1
|
Raghunathan D, Lim SS, Moe GR, Beernink PT. Human Factor H and anti-Neisserial surface protein A (NspA) antibodies compete for overlapping binding sites on meningococcal NspA. Infect Immun 2025; 93:e0033924. [PMID: 39992115 PMCID: PMC11895441 DOI: 10.1128/iai.00339-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 01/22/2025] [Indexed: 02/25/2025] Open
Abstract
Neisserial surface protein A (NspA) is a small, conserved outer membrane protein that has been investigated as a vaccine antigen against meningococcal disease. After NspA had been tested in humans, this antigen was discovered to recruit the human complement regulator Factor H (FH). Previous studies in transgenic mice showed that human FH decreased the protective antibody responses to NspA. The purpose of the present study was to map the binding sites for human FH and anti-NspA antibodies. We found that an anti-NspA monoclonal antibody (mAb), AL-12, inhibits binding of FH to NspA by enzyme-linked immunosorbent assay (ELISA). Based on this result, we tested the roles of the 10 charged residues on the external loops of NspA in binding these two molecules by site-specific mutagenesis and binding experiments. Through ELISA and surface plasmon resonance experiments, we show that three aspartate (D) residues, D77 on loop 2 and D113 and D118 on loop 3, are important for binding human FH. Further, residues D113 and D118, as well as lysine 79 and arginine 109, are involved in binding mAb AL-12, which binds to a conformational epitope. The results have implications for strategies to increase NspA immunogenicity by decreasing binding to human FH, as has been done with other antigens that recruit this complement regulator.
Collapse
Affiliation(s)
- Dhaarini Raghunathan
- Division of Infectious Diseases and Global Health, Department of Pediatrics, School of Medicine, University of California, San Francisco, California, USA
| | - Susie Sohee Lim
- Division of Infectious Diseases and Global Health, Department of Pediatrics, School of Medicine, University of California, San Francisco, California, USA
| | | | - Peter T. Beernink
- Division of Infectious Diseases and Global Health, Department of Pediatrics, School of Medicine, University of California, San Francisco, California, USA
| |
Collapse
|
2
|
Menon SS, Ramirez-Toloza G, Wycoff KL, Ehinger S, Shaughnessy J, Ram S, Ferreira VP. Mechanisms by which Factor H protects Trypanosoma cruzi from the alternative pathway of complement. Front Immunol 2024; 15:1152000. [PMID: 38361922 PMCID: PMC10867245 DOI: 10.3389/fimmu.2024.1152000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 01/16/2024] [Indexed: 02/17/2024] Open
Abstract
Chagas disease, a chronic disabling disease caused by the protozoan Trypanosoma cruzi, has no standardized treatment or preventative vaccine. The infective trypomastigote form of T. cruzi is highly resistant to killing by the complement immune system. Factor H (FH), a negative regulator of the alternative pathway (AP) of complement on cell surfaces and in blood, contains 20 short consensus repeat domains. The four N-terminal domains of FH inactivate the AP, while the other domains interact with C3b/d and glycan markers on cell surfaces. Various pathogens bind FH to inactivate the AP. T. cruzi uses its trans-sialidase enzyme to transfer host sialic acids to its own surface, which could be one of the approaches it uses to bind FH. Previous studies have shown that FH binds to complement-opsonized T. cruzi and parasite desialylation increases complement-mediated lysis of trypomastigotes. However, the molecular basis of FH binding to T. cruzi remain unknown. Only trypomastigotes, but not epimastigotes (non-infective, complement susceptible) bound FH directly, independent of C3 deposition, in a dose-dependent manner. Domain mapping experiments using 3-5 FH domain fragments showed that domains 5-8 competitively inhibited FH binding to the trypomastigotes by ~35% but did not decrease survival in complement. FH-Fc or mutant FH-Fc fusion proteins (3-11 contiguous FH domains fused to the IgG Fc) also did not kill trypomastigotes. FH-related protein-5, whose domains bear significant sequence identity to all known polyanion-binding FH domains (6-7, 10-14, 19-20), fully inhibited FH binding to trypomastigotes and reduced trypomastigote survival to < 24% in the presence of serum. In conclusion, we have elucidated the role of FH in complement resistance of trypomastigotes.
Collapse
Affiliation(s)
- Smrithi S. Menon
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Galia Ramirez-Toloza
- Laboratory of Parasitology, Department of Animal Preventive Medicine, Faculty of Veterinary Medicine and Livestock Sciences, University of Chile, Santiago, Chile
| | | | - Sean Ehinger
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Jutamas Shaughnessy
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Sanjay Ram
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Viviana P. Ferreira
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| |
Collapse
|
3
|
Borrow R, Findlow J. The important lessons lurking in the history of meningococcal epidemiology. Expert Rev Vaccines 2024; 23:445-462. [PMID: 38517733 DOI: 10.1080/14760584.2024.2329618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 03/08/2024] [Indexed: 03/24/2024]
Abstract
INTRODUCTION The epidemiology of invasive meningococcal disease (IMD), a rare but potentially fatal illness, is typically described as unpredictable and subject to sporadic outbreaks. AREAS COVERED Meningococcal epidemiology and vaccine use during the last ~ 200 years are examined within the context of meningococcal characterization and classification to guide future IMD prevention efforts. EXPERT OPINION Historical and contemporary data highlight the dynamic nature of meningococcal epidemiology, with continued emergence of hyperinvasive clones and affected regions. Recent shifts include global increases in serogroup W disease, meningococcal antimicrobial resistance (AMR), and meningococcal urethritis; additionally, unvaccinated populations have experienced disease resurgences following lifting of COVID-19 restrictions. Despite these changes, a close analysis of meningococcal epidemiology indicates consistent dominance of serogroups A, B, C, W, and Y and elevated IMD rates among infants and young children, adolescents/young adults, and older adults. Demonstrably effective vaccines against all 5 major disease-causing serogroups are available, and their prophylactic use represents a powerful weapon against IMD, including AMR. The World Health Organization's goal of defeating meningitis by the year 2030 demands broad protection against IMD, which in turn indicates an urgent need to expand meningococcal vaccination programs across major disease-causing serogroups and age-related risk groups.
Collapse
Affiliation(s)
- Ray Borrow
- Meningococcal Reference Unit, UKHSA, Manchester Royal Infirmary, Manchester, UK
| | - Jamie Findlow
- Global Medical Affairs, Vaccines and Antivirals, Pfizer Ltd, Tadworth, UK
| |
Collapse
|
4
|
Yang C, Zhao L, Zhou J, Cheng Y, Yang J, Zhou H, Luo W, Lu S, Jin D, Pu J, Zhang S, Liu L, Xu J. Neisseria lisongii sp. nov. and Neisseria yangbaofengii sp. nov., isolated from the respiratory tracts of marmots. Int J Syst Evol Microbiol 2023; 73. [PMID: 37610801 DOI: 10.1099/ijsem.0.006002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023] Open
Abstract
Four Gram-stain-negative, oxidase-positive, non-motile, cocci-shaped bacteria strains (ZJ106T, ZJ104, ZJ785T and ZJ930) were isolated from marmot respiratory tracts. Phylogenetic analyses based on 16S rRNA genes, 53 ribosomal protein sequences and 441 core genes supported that all four strains belonged to the genus Neisseria with close relatives Neisseria weixii 10022T and Neisseria iguanae ATCC 51483T. Average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values were below the species-level thresholds (95-96 % for ANI, and 70 % for dDDH). The major fatty acids of all four strains were C16 : 1 ω7c /C16 : 1 ω6c, C16 : 0 and C18 : 1 ω9c. Major polar lipids were composed of diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol. MK-8 was the major menaquinone. Based on Virulence Factor Database analysis, the four strains were found to contain NspA and PorB H-factor binding proteins that promote evasion of host immunity. Strains ZJ106T and ZJ104 contained structures similar to the capsule synthesis manipulator of Neisseria meningitidis. Based on phenotypic and phylogenetic evidence, we propose that strains ZJ106T and ZJ785T represent two novel species of the genus Neisseria, respectively, with the names Neisseria lisongii sp. nov. and Neisseria yangbaofengii sp. nov. The type strains are ZJ106T (=GDMCC 1.3111T=JCM 35323T) and ZJ785T (=GDMCC 1.1998T=KCTC 82336T).
Collapse
Affiliation(s)
- Caixin Yang
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Lijun Zhao
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Juan Zhou
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Yanpeng Cheng
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518000, PR China
| | - Jing Yang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Huimin Zhou
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Wenbo Luo
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Shan Lu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing 102206, PR China
| | - Dong Jin
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing 102206, PR China
| | - Ji Pu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Sihui Zhang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, PR China
| | - Liyun Liu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Jianguo Xu
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing 102206, PR China
- Institute of Public Health, Nankai University, Tianjin 300305, PR China
| |
Collapse
|
5
|
Zhou Y, Jiang D, Yao X, Luo Y, Yang Z, Ren M, Zhang G, Yu Y, Lu A, Wang Y. Pan-genome wide association study of Glaesserella parasuis highlights genes associated with virulence and biofilm formation. Front Microbiol 2023; 14:1160433. [PMID: 37138622 PMCID: PMC10149723 DOI: 10.3389/fmicb.2023.1160433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/28/2023] [Indexed: 05/05/2023] Open
Abstract
Glaesserella parasuis is a gram-negative bacterium that causes fibrotic polyserositis and arthritis in pig, significantly affecting the pig industry. The pan-genome of G. parasuis is open. As the number of genes increases, the core and accessory genomes may show more pronounced differences. The genes associated with virulence and biofilm formation are also still unclear due to the diversity of G. parasuis. Therefore, we have applied a pan-genome-wide association study (Pan-GWAS) to 121 strains G. parasuis. Our analysis revealed that the core genome consists of 1,133 genes associated with the cytoskeleton, virulence, and basic biological processes. The accessory genome is highly variable and is a major cause of genetic diversity in G. parasuis. Furthermore, two biologically important traits (virulence, biofilm formation) of G. parasuis were studied via pan-GWAS to search for genes associated with the traits. A total of 142 genes were associated with strong virulence traits. By affecting metabolic pathways and capturing the host nutrients, these genes are involved in signal pathways and virulence factors, which are beneficial for bacterial survival and biofilm formation. This research lays the foundation for further studies on virulence and biofilm formation and provides potential new drug and vaccine targets against G. parasuis.
Collapse
Affiliation(s)
- You Zhou
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dike Jiang
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xueping Yao
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yan Luo
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zexiao Yang
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Meishen Ren
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery (HKAP), Hong Kong, Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery (HKAP), Hong Kong, Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Yuanyuan Yu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery (HKAP), Hong Kong, Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Aiping Lu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery (HKAP), Hong Kong, Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Yin Wang
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Yin Wang,
| |
Collapse
|
6
|
Shaughnessy J, Chabeda A, Lewis LA, Ram S. Alternative pathway amplification and infections. Immunol Rev 2023; 313:162-180. [PMID: 36336911 DOI: 10.1111/imr.13160] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The alternative pathway (AP) is the phylogenetically oldest arm of the complement system and may have evolved to mark pathogens for elimination by phagocytes. Studies using purified AP proteins or AP-specific serum showed that C3b amplification on bacteria commenced following a lag phase of about 5 min and was highly dependent on the concentration of complement. Most pathogens have evolved several elegant mechanisms to evade complement, including expressing proteases that degrade AP proteins and secreting proteins that block function of C3 convertases. In an example of convergent evolution, many microbes recruit the AP inhibitor factor H (FH) using molecular mechanisms that mimic FH interactions with host cells. In most instances, the AP serves to amplify C3b deposited on microbes by the classical pathway (CP). The role of properdin on microbes appears to be restricted to stabilization of C3 convertases; scant evidence exists for its role as an initiator of the AP on pathogens in the context of serum. Therapeutic complement inhibition carries with it an increased risk of infection. Antibody (Ab)-dependent AP activation may be critical for complement activation by vaccine-elicited Ab when the CP is blocked, and its molecular mechanism is discussed.
Collapse
Affiliation(s)
- Jutamas Shaughnessy
- Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Aleyo Chabeda
- Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Lisa A Lewis
- Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Sanjay Ram
- Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
7
|
Abstract
Neisseria meningitidis and Neisseria gonorrhoeae are important human pathogens that have evolved to bind the major negative regulator of the complement system, complement factor H (CFH). However, little is known about the interaction of pathogens with CFH-related proteins (CFHRs) which are structurally similar to CFH but lack the main complement regulatory domains found in CFH. Insights into the role of CFHRs have been hampered by a lack of specific reagents. We generated a panel of CFHR-specific monoclonal antibodies and demonstrated that CFHR5 was bound by both pathogenic Neisseria spp. We showed that CFHR5 bound to PorB expressed by both pathogens in the presence of sialylated lipopolysaccharide and enhanced complement activation on the surface of N. gonorrhoeae. Our study furthered our understanding of the interactions of CFHRs with bacterial pathogens and revealed that CFHR5 bound the meningococcus and gonococcus via similar mechanisms.
Collapse
|
8
|
Kumar V, Pouw RB, Autio MI, Sagmeister MG, Phua ZY, Borghini L, Wright VJ, Hoggart C, Pan B, Tan AKY, Binder A, Brouwer MC, Pinnock E, De Groot R, Hazelzet J, Emonts M, Van Der Flier M, Reiter K, Nöthen MM, Hoffmann P, Schlapbach LJ, Bellos E, Anderson S, Secka F, Martinón-Torres F, Salas A, Fink C, Carrol ED, Pollard AJ, Coin LJ, Zenz W, Wouters D, Ang LT, Hibberd ML, Levin M, Kuijpers TW, Davila S. Variation in CFHR3 determines susceptibility to meningococcal disease by controlling factor H concentrations. Am J Hum Genet 2022; 109:1680-1691. [PMID: 36007525 PMCID: PMC9502058 DOI: 10.1016/j.ajhg.2022.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 07/31/2022] [Indexed: 11/16/2022] Open
Abstract
Neisseria meningitidis protects itself from complement-mediated killing by binding complement factor H (FH). Previous studies associated susceptibility to meningococcal disease (MD) with variation in CFH, but the causal variants and underlying mechanism remained unknown. Here we attempted to define the association more accurately by sequencing the CFH-CFHR locus and imputing missing genotypes in previously obtained GWAS datasets of MD-affected individuals of European ancestry and matched controls. We identified a CFHR3 SNP that provides protection from MD (rs75703017, p value = 1.1 × 10-16) by decreasing the concentration of FH in the blood (p value = 1.4 × 10-11). We subsequently used dual-luciferase studies and CRISPR gene editing to establish that deletion of rs75703017 increased FH expression in hepatocyte by preventing promotor inhibition. Our data suggest that reduced concentrations of FH in the blood confer protection from MD; with reduced access to FH, N. meningitidis is less able to shield itself from complement-mediated killing.
Collapse
Affiliation(s)
- Vikrant Kumar
- Human Genetics, Genome Institute of Singapore, Singapore, Singapore; Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Richard B Pouw
- Division of Pediatric Immunology, Rheumatology, and Infectious Diseases, Emma Children's Hospital, Amsterdam University Medical Centre, Amsterdam, the Netherlands; Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands; Landsteiner Laboratory, Amsterdam University Medical Centre, Amsterdam Infection and Immunity Institute, Amsterdam, the Netherlands
| | - Matias I Autio
- Human Genetics, Genome Institute of Singapore, Singapore, Singapore; Cardiovascular Research Institute, Centre for Translational Medicine, National University Health System, Singapore
| | | | - Zai Yang Phua
- Human Genetics, Genome Institute of Singapore, Singapore, Singapore
| | - Lisa Borghini
- Human Genetics, Genome Institute of Singapore, Singapore, Singapore; Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, Santiago de Compostela, Spain; GenPoB Research Group, Instituto de Investigación Sanitaria de Santiago, Hospital Clínico Universitario de Santiago, Santiago de Compostela, Spain
| | - Victoria J Wright
- Section of Paediatric Infectious Disease, Division of Infectious Disease, Department of Medicine, Imperial College London, London, UK
| | - Clive Hoggart
- Section of Paediatric Infectious Disease, Division of Infectious Disease, Department of Medicine, Imperial College London, London, UK
| | - Bangfen Pan
- Human Genetics, Genome Institute of Singapore, Singapore, Singapore; Cardiovascular Research Institute, Centre for Translational Medicine, National University Health System, Singapore
| | - Antson Kiat Yee Tan
- Cancer Stem Cell Biology, Genome Institute of Singapore, Singapore, Singapore
| | - Alexander Binder
- Department of General Paediatrics, Medical University of Graz, Graz, Austria
| | - Mieke C Brouwer
- Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands; Landsteiner Laboratory, Amsterdam University Medical Centre, Amsterdam Infection and Immunity Institute, Amsterdam, the Netherlands
| | | | - Ronald De Groot
- Section of Pediatric Infectious Diseases, Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jan Hazelzet
- Department of Pediatrics, Erasmus Medical Center-Sophia Children's Hospital, University Medical Center, Rotterdam, the Netherlands
| | - Marieke Emonts
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK; National Institute for Health and Care Research Newcastle Biomedical Research Centre Based at Newcastle Upon Tyne Hospitals National Health Service Trust and Newcastle University, Newcastle Upon Tyne, UK; Paediatric Infectious Diseases and Immunology Department, Newcastle Upon Tyne Hospitals Foundation Trust, Great North Children's Hospital, Newcastle Upon Tyne, UK
| | - Michiel Van Der Flier
- Section of Pediatric Infectious Diseases, Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands; Paediatric Infectious Diseases and Immunology, Wilhelmina Children's Hospital University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Karl Reiter
- Department of Paediatrics, Division of Paediatric Intensive Care Medicine, Ludwig Maximilian University of Munich and Dr. von Hauner's Children's Hospital, Munich, Germany
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Per Hoffmann
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | | | - Luregn J Schlapbach
- Child Health Research Centre, The University of Queensland, Brisbane, Australia; Paediatric Intensive Care Unit, Queensland Children's Hospital, Brisbane, Australia; Department of Intensive Care and Neonatology and Children`s Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Evangelos Bellos
- Section of Paediatric Infectious Disease, Division of Infectious Disease, Department of Medicine, Imperial College London, London, UK
| | | | - Fatou Secka
- Medical Research Council Unit Gambia, Banjul, The Gambia
| | - Federico Martinón-Torres
- Translational Pediatrics and Infectious Diseases, Hospital Clínico Universitario de Santiago, Santiago de Compostela, Spain; Genetics, Vaccines, Infectious Diseases, and Pediatrics Research Group, Instituto de Investigación Sanitaria de Santiago, Universidad de Santiago de Compostela, Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Salas
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain; Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, Santiago de Compostela, Spain; GenPoB Research Group, Instituto de Investigación Sanitaria de Santiago, Hospital Clínico Universitario de Santiago, Santiago de Compostela, Spain
| | - Colin Fink
- Micropathology, University of Warwick, Coventry, UK
| | - Enitan D Carrol
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Pediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Lachlan J Coin
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Werner Zenz
- Department of General Paediatrics, Medical University of Graz, Graz, Austria
| | - Diana Wouters
- Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands; Landsteiner Laboratory, Amsterdam University Medical Centre, Amsterdam Infection and Immunity Institute, Amsterdam, the Netherlands
| | - Lay Teng Ang
- Cancer Stem Cell Biology, Genome Institute of Singapore, Singapore, Singapore
| | - Martin L Hibberd
- Infectious Diseases, Genome Institute of Singapore, Singapore, Singapore; Infectious and Tropical Disease, London School of Hygiene & Tropical Medicine, London, UK
| | - Michael Levin
- Section of Paediatric Infectious Disease, Division of Infectious Disease, Department of Medicine, Imperial College London, London, UK
| | - Taco W Kuijpers
- Division of Pediatric Immunology, Rheumatology, and Infectious Diseases, Emma Children's Hospital, Amsterdam University Medical Centre, Amsterdam, the Netherlands.
| | - Sonia Davila
- Human Genetics, Genome Institute of Singapore, Singapore, Singapore; Duke-National University of Singapore Medical School, Singapore, Singapore; SingHealth Duke-NUS Institute of Precision Medicine, Singapore, Singapore.
| |
Collapse
|
9
|
Ruest MK, Dennis JJ. The Exploration of Complement-Resistance Mechanisms of Pathogenic Gram-Negative Bacteria to Support the Development of Novel Therapeutics. Pathogens 2022; 11:931. [PMID: 36015050 PMCID: PMC9412335 DOI: 10.3390/pathogens11080931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
Resistance to antibiotics in Bacteria is one of the biggest threats to human health. After decades of attempting to isolate or design antibiotics with novel mechanisms of action against bacterial pathogens, few approaches have been successful. Antibacterial drug discovery is now moving towards targeting bacterial virulence factors, especially immune evasion factors. Gram-negative bacteria present some of the most significant challenges in terms of antibiotic resistance. However, they are also able to be eliminated by the component of the innate immune system known as the complement system. In response, Gram-negative bacteria have evolved a variety of mechanisms by which they are able to evade complement and cause infection. Complement resistance mechanisms present some of the best novel therapeutic targets for defending against highly antibiotic-resistant pathogenic bacterial infections.
Collapse
Affiliation(s)
| | - Jonathan J. Dennis
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada
| |
Collapse
|
10
|
Edwardsiella tarda TraT is an anti-complement factor and a cellular infection promoter. Commun Biol 2022; 5:637. [PMID: 35768577 PMCID: PMC9243006 DOI: 10.1038/s42003-022-03587-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 06/15/2022] [Indexed: 12/04/2022] Open
Abstract
Edwardsiella tarda is a well-known bacterial pathogen with a broad range of host, including fish, amphibians, and mammals. One eminent virulence feature of E. tarda is its strong ability to resist the killing of host serum complement, but the involving mechanism is unclear. In this report, we identified E. tarda TraT as a key player in both complement resistance and cellular invasion. TraT, a surface-localized protein, bound and recruited complement factor H onto E. tarda, whereby inhibiting complement activation via the alternative pathway. TraT also interacted with host CD46 in a specific complement control protein domain-dependent manner, whereby facilitating the cellular infection and tissue dissemination of E. tarda. Thus, by acting as an anti-complement factor and a cellular infection promoter, TraT makes an important contribution to the complement evasion and systemic infection of E. tarda. These results add insights into the pathogen-host interaction mechanism during E. tarda infection. Edwardsiella tarda TraT promotes cellular infection and serves as an anti-complement factor, shedding light on the mechanisms of E. tarda’s strong evasion of killing by the host.
Collapse
|
11
|
van Beek AE, Pouw RB, Wright VJ, Sallah N, Inwald D, Hoggart C, Brouwer MC, Galassini R, Thomas J, Calvo-Bado L, Fink CG, Jongerius I, Hibberd M, Wouters D, Levin M, Kuijpers TW. Low Levels of Factor H Family Proteins During Meningococcal Disease Indicate Systemic Processes Rather Than Specific Depletion by Neisseria meningitidis. Front Immunol 2022; 13:876776. [PMID: 35720329 PMCID: PMC9204383 DOI: 10.3389/fimmu.2022.876776] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
Neisseria meningitidis, the causative agent of meningococcal disease (MD), evades complement-mediated clearance upon infection by ‘hijacking’ the human complement regulator factor H (FH). The FH protein family also comprises the homologous FH-related (FHR) proteins, hypothesized to act as antagonists of FH, and FHR-3 has recently been implicated to play a major role in MD susceptibility. Here, we show that the circulating levels of all FH family proteins, not only FH and FHR-3, are equally decreased during the acute illness. We did neither observe specific consumption of FH or FHR-3 by N. meningitidis, nor of any of the other FH family proteins, suggesting that the globally reduced levels are due to systemic processes including dilution by fluid administration upon admission and vascular leakage. MD severity associated predominantly with a loss of FH rather than FHRs. Additionally, low FH levels associated with renal failure, suggesting insufficient protection of host tissue by the active protection by the FH protein family, which is reminiscent of reduced FH activity in hemolytic uremic syndrome. Retaining higher levels of FH may thus limit tissue injury during MD.
Collapse
Affiliation(s)
- Anna E van Beek
- Sanquin Research, Department of Immunopathology, and Landsteiner Laboratory, Amsterdam University Medical Centre, Amsterdam Infection and Immunity Institute, Amsterdam, Netherlands.,Department of Pediatric Immunology, Rheumatology, and Infectious Diseases, Emma Children's Hospital, Amsterdam University Medical Centre, Amsterdam, Netherlands
| | - Richard B Pouw
- Sanquin Research, Department of Immunopathology, and Landsteiner Laboratory, Amsterdam University Medical Centre, Amsterdam Infection and Immunity Institute, Amsterdam, Netherlands.,Department of Pediatric Immunology, Rheumatology, and Infectious Diseases, Emma Children's Hospital, Amsterdam University Medical Centre, Amsterdam, Netherlands
| | - Victoria J Wright
- Section for Paediatric Infectious Disease, Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Neneh Sallah
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - David Inwald
- Section for Paediatric Infectious Disease, Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Clive Hoggart
- Section for Paediatric Infectious Disease, Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Mieke C Brouwer
- Sanquin Research, Department of Immunopathology, and Landsteiner Laboratory, Amsterdam University Medical Centre, Amsterdam Infection and Immunity Institute, Amsterdam, Netherlands
| | - Rachel Galassini
- Section for Paediatric Infectious Disease, Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - John Thomas
- Micropathology Ltd., University of Warwick, Warwick, United Kingdom
| | - Leo Calvo-Bado
- Micropathology Ltd., University of Warwick, Warwick, United Kingdom
| | - Colin G Fink
- Micropathology Ltd., University of Warwick, Warwick, United Kingdom
| | - Ilse Jongerius
- Sanquin Research, Department of Immunopathology, and Landsteiner Laboratory, Amsterdam University Medical Centre, Amsterdam Infection and Immunity Institute, Amsterdam, Netherlands.,Department of Pediatric Immunology, Rheumatology, and Infectious Diseases, Emma Children's Hospital, Amsterdam University Medical Centre, Amsterdam, Netherlands
| | - Martin Hibberd
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Diana Wouters
- Sanquin Research, Department of Immunopathology, and Landsteiner Laboratory, Amsterdam University Medical Centre, Amsterdam Infection and Immunity Institute, Amsterdam, Netherlands
| | - Michael Levin
- Section for Paediatric Infectious Disease, Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Taco W Kuijpers
- Department of Pediatric Immunology, Rheumatology, and Infectious Diseases, Emma Children's Hospital, Amsterdam University Medical Centre, Amsterdam, Netherlands.,Sanquin Research, Department of Blood Cell Research, and Landsteiner Laboratory, Amsterdam University Medical Centre, Amsterdam, Netherlands
| |
Collapse
|
12
|
Mikucki A, McCluskey NR, Kahler CM. The Host-Pathogen Interactions and Epicellular Lifestyle of Neisseria meningitidis. Front Cell Infect Microbiol 2022; 12:862935. [PMID: 35531336 PMCID: PMC9072670 DOI: 10.3389/fcimb.2022.862935] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 02/28/2022] [Indexed: 01/17/2023] Open
Abstract
Neisseria meningitidis is a gram-negative diplococcus and a transient commensal of the human nasopharynx. It shares and competes for this niche with a number of other Neisseria species including N. lactamica, N. cinerea and N. mucosa. Unlike these other members of the genus, N. meningitidis may become invasive, crossing the epithelium of the nasopharynx and entering the bloodstream, where it rapidly proliferates causing a syndrome known as Invasive Meningococcal Disease (IMD). IMD progresses rapidly to cause septic shock and meningitis and is often fatal despite aggressive antibiotic therapy. While many of the ways in which meningococci survive in the host environment have been well studied, recent insights into the interactions between N. meningitidis and the epithelial, serum, and endothelial environments have expanded our understanding of how IMD develops. This review seeks to incorporate recent work into the established model of pathogenesis. In particular, we focus on the competition that N. meningitidis faces in the nasopharynx from other Neisseria species, and how the genetic diversity of the meningococcus contributes to the wide range of inflammatory and pathogenic potentials observed among different lineages.
Collapse
Affiliation(s)
- August Mikucki
- Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Nicolie R. McCluskey
- Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
- College of Science, Health, Engineering and Education, Telethon Kids Institute, Murdoch University, Perth, WA, Australia
| | - Charlene M. Kahler
- Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
- *Correspondence: Charlene M. Kahler,
| |
Collapse
|
13
|
Viviani V, Biolchi A, Pizza M. Synergistic activity of antibodies in the multicomponent 4CMenB vaccine. Expert Rev Vaccines 2022; 21:645-658. [PMID: 35257644 DOI: 10.1080/14760584.2022.2050697] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION : Vaccines based on multiple antigens often induce an immune response which is higher than that triggered by each single component, with antibodies acting cooperatively and synergistically in tackling the infection. AREAS COVERED An interesting example is the antibody response induced by the 4CMenB vaccine, currently licensed for the prevention of Neisseria meningitidis serogroup B (MenB). It contains four antigenic components: Factor H binding protein (fHbp), Neisseria adhesin A (NadA), Neisserial Heparin Binding Antigen (NHBA) and Outer Membrane Vesicles (OMV). Monoclonal and polyclonal antibodies raised by vaccination with 4CMenB show synergistic activity in complement-dependent bacterial killing. This review summarizes published and unpublished data and provides evidence of the added value of multicomponent vaccines. EXPERT OPINION : The ability of 4CMenB vaccine to elicit antibodies targeting multiple surface-exposed antigens is corroborated by the recent data on real world evidences. Bactericidal activity is generally mediated by antibodies that bind to antigens highly expressed on the bacterial surface and immunologically related. However, simultaneous binding of antibodies to various surface-exposed antigens can overcome the threshold density of antigen-antibody complexes needed for complement activation. The data discussed in this review highlight the interplay between antibodies targeting major and minor antigens and their effect on functionality. Clinical trial registration: www.clinicaltrials.gov identifiers of studies with original data mentioned in the article: NCT00937521, NCT00433914, NCT02140762 and NCT02285777.
Collapse
Affiliation(s)
| | | | - Mariagrazia Pizza
- Bacterial Vaccines, GSK, Siena, Italy.,GVGH, GSK Vaccine Institute for Global Health, Siena, Italy
| |
Collapse
|
14
|
Cortes C, Desler C, Mazzoli A, Chen JY, Ferreira VP. The role of properdin and Factor H in disease. Adv Immunol 2022; 153:1-90. [PMID: 35469595 DOI: 10.1016/bs.ai.2021.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The complement system consists of three pathways (alternative, classical, and lectin) that play a fundamental role in immunity and homeostasis. The multifunctional role of the complement system includes direct lysis of pathogens, tagging pathogens for phagocytosis, promotion of inflammatory responses to control infection, regulation of adaptive cellular immune responses, and removal of apoptotic/dead cells and immune complexes from circulation. A tight regulation of the complement system is essential to avoid unwanted complement-mediated damage to the host. This regulation is ensured by a set of proteins called complement regulatory proteins. Deficiencies or malfunction of these regulatory proteins may lead to pro-thrombotic hematological diseases, renal and ocular diseases, and autoimmune diseases, among others. This review focuses on the importance of two complement regulatory proteins of the alternative pathway, Factor H and properdin, and their role in human diseases with an emphasis on: (a) characterizing the main mechanism of action of Factor H and properdin in regulating the complement system and protecting the host from complement-mediated attack, (b) describing the dysregulation of the alternative pathway as a result of deficiencies, or mutations, in Factor H and properdin, (c) outlining the clinical findings, management and treatment of diseases associated with mutations and deficiencies in Factor H, and (d) defining the unwanted and inadequate functioning of properdin in disease, through a discussion of various experimental research findings utilizing in vitro, mouse and human models.
Collapse
Affiliation(s)
- Claudio Cortes
- Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI, United States.
| | - Caroline Desler
- Oakland University William Beaumont School of Medicine, Rochester, MI, United States
| | - Amanda Mazzoli
- Oakland University William Beaumont School of Medicine, Rochester, MI, United States
| | - Jin Y Chen
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Viviana P Ferreira
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States.
| |
Collapse
|
15
|
Facchetti A, Wheeler JX, Vipond C, Whiting G, Lavender H, Feavers IM, Maiden MCJ, Maharjan S. Factor H binding protein (fHbp)-mediated differential complement resistance of a serogroup C Neisseria meningitidis isolate from cerebrospinal fluid of a patient with invasive meningococcal disease. Access Microbiol 2021; 3:000255. [PMID: 34712903 PMCID: PMC8549389 DOI: 10.1099/acmi.0.000255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 07/03/2021] [Indexed: 11/01/2022] Open
Abstract
During an outbreak of invasive meningococcal disease (IMD) at the University of Southampton, UK, in 1997, two Neisseria meningitidis serogroup C isolates were retrieved from a student ('Case'), who died of IMD, and a close contact ('Carrier') who, after mouth-to-mouth resuscitation on the deceased, did not contract the disease. Genomic comparison of the isolates demonstrated extensive nucleotide sequence identity, with differences identified in eight genes. Here, comparative proteomics was used to measure differential protein expression between the isolates and investigate whether the differences contributed to the clinical outcomes. A total of six proteins were differentially expressed: four proteins (methylcitrate synthase, PrpC; hypothetical integral membrane protein, Imp; fructose-1,6-bisphosphate aldolase, Fba; aldehyde dehydrogenase A, AldA) were upregulated in the Case isolate, while one protein (Type IV pilus-associated protein, PilC2) was downregulated. Peptides for factor H binding protein (fHbp), a major virulence factor and antigenic protein, were only detected in the Case, with a single base deletion (ΔT366) in the Carrier fHbp causing lack of its expression. Expression of fHbp resulted in an increased resistance of the Case isolate to complement-mediated killing in serum. Complementation of fHbp expression in the Carrier increased its serum resistance by approximately 8-fold. Moreover, a higher serum bactericidal antibody titre was seen for the Case isolate when using sera from mice immunized with Bexsero (GlaxoSmithKline), a vaccine containing fHbp as an antigenic component. This study highlights the role of fHbp in the differential complement resistance of the Case and the Carrier isolates. Expression of fHbp in the Case resulted in its increased survival in serum, possibly leading to active proliferation of the bacteria in blood and death of the student through IMD. Moreover, enhanced killing of the Case isolate by sera raised against an fHbp-containing vaccine, Bexsero, underlines the role and importance of fHbp in infection and immunity.
Collapse
Affiliation(s)
- Alessandra Facchetti
- Division of Bacteriology, National Institute for Biological Standards and Control (NIBSC), Blanche Lane, South Mimms, Potters Bar, Hertfordshire, EN6 3QG, UK
| | - Jun X Wheeler
- Division of Analytical Biological Sciences, National Institute for Biological Standards and Control (NIBSC), Blanche Lane, South Mimms, Potters Bar, Hertfordshire, EN6 3QG, UK
| | - Caroline Vipond
- Division of Bacteriology, National Institute for Biological Standards and Control (NIBSC), Blanche Lane, South Mimms, Potters Bar, Hertfordshire, EN6 3QG, UK
| | - Gail Whiting
- Division of Analytical Biological Sciences, National Institute for Biological Standards and Control (NIBSC), Blanche Lane, South Mimms, Potters Bar, Hertfordshire, EN6 3QG, UK
| | - Hayley Lavender
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Ian M Feavers
- Division of Bacteriology, National Institute for Biological Standards and Control (NIBSC), Blanche Lane, South Mimms, Potters Bar, Hertfordshire, EN6 3QG, UK
| | - Martin C J Maiden
- Department of Zoology, Peter Medawar Building, University of Oxford, South Parks Road, Oxford, OX1 3SY, UK
| | - Sunil Maharjan
- Division of Bacteriology, National Institute for Biological Standards and Control (NIBSC), Blanche Lane, South Mimms, Potters Bar, Hertfordshire, EN6 3QG, UK
| |
Collapse
|
16
|
Syed I, Wooten RM. Interactions Between Pathogenic Burkholderia and the Complement System: A Review of Potential Immune Evasion Mechanisms. Front Cell Infect Microbiol 2021; 11:701362. [PMID: 34660335 PMCID: PMC8515183 DOI: 10.3389/fcimb.2021.701362] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 09/15/2021] [Indexed: 12/12/2022] Open
Abstract
The genus Burkholderia contains over 80 different Gram-negative species including both plant and human pathogens, the latter of which can be classified into one of two groups: the Burkholderia pseudomallei complex (Bpc) or the Burkholderia cepacia complex (Bcc). Bpc pathogens Burkholderia pseudomallei and Burkholderia mallei are highly virulent, and both have considerable potential for use as Tier 1 bioterrorism agents; thus there is great interest in the development of novel vaccines and therapeutics for the prevention and treatment of these infections. While Bcc pathogens Burkholderia cenocepacia, Burkholderia multivorans, and Burkholderia cepacia are not considered bioterror threats, the incredible impact these infections have on the cystic fibrosis community inspires a similar demand for vaccines and therapeutics for the prevention and treatment of these infections as well. Understanding how these pathogens interact with and evade the host immune system will help uncover novel therapeutic targets within these organisms. Given the important role of the complement system in the clearance of bacterial pathogens, this arm of the immune response must be efficiently evaded for successful infection to occur. In this review, we will introduce the Burkholderia species to be discussed, followed by a summary of the complement system and known mechanisms by which pathogens interact with this critical system to evade clearance within the host. We will conclude with a review of literature relating to the interactions between the herein discussed Burkholderia species and the host complement system, with the goal of highlighting areas in this field that warrant further investigation.
Collapse
Affiliation(s)
- Irum Syed
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | | |
Collapse
|
17
|
Findlow J, Lucidarme J, Taha MK, Burman C, Balmer P. Correlates of protection for meningococcal surface protein vaccines: lessons from the past. Expert Rev Vaccines 2021; 21:739-751. [PMID: 34287103 DOI: 10.1080/14760584.2021.1940144] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Recombinant surface protein meningococcal serogroup B (MenB) vaccines are available but with different antigen compositions, leading to differences between vaccines in their immunogenicity and likely breadth of coverage. The serology and breadth of coverage assessment for MenB vaccines are multifaceted areas, and a comprehensive understanding of these complexities is required to appropriately compare licensed vaccines and those under development. AREAS COVERED In the first of two companion papers that comprehensively review the serology and breadth of coverage assessment for MenB vaccines, the history of early meningococcal vaccines is considered in this narrative review to identify transferable lessons applicable to the currently licensed MenB vaccines and those under development, as well as their serology. EXPERT OPINION Understanding correlates of protection and the breadth of coverage assessment for meningococcal surface protein vaccines is significantly more complex than that for capsular polysaccharide vaccines. Determination and understanding of the breadth of coverage of surface protein vaccines are clinically important and unique to each vaccine formulation. It is essential to estimate the proportion of MenB cases that are preventable by a specific vaccine to assess its overall potential impact and to compare the benefits and limitations of different vaccines in preventing invasive meningococcal disease.
Collapse
Affiliation(s)
- Jamie Findlow
- Vaccine Medical Development, Scientific and Clinical Affairs, Pfizer Ltd, Tadworth, UK
| | - Jay Lucidarme
- Meningococcal Reference Unit, Public Health England, Manchester Royal Infirmary, Manchester, UK
| | | | - Cynthia Burman
- Vaccine Medical Development, Scientific and Clinical Affairs, Pfizer Inc, Collegeville, PA, USA
| | - Paul Balmer
- Vaccine Medical Development, Scientific and Clinical Affairs, Pfizer Inc, Collegeville, PA, USA
| |
Collapse
|
18
|
Chen M, Harrison OB, Bratcher HB, Bo Z, Jolley KA, Rodrigues CM, Bray JE, Guo Q, Zhang X, Chen M, Maiden MC. Evolution of Sequence Type 4821 Clonal Complex Hyperinvasive and Quinolone-Resistant Meningococci. Emerg Infect Dis 2021; 27:1110-1122. [PMID: 33754991 PMCID: PMC8007298 DOI: 10.3201/eid2704.203612] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Expansion of quinolone-resistant Neisseria meningitidis clone ChinaCC4821-R1-C/B from sequence type (ST) 4821 clonal complex (CC4821) caused a serogroup shift from serogroup A to serogroup C invasive meningococcal disease (IMD) in China. To determine the relationship among globally distributed CC4821 meningococci, we analyzed whole-genome sequence data from 173 CC4821 meningococci isolated from 4 continents during 1972–2019. These meningococci clustered into 4 sublineages (1–4); sublineage 1 primarily comprised of IMD isolates (41/50, 82%). Most isolates from outside China (40/49, 81.6%) formed a distinct sublineage, the Europe–USA cluster, with the typical strain designation B:P1.17-6,23:F3-36:ST-3200(CC4821), harboring mutations in penicillin-binding protein 2. These data show that the quinolone-resistant clone ChinaCC4821-R1-C/B has expanded to other countries. The increasing distribution worldwide of serogroup B CC4821 raises the concern that CC4821 has the potential to cause a pandemic that would be challenging to control, despite indirect evidence that the Trumenba vaccine might afford some protection.
Collapse
|
19
|
Schörner MA, Passarelli‐Araujo H, Scheffer MC, Hartmann Barazzetti F, Motta Martins J, de Melo Machado H, Palmeiro JK, Bazzo ML. Genomic analysis of Neisseria elongata isolate from a patient with infective endocarditis. FEBS Open Bio 2021; 11:1987-1996. [PMID: 34038628 PMCID: PMC8406478 DOI: 10.1002/2211-5463.13201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/28/2021] [Accepted: 05/24/2021] [Indexed: 11/24/2022] Open
Abstract
Neisseria elongata is part of the commensal microbiota of the oropharynx. Although it is not considered pathogenic to humans, N. elongata has been implicated in several cases of infective endocarditis (IE). Here, we report a case of IE caused by N. elongata subsp. nitroreducens (Nel_M001) and compare its genome with 17 N. elongata genomes available in GenBank. We also evaluated resistance and virulence profiles with Comprehensive Antibiotic Resistance and Virulence Finder databases. The results showed a wide diversity among N. elongata isolates. Based on the pangenome cumulative curve, we demonstrate that N. elongata has an open pangenome. We found several different resistance genes, mainly associated with antibiotic efflux pumps. A wide range of virulence genes was observed, predominantly pilus formation genes. Nel_M001 was the only isolate to present two copies of some pilus genes and not present nspA gene. Together, our results provide insights into how this commensal microorganism can cause IE and may assist further biological investigations on nonpathogenic Neisseria spp. Case reporting and pangenome analyses are critical for enhancing our understanding of IE pathogenesis, as well as for alerting physicians and microbiologists to enable rapid identification and treatment to avoid unfavorable outcomes.
Collapse
Affiliation(s)
- Marcos André Schörner
- Molecular Biology, Microbiology and Serology LaboratoryFederal University of Santa CatarinaFlorianopolisBrazil
| | - Hemanoel Passarelli‐Araujo
- Department of Biochemistry and ImmunologyBiological Sciences InstituteFederal University of Minas GeraisBelo HorizonteBrazil
| | - Mara Cristina Scheffer
- Polydoro Ernani de São Thiago University HospitalFederal University of Santa CatarinaFlorianopolisBrazil
| | | | - Jessica Motta Martins
- Molecular Biology, Microbiology and Serology LaboratoryFederal University of Santa CatarinaFlorianopolisBrazil
| | - Hanalydia de Melo Machado
- Molecular Biology, Microbiology and Serology LaboratoryFederal University of Santa CatarinaFlorianopolisBrazil
| | | | - Maria Luiza Bazzo
- Molecular Biology, Microbiology and Serology LaboratoryFederal University of Santa CatarinaFlorianopolisBrazil
- Department of Clinical AnalysisFederal University of Santa CatarinaFlorianopolisBrazil
| |
Collapse
|
20
|
Sands NA, Beernink PT. Two human antibodies to a meningococcal serogroup B vaccine antigen enhance binding of complement Factor H by stabilizing the Factor H binding site. PLoS Pathog 2021; 17:e1009655. [PMID: 34125873 PMCID: PMC8224966 DOI: 10.1371/journal.ppat.1009655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/24/2021] [Accepted: 05/20/2021] [Indexed: 11/19/2022] Open
Abstract
Microbial pathogens bind host complement regulatory proteins to evade the immune system. The bacterial pathogen Neisseria meningitidis, or meningococcus, binds several complement regulators, including human Factor H (FH). FH binding protein (FHbp) is a component of two licensed meningococcal vaccines and in mice FHbp elicits antibodies that inhibit binding of FH to FHbp, which defeat the bacterial evasion mechanism. However, humans vaccinated with FHbp develop antibodies that enhance binding of FH to the bacteria, which could limit the effectiveness of the vaccines. In the present study, we show that two vaccine-elicited antibody fragments (Fabs) isolated from different human subjects increase binding of complement FH to meningococcal FHbp by ELISA. The two Fabs have different effects on the kinetics of FH binding to immobilized FHbp as measured by surface plasmon resonance. The 1.7- and 2.0-Å resolution X-ray crystal structures of the Fabs in complexes with FHbp illustrate that the two Fabs bind to similar epitopes on the amino-terminal domain of FHbp, adjacent to the FH binding site. Superposition models of ternary complexes of each Fab with FHbp and FH show that there is likely minimal contact between the Fabs and FH. Collectively, the structures reveal that the Fabs enhance binding of FH to FHbp by altering the conformations and mobilities of two loops adjacent to the FH binding site of FHbp. In addition, the 1.5 Å-resolution structure of one of the isolated Fabs defines the structural rearrangements associated with binding to FHbp. The FH-enhancing human Fabs, which are mirrored in the human polyclonal antibody responses, have important implications for tuning the effectiveness of FHbp-based vaccines.
Collapse
Affiliation(s)
- Nathaniel A. Sands
- Division of Infectious Diseases and Global Health, Department of Pediatrics, School of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Peter T. Beernink
- Division of Infectious Diseases and Global Health, Department of Pediatrics, School of Medicine, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
21
|
Spinsanti M, Brignoli T, Bodini M, Fontana LE, De Chiara M, Biolchi A, Muzzi A, Scarlato V, Delany I. Deconvolution of intergenic polymorphisms determining high expression of Factor H binding protein in meningococcus and their association with invasive disease. PLoS Pathog 2021; 17:e1009461. [PMID: 33770146 PMCID: PMC8026042 DOI: 10.1371/journal.ppat.1009461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 04/07/2021] [Accepted: 03/09/2021] [Indexed: 12/11/2022] Open
Abstract
Neisseria meningitidis is a strictly human pathogen and is the major cause of septicemia and meningitis worldwide. Factor H binding protein (fHbp) is a meningococcal surface-exposed lipoprotein that binds the human Complement factor H allowing the bacterium to evade the host innate immune response. FHbp is also a key antigen in two vaccines against N. meningitidis serogroup B. Although the fHbp gene is present in most circulating meningococcal strains, level of fHbp expression varies among isolates and has been correlated to differences in promoter sequences upstream of the gene. Here we elucidated the sequence determinants that control fHbp expression in globally circulating strains. We analyzed the upstream fHbpintergenic region (fIR) of more than 5800 strains representative of the UK circulating isolates and we identified eleven fIR sequence alleles which represent 88% of meningococcal strains. By engineering isogenic recombinant strains where fHbp expression was under the control of each of the eleven fIR alleles, we confirmed that the fIR sequence determines a specific and distinct level of expression. Moreover, we identified the molecular basis for variation in expression through polymorphisms within key regulatory regions that are known to affect fHbp expression. We experimentally established three expression groups, high–medium–low, that correlated directly with the susceptibility to killing mediated by anti-fHbp antibodies and the ability of the meningococcal strain to survive within human serum. By using this sequence classification and information about the variant, we predicted fHbp expression in the panel of UK strains and we observed that strains with higher expressing fIR alleles are more likely associated with invasive disease. Overall, our findings can contribute to understand and predict vaccine coverage mediated by fHbp as well as to shed light on the role of this virulence factor in determining an invasive phenotype. Complement plays a key role in the immunity against Neisseria meningitidis. The meningococcus uses the Factor H binding protein (fHbp), to bind a negative regulator of the alternative complement pathway, factor H, to its surface thus preventing complement deposition and lysis. The use of fHbp as an antigen in two licensed vaccines highlights its public health relevance. Therefore the levels of this antigen produced by the bacterium are pivotal on the one hand for the survival of N. meningitidis in blood and on the other hand for the susceptibility to vaccine-induced killing antibodies. Here, we identify the predominant nucleotide sequences that drive distinct levels of the fHbp antigen in circulating meningococcal strains. We cluster them into distinct groups with increasing levels and observe that strains expressing higher fHbp amounts are associated with invasive disease. Our findings show that the nucleotide sequence of the fHbp promoter can be used for the prediction of antigen levels of any given strain and consequently for both the assessment of its sensitivity to killing by fHbp antibodies and its likelihood to cause invasive disease.
Collapse
Affiliation(s)
| | - Tarcisio Brignoli
- GSK, Siena, Italy
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy
| | | | | | | | | | | | - Vincenzo Scarlato
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy
| | | |
Collapse
|
22
|
Moore SR, Menon SS, Cortes C, Ferreira VP. Hijacking Factor H for Complement Immune Evasion. Front Immunol 2021; 12:602277. [PMID: 33717083 PMCID: PMC7947212 DOI: 10.3389/fimmu.2021.602277] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 01/15/2021] [Indexed: 12/15/2022] Open
Abstract
The complement system is an essential player in innate and adaptive immunity. It consists of three pathways (alternative, classical, and lectin) that initiate either spontaneously (alternative) or in response to danger (all pathways). Complement leads to numerous outcomes detrimental to invaders, including direct killing by formation of the pore-forming membrane attack complex, recruitment of immune cells to sites of invasion, facilitation of phagocytosis, and enhancement of cellular immune responses. Pathogens must overcome the complement system to survive in the host. A common strategy used by pathogens to evade complement is hijacking host complement regulators. Complement regulators prevent attack of host cells and include a collection of membrane-bound and fluid phase proteins. Factor H (FH), a fluid phase complement regulatory protein, controls the alternative pathway (AP) both in the fluid phase of the human body and on cell surfaces. In order to prevent complement activation and amplification on host cells and tissues, FH recognizes host cell-specific polyanionic markers in combination with complement C3 fragments. FH suppresses AP complement-mediated attack by accelerating decay of convertases and by helping to inactivate C3 fragments on host cells. Pathogens, most of which do not have polyanionic markers, are not recognized by FH. Numerous pathogens, including certain bacteria, viruses, protozoa, helminths, and fungi, can recruit FH to protect themselves against host-mediated complement attack, using either specific receptors and/or molecular mimicry to appear more like a host cell. This review will explore pathogen complement evasion mechanisms involving FH recruitment with an emphasis on: (a) characterizing the structural properties and expression patterns of pathogen FH binding proteins, as well as other strategies used by pathogens to capture FH; (b) classifying domains of FH important in pathogen interaction; and (c) discussing existing and potential treatment strategies that target FH interactions with pathogens. Overall, many pathogens use FH to avoid complement attack and appreciating the commonalities across these diverse microorganisms deepens the understanding of complement in microbiology.
Collapse
Affiliation(s)
- Sara R Moore
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Smrithi S Menon
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Claudio Cortes
- Department of Foundational Medical Sciences, Oakland University William Beaumont School of Medicine, Rochester, MI, United States
| | - Viviana P Ferreira
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| |
Collapse
|
23
|
Syed I, Wooten RM. Interactions Between Pathogenic Burkholderia and the Complement System: A Review of Potential Immune Evasion Mechanisms. Front Cell Infect Microbiol 2021. [PMID: 34660335 DOI: 10.1086/69216810.3389/fcimb.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023] Open
Abstract
The genus Burkholderia contains over 80 different Gram-negative species including both plant and human pathogens, the latter of which can be classified into one of two groups: the Burkholderia pseudomallei complex (Bpc) or the Burkholderia cepacia complex (Bcc). Bpc pathogens Burkholderia pseudomallei and Burkholderia mallei are highly virulent, and both have considerable potential for use as Tier 1 bioterrorism agents; thus there is great interest in the development of novel vaccines and therapeutics for the prevention and treatment of these infections. While Bcc pathogens Burkholderia cenocepacia, Burkholderia multivorans, and Burkholderia cepacia are not considered bioterror threats, the incredible impact these infections have on the cystic fibrosis community inspires a similar demand for vaccines and therapeutics for the prevention and treatment of these infections as well. Understanding how these pathogens interact with and evade the host immune system will help uncover novel therapeutic targets within these organisms. Given the important role of the complement system in the clearance of bacterial pathogens, this arm of the immune response must be efficiently evaded for successful infection to occur. In this review, we will introduce the Burkholderia species to be discussed, followed by a summary of the complement system and known mechanisms by which pathogens interact with this critical system to evade clearance within the host. We will conclude with a review of literature relating to the interactions between the herein discussed Burkholderia species and the host complement system, with the goal of highlighting areas in this field that warrant further investigation.
Collapse
Affiliation(s)
- Irum Syed
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - R Mark Wooten
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| |
Collapse
|
24
|
Findlow J, Bayliss CD, Beernink PT, Borrow R, Liberator P, Balmer P. Broad vaccine protection against Neisseria meningitidis using factor H binding protein. Vaccine 2020; 38:7716-7727. [PMID: 32878710 PMCID: PMC8082720 DOI: 10.1016/j.vaccine.2020.08.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/27/2020] [Accepted: 08/12/2020] [Indexed: 11/29/2022]
Abstract
Neisseria meningitidis, the causative agent of invasive meningococcal disease (IMD), is classified into different serogroups defined by their polysaccharide capsules. Meningococcal serogroups A, B, C, W, and Y are responsible for most IMD cases, with serogroup B (MenB) causing a substantial percentage of IMD cases in many regions. Vaccines using capsular polysaccharides conjugated to carrier proteins have been successfully developed for serogroups A, C, W, and Y. However, because the MenB capsular polysaccharide is poorly immunogenic, MenB vaccine development has focused on alternative antigens. The 2 currently available MenB vaccines (MenB-4C and MenB-FHbp) both include factor H binding protein (FHbp), a surface-exposed protein harboured by nearly all meningococcal isolates that is important for survival of the bacteria in human blood. MenB-4C contains a nonlipidated FHbp from subfamily B in addition to other antigens, including Neisserial Heparin Binding Antigen, Neisserial adhesin A, and outer membrane vesicles, whereas MenB-FHbp contains a lipidated FHbp from each subfamily (A and B). FHbp is highly immunogenic and a main target of bactericidal activity of antibodies elicited by both licensed MenB vaccines. FHbp is also an important vaccine component, in contrast to some other meningococcal antigens that may have limited cross-protection across strains, as FHbp-specific antibodies can provide broad cross-protection within each subfamily. Limited cross-protection between subfamilies necessitates the inclusion of FHbp variants from both subfamilies to achieve broad FHbp-based vaccine coverage. Additionally, immune responses to the lipidated form of FHbp have a superior cross-reactive profile to those elicited by the nonlipidated form. Taken together, the inclusion of lipidated FHbp variants from both FHbp subfamilies is expected to provide broad protection against the diverse disease-causing meningococcal strains expressing a wide range of FHbp sequence variants. This review describes the development of vaccines for MenB disease prevention, with a focus on the FHbp antigen.
Collapse
Affiliation(s)
- Jamie Findlow
- Vaccine Medical Development, Scientific and Clinical Affairs, Pfizer Ltd, Tadworth, UK.
| | | | - Peter T Beernink
- Department of Pediatrics, School of Medicine, University of California, San Francisco, San Francisco, CA, USA.
| | - Ray Borrow
- Public Health England, Manchester Royal Infirmary, Manchester, UK.
| | - Paul Liberator
- Vaccine Research and Development, Pfizer Inc, Pearl River, NY, USA.
| | - Paul Balmer
- Vaccine Medical Development, Scientific and Clinical Affairs, Pfizer Inc, Collegeville, PA, USA.
| |
Collapse
|
25
|
Neisseria meningitidis Urethritis Outbreak Isolates Express a Novel Factor H Binding Protein Variant That Is a Potential Target of Group B-Directed Meningococcal (MenB) Vaccines. Infect Immun 2020; 88:IAI.00462-20. [PMID: 32958529 DOI: 10.1128/iai.00462-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/17/2020] [Indexed: 12/12/2022] Open
Abstract
Factor H binding protein (FHbp) is an important Neisseria meningitidis virulence factor that binds a negative regulator of the alternative complement pathway, human factor H (FH). Binding of FH increases meningococcal resistance to complement-mediated killing. FHbp also is reported to prevent interaction of the antimicrobial peptide (AMP) LL-37 with the meningococcal surface and meningococcal killing. FHbp is a target of two licensed group B-directed meningococcal (MenB) vaccines. We found a new FHbp variant, peptide allele identification no. 896 (ID 896), was highly expressed by an emerging meningococcal pathotype, the nonencapsulated urethritis clade (US_NmUC). This clade has been responsible for outbreaks of urethritis in multiple U.S. cities since 2015, other mucosal infections, and cases of invasive meningococcal disease. FHbp ID 896 is a member of the variant group 1 (subfamily B), bound protective anti-FHbp monoclonal antibodies, bound high levels of human FH, and enhanced the resistance of the clade to complement-mediated killing in low levels of human complement likely present at human mucosal surfaces. Interestingly, expression of FHbp ID 896 resulted in augmented killing of the clade by LL-37. FHbp ID 896 of the clade was recognized by antibodies elicited by FHbp in MenB vaccines.
Collapse
|
26
|
Beeslaar J, Absalon J, Anderson AS, Eiden JJ, Balmer P, Harris SL, Jones TR, O'Neill RE, Pregaldien JL, Radley D, Maansson R, Ginis J, Srivastava A, Perez JL. MenB-FHbp Vaccine Protects Against Diverse Meningococcal Strains in Adolescents and Young Adults: Post Hoc Analysis of Two Phase 3 Studies. Infect Dis Ther 2020; 9:641-656. [PMID: 32700260 PMCID: PMC7452968 DOI: 10.1007/s40121-020-00319-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Indexed: 11/17/2022] Open
Abstract
Introduction Two phase 3 studies in adolescents and young adults demonstrated that MenB-FHbp, a meningococcal serogroup B (MenB) vaccine, elicits protective immune responses after 2 or 3 doses based on serum bactericidal antibody assays using human complement (hSBA) against 4 primary and 10 additional diverse, vaccine-heterologous MenB test strains. Lower limits of quantitation (LLOQs; titers 1:8 or 1:16; titers ≥ 1:4 correlate with protection) were used to evaluate responses to individual strains and all 4 primary strains combined (composite response). A post hoc analysis evaluated percentages of subjects with protective responses to as many as 8 strains combined (4 primary plus additional strains). Methods Immune responses were measured using hSBAs against 4 primary strains in adolescents (n = 1509, MenB-FHbp; n = 898, hepatitis A virus vaccine/saline) and young adults (n = 2480, MenB-FHbp; n = 824, saline) receiving MenB-FHbp or control at 0, 2, and 6 months. Ten additional strains were evaluated in subsets of subjects from approximately 1800 MenB-FHbp recipients across both studies. Percentages of subjects with hSBA titers ≥ LLOQ for different numbers of primary strains or primary plus additional strains combined (7 or 8 strains total per subset) were determined before vaccination, 1 month post-dose 2, and 1 month post-dose 3. Results Across the panel of primary plus additional strains, at 1 month post-dose 3, titers ≥ LLOQ were elicited in 93.7–95.7% of adolescents and 91.7–95.0% of young adults for ≥ 5 test strains combined and in 70.5–85.8% of adolescents and 67.5–81.4% of young adults for ≥ 7 strains combined. Among adolescents, 99.8%, 99.0%, 92.8%, and 82.7% had titers ≥ LLOQ against at least 1, 2, 3, and all 4 primary strains, respectively; corresponding percentages for young adults were 99.7%, 97.7%, 94.0%, and 84.5%. Conclusions Results support the ability of MenB-FHbp to provide broad coverage against MenB strains expressing diverse FHbp variants. Trial Registration ClinicalTrials.gov identifiers NCT01830855, NCT01352845. Electronic supplementary material The online version of this article (10.1007/s40121-020-00319-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Johannes Beeslaar
- Vaccine Clinical Research and Development, Pfizer Ltd UK, Hurley, UK.
| | - Judith Absalon
- Vaccine Clinical Research and Development, Pfizer Inc, Pearl River, NY, USA
| | | | - Joseph J Eiden
- Vaccine Clinical Research and Development, Pfizer Inc, Pearl River, NY, USA
| | - Paul Balmer
- Vaccine Medical Development, Scientific and Clinical Affairs, Pfizer Inc, Collegeville, PA, USA
| | - Shannon L Harris
- Vaccine Research and Development, Pfizer Inc, Pearl River, NY, USA
| | - Thomas R Jones
- Vaccine Research and Development, Pfizer Inc, Pearl River, NY, USA
| | - Robert E O'Neill
- Vaccine Research and Development, Pfizer Inc, Pearl River, NY, USA
| | | | - David Radley
- Vaccine Clinical Research and Development, Pfizer Inc, Pearl River, NY, USA
| | - Roger Maansson
- Vaccine Clinical Research and Development, Pfizer Inc, Collegeville, PA, USA
| | - John Ginis
- Vaccine Research and Development, Pfizer Inc, Collegeville, PA, USA
| | - Amit Srivastava
- Vaccine Medical Development, Scientific and Clinical Affairs, Pfizer Inc, Collegeville, PA, USA
| | - John L Perez
- Vaccine Clinical Research and Development, Pfizer Inc, Collegeville, PA, USA
| |
Collapse
|
27
|
Principato S, Pizza M, Rappuoli R. Meningococcal factor H binding protein as immune evasion factor and vaccine antigen. FEBS Lett 2020; 594:2657-2669. [PMID: 32298465 DOI: 10.1002/1873-3468.13793] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/25/2020] [Accepted: 03/30/2020] [Indexed: 01/15/2023]
Abstract
Factor H binding protein (fHbp) is a key virulence factor of Neisseria meningitidis and a main component of the two licensed vaccines against serogroup B meningococcus (Bexsero and Trumenba). fHbp is a surface-exposed lipoprotein that enables the bacterium to survive in human blood by binding the human complement regulator factor H (fH). When used as vaccine, the protein induces antibodies with potent bactericidal activity. While the fHbp gene is present in the majority of N. meningitidis serogroup B isolates, the expression level varies up to 15 times between different strains and more than 700 different sequence variants have been described. Antigenically, the protein has been divided into three variants or two subfamilies. The 3D structure of fHbp alone, in combination with fH or in complex with bactericidal antibodies, has been key to understanding the molecular details of the protein. In this article, we will review the biochemical and immunological properties of fHbp, and its key role in meningococcal pathogenesis, complement regulation, and immune evasion.
Collapse
|
28
|
Lewis LA, Ram S. Complement interactions with the pathogenic Neisseriae: clinical features, deficiency states, and evasion mechanisms. FEBS Lett 2020; 594:2670-2694. [PMID: 32058583 DOI: 10.1002/1873-3468.13760] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 02/04/2020] [Accepted: 02/09/2020] [Indexed: 02/06/2023]
Abstract
Neisseria gonorrhoeae causes the sexually transmitted infection gonorrhea, while Neisseria meningitidis is an important cause of bacterial meningitis and sepsis. Complement is a central arm of innate immune defenses and plays an important role in combating Neisserial infections. Persons with congenital and acquired defects in complement are at a significantly higher risk for invasive Neisserial infections such as invasive meningococcal disease and disseminated gonococcal infection compared to the general population. Of note, Neisseria gonorrhoeae and Neisseria meningitidis can only infect humans, which in part may be related to their ability to evade only human complement. This review summarizes the epidemiologic and clinical aspects of Neisserial infections in persons with defects in the complement system. Mechanisms used by these pathogens to subvert killing by complement and preclinical studies showing how these complement evasion strategies may be used to counteract the global threat of meningococcal and gonococcal infections are discussed.
Collapse
Affiliation(s)
- Lisa A Lewis
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Sanjay Ram
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
29
|
Muenstermann M, Strobel L, Klos A, Wetsel RA, Woodruff TM, Köhl J, Johswich KO. Distinct roles of the anaphylatoxin receptors C3aR, C5aR1 and C5aR2 in experimental meningococcal infections. Virulence 2019; 10:677-694. [PMID: 31274379 PMCID: PMC6650196 DOI: 10.1080/21505594.2019.1640035] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 04/08/2019] [Accepted: 06/28/2019] [Indexed: 02/08/2023] Open
Abstract
The complement system is pivotal in the defense against invasive disease caused by Neisseria meningitidis (Nme, meningococcus), particularly via the membrane attack complex. Complement activation liberates the anaphylatoxins C3a and C5a, which activate three distinct G-protein coupled receptors, C3aR, C5aR1 and C5aR2 (anaphylatoxin receptors, ATRs). We recently discovered that C5aR1 exacerbates the course of the disease, revealing a downside of complement in Nme sepsis. Here, we compared the roles of all three ATRs during mouse nasal colonization, intraperitoneal infection and human whole blood infection with Nme. Deficiency of complement or ATRs did not alter nasal colonization, but significantly affected invasive disease: Compared to WT mice, the disease was aggravated in C3ar-/- mice, whereas C5ar1-/- and C5ar2-/- mice showed increased resistance to meningococcal sepsis. Surprisingly, deletion of either of the ATRs resulted in lower cytokine/chemokine responses, irrespective of the different susceptibilities of the mice. This was similar in ex vivo human whole blood infection using ATR inhibitors. Neutrophil responses to Nme were reduced in C5ar1-/- mouse blood. Upon stimulation with C5a plus Nme, mouse macrophages displayed reduced phosphorylation of ERK1/2, when C5aR1 or C5aR2 were ablated or inhibited, suggesting that both C5a-receptors prime an initial macrophage response to Nme. Finally, in vivo blockade of C5aR1 alone (PMX205) or along with C5aR2 (A8Δ71-73) resulted in ameliorated disease, whereas neither antagonizing C3aR (SB290157) nor its activation with a "super-agonist" peptide (WWGKKYRASKLGLAR) demonstrated a benefit. Thus, C5aR1 and C5aR2 augment disease pathology and are interesting targets for treatment, whereas C3aR is protective in experimental meningococcal sepsis.
Collapse
Affiliation(s)
- Marcel Muenstermann
- Institut für Hygiene und Mikrobiologie, Universität Würzburg, Würzburg, Germany
| | - Lea Strobel
- Institut für Hygiene und Mikrobiologie, Universität Würzburg, Würzburg, Germany
| | - Andreas Klos
- Institut für Medizinische Mikrobiologie und Krankenhaushygiene, Medizinische Hochschule Hannover, Hannover, Germany
| | - Rick A. Wetsel
- Institute of Molecular Medicine Center for Immunology and Autoimmune Diseases, The University of Texas Health Science Center, Houston, TX, USA
| | - Trent M. Woodruff
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | - Jörg Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
- Division of Immunobiology, Cincinnati Children’s Hospital and University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Kay O. Johswich
- Institut für Hygiene und Mikrobiologie, Universität Würzburg, Würzburg, Germany
| |
Collapse
|
30
|
Aljannat MAK, Oldfield NJ, Albasri HM, Dorrington LKG, Ohri RL, Wooldridge KG, Turner DPJ. The moonlighting peroxiredoxin-glutaredoxin in Neisseria meningitidis binds plasminogen via a C-terminal lysine residue and contributes to survival in a whole blood model. Microb Pathog 2019; 139:103890. [PMID: 31765768 DOI: 10.1016/j.micpath.2019.103890] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 11/20/2019] [Accepted: 11/22/2019] [Indexed: 01/24/2023]
Abstract
Neisseria meningitidis is a human-restricted bacterium that can invade the bloodstream and cross the blood-brain barrier resulting in life-threatening sepsis and meningitis. Meningococci express a cytoplasmic peroxiredoxin-glutaredoxin (Prx5-Grx) hybrid protein that has also been identified on the bacterial surface. Here, recombinant Prx5-Grx was confirmed as a plasminogen (Plg)-binding protein, in an interaction which could be inhibited by the lysine analogue ε-aminocapronic acid. rPrx5-Grx derivatives bearing a substituted C-terminal lysine residue (rPrx5-GrxK244A), but not the active site cysteine residue (rPrx5-GrxC185A) or the sub-terminal rPrx5-GrxK230A lysine residue, exhibited significantly reduced Plg-binding. The absence of Prx5-Grx did not significantly reduce the ability of whole meningococcal cells to bind Plg, but under hydrogen peroxide-mediated oxidative stress, the N. meningitidis Δpxn5-grx mutant survived significantly better than the wild-type or complemented strains. Significantly, using human whole blood as a model of meningococcal bacteremia, it was found that the N. meningitidis Δpxn5-grx mutant had a survival defect compared with the parental or complemented strain, confirming an important role for Prx5-Grx in meningococcal pathogenesis.
Collapse
Affiliation(s)
- Mahab A K Aljannat
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Neil J Oldfield
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Hibah M Albasri
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | | | - Radhica L Ohri
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Karl G Wooldridge
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - David P J Turner
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK.
| |
Collapse
|
31
|
Zhang P, Ye Z, Ye C, Zou H, Gao Z, Pan J. OmpW is positively regulated by iron via Fur, and negatively regulated by SoxS contribution to oxidative stress resistance in Escherichia coli. Microb Pathog 2019; 138:103808. [PMID: 31634530 DOI: 10.1016/j.micpath.2019.103808] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/04/2019] [Accepted: 10/16/2019] [Indexed: 10/25/2022]
Abstract
Iron plays a central role at the interface of pathogen and host. The ability to sequester iron from a host not only reduces host immune defenses but also promotes pathogen virulence, leading to the occurrence of infectious disease. Recently, outer membrane protein OmpW was shown to protect bacteria against harsh environmental conditions and to play a role in infectious disease. The expression of this versatile protein is controlled by iron, but the underlying mechanism of iron regulation has not been elucidated. In this study, the relation between OmpW expression and iron was investigated. Our results demonstrated that expression of OmpW is responsive to iron. Iron uptake analysis showed that an ompW mutant strain has a strong requirement for iron as compared to wild type and the ompW complemented strain. Moreover, ferric uptake regulation protein Fur, an iron binding transcriptional factor, was downregulated under iron limitation conditions and had a similar expression profile to OmpW in the presence or absence of iron. Based on these results, we suggest that iron regulates OmpW by binding to Fur. Furthermore, SoxS, a transcriptional factor involved in oxidative stress, was found to negatively regulate OmpW. We found that downregulating or knocking out OmpW results in bacterial resistance to oxidative stress. These findings provide new insight into the regulation of OmpW expression by iron, and may represent a new mechanism contributing to iron-mediated infectious disease.
Collapse
Affiliation(s)
- Pengfei Zhang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, School of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Zhicang Ye
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, School of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Chen Ye
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, School of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Haijie Zou
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, School of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Zhichao Gao
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, School of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Jianyi Pan
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, School of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
32
|
Kurtovic L, Boyle MJ, Opi DH, Kennedy AT, Tham WH, Reiling L, Chan JA, Beeson JG. Complement in malaria immunity and vaccines. Immunol Rev 2019; 293:38-56. [PMID: 31556468 PMCID: PMC6972673 DOI: 10.1111/imr.12802] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 09/03/2019] [Indexed: 12/20/2022]
Abstract
Developing efficacious vaccines for human malaria caused by Plasmodium falciparum is a major global health priority, although this has proven to be immensely challenging over the decades. One major hindrance is the incomplete understanding of specific immune responses that confer protection against disease and/or infection. While antibodies to play a crucial role in malaria immunity, the functional mechanisms of these antibodies remain unclear as most research has primarily focused on the direct inhibitory or neutralizing activity of antibodies. Recently, there is a growing body of evidence that antibodies can also mediate effector functions through activating the complement system against multiple developmental stages of the parasite life cycle. These antibody‐complement interactions can have detrimental consequences to parasite function and viability, and have been significantly associated with protection against clinical malaria in naturally acquired immunity, and emerging findings suggest these mechanisms could contribute to vaccine‐induced immunity. In order to develop highly efficacious vaccines, strategies are needed that prioritize the induction of antibodies with enhanced functional activity, including the ability to activate complement. Here we review the role of complement in acquired immunity to malaria, and provide insights into how this knowledge could be used to harness complement in malaria vaccine development.
Collapse
Affiliation(s)
- Liriye Kurtovic
- Burnet Institute, Melbourne, Vic., Australia.,Central Clinical School, Monash University, Melbourne, Vic., Australia
| | | | | | - Alexander T Kennedy
- Walter and Eliza Hall Institute, Melbourne, Vic., Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Vic., Australia
| | - Wai-Hong Tham
- Walter and Eliza Hall Institute, Melbourne, Vic., Australia
| | | | - Jo-Anne Chan
- Burnet Institute, Melbourne, Vic., Australia.,Central Clinical School, Monash University, Melbourne, Vic., Australia
| | - James G Beeson
- Burnet Institute, Melbourne, Vic., Australia.,Central Clinical School, Monash University, Melbourne, Vic., Australia.,Department of Microbiology, Monash University, Clayton, Vic., Australia.,Department of Medicine, The University of Melbourne, Parkville, Vic., Australia
| |
Collapse
|
33
|
A homopolymeric adenosine tract in the promoter region of nspA influences factor H-mediated serum resistance in Neisseria meningitidis. Sci Rep 2019; 9:2736. [PMID: 30804422 PMCID: PMC6389960 DOI: 10.1038/s41598-019-39231-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 01/18/2019] [Indexed: 01/18/2023] Open
Abstract
Although usually asymptomatically colonizing the human nasopharynx, the Gram-negative bacterium Neisseria meningitidis (meningococcus) can spread to the blood stream and cause invasive disease. For survival in blood, N. meningitidis evades the complement system by expression of a polysaccharide capsule and surface proteins sequestering the complement regulator factor H (fH). Meningococcal strains belonging to the sequence type (ST-) 41/44 clonal complex (cc41/44) cause a major proportion of serogroup B meningococcal disease worldwide, but they are also common in asymptomatic carriers. Proteome analysis comparing cc41/44 isolates from invasive disease versus carriage revealed differential expression levels of the outer membrane protein NspA, which binds fH. Deletion of nspA reduced serum resistance and NspA expression correlated with fH sequestration. Expression levels of NspA depended on the length of a homopolymeric tract in the nspA promoter: A 5-adenosine tract dictated low NspA expression, whereas a 6-adenosine motif guided high NspA expression. Screening German cc41/44 strain collections revealed the 6-adenosine motif in 39% of disease isolates, but only in 3.4% of carriage isolates. Thus, high NspA expression is associated with disease, but not strictly required. The 6-adenosine nspA promoter is most common to the cc41/44, but is also found in other hypervirulent clonal complexes.
Collapse
|
34
|
Role of Gonococcal Neisserial Surface Protein A (NspA) in Serum Resistance and Comparison of Its Factor H Binding Properties with Those of Its Meningococcal Counterpart. Infect Immun 2019; 87:IAI.00658-18. [PMID: 30510105 DOI: 10.1128/iai.00658-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 11/25/2018] [Indexed: 01/15/2023] Open
Abstract
Neisseria gonorrhoeae, the causative agent of gonorrhea, has evolved several mechanisms to subvert complement, including binding of the complement inhibitor factor H (FH). We previously reported FH binding to N. gonorrhoeae independently of lipooligosaccharide (LOS) sialylation. Here we report that factor H-like protein 1 (FHL-1), which contains FH domains 1 through 7 and possesses complement-inhibitory activity, also binds to N. gonorrhoeae The ligand for both FH and FHL-1 was identified as neisserial surface protein A (NspA), which has previously been identified as a ligand for these molecules on Neisseria meningitidis As with N. meningitidis NspA (Nm-NspA), N. gonorrhoeae NspA (Ng-NspA) bound FH/FHL-1 through FH domains 6 and 7. Binding of FH/FHL-1 to NspA was human specific; the histidine (H) at position 337 of domain 6 contributed to human-specific FH binding to both Ng- and Nm-NspA. FH/FHL-1 bound Nm-NspA better than Ng-NspA; introducing Q at position 73 (loop 2, present in Ng-NspA) or replacing V and D at positions 112 and 113 in Nm-NspA loop 3 with A and H (Ng-NspA), respectively, reduced FH/FHL-1 binding. The converse Ng-NspA to Nm-NspA mutations increased FH/FHL-1 binding. Binding of FH/FHL-1 through domains 6 and 7 to N. gonorrhoeae increased with truncation of the heptose I (HepI) chain of LOS and decreased with LOS sialylation. Loss of NspA significantly decreased serum resistance of N. gonorrhoeae with either wild-type or truncated LOS. This report highlights the role for NspA in enabling N. gonorrhoeae to subvert complement despite LOS phase variation. Knowledge of FH-NspA interactions will inform the design of vaccines and immunotherapies against the global threat of multidrug-resistant gonorrhea.
Collapse
|
35
|
Shaughnessy J, Lewis LA, Zheng B, Carr C, Bass I, Gulati S, DeOliveira RB, Gose S, Reed GW, Botto M, Rice PA, Ram S. Human Factor H Domains 6 and 7 Fused to IgG1 Fc Are Immunotherapeutic against Neisseria gonorrhoeae. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 201:2700-2709. [PMID: 30266769 PMCID: PMC6200640 DOI: 10.4049/jimmunol.1701666] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 08/27/2018] [Indexed: 01/15/2023]
Abstract
Novel therapeutics against multidrug-resistant Neisseria gonorrhoeae are urgently needed. Gonococcal lipooligosaccharide often expresses lacto-N-neotetraose (LNnT), which becomes sialylated in vivo, enhancing factor H (FH) binding and contributing to the organism's ability to resist killing by complement. We previously showed that FH domains 18-20 (with a D-to-G mutation at position 1119 in domain 19) fused to Fc (FHD1119G/Fc) displayed complement-dependent bactericidal activity in vitro and attenuated gonococcal vaginal colonization of mice. Gonococcal lipooligosaccharide phase variation can result in loss of LNnT expression. Loss of sialylated LNnT, although associated with a considerable fitness cost, could decrease efficacy of FHD1119G/Fc. Similar to N. meningitidis, gonococci also bind FH domains 6 and 7 through Neisserial surface protein A (NspA). In this study, we show that a fusion protein comprising FH domains 6 and 7 fused to human IgG1 Fc (FH6,7/Fc) bound to 15 wild-type antimicrobial resistant isolates of N. gonorrhoeae and to each of six lgtA gonococcal deletion mutants. FH6,7/Fc mediated complement-dependent killing of 8 of the 15 wild-type gonococcal isolates and effectively reduced the duration and burden of vaginal colonization of three gonococcal strains tested in wild-type mice, including two strains that resisted complement-dependent killing but on which FH6,7/Fc enhanced C3 deposition. FH/Fc lost efficacy when Fc was mutated to abrogate C1q binding and in C1q-/- mice, highlighting the requirement of the classical pathway for its activity. Targeting gonococci with FH6,7/Fc provides an additional immunotherapeutic approach against multidrug-resistant gonorrhea.
Collapse
Affiliation(s)
- Jutamas Shaughnessy
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Lisa A Lewis
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Bo Zheng
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Caleb Carr
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Isaac Bass
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Sunita Gulati
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Rosane B DeOliveira
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Severin Gose
- San Francisco Department of Public Health, San Francisco, CA 94102; and
| | - George W Reed
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Marina Botto
- Faculty of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
| | - Peter A Rice
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Sanjay Ram
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605;
| |
Collapse
|
36
|
Strobel L, Johswich KO. Anticoagulants impact on innate immune responses and bacterial survival in whole blood models of Neisseria meningitidis infection. Sci Rep 2018; 8:10225. [PMID: 29977064 PMCID: PMC6033889 DOI: 10.1038/s41598-018-28583-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 06/26/2018] [Indexed: 12/13/2022] Open
Abstract
Neisseria meningitidis (meningococcus) causes invasive diseases such as meningitis or septicaemia. Ex vivo infection of human whole blood is a valuable tool to study meningococcal virulence factors and the host innate immune responses. In order to consider effects of cellular mediators, the coagulation cascade must be inhibited to avoid clotting. There is considerable variation in the anticoagulants used among studies of N. meningitidis whole blood infections, featuring citrate, heparin or derivatives of hirudin, a polypeptide from leech saliva. Here, we compare the influence of these three different anticoagulants, and additionally Mg/EGTA, on host innate immune responses as well as on viability of N. meningitidis strains isolated from healthy carriers and disease cases, reflecting different sequence types and capsule phenotypes. We found that the anticoagulants significantly impact on cellular responses and, strain-dependently, also on bacterial survival. Hirudin does not inhibit complement and is therefore superior over the other anticoagulants; indeed hirudin-plasma most closely reflects the characteristics of serum during N. meningitidis infection. We further demonstrate the impact of heparin on complement activation on N. meningitidis and its consequences on meningococcal survival in immune sera, which appears to be independent of the heparin binding antigens Opc and NHBA.
Collapse
Affiliation(s)
- Lea Strobel
- Institute for Hygiene and Microbiology, University of Wuerzburg, Wuerzburg, Germany
| | - Kay O Johswich
- Institute for Hygiene and Microbiology, University of Wuerzburg, Wuerzburg, Germany.
| |
Collapse
|
37
|
Houston S, Lithgow KV, Osbak KK, Kenyon CR, Cameron CE. Functional insights from proteome-wide structural modeling of Treponema pallidum subspecies pallidum, the causative agent of syphilis. BMC STRUCTURAL BIOLOGY 2018; 18:7. [PMID: 29769048 PMCID: PMC5956850 DOI: 10.1186/s12900-018-0086-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 04/27/2018] [Indexed: 12/21/2022]
Abstract
Background Syphilis continues to be a major global health threat with 11 million new infections each year, and a global burden of 36 million cases. The causative agent of syphilis, Treponema pallidum subspecies pallidum, is a highly virulent bacterium, however the molecular mechanisms underlying T. pallidum pathogenesis remain to be definitively identified. This is due to the fact that T. pallidum is currently uncultivatable, inherently fragile and thus difficult to work with, and phylogenetically distinct with no conventional virulence factor homologs found in other pathogens. In fact, approximately 30% of its predicted protein-coding genes have no known orthologs or assigned functions. Here we employed a structural bioinformatics approach using Phyre2-based tertiary structure modeling to improve our understanding of T. pallidum protein function on a proteome-wide scale. Results Phyre2-based tertiary structure modeling generated high-confidence predictions for 80% of the T. pallidum proteome (780/978 predicted proteins). Tertiary structure modeling also inferred the same function as primary structure-based annotations from genome sequencing pipelines for 525/605 proteins (87%), which represents 54% (525/978) of all T. pallidum proteins. Of the 175 T. pallidum proteins modeled with high confidence that were not assigned functions in the previously annotated published proteome, 167 (95%) were able to be assigned predicted functions. Twenty-one of the 175 hypothetical proteins modeled with high confidence were also predicted to exhibit significant structural similarity with proteins experimentally confirmed to be required for virulence in other pathogens. Conclusions Phyre2-based structural modeling is a powerful bioinformatics tool that has provided insight into the potential structure and function of the majority of T. pallidum proteins and helped validate the primary structure-based annotation of more than 50% of all T. pallidum proteins with high confidence. This work represents the first T. pallidum proteome-wide structural modeling study and is one of few studies to apply this approach for the functional annotation of a whole proteome. Electronic supplementary material The online version of this article (10.1186/s12900-018-0086-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Simon Houston
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Karen Vivien Lithgow
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | | | - Chris Richard Kenyon
- HIV/STI Unit, Institute of Tropical Medicine, Antwerp, Belgium.,Division of Infectious Diseases and HIV Medicine, University of Cape Town, Cape Town, South Africa
| | - Caroline E Cameron
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada.
| |
Collapse
|
38
|
Di Fede M, Biagini M, Cartocci E, Parillo C, Greco A, Martinelli M, Marchi S, Pezzicoli A, Delany I, Rossi Paccani S. Neisseria Heparin Binding Antigen is targeted by the human alternative pathway C3-convertase. PLoS One 2018; 13:e0194662. [PMID: 29579105 PMCID: PMC5868813 DOI: 10.1371/journal.pone.0194662] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 03/07/2018] [Indexed: 11/18/2022] Open
Abstract
Neisserial Heparin Binding Antigen (NHBA) is a surface-exposed lipoprotein specific for Neisseria and constitutes one of the three main protein antigens of the Bexsero vaccine. Meningococcal and human proteases, cleave NHBA protein upstream or downstream of a conserved Arg-rich region, respectively. The cleavage results in the release of the C-terminal portion of the protein. The C-terminal fragment originating from the processing of meningococcal proteases, referred to as C2 fragment, exerts a toxic effect on endothelial cells altering the endothelial permeability. In this work, we reported that recombinant C2 fragment has no influence on the integrity of human airway epithelial cell monolayers, consistent with previous findings showing that Neisseria meningitidis traverses the epithelial barrier without disrupting the junctional structures. We showed that epithelial cells constantly secrete proteases responsible for a rapid processing of C2 fragment, generating a new fragment that does not contain the Arg-rich region, a putative docking domain reported to be essential for C2-mediated toxic effect. Moreover, we found that the C3-convertase of the alternative complement pathway is one of the proteases responsible for this processing. Overall, our data provide new insights on the cleavage of NHBA protein during meningococcal infection. NHBA cleavage may occur at different stages of the infection, and it likely has a different role depending on the environment the bacterium is interacting with.
Collapse
|
39
|
Abstract
Infection with the meningococcus is one of the main causes of meningitis and septicaemia worldwide. Humans are the only natural reservoir for the meningococcus which is found primarily as a commensal inhabitant in the nasopharynx in ~10% of adults, and may be found in over 25% of individuals during adolescence. Prompt recognition of meningococcal infection and early aggressive treatment are essential in order to reduce mortality, which occurs in up to 10% of those with invasive meningococcal disease (IMD). This figure may be significantly higher in those with inadequate or delayed treatment. Early administration of effective parenteral antimicrobial therapy and prompt recognition and appropriate management of the complications of IMD, including circulatory shock and raised intracranial pressure (ICP), are critical to help improve patient outcome. This review summarizes clinical features of IMD and current treatment recommendations. We will discuss the evidence for immunization and effects of vaccine strategies, particularly following implementation of effective vaccines against Group B meningococcus.
Collapse
Affiliation(s)
- Simon Nadel
- Paediatric Intensive Care Unit, St. Mary's Hospital and Imperial College London, London, United Kingdom
| | - Nelly Ninis
- Paediatrics, St Mary's Hospital, London, United Kingdom
| |
Collapse
|
40
|
Whitehead MW, Khanzhin N, Borsig L, Hennet T. Custom Glycosylation of Cells and Proteins Using Cyclic Carbamate-Derivatized Oligosaccharides. Cell Chem Biol 2017; 24:1336-1346.e3. [DOI: 10.1016/j.chembiol.2017.08.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/19/2017] [Accepted: 08/15/2017] [Indexed: 01/15/2023]
|
41
|
Neisseria cinerea Expresses a Functional Factor H Binding Protein Which Is Recognized by Immune Responses Elicited by Meningococcal Vaccines. Infect Immun 2017; 85:IAI.00305-17. [PMID: 28739825 PMCID: PMC5607398 DOI: 10.1128/iai.00305-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 07/07/2017] [Indexed: 12/12/2022] Open
Abstract
Neisseria meningitidis is a major cause of bacterial meningitis and sepsis worldwide. Capsular polysaccharide vaccines are available against meningococcal serogroups A, C, W, and Y. More recently two protein-based vaccines, Bexsero and Trumenba, against meningococcal serogroup B strains have been licensed; both vaccines contain meningococcal factor H binding protein (fHbp). fHbp is a surface-exposed lipoprotein that binds the negative complement regulator complement factor H (CFH), thereby inhibiting the alternative pathway of complement activation. Recent analysis of available genomes has indicated that some commensal Neisseria species also contain genes that potentially encode fHbp, although the functions of these genes and how immunization with fHbp-containing vaccines could affect the commensal flora have yet to be established. Here, we show that the commensal species Neisseria cinerea expresses functional fHbp on its surface and that it is responsible for recruitment of CFH by the bacterium. N. cinerea fHbp binds CFH with affinity similar to that of meningococcal fHbp and promotes survival of N. cinerea in human serum. We examined the potential impact of fHbp-containing vaccines on N. cinerea We found that immunization with Bexsero elicits serum bactericidal activity against N. cinerea, which is primarily directed against fHbp. The shared function of fHbp in N. cinerea and N. meningitidis and cross-reactive responses elicited by Bexsero suggest that the introduction of fHbp-containing vaccines has the potential to affect carriage of N. cinerea and other commensal species.
Collapse
|
42
|
Mubaiwa TD, Semchenko EA, Hartley-Tassell LE, Day CJ, Jennings MP, Seib KL. The sweet side of the pathogenic Neisseria: the role of glycan interactions in colonisation and disease. Pathog Dis 2017; 75:3867065. [PMID: 28633281 PMCID: PMC5808653 DOI: 10.1093/femspd/ftx063] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 06/12/2017] [Indexed: 12/15/2022] Open
Abstract
Glycomics is a rapidly growing field that focuses on the structure and function of carbohydrates (glycans) in biological systems. Glycan interactions play a major role in infectious disease, at all stages of colonisation and disease progression. Neisseria meningitidis, the cause of meningococcal sepsis and meningitis, and Neisseria gonorrhoeae, which causes the sexually transmitted infection gonorrhoea, are responsible for significant morbidity and mortality worldwide. Neisseria meningitidis displays a range of surface glycosylations including capsule polysaccharide, lipooligosaccharide and O-linked glycoproteins. While N. gonorrhoeae does not have a capsule, it does express both lipooligosaccharide and O-linked glycoproteins. Neisseria gonorrhoeae also has the ability to scavenge host sialic acids, while several N. meningitidis serogroups can synthesise sialic acid. Surface expressed sialic acid is key in serum resistance and survival in the host. On the host side, the pathogenic Neisseria protein adhesins such as Opc and NHBA bind to host glycans for adherence and colonisation of host cells. Essentially, from both the bacterial and host perspective, glycan interactions are fundamental in colonisation and disease of pathogenic Neisseria. The key aspects of glycobiology of the pathogenic Neisseria are reviewed herein.
Collapse
Affiliation(s)
- Tsitsi D. Mubaiwa
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| | - Evgeny A. Semchenko
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| | | | - Christopher J. Day
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| | - Michael P. Jennings
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| | - Kate L. Seib
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| |
Collapse
|
43
|
Garza DA, Riley SP, Martinez JJ. Expression of Rickettsia Adr2 protein in E. coli is sufficient to promote resistance to complement-mediated killing, but not adherence to mammalian cells. PLoS One 2017; 12:e0179544. [PMID: 28662039 PMCID: PMC5491016 DOI: 10.1371/journal.pone.0179544] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 05/31/2017] [Indexed: 01/20/2023] Open
Abstract
Bacteria exposed to host serum are subject to the antibacterial effects to the complement system. However, pathogenic microorganisms have evolved mechanisms of evading this immune attack. We have previously demonstrated that at least two R. conorii antigens, RC1281/Adr1 and OmpB β-peptide, contribute to the evasion of complement-mediated killing by binding the complement regulatory proteins vitronectin and factor H. RC1282/Adr2, a protein related to Adr1, is predicted to share similar structural features, suggesting that this protein may also contribute to evasion of complement-mediated killing. Interestingly, the R. prowazekii Adr1 and Adr2(RP828) proteins were originally found to interact with host cell surface proteins, suggesting their putative roles as adhesins in this pathogenic rickettsial species. In this study, we expressed both R. conorii and R. prowazekii Adr2 on the surface of a non-adherent, serum-sensitive strain of E. coli to examine the potential role of this protein to mediate evasion of complement-mediated killing and adherence to host cells. We demonstrate that, similar to R. conorii Adr1, R. conorii and R. prowazekii Adr2 are sufficient to mediate serum resistance and to promote interaction with the host complement regulator vitronectin. Furthermore, we demonstrate that expression of Adr2 in a non-adherent strain of E. coli is insufficient to mediate adherence to cultured mammalian endothelial cells. Together, our data demonstrate that the R. conorii and R. prowazekii Adr2 protein does not participate in the interactions with mammalian cells, but rather, participates in the evasion of killing by complement.
Collapse
Affiliation(s)
- Daniel A. Garza
- Vector-Borne Diseases Laboratories, Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, United States of America
| | - Sean P. Riley
- Vector-Borne Diseases Laboratories, Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, United States of America
| | - Juan J. Martinez
- Vector-Borne Diseases Laboratories, Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
44
|
Ram S, Shaughnessy J, de Oliveira RB, Lewis LA, Gulati S, Rice PA. Gonococcal lipooligosaccharide sialylation: virulence factor and target for novel immunotherapeutics. Pathog Dis 2017; 75:3777971. [PMID: 28460033 PMCID: PMC5449626 DOI: 10.1093/femspd/ftx049] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 04/26/2017] [Indexed: 12/13/2022] Open
Abstract
Gonorrhea has become resistant to most conventional antimicrobials used in clinical practice. The global spread of multidrug-resistant isolates of Neisseria gonorrhoeae could lead to an era of untreatable gonorrhea. New therapeutic modalities with novel mechanisms of action that do not lend themselves to the development of resistance are urgently needed. Gonococcal lipooligosaccharide (LOS) sialylation is critical for complement resistance and for establishing infection in humans and experimental mouse models. Here we describe two immunotherapeutic approaches that target LOS sialic acid: (i) a fusion protein that comprises the region in the complement inhibitor factor H (FH) that binds to sialylated gonococci and IgG Fc (FH/Fc fusion protein) and (ii) analogs of sialic acid that are incorporated into LOS but fail to protect the bacterium against killing. Both molecules showed efficacy in the mouse vaginal colonization model of gonorrhea and may represent promising immunotherapeutic approaches to target multidrug-resistant isolates. Disabling key gonococcal virulence mechanisms is an effective therapeutic strategy because the reduction of virulence is likely to be accompanied by a loss of fitness, rapid elimination by host immunity and consequently, decreased transmission.
Collapse
Affiliation(s)
- Sanjay Ram
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Jutamas Shaughnessy
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Rosane B. de Oliveira
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Lisa A. Lewis
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Sunita Gulati
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Peter A. Rice
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
45
|
Hovingh ES, van den Broek B, Jongerius I. Hijacking Complement Regulatory Proteins for Bacterial Immune Evasion. Front Microbiol 2016; 7:2004. [PMID: 28066340 PMCID: PMC5167704 DOI: 10.3389/fmicb.2016.02004] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 11/30/2016] [Indexed: 12/11/2022] Open
Abstract
The human complement system plays an important role in the defense against invading pathogens, inflammation and homeostasis. Invading microbes, such as bacteria, directly activate the complement system resulting in the formation of chemoattractants and in effective labeling of the bacteria for phagocytosis. In addition, formation of the membrane attack complex is responsible for direct killing of Gram-negative bacteria. In turn, bacteria have evolved several ways to evade complement activation on their surface in order to be able to colonize and invade the human host. One important mechanism of bacterial escape is attraction of complement regulatory proteins to the microbial surface. These molecules are present in the human body for tight regulation of the complement system to prevent damage to host self-surfaces. Therefore, recruitment of complement regulatory proteins to the bacterial surface results in decreased complement activation on the microbial surface which favors bacterial survival. This review will discuss recent advances in understanding the binding of complement regulatory proteins to the bacterial surface at the molecular level. This includes, new insights that have become available concerning specific conserved motives on complement regulatory proteins that are favorable for microbial binding. Finally, complement evasion molecules are of high importance for vaccine development due to their dominant role in bacterial survival, high immunogenicity and homology as well as their presence on the bacterial surface. Here, the use of complement evasion molecules for vaccine development will be discussed.
Collapse
Affiliation(s)
- Elise S. Hovingh
- Department of Medical Microbiology, University Medical Center UtrechtUtrecht, Netherlands
- Centre for Infectious Disease Control, National Institute for Public Health and the EnvironmentBilthoven, Netherlands
| | - Bryan van den Broek
- Department of Medical Microbiology, University Medical Center UtrechtUtrecht, Netherlands
| | - Ilse Jongerius
- Department of Medical Microbiology, University Medical Center UtrechtUtrecht, Netherlands
- Centre for Infectious Disease Control, National Institute for Public Health and the EnvironmentBilthoven, Netherlands
| |
Collapse
|
46
|
Antunes A, Derkaoui M, Terrade A, Denizon M, Deghmane AE, Deutscher J, Delany I, Taha MK. The Phosphocarrier Protein HPr Contributes to Meningococcal Survival during Infection. PLoS One 2016; 11:e0162434. [PMID: 27655040 PMCID: PMC5031443 DOI: 10.1371/journal.pone.0162434] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 08/23/2016] [Indexed: 12/27/2022] Open
Abstract
Neisseria meningitidis is an exclusively human pathogen frequently carried asymptomatically in the nasopharynx but it can also provoke invasive infections such as meningitis and septicemia. N. meningitidis uses a limited range of carbon sources during infection, such as glucose, that is usually transported into bacteria via the phosphoenolpyruvate (PEP):sugar phosphotransferase system (PTS), in which the phosphocarrier protein HPr (encoded by the ptsH gene) plays a central role. Although N. meningitidis possesses an incomplete PTS, HPr was found to be required for its virulence. We explored the role of HPr using bioluminescent wild-type and ΔptsH strains in experimental infection in transgenic mice expressing the human transferrin. The wild-type MC58 strain was recovered at higher levels from the peritoneal cavity and particularly from blood compared to the ΔptsH strain. The ΔptsH strain provoked lower levels of septicemia in mice and was more susceptible to complement-mediated killing than the wild-type strain. We tested whether meningococcal structures impacted complement resistance and observed that only the capsule level was decreased in the ΔptsH mutant. We therefore compared the transcriptomic profiles of wild-type and ΔptsH strains and identified 49 differentially expressed genes. The HPr regulon contains mainly hypothetical proteins (43%) and several membrane-associated proteins that could play a role during host interaction. Some other genes of the HPr regulon are involved in stress response. Indeed, the ΔptsH strain showed increased susceptibility to environmental stress conditions. Our data suggest that HPr plays a pleiotropic role in host-bacteria interactions most likely through the innate immune response that may be responsible for the enhanced clearance of the ΔptsH strain from blood.
Collapse
Affiliation(s)
- Ana Antunes
- Institut Pasteur, Unité des Infections Bactériennes Invasives, Paris, France, 75724 Paris Cedex 15, France
- * E-mail: (AA); (MKT)
| | - Meriem Derkaoui
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Aude Terrade
- Institut Pasteur, Unité des Infections Bactériennes Invasives, Paris, France, 75724 Paris Cedex 15, France
| | - Mélanie Denizon
- Institut Pasteur, Unité des Infections Bactériennes Invasives, Paris, France, 75724 Paris Cedex 15, France
| | - Ala-Eddine Deghmane
- Institut Pasteur, Unité des Infections Bactériennes Invasives, Paris, France, 75724 Paris Cedex 15, France
| | - Josef Deutscher
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
- Centre National de la Recherche Scientifique, UMR8261 (affiliated with Univ. Paris Diderot, Sorbonne Paris Cité), Expression Génétique Microbienne, Institut de Biologie Physico-Chimique, 75005, Paris, France
| | - Isabel Delany
- Novartis Vaccines and Diagnostics s.r.l. (a GSK company), Via Fiorentina 1, 53100, Siena, Italy
| | - Muhamed-Kheir Taha
- Institut Pasteur, Unité des Infections Bactériennes Invasives, Paris, France, 75724 Paris Cedex 15, France
- * E-mail: (AA); (MKT)
| |
Collapse
|
47
|
Human IgG1, IgG3, and IgG3 Hinge-Truncated Mutants Show Different Protection Capabilities against Meningococci Depending on the Target Antigen and Epitope Specificity. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2016; 23:698-706. [PMID: 27307451 DOI: 10.1128/cvi.00193-16] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 06/08/2016] [Indexed: 02/08/2023]
Abstract
We compared the bactericidal activity of recombinant sets of chimeric IgG monoclonal antibodies against two important outer membrane meningococcal vaccine antigens: PorA and factor H binding protein (FHbp). The sets contained human Fc portions from IgG1, IgG3, and two IgG3 mutants (IgG3m15 and IgGm17) with hinge regions of 15 and 17 amino acids encoded by hinge exons h2 and h1, respectively (human IgG3 has a hinge region of 62 amino acids encoded by hinge exons h1, h2, h3, and h4, while human IgG1 has a hinge region of only 15 amino acids encoded by one hinge exon) and mouse V regions. IgG1 showed higher bactericidal activity than IgG3 when directed against PorA (an abundant antigen), while IgG3 was more bactericidal than IgG1 when directed against FHbp (a sparsely and variably distributed antigen). On the other hand, the IgG3 hinge-truncated antibodies IgG3m15 and IgGm17 showed higher bactericidal activity than both IgG1 and IgG3 regardless of the target antigen. Thus, the Fc region of IgG3 antibodies appears to have an enhanced complement-activating function, independent of their long hinge region, compared to IgG1 antibodies. The greater activity of the truncated IgG3 hinge mutants indicates that the long hinge of IgG3 seems to downregulate through an unknown mechanism the inherent increased complement-activating capability of IgG3 Fc when the antibody binds to a sparse antigen.
Collapse
|
48
|
McClean S. Prospects for subunit vaccines: Technology advances resulting in efficacious antigens requires matching advances in early clinical trial investment. Hum Vaccin Immunother 2016; 12:3103-3106. [PMID: 27494532 DOI: 10.1080/21645515.2016.1216287] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
With the continued march of antimicrobial resistance, a renewed impetus for better vaccines has been heralded. Identification of potent subunit vaccines has been greatly facilitated by recent developments in reverse vaccinology and proteomics strategies. There are a range of antimicrobial resistant bacterial pathogens that could be targeted by potent vaccine antigens identified within the coming years. However, cost is a significant hurdle in progressing lead antigen candidates to clinical trials. In order for novel vaccine technologies to realize their clinical potential, there is a requirement to improve investment and incentives to expedite the development of vaccines that are apparently efficacious in preclinical trials.
Collapse
Affiliation(s)
- Siobhán McClean
- a Centre of Microbial Host Interactions , Institute of Technology Tallaght , Dublin , Ireland
| |
Collapse
|
49
|
Li W, Wen L, Li C, Chen R, Ye Z, Zhao J, Pan J. Contribution of the outer membrane protein OmpW in Escherichia coli to complement resistance from binding to factor H. Microb Pathog 2016; 98:57-62. [PMID: 27364548 DOI: 10.1016/j.micpath.2016.06.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/14/2016] [Accepted: 06/24/2016] [Indexed: 01/20/2023]
Abstract
The serum complement system is essential for innate immune defense against invading pathogenic bacteria. Some of the 8-stranded β-barrel outer membrane proteins confer bacterial resistance to the innate host immunity. We have previously demonstrated that OmpW, also an 8-stranded β-barrel protein that was identified a decade ago, protects bacteria against host phagocytosis. In this study, we investigated the complement resistance of OmpW. Our results indicate that the upregulation of OmpW is associated with increased survival when bacteria are exposed to normal human sera (NHS). Mutant bacteria lacking OmpW in NHS exhibited significantly lower survival rates in comparison to wild-type and ompW complemented bacteria. Furthermore, the bacterial survival significantly decreased in NHS that was supplemented with EGTA-Mg(2+) compared to that in NHS supplemented with EDTA. These results suggest that OmpW confer resistance to alternative complement pathway-mediated killing. Moreover, the binding of OmpW to factor H, a major inhibitor of alternative pathway, was found, indicating that OmpW recruitment of factor H is a mechanism for bacterial evasion of complement attack.
Collapse
Affiliation(s)
- Weiyan Li
- School of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Liangyou Wen
- School of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Chuchu Li
- School of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Ran Chen
- School of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhicang Ye
- School of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jie Zhao
- School of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jianyi Pan
- School of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
50
|
Doorduijn DJ, Rooijakkers SHM, van Schaik W, Bardoel BW. Complement resistance mechanisms of Klebsiella pneumoniae. Immunobiology 2016; 221:1102-9. [PMID: 27364766 DOI: 10.1016/j.imbio.2016.06.014] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 06/13/2016] [Accepted: 06/13/2016] [Indexed: 11/15/2022]
Abstract
The current emergence of antibiotic-resistant bacteria causes major problems in hospitals worldwide. To survive within the host, bacterial pathogens exploit several escape mechanisms to prevent detection and killing by the immune system. As a major player in immune defense, the complement system recognizes and destroys bacteria via different effector mechanisms. The complement system can label bacteria for phagocytosis or directly kill Gram-negative bacteria via insertion of a pore-forming complex in the bacterial membrane. The multi-drug resistant pathogen Klebsiella pneumoniae exploits several mechanisms to resist complement. In this review, we present an overview of strategies used by K. pneumoniae to prevent recognition and killing by the complement system. Understanding these complement evasion strategies is crucial for the development of innovative strategies to combat K. pneumoniae.
Collapse
Affiliation(s)
- Dennis J Doorduijn
- Department of Medical Microbiology, UMC Utrecht, Heidelberglaan 100 HP G04.614, 3584CX Utrecht, The Netherlands
| | - Suzan H M Rooijakkers
- Department of Medical Microbiology, UMC Utrecht, Heidelberglaan 100 HP G04.614, 3584CX Utrecht, The Netherlands
| | - Willem van Schaik
- Department of Medical Microbiology, UMC Utrecht, Heidelberglaan 100 HP G04.614, 3584CX Utrecht, The Netherlands
| | - Bart W Bardoel
- Department of Medical Microbiology, UMC Utrecht, Heidelberglaan 100 HP G04.614, 3584CX Utrecht, The Netherlands.
| |
Collapse
|