple, complementary approaches to demonstrate that malaria parasite infection activates mosquito JNK signaling for its own benefit at a cost to host lifespan. Notably, these combined effects derive from networked signaling with other transduction pathways and alterations to intermediary metabolism in the mosquito host.
Collapse
Affiliation(s)
- Lattha Souvannaseng
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, United States of America
- Department of Pathobiology, St. George's University, School of Veterinary Medicine, True Blue, St. George, Grenada, West Indies
| | - Lewis Vibul Hun
- Department of Entomology, University of Arizona, Tucson, AZ, United States of America
| | - Heather Baker
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, United States of America
| | - John M. Klyver
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, United States of America
| | - Bo Wang
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, United States of America
| | - Nazzy Pakpour
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, United States of America
| | - Jordan M. Bridgewater
- Department of Entomology, University of Arizona, Tucson, AZ, United States of America
| | - Eleonora Napoli
- Department of Molecular Biosciences, University of California, Davis, Davis, CA
| | - Cecilia Giulivi
- Department of Molecular Biosciences, University of California, Davis, Davis, CA
- M.I.N.D. Institute, Sacramento, CA, United States of America
| | - Michael A. Riehle
- Department of Entomology, University of Arizona, Tucson, AZ, United States of America
| | - Shirley Luckhart
- Department of Entomology, Plant Pathology and Nematology and Department of Biological Sciences, University of Idaho, Moscow, ID, United States of America
- * E-mail:
| |
Collapse
|
32
|
Bilgo E, Vantaux A, Sanon A, Ilboudo S, Dabiré RK, Jacobs-Lorena M, Diabate A. Field assessment of potential sugar feeding stations for disseminating bacteria in a paratransgenic approach to control malaria. Malar J 2018; 17:367. [PMID: 30333029 PMCID: PMC6192189 DOI: 10.1186/s12936-018-2516-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 10/08/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Using bacteria to express and deliver anti-parasite molecules in mosquitoes is among the list of genetic tools to control malaria. The introduction and spread of transgenic bacteria through wild adult mosquitoes is one of the major challenges of this strategy. In prospect of future field experiments, an open field study with blank (without bacteria) attractive sugar bait (ASB) was performed under the assumption that transgenic bacteria would be spread to all sugar fed mosquitoes. METHODS Two types of ASB stations were developed, one with clay pots (CP) placed at mosquito resting sites and one with window entry traps (WET) placed inside inhabited houses. The ASB consisted in either glucose, honey or fruit cocktail solutions. In addition, mark-release-recapture (MRR) experiment of mosquitoes after feeding them with glucose was also conducted to check the proportion of the mosquito population that can be reached by the two ASB stations as well as its suitability to complement the ASB stations for disseminating bacteria. RESULTS Overall, 88% of the mosquitoes were collected in the WET_ASB. The CP_ASB stations were much less attractive with the highest average of 82 ± 11 mosquitoes/day in the CP near the wood piles. The proportions of sugar fed mosquitoes upon ASB were low in both type of ASB stations, ~ 2% and ~ 14% in WET and CP, respectively. Honey solution was the most attractive solution compared to the glucose and the fruit cocktail solutions. The recapture rate in the MRR experiment was low: ~ 4.1% over 7 days. CONCLUSION The WET_ASB looks promising to disseminate transgenic bacteria to endophilic West Africa Anopheles mosquito. However, this feeding station may not be fully effective and could be combined with the CP_ASB to also target outdoor resting mosquitoes. Overall, efforts are needed to improve the mosquito-feeding rates upon ASB.
Collapse
Affiliation(s)
- Etienne Bilgo
- Institut de Recherche en Sciences de la Santé/Centre Muraz, Bobo-Dioulasso, Burkina Faso. .,Laboratoire d'Entomologie Fondamentale et Appliqué/UFR-SVT/Université Ouaga I, Pr. Joseph KI-Zerbo, Ouagadougou, Burkina Faso.
| | | | - Antoine Sanon
- Laboratoire d'Entomologie Fondamentale et Appliqué/UFR-SVT/Université Ouaga I, Pr. Joseph KI-Zerbo, Ouagadougou, Burkina Faso
| | - Seni Ilboudo
- Institut de Recherche en Sciences de la Santé/Centre Muraz, Bobo-Dioulasso, Burkina Faso
| | - Roch K Dabiré
- Institut de Recherche en Sciences de la Santé/Centre Muraz, Bobo-Dioulasso, Burkina Faso
| | - Marcelo Jacobs-Lorena
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Abdoulaye Diabate
- Institut de Recherche en Sciences de la Santé/Centre Muraz, Bobo-Dioulasso, Burkina Faso
| |
Collapse
|
33
|
Roed NK, Viola CM, Kristensen O, Schluckebier G, Norrman M, Sajid W, Wade JD, Andersen AS, Kristensen C, Ganderton TR, Turkenburg JP, De Meyts P, Brzozowski AM. Structures of insect Imp-L2 suggest an alternative strategy for regulating the bioavailability of insulin-like hormones. Nat Commun 2018; 9:3860. [PMID: 30242155 PMCID: PMC6155051 DOI: 10.1038/s41467-018-06192-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 08/16/2018] [Indexed: 12/30/2022] Open
Abstract
The insulin/insulin-like growth factor signalling axis is an evolutionary ancient and highly conserved hormonal system involved in the regulation of metabolism, growth and lifespan in animals. Human insulin is stored in the pancreas, while insulin-like growth factor-1 (IGF-1) is maintained in blood in complexes with IGF-binding proteins (IGFBP1-6). Insect insulin-like polypeptide binding proteins (IBPs) have been considered as IGFBP-like structural and functional homologues. Here, we report structures of the Drosophila IBP Imp-L2 in its free form and bound to Drosophila insulin-like peptide 5 and human IGF-1. Imp-L2 contains two immunoglobulin-like fold domains and its architecture is unrelated to human IGFBPs, suggesting a distinct strategy for bioavailability regulation of insulin-like hormones. Similar hormone binding modes may exist in other insect vectors, as the IBP sequences are highly conserved. Therefore, these findings may open research routes towards a rational interference of transmission of diseases such as malaria, dengue and yellow fevers.
Collapse
Affiliation(s)
| | - Cristina M Viola
- York Structural Biology Laboratory, Department of Chemistry, The University of York, Heslington, York, YO10 5DD, UK
| | - Ole Kristensen
- Department of Drug Design and Pharmacology, University of Copenhagen, DK-2100, Copenhagen Ø, Denmark
| | - Gerd Schluckebier
- Global Research, Novo Nordisk A/S, Novo Nordisk Park 1, 2760, Maaloev, Denmark
| | - Mathias Norrman
- Global Research, Novo Nordisk A/S, Novo Nordisk Park 1, 2760, Maaloev, Denmark
| | - Waseem Sajid
- Global Research, Novo Nordisk A/S, Novo Nordisk Park 1, 2760, Maaloev, Denmark
| | - John D Wade
- Florey Institute of Neuroscience & Mental Health, University of Melbourne, Parkville, VIC, 3010, Australia
- School of Chemistry, University of Melbourne, Parkville, VIC, 3010, Australia
| | | | - Claus Kristensen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, DK-2100, Copenhagen N, Denmark
| | - Timothy R Ganderton
- York Structural Biology Laboratory, Department of Chemistry, The University of York, Heslington, York, YO10 5DD, UK
| | - Johan P Turkenburg
- York Structural Biology Laboratory, Department of Chemistry, The University of York, Heslington, York, YO10 5DD, UK
| | - Pierre De Meyts
- Global Research, Novo Nordisk A/S, Novo Nordisk Park 1, 2760, Maaloev, Denmark
- Department of Cell Signalling, de Duve Institute, B-1200, Brussels, Belgium
| | - Andrzej M Brzozowski
- York Structural Biology Laboratory, Department of Chemistry, The University of York, Heslington, York, YO10 5DD, UK.
| |
Collapse
|
34
|
Nuss AB, Brown MR, Murty US, Gulia-Nuss M. Insulin receptor knockdown blocks filarial parasite development and alters egg production in the southern house mosquito, Culex quinquefasciatus. PLoS Negl Trop Dis 2018; 12:e0006413. [PMID: 29649225 PMCID: PMC5918164 DOI: 10.1371/journal.pntd.0006413] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 04/24/2018] [Accepted: 03/26/2018] [Indexed: 01/04/2023] Open
Abstract
Lymphatic filariasis, commonly known as elephantiasis, is a painful and profoundly disfiguring disease. Wuchreria bancrofti (Wb) is responsible for >90% of infections and the remainder are caused by Brugia spp. Mosquitoes of the genera Culex (in urban and semi-urban areas), Anopheles (in rural areas of Africa and elsewhere), and Aedes (in Pacific islands) are the major vectors of W. bancrofti. A preventive chemotherapy called mass drug administration (MDA), including albendazole with ivermectin or diethylcarbamazine citrate (DEC) is used in endemic areas. Vector control strategies such as residual insecticide spraying and long-lasting insecticidal nets are supplemental to the core strategy of MDA to enhance elimination efforts. However, increasing insecticide resistance in mosquitoes and drug resistance in parasite limit the effectiveness of existing interventions, and new measures are needed for mosquito population control and disruption of mosquito-parasite interactions to reduce transmission. Mosquito insulin signaling regulates nutrient metabolism and has been implicated in reduced prevalence and intensity of malaria parasite, Plasmodium falciparum, infection in mosquitoes. Currently no data are available to assess how insulin signaling in mosquitoes affects the development of multi-cellular parasites, such as filarial nematodes. Here, we show that insulin receptor knockdown in blood fed C. quinquefasciatus, the major vector of Wb in India, completely blocks the development of filarial nematode parasite to the infective L3 stage, and results in decreased ecdysteroid production and trypsin activity leading to fewer mosquito eggs. These data indicate that a functional mosquito insulin receptor (IR) is necessary for filarial parasite development and mosquito reproduction. Therefore, insulin signaling may represent a new target for the development of vector control or parasite blocking strategies. Lymphatic filariasis (LF) is caused by infection with nematodes of the family Filarioidea. 90% of infections are caused by Wuchereria bancrofti and the remainder by Brugia spp. In endemic countries, LF has a major social and economic impact with an estimated annual loss of $1 billion. Filarial infection can cause a variety of clinical manifestations, including lymphoedema of the limbs, genital disease (hydrocele, and swelling of the scrotum and penis) and recurrent acute attacks, which are extremely painful and are accompanied by fever. As one of the leading causes of global disability, LF accounts for at least 2.8 million disability-adjusted life year (DALY). Mass drug administration (MDA) is used prophylactically on the community level where the infection is present to decrease disease transmission. These drugs have limited effect on adult parasites but effectively reduce microfilariae in the bloodstream and prevent the spread of microfilaria to mosquitoes. Use of mosquito population control strategies is supplemental to the core strategy of MDA. However, increasing insecticide resistance in mosquitoes and drug resistant nematode parasites are complicating elimination efforts and emphasizes the need for novel interventions for vector control and parasite transmission. Insulin signaling is a highly conserved signaling pathway that regulates growth and nutrient homeostasis in animals. Our previous work in Aedes aegypti mosquitoes showed additional roles of insulin receptor signaling in blood digestion and reproduction. The present data strongly supports our previous findings in a different mosquito species and further explores the role of mosquito insulin receptor in the development of the filarial nematode to the infective stage. This information is pertinent to ongoing efforts to control and eradicate filariasis because insulin signaling may represent a new target for the development of vector control or transmission blocking strategies.
Collapse
Affiliation(s)
- Andrew Bradley Nuss
- Department of Agriculture, Nutrition, and Veterinary Sciences, University of Nevada, Reno, Nevada, United States of America
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada, United States of America
- * E-mail: (ABN); (MGN)
| | - Mark R. Brown
- Department of Entomology, University of Georgia, Athens, Georgia, United States of America
| | | | - Monika Gulia-Nuss
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada, United States of America
- * E-mail: (ABN); (MGN)
| |
Collapse
|
35
|
Dong Y, Simões ML, Marois E, Dimopoulos G. CRISPR/Cas9 -mediated gene knockout of Anopheles gambiae FREP1 suppresses malaria parasite infection. PLoS Pathog 2018. [PMID: 29518156 PMCID: PMC5843335 DOI: 10.1371/journal.ppat.1006898] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Plasmodium relies on numerous agonists during its journey through the mosquito vector, and these agonists represent potent targets for transmission-blocking by either inhibiting or interfering with them pre- or post-transcriptionally. The recently developed CRISPR/Cas9-based genome editing tools for Anopheles mosquitoes provide new and promising opportunities for the study of agonist function and for developing malaria control strategies through gene deletion to achieve complete agonist inactivation. Here we have established a modified CRISPR/Cas9 gene editing procedure for the malaria vector Anopheles gambiae, and studied the effect of inactivating the fibrinogen-related protein 1 (FREP1) gene on the mosquito’s susceptibility to Plasmodium and on mosquito fitness. FREP1 knockout mutants developed into adult mosquitoes that showed profound suppression of infection with both human and rodent malaria parasites at the oocyst and sporozoite stages. FREP1 inactivation, however, resulted in fitness costs including a significantly lower blood-feeding propensity, fecundity and egg hatching rate, a retarded pupation time, and reduced longevity after a blood meal. The causative agent of malaria, Plasmodium, has to complete a complex infection cycle in the Anopheles gambiae mosquito vector in order to reach the salivary gland from where it can be transmitted to a human host. The parasite’s development in the mosquito relies on numerous host factors (agonists), and their inhibition or inactivation can thereby result in suppression of infection and consequently malaria transmission. The recently developed CRISPR/Cas9-based genome editing tools for Anopheles mosquitoes provide new and promising opportunities to delete (inactivate) Plasmodium agonists to better understand their function and for blocking malaria transmission. Here we have established a modified CRISPR/Cas9 genome editing technique for malaria vector A. gambiae mosquitoes. Through this approach we have inactivated the fibrinogen-related protein 1 (FREP1) gene, via CRISPR/Cas9 genome editing, and the impact of this manipulation on the mosquito’s susceptibility to Plasmodium and on mosquito fitness. FREP1 knockout mutants showed a profound suppression of infection with both human and rodent malaria parasites, while it also resulted in fitness costs: a significantly lower blood-feeding propensity, fecundity and egg hatching rate, and a retarded larval development and pupation time, and reduced longevity after a blood meal.
Collapse
Affiliation(s)
- Yuemei Dong
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Malaria Research Institute, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Maria L. Simões
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Malaria Research Institute, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Eric Marois
- Inserm, CNRS, Université de Strasbourg, Strasbourg, France
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Malaria Research Institute, Johns Hopkins University, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
36
|
Geiser DL, Patel N, Patel P, Bhakta J, Velasquez LS, Winzerling JJ. Description of a Second Ferritin Light Chain Homologue From the Yellow Fever Mosquito (Diptera: Culicidae). JOURNAL OF INSECT SCIENCE 2017. [PMCID: PMC5751084 DOI: 10.1093/jisesa/iex096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Ferritin is required for iron storage in vertebrates and for iron transport and storage in invertebrates, specifically insects. Classical ferritins consist of 24 subunits configured as a polyhedron wherein iron is held. The 24 subunits include light and heavy chains, each with specific functions. Several homologues of the light and heavy chains have been sequenced and studied in insects. In addition to iron transport and storage, ferritin has a role in dietary iron absorption, and functions as a protective agent preventing iron overload, decreasing oxidative stress, and reducing infection in these animals. The expression profile and regulation of a second ferritin light chain homologue (LCH2) in Aedes aegypti [Linnaeus (Diptera: Culicidae), yellow fever mosquito] was characterized in cells, animal developmental stages, and tissues post bloodmeal (PBM) by real-time PCR and immunoblot. Two previously studied ferritin subunits from Ae. aegypti, HCH and LCH1, along with LCH2 were immunoprecipitated and analyzed by mass spectrometry. The three Ae. aegypti ferritin subunits, HCH, LCH1, and LCH2, have different expression profiles and regulation with iron exposure, developmental stage, and tissue response PBM. Ae. aegypti expresses multiple and unique ferritin light chain subunits. Ae. aegypti, the vector for Zika, Dengue, and yellow fever, requires iron for oogenesis that is transported and stored in ferritin; this vector expresses a second light chain ferritin subunit homologue unlike any other species in which ferritin has been studied to date.
Collapse
Affiliation(s)
- Dawn L Geiser
- Department of Nutritional Sciences, College of Agriculture and Life Sciences, the University of Arizona, Tucson, Arizona
- Corresponding author, e-mail:
| | - Naren Patel
- Department of Nutritional Sciences, College of Agriculture and Life Sciences, the University of Arizona, Tucson, Arizona
| | - Pritesh Patel
- Department of Nutritional Sciences, College of Agriculture and Life Sciences, the University of Arizona, Tucson, Arizona
| | - Janki Bhakta
- Department of Nutritional Sciences, College of Agriculture and Life Sciences, the University of Arizona, Tucson, Arizona
| | - Lissette S Velasquez
- Department of Nutritional Sciences, College of Agriculture and Life Sciences, the University of Arizona, Tucson, Arizona
| | - Joy J Winzerling
- Department of Nutritional Sciences, College of Agriculture and Life Sciences, the University of Arizona, Tucson, Arizona
| |
Collapse
|
37
|
Abstract
Vector control strategies based on population modification of Anopheline mosquitoes may have a significant role in the malaria eradication agenda. They could consolidate elimination gains by providing barriers to the reintroduction of parasites and competent vectors, and allow resources to be allocated to new control sites while maintaining treated areas free of malaria. Synthetic biological approaches are being used to generate transgenic mosquitoes for population modification. Proofs-of-principle exist for mosquito transgenesis, the construction of anti-parasite effector genes and gene-drive systems for rapidly introgressing beneficial genes into wild populations. Key challenges now are to develop field-ready strains of mosquitoes that incorporate features that maximize safety and efficacy, and specify pathways from discovery to development. We propose three pathways and a framework for target product profiles that maximize safety and efficacy while meeting the demands of the complexity of malaria transmission, and the regulatory and social diversity of potential end-users and stakeholders.
Collapse
Affiliation(s)
| | - Anthony A. James
- Department of Microbiology & Molecular Genetics, University of California, Irvine, CA, USA
- Department of Molecular Biology & Biochemistry, University of California, Irvine, CA, USA
| |
Collapse
|
38
|
Wang S, Dos-Santos ALA, Huang W, Liu KC, Oshaghi MA, Wei G, Agre P, Jacobs-Lorena M. Driving mosquito refractoriness to Plasmodium falciparum with engineered symbiotic bacteria. Science 2017; 357:1399-1402. [PMID: 28963255 PMCID: PMC9793889 DOI: 10.1126/science.aan5478] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 08/24/2017] [Indexed: 12/30/2022]
Abstract
The huge burden of malaria in developing countries urgently demands the development of novel approaches to fight this deadly disease. Although engineered symbiotic bacteria have been shown to render mosquitoes resistant to the parasite, the challenge remains to effectively introduce such bacteria into mosquito populations. We describe a Serratia bacterium strain (AS1) isolated from Anopheles ovaries that stably colonizes the mosquito midgut, female ovaries, and male accessory glands and spreads rapidly throughout mosquito populations. Serratia AS1 was genetically engineered for secretion of anti-Plasmodium effector proteins, and the recombinant strains inhibit development of Plasmodium falciparum in mosquitoes.
Collapse
Affiliation(s)
- Sibao Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China,Corresponding author. (S.W.); (M.J.-L.)
| | - André L. A. Dos-Santos
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Wei Huang
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Kun Connie Liu
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Mohammad Ali Oshaghi
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Ge Wei
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Peter Agre
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Marcelo Jacobs-Lorena
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA,Corresponding author. (S.W.); (M.J.-L.)
| |
Collapse
|
39
|
Macias VM, Ohm JR, Rasgon JL. Gene Drive for Mosquito Control: Where Did It Come from and Where Are We Headed? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:E1006. [PMID: 28869513 PMCID: PMC5615543 DOI: 10.3390/ijerph14091006] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 08/25/2017] [Accepted: 08/28/2017] [Indexed: 02/08/2023]
Abstract
Mosquito-borne pathogens place an enormous burden on human health. The existing toolkit is insufficient to support ongoing vector-control efforts towards meeting disease elimination and eradication goals. The perspective that genetic approaches can potentially add a significant set of tools toward mosquito control is not new, but the recent improvements in site-specific gene editing with CRISPR/Cas9 systems have enhanced our ability to both study mosquito biology using reverse genetics and produce genetics-based tools. Cas9-mediated gene-editing is an efficient and adaptable platform for gene drive strategies, which have advantages over innundative release strategies for introgressing desirable suppression and pathogen-blocking genotypes into wild mosquito populations; until recently, an effective gene drive has been largely out of reach. Many considerations will inform the effective use of new genetic tools, including gene drives. Here we review the lengthy history of genetic advances in mosquito biology and discuss both the impact of efficient site-specific gene editing on vector biology and the resulting potential to deploy new genetic tools for the abatement of mosquito-borne disease.
Collapse
Affiliation(s)
- Vanessa M Macias
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA.
| | - Johanna R Ohm
- Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA 16802, USA.
| | - Jason L Rasgon
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA.
- Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA 16802, USA.
- The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
40
|
Champer J, Reeves R, Oh SY, Liu C, Liu J, Clark AG, Messer PW. Novel CRISPR/Cas9 gene drive constructs reveal insights into mechanisms of resistance allele formation and drive efficiency in genetically diverse populations. PLoS Genet 2017; 13:e1006796. [PMID: 28727785 PMCID: PMC5518997 DOI: 10.1371/journal.pgen.1006796] [Citation(s) in RCA: 182] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 05/03/2017] [Indexed: 12/17/2022] Open
Abstract
A functioning gene drive system could fundamentally change our strategies for the control of vector-borne diseases by facilitating rapid dissemination of transgenes that prevent pathogen transmission or reduce vector capacity. CRISPR/Cas9 gene drive promises such a mechanism, which works by converting cells that are heterozygous for the drive construct into homozygotes, thereby enabling super-Mendelian inheritance. Although CRISPR gene drive activity has already been demonstrated, a key obstacle for current systems is their propensity to generate resistance alleles, which cannot be converted to drive alleles. In this study, we developed two CRISPR gene drive constructs based on the nanos and vasa promoters that allowed us to illuminate the different mechanisms by which resistance alleles are formed in the model organism Drosophila melanogaster. We observed resistance allele formation at high rates both prior to fertilization in the germline and post-fertilization in the embryo due to maternally deposited Cas9. Assessment of drive activity in genetically diverse backgrounds further revealed substantial differences in conversion efficiency and resistance rates. Our results demonstrate that the evolution of resistance will likely impose a severe limitation to the effectiveness of current CRISPR gene drive approaches, especially when applied to diverse natural populations.
Collapse
Affiliation(s)
- Jackson Champer
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, NY, United States of America
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States of America
- * E-mail: (JC); (PWM)
| | - Riona Reeves
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, NY, United States of America
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States of America
| | - Suh Yeon Oh
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, NY, United States of America
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States of America
| | - Chen Liu
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, NY, United States of America
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States of America
| | - Jingxian Liu
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, NY, United States of America
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States of America
| | - Andrew G. Clark
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, NY, United States of America
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States of America
| | - Philipp W. Messer
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, NY, United States of America
- * E-mail: (JC); (PWM)
| |
Collapse
|
41
|
Glennon EKK, Torrevillas BK, Morrissey SF, Ejercito JM, Luckhart S. Abscisic acid induces a transient shift in signaling that enhances NF-κB-mediated parasite killing in the midgut of Anopheles stephensi without reducing lifespan or fecundity. Parasit Vectors 2017; 10:333. [PMID: 28705245 PMCID: PMC5508651 DOI: 10.1186/s13071-017-2276-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 07/06/2017] [Indexed: 12/28/2022] Open
Abstract
Background Abscisic acid (ABA) is naturally present in mammalian blood and circulating levels can be increased by oral supplementation. We showed previously that oral ABA supplementation in a mouse model of Plasmodium yoelii 17XNL infection reduced parasitemia and gametocytemia, spleen and liver pathology, and parasite transmission to the mosquito Anopheles stephensi fed on these mice. Treatment of cultured Plasmodium falciparum with ABA at levels detected in our model had no effects on asexual growth or gametocyte formation in vitro. However, ABA treatment of cultured P. falciparum immediately prior to mosquito feeding significantly reduced oocyst development in A. stephensi via ABA-dependent synthesis of nitric oxide (NO) in the mosquito midgut. Results Here we describe the mechanisms of effects of ABA on mosquito physiology, which are dependent on phosphorylation of TGF-β-activated kinase 1 (TAK1) and associated with changes in homeostatic gene expression and activity of kinases that are central to metabolic regulation in the midgut epithelium. Collectively, the timing of these effects suggests a transient physiological shift that enhances NF-κB-dependent innate immunity without significantly altering mosquito lifespan or fecundity. Conclusions ABA is a highly conserved regulator of immune and metabolic homeostasis within the malaria vector A. stephensi with potential as a transmission-blocking supplemental treatment. Electronic supplementary material The online version of this article (doi:10.1186/s13071-017-2276-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elizabeth K K Glennon
- Department of Medical Microbiology and Immunology, University of California at Davis, Davis, CA, USA.,Center for Infectious Disease Research, Seattle, WA, USA
| | - Brandi K Torrevillas
- Department of Medical Microbiology and Immunology, University of California at Davis, Davis, CA, USA.,Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, USA.,Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| | - Shannon F Morrissey
- Department of Medical Microbiology and Immunology, University of California at Davis, Davis, CA, USA
| | - Jadrian M Ejercito
- Department of Medical Microbiology and Immunology, University of California at Davis, Davis, CA, USA.,Department of Entomology, University of California at Riverside, Riverside, CA, USA
| | - Shirley Luckhart
- Department of Medical Microbiology and Immunology, University of California at Davis, Davis, CA, USA. .,Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, USA. .,Department of Biological Sciences, University of Idaho, Moscow, ID, USA.
| |
Collapse
|
42
|
Simões ML, Dong Y, Hammond A, Hall A, Crisanti A, Nolan T, Dimopoulos G. The Anopheles FBN9 immune factor mediates Plasmodium species-specific defense through transgenic fat body expression. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 67:257-265. [PMID: 27667688 DOI: 10.1016/j.dci.2016.09.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 09/20/2016] [Accepted: 09/21/2016] [Indexed: 06/06/2023]
Abstract
Mosquitoes have a multifaceted innate immune system that is actively engaged in warding off various pathogens, including the protozoan malaria parasite Plasmodium. Various immune signaling pathways and effectors have been shown to mediate a certain degree of defense specificity against different Plasmodium species. A key pattern recognition receptor of the Anopheles gambiae immune system is the fibrinogen domain-containing immunolectin FBN9, which has been shown to be transcriptonally induced by Plasmodium infection, and to mediate defense against both rodent and human malaria parasites and bacteria. Here we have further studied the defense specificity of FBN9 using a transgenic approach, in which FBN9 is overexpressed in the fat body tissue after a blood meal through a vitellogenin promoter. Interestingly, the Vg-FBN9 transgenic mosquitoes showed increased resistance only to the rodent parasite P. berghei, and not to the human parasite P. falciparum, pointing to differences in the mosquito's defense mechanisms against the two parasite species. The Vg-FBN9 transgenic mosquitoes were also more resistant to infection with both Gram-positive and Gram-negative bacteria and showed increased longevity when infected with P. berghei. Our study points to the importance of both experimentally depleting and enriching candidate anti-Plasmodium effectors in functional studies in order to ascertain their suitability for the development of transgenic mosquito-based malaria control strategies.
Collapse
Affiliation(s)
- Maria L Simões
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe St., Baltimore, MD 21205, USA
| | - Yuemei Dong
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe St., Baltimore, MD 21205, USA
| | - Andrew Hammond
- Department of Life Sciences, Imperial College London, SW7 2AZ, UK
| | - Ann Hall
- Department of Life Sciences, Imperial College London, SW7 2AZ, UK
| | - Andrea Crisanti
- Department of Life Sciences, Imperial College London, SW7 2AZ, UK
| | - Tony Nolan
- Department of Life Sciences, Imperial College London, SW7 2AZ, UK
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe St., Baltimore, MD 21205, USA.
| |
Collapse
|
43
|
Murugan K, Anitha J, Dinesh D, Suresh U, Rajaganesh R, Chandramohan B, Subramaniam J, Paulpandi M, Vadivalagan C, Amuthavalli P, Wang L, Hwang JS, Wei H, Alsalhi MS, Devanesan S, Kumar S, Pugazhendy K, Higuchi A, Nicoletti M, Benelli G. Fabrication of nano-mosquitocides using chitosan from crab shells: Impact on non-target organisms in the aquatic environment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 132:318-328. [PMID: 27344400 DOI: 10.1016/j.ecoenv.2016.06.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 06/14/2016] [Accepted: 06/15/2016] [Indexed: 06/06/2023]
Abstract
Mosquitoes are arthropods of huge medical and veterinary relevance, since they vector pathogens and parasites of public health importance, including malaria, dengue and Zika virus. Currently, nanotechnology is considered a potential eco-friendly approach in mosquito control research. We proposed a novel method of biofabrication of silver nanoparticles (AgNP) using chitosan (Ch) from crab shells. Ch-AgNP nanocomposite was characterized by UV-vis spectroscopy, FTIR, SEM, EDX and XRD. Ch-AgNP were tested against larvae and pupae of the malaria vector Anopheles stephensi obtaining LC50 ranging from 3.18 ppm (I) to 6.54 ppm (pupae). The antibacterial properties of Ch-AgNP were proved against Bacillus subtilis, Klebsiella pneumoniae and Salmonella typhi, while no growth inhibition was reported in assays conducted on Proteus vulgaris. Concerning non-target effects, in standard laboratory considtions the predation efficiency of Danio rerio zebrafishes was 68.8% and 61.6% against I and II instar larvae of A. stephensi, respectively. In a Ch-AgNP-contaminated environment, fish predation was boosted to 89.5% and 77.3%, respectively. Quantitative analysis of antioxidant enzymes SOD, CAT and LPO from hepatopancreas of fresh water crabs Paratelphusa hydrodromous exposed for 16 days to a Ch-AgNP-contaminated aquatic environment were conducted. Notably, deleterious effects of Ch-AgNP contaminating aquatic enviroment on the non-target crab P. hydrodromous were observed, particularly when doses higher than 8-10ppm are tested. Overall, this research highlights the potential of Ch-AGNP for the development of newer control tools against young instar populations of malaria mosquitoes, also highlighting some risks concerned the employ of nanoparticles in aquatic environments.
Collapse
Affiliation(s)
- Kadarkarai Murugan
- Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, Tamil Nadu, India; Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore 632115, Tamil Nadu, India
| | - Jaganathan Anitha
- Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Devakumar Dinesh
- Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Udaiyan Suresh
- Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Rajapandian Rajaganesh
- Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Balamurugan Chandramohan
- Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Jayapal Subramaniam
- Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Manickam Paulpandi
- Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Chitravel Vadivalagan
- Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Pandiyan Amuthavalli
- Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Lan Wang
- School of Life Science and Technology, Shanxi University, Taiyuan 030006, China
| | - Jiang-Shiou Hwang
- Institute of Marine Biology, National Taiwan Ocean University, Keelung 202-24, Taiwan
| | - Hui Wei
- Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350013, China
| | - Mohamad Saleh Alsalhi
- Department of Physics and Astronomy, Research Chair in Laser Diagnosis of Cancer,King Saud University, Riyadh, Saudi Arabia
| | - Sandhanasamy Devanesan
- Department of Physics and Astronomy, Research Chair in Laser Diagnosis of Cancer,King Saud University, Riyadh, Saudi Arabia
| | - Suresh Kumar
- Faculty of Medicine and Health Sciences, Department of Medical Microbiology and Parasitology, University Putra Malaysia, Seri Kembangan, Malaysia
| | | | - Akon Higuchi
- Department of Chemical and Materials Engineering, National Central University, No. 300 Jhongli, Taoyuan 32001, Taiwan
| | - Marcello Nicoletti
- Department of Environmental Biology, Sapienza University, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Giovanni Benelli
- Insect Behavior Group, Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124 Pisa, Italy; The BioRobotics Institute, Sant'Anna School of Advanced Studies, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy.
| |
Collapse
|
44
|
Xu J, Morisseau C, Yang J, Lee KSS, Kamita SG, Hammock BD. Ingestion of the epoxide hydrolase inhibitor AUDA modulates immune responses of the mosquito, Culex quinquefasciatus during blood feeding. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 76:62-69. [PMID: 27369469 PMCID: PMC5010450 DOI: 10.1016/j.ibmb.2016.06.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 06/20/2016] [Accepted: 06/21/2016] [Indexed: 05/14/2023]
Abstract
Epoxide hydrolases (EHs) are enzymes that play roles in metabolizing xenobiotic epoxides from the environment, and in regulating lipid signaling molecules, such as juvenile hormones in insects and epoxy fatty acids in mammals. In this study we fed mosquitoes with an epoxide hydrolase inhibitor AUDA during artificial blood feeding, and we found the inhibitor increased the concentration of epoxy fatty acids in the midgut of female mosquitoes. We also observed ingestion of AUDA triggered early expression of defensin A, cecropin A and cecropin B2 at 6 h after blood feeding. The expression of cecropin B1 and gambicin were not changed more than two fold compared to controls. The changes in gene expression were transient possibly because more than 99% of the inhibitor was metabolized or excreted at 42 h after being ingested. The ingestion of AUDA also affected the growth of bacteria colonizing in the midgut, but did not affect mosquito longevity, fecundity and fertility in our laboratory conditions. When spiked into the blood, EpOMEs and DiHOMEs were as effective as the inhibitor AUDA in reducing the bacterial load in the midgut, while EETs rescued the effects of AUDA. Our data suggest that epoxy fatty acids from host blood are immune response regulators metabolized by epoxide hydrolases in the midgut of female mosquitoes, inhibition of which causes transient changes in immune responses, and affects growth of microbes in the midgut.
Collapse
Affiliation(s)
- Jiawen Xu
- Department of Entomology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, USA
| | - Christophe Morisseau
- Department of Entomology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, USA
| | - Jun Yang
- Department of Entomology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, USA
| | - Kin Sing Stephen Lee
- Department of Entomology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, USA
| | - Shizuo G Kamita
- Department of Entomology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, USA
| | - Bruce D Hammock
- Department of Entomology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, USA.
| |
Collapse
|
45
|
Two insulin-like peptides differentially regulate malaria parasite infection in the mosquito through effects on intermediary metabolism. Biochem J 2016; 473:3487-3503. [PMID: 27496548 DOI: 10.1042/bcj20160271] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 08/05/2016] [Indexed: 01/20/2023]
Abstract
Insulin-like peptides (ILPs) play important roles in growth and metabolic homeostasis, but have also emerged as key regulators of stress responses and immunity in a variety of vertebrates and invertebrates. Furthermore, a growing literature suggests that insulin signaling-dependent metabolic provisioning can influence host responses to infection and affect infection outcomes. In line with these studies, we previously showed that knockdown of either of two closely related, infection-induced ILPs, ILP3 and ILP4, in the mosquito Anopheles stephensi decreased infection with the human malaria parasite Plasmodium falciparum through kinetically distinct effects on parasite death. However, the precise mechanisms by which ILP3 and ILP4 control the response to infection remained unknown. To address this knowledge gap, we used a complementary approach of direct ILP supplementation into the blood meal to further define ILP-specific effects on mosquito biology and parasite infection. Notably, we observed that feeding resulted in differential effects of ILP3 and ILP4 on blood-feeding behavior and P. falciparum development. These effects depended on ILP-specific regulation of intermediary metabolism in the mosquito midgut, suggesting a major contribution of ILP-dependent metabolic shifts to the regulation of infection resistance and parasite transmission. Accordingly, our data implicate endogenous ILP signaling in balancing intermediary metabolism for the host response to infection, affirming this emerging tenet in host-pathogen interactions with novel insights from a system of significant public health importance.
Collapse
|
46
|
Carvalho TG, Morahan B, John von Freyend S, Boeuf P, Grau G, Garcia-Bustos J, Doerig C. The ins and outs of phosphosignalling in Plasmodium: Parasite regulation and host cell manipulation. Mol Biochem Parasitol 2016; 208:2-15. [PMID: 27211241 DOI: 10.1016/j.molbiopara.2016.05.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 05/16/2016] [Indexed: 12/15/2022]
Abstract
Signal transduction and kinomics have been rapidly expanding areas of investigation within the malaria research field. Here, we provide an overview of phosphosignalling pathways that operate in all stages of the Plasmodium life cycle. We review signalling pathways in the parasite itself, in the cells it invades, and in other cells of the vertebrate host with which it interacts. We also discuss the potential of these pathways as novel targets for antimalarial intervention.
Collapse
Affiliation(s)
- Teresa Gil Carvalho
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Victoria 3800, Australia
| | - Belinda Morahan
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Victoria 3800, Australia
| | - Simona John von Freyend
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Victoria 3800, Australia
| | - Philippe Boeuf
- Burnet Institute, Melbourne, Victoria 3004, Australia; The University of Melbourne, Department of Medicine, Melbourne, Victoria 3010, Australia; Victorian Infectious Diseases Service, Royal Melbourne Hospital, Melbourne, Victoria 3010, Australia
| | - Georges Grau
- Vascular Immunology Unit, Department of Pathology, Sydney Medical School, University of Sydney, Camperdown, New South Wales 2050, Australia
| | - Jose Garcia-Bustos
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Victoria 3800, Australia
| | - Christian Doerig
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Victoria 3800, Australia.
| |
Collapse
|
47
|
Champer J, Buchman A, Akbari OS. Cheating evolution: engineering gene drives to manipulate the fate of wild populations. Nat Rev Genet 2016; 17:146-59. [PMID: 26875679 DOI: 10.1038/nrg.2015.34] [Citation(s) in RCA: 252] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Engineered gene drives - the process of stimulating the biased inheritance of specific genes - have the potential to enable the spread of desirable genes throughout wild populations or to suppress harmful species, and may be particularly useful for the control of vector-borne diseases such as malaria. Although several types of selfish genetic elements exist in nature, few have been successfully engineered in the laboratory thus far. With the discovery of RNA-guided CRISPR-Cas9 (clustered regularly interspaced short palindromic repeats-CRISPR-associated 9) nucleases, which can be utilized to create, streamline and improve synthetic gene drives, this is rapidly changing. Here, we discuss the different types of engineered gene drives and their potential applications, as well as current policies regarding the safety and regulation of gene drives for the manipulation of wild populations.
Collapse
Affiliation(s)
- Jackson Champer
- Department of Entomology, University of California, Riverside, Center for Disease Vector Research, Institute for Integrative Genome Biology, University of California, Riverside, California 92521, USA
| | - Anna Buchman
- Department of Entomology, University of California, Riverside, Center for Disease Vector Research, Institute for Integrative Genome Biology, University of California, Riverside, California 92521, USA
| | - Omar S Akbari
- Department of Entomology, University of California, Riverside, Center for Disease Vector Research, Institute for Integrative Genome Biology, University of California, Riverside, California 92521, USA
| |
Collapse
|
48
|
Abstract
On December 18, 2014, a yellow female fly quietly emerged from her pupal case. What made her unique was that she had only one parent carrying a mutant allele of this classic recessive locus. Then, one generation later, after mating with a wild-type male, all her offspring displayed the same recessive yellow phenotype. Further analysis of other such yellow females revealed that the construct causing the mutation was converting the opposing chromosome with 95% efficiency. These simple results, seen also in mosquitoes and yeast, open the door to a new era of genetics wherein the laws of traditional Mendelian inheritance can be bypassed for a broad variety of purposes. Here, we consider the implications of this fundamentally new form of "active genetics," its applications for gene drives, reversal and amplification strategies, its potential for contributing to cell and gene therapy strategies, and ethical/biosafety considerations associated with such active genetic elements. Also watch the Video Abstract.
Collapse
Affiliation(s)
- Valentino M Gantz
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, USA
| | - Ethan Bier
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
49
|
Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi. Proc Natl Acad Sci U S A 2015; 112:E6736-43. [PMID: 26598698 DOI: 10.1073/pnas.1521077112] [Citation(s) in RCA: 623] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Genetic engineering technologies can be used both to create transgenic mosquitoes carrying antipathogen effector genes targeting human malaria parasites and to generate gene-drive systems capable of introgressing the genes throughout wild vector populations. We developed a highly effective autonomous Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated protein 9 (Cas9)-mediated gene-drive system in the Asian malaria vector Anopheles stephensi, adapted from the mutagenic chain reaction (MCR). This specific system results in progeny of males and females derived from transgenic males exhibiting a high frequency of germ-line gene conversion consistent with homology-directed repair (HDR). This system copies an ∼ 17-kb construct from its site of insertion to its homologous chromosome in a faithful, site-specific manner. Dual anti-Plasmodium falciparum effector genes, a marker gene, and the autonomous gene-drive components are introgressed into ∼ 99.5% of the progeny following outcrosses of transgenic lines to wild-type mosquitoes. The effector genes remain transcriptionally inducible upon blood feeding. In contrast to the efficient conversion in individuals expressing Cas9 only in the germ line, males and females derived from transgenic females, which are expected to have drive component molecules in the egg, produce progeny with a high frequency of mutations in the targeted genome sequence, resulting in near-Mendelian inheritance ratios of the transgene. Such mutant alleles result presumably from nonhomologous end-joining (NHEJ) events before the segregation of somatic and germ-line lineages early in development. These data support the design of this system to be active strictly within the germ line. Strains based on this technology could sustain control and elimination as part of the malaria eradication agenda.
Collapse
|
50
|
Pietri JE, Pietri EJ, Potts R, Riehle MA, Luckhart S. Plasmodium falciparum suppresses the host immune response by inducing the synthesis of insulin-like peptides (ILPs) in the mosquito Anopheles stephensi. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 53:134-44. [PMID: 26165161 PMCID: PMC4536081 DOI: 10.1016/j.dci.2015.06.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 06/17/2015] [Accepted: 06/17/2015] [Indexed: 05/12/2023]
Abstract
The insulin-like peptides (ILPs) and their respective signaling and regulatory pathways are highly conserved across phyla. In invertebrates, ILPs regulate diverse physiological processes, including metabolism, reproduction, behavior, and immunity. We previously reported that blood feeding alone induced minimal changes in ILP expression in Anopheles stephensi. However, ingestion of a blood meal containing human insulin or Plasmodium falciparum, which can mimic insulin signaling, leads to significant increases in ILP expression in the head and midgut, suggesting a potential role for AsILPs in the regulation of P. falciparum sporogonic development. Here, we show that soluble P. falciparum products, but not LPS or zymosan, directly induced AsILP expression in immortalized A. stephensi cells in vitro. Further, AsILP expression is dependent on signaling by the mitogen-activated protein kinase kinase/extracellular signal-regulated kinase (MEK/ERK) and phosphatidylinositol 3'-kinase (PI3K)/Akt branches of the insulin/insulin-like growth factor signaling (IIS) pathway. Inhibition of P. falciparum-induced ILPs in vivo decreased parasite development through kinetically distinct effects on mosquito innate immune responses. Specifically, knockdown of AsILP4 induced early expression of immune effector genes (1-6 h after infection), a pattern associated with significantly reduced parasite abundance prior to invasion of the midgut epithelium. In contrast, knockdown of AsILP3 increased later expression of the same genes (24 h after infection), a pattern that was associated with significantly reduced oocyst development. These data suggest that P. falciparum parasites alter the expression of mosquito AsILPs to dampen the immune response and facilitate their development in the mosquito vector.
Collapse
Affiliation(s)
- Jose E Pietri
- Department of Medical Microbiology and Immunology, 3437 Tupper Hall, One Shields Avenue, School of Medicine, University of California, Davis, CA 95616, USA.
| | - Eduardo J Pietri
- Department of Medical Microbiology and Immunology, 3437 Tupper Hall, One Shields Avenue, School of Medicine, University of California, Davis, CA 95616, USA.
| | - Rashaun Potts
- Department of Medical Microbiology and Immunology, 3437 Tupper Hall, One Shields Avenue, School of Medicine, University of California, Davis, CA 95616, USA.
| | - Michael A Riehle
- Department of Entomology, 410 Forbes, College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ 85721, USA.
| | - Shirley Luckhart
- Department of Medical Microbiology and Immunology, 3437 Tupper Hall, One Shields Avenue, School of Medicine, University of California, Davis, CA 95616, USA.
| |
Collapse
|