1
|
Kent RS, Ward GE. Motility-dependent processes in Toxoplasma gondii tachyzoites and bradyzoites: same same but different. mSphere 2025; 10:e0085524. [PMID: 39936920 PMCID: PMC11934331 DOI: 10.1128/msphere.00855-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/13/2025] [Indexed: 02/13/2025] Open
Abstract
During infection, Toxoplasma gondii tachyzoites must be able to move in order to migrate through tissues, cross biological barriers, and penetrate into and egress from cells they infect. Bradyzoite-stage parasites, which establish infection in naïve hosts, also require motility to escape from cysts after they are ingested and to subsequently migrate to the gut wall, where they either invade cells of the intestinal epithelium or squeeze between these cells to infect the underlying tissue. Little is known about the motility of bradyzoites, which we analyze in detail here and compare to the well-characterized motility and motility-dependent processes of tachyzoites. Unexpectedly, bradyzoites were found to be as motile as tachyzoites in a three-dimensional model extracellular matrix, and they showed increased invasion into and transmigration across monolayers of certain cell types, consistent with their need to establish infection in the gut. The motility of the two stages was inhibited to the same extent by cytochalasin D and KNX-002, compounds known to target the parasite's actomyosin-based motor. Other compounds that impact tachyzoite motility (tachyplegin and enhancer 5) have a reduced effect on bradyzoites. Furthermore, rapid bradyzoite egress from infected cells is not triggered by treatment with calcium ionophores, as it is with tachyzoites. The similarities and differences between these two life cycle stages highlight the need to characterize both tachyzoites and bradyzoites for a more complete understanding of the role of motility in the parasite life cycle and the effect that motility-targeting therapeutics will have on disease establishment and progression. IMPORTANCE Toxoplasma gondii is a parasite that chronically infects around one-third of the world's population. Toxoplasma uses motility for multiple purposes during infection, including extracellular migration, invasion into host cells, and host cell egress. These motility-dependent processes have been extensively studied in the life cycle stage responsible for acute infection, the tachyzoite. In contrast, motility and motility-dependent processes are poorly understood in bradyzoite-stage parasites, which are responsible for both establishing infection after consumption of infected meat and initiating potentially life-threatening reactivated infections in the brains of immunocompromised individuals. We show here that the motility and motility-dependent processes of bradyzoites are similar in many respects to those of tachyzoites but markedly different in others. The results of this study highlight the need to consider both life cycle stages in attempts to develop drugs targeting parasite motility and the signaling processes that regulate motility-dependent processes during infection by these important human pathogens.
Collapse
Affiliation(s)
- Robyn S. Kent
- Department of Microbiology and Molecular Genetics, University of Vermont Larner College of Medicine, Burlington, Vermont, USA
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Gary E. Ward
- Department of Microbiology and Molecular Genetics, University of Vermont Larner College of Medicine, Burlington, Vermont, USA
| |
Collapse
|
2
|
CHEN N, CAI Q, WANG S, SONG Q, XIE Y, SHI H, LI H, ZHAO X, ZHAO N, ZHANG X. Evaluation of the efficicacy of myrcene in the treatment of Eimeria tenella and Toxoplasma gondii infection. J Vet Med Sci 2025; 87:32-42. [PMID: 39567006 PMCID: PMC11735216 DOI: 10.1292/jvms.24-0397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 11/07/2024] [Indexed: 11/22/2024] Open
Abstract
Protozoan parasites such as Eimeria tenella and Toxoplasma gondii pose significant health challenges in livestock and humans. The limited treatment options and rising drug resistance underscore the urgent need for new therapies. This study investigates myrcene, a monoterpene hydrocarbon classified for its antiprotozoal potential against E. tenella and T. gondii infections. Initially, we examined its effect on the sporulation process of E. tenella oocysts in vitro and its anti-E. tenella activity in vivo. Myrcene significantly reduced the sporulation rate of E. tenella oocysts at 3 and 4 mg/kg. In vivo experiments demonstrated that treatment with 4 mg/kg myrcene significantly reduced E. tenella load and oocyst output, as well as cecal lesion and weight loss caused by E. tenella infection, showing moderate anti-E. tenella activity, with an Anticoccidial Index (ACI) of 161.4. Furthermore, we investigated the anti-T. gondii activity of myrcene both in vitro and in vivo. In vitro studies showed that treatment with myrcene effectively inhibited the invasion rate and intracellular proliferation ability of T. gondii tachyzoite in DF-1 cells in a dose-dependent manner. In vivo administration prolonged the survival time in T. gondii-infected mice, suggesting notable protective effects. Additionally, it mitigated T. gondii-induced hepatosplenic toxicity by reducing parasite load in the liver and spleen, and ameliorating liver function as evidenced by decreased serum transaminase levels. In conclusion, the findings demonstrate promising anti-E. tenella and anti-T. gondii activity exhibited by myrcene warranting further exploration into its mechanisms and potential therapeutic applications.
Collapse
Affiliation(s)
- Nianyuan CHEN
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai’an, China
| | - Qingxiu CAI
- The National Animal Health Products for Engineering Technology Research Center, Qingdao, China
| | - Shujing WANG
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai’an, China
| | - Qingyang SONG
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai’an, China
| | - Ying XIE
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai’an, China
| | - Huijuan SHI
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai’an, China
| | - Hongmei LI
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai’an, China
- Shandong Provincial Key Laboratory of Zoonoses, Shandong Agricultural University, Tai’an, China
| | - Xiaomin ZHAO
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai’an, China
- Shandong Provincial Key Laboratory of Zoonoses, Shandong Agricultural University, Tai’an, China
| | - Ningning ZHAO
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai’an, China
- Shandong Provincial Key Laboratory of Zoonoses, Shandong Agricultural University, Tai’an, China
| | - Xiao ZHANG
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai’an, China
- Shandong Provincial Key Laboratory of Zoonoses, Shandong Agricultural University, Tai’an, China
| |
Collapse
|
3
|
Kent RS, Ward GE. Motility-dependent processes in Toxoplasma gondii tachyzoites and bradyzoites: same same but different. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.28.615543. [PMID: 39386639 PMCID: PMC11463423 DOI: 10.1101/2024.09.28.615543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The tachyzoite stage of the apicomplexan parasite Toxoplasma gondii utilizes motility for multiple purposes during its lytic cycle, including host cell invasion, egress from infected cells, and migration to new uninfected host cells to repeat the process. Bradyzoite stage parasites, which establish a new infection in a naïve host, must also use motility to escape from the cysts that are ingested by the new host and then migrate to the gut wall, where they either invade cells of the intestinal epithelium or squeeze between these cells to infect the underlying connective tissue. We know very little about the motility of bradyzoites, which we analyze in detail here and compare to the well-characterized motility and motility-dependent processes of tachyzoites. Unexpectedly, bradyzoites were found to be as motile as tachyzoites in a 3D model extracellular matrix, and they showed increased invasion into and transmigration across certain cell types, consistent with their need to establish the infection in the gut. The motility of the two stages was inhibited to the same extent by cytochalasin D and KNX-002, compounds known to target the parasite's actomyosin-based motor. In contrast, other compounds that impact tachyzoite motility (tachyplegin and enhancer 5) have less of an effect on bradyzoites, and rapid bradyzoite egress from infected cells is not triggered by treatment with calcium ionophores, as it is with tachyzoites. The similarities and differences between these two life cycle stages highlight the need to characterize both tachyzoites and bradyzoites for a more complete understanding of the role of motility in the parasite life cycle and the effect that potential therapeutics targeting parasite motility will have on disease establishment and progression.
Collapse
Affiliation(s)
- Robyn S Kent
- Department of Microbiology and Molecular Genetics, University of Vermont Larner College of Medicine, Burlington, Vermont, USA 05405
- 1041 BMSB, Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73190
| | - Gary E Ward
- Department of Microbiology and Molecular Genetics, University of Vermont Larner College of Medicine, Burlington, Vermont, USA 05405
| |
Collapse
|
4
|
Collier S, Pietsch E, Dans M, Ling D, Tavella TA, Lopaticki S, Marapana DS, Shibu MA, Andrew D, Tiash S, McMillan PJ, Gilson P, Tilley L, Dixon MWA. Plasmodium falciparum formins are essential for invasion and sexual stage development. Commun Biol 2023; 6:861. [PMID: 37596377 PMCID: PMC10439200 DOI: 10.1038/s42003-023-05233-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 08/09/2023] [Indexed: 08/20/2023] Open
Abstract
The malaria parasite uses actin-based mechanisms throughout its lifecycle to control a range of biological processes including intracellular trafficking, gene regulation, parasite motility and invasion. In this work we assign functions to the Plasmodium falciparum formins 1 and 2 (FRM1 and FRM2) proteins in asexual and sexual blood stage development. We show that FRM1 is essential for merozoite invasion and FRM2 is required for efficient cell division. We also observed divergent functions for FRM1 and FRM2 in gametocyte development. Conditional deletion of FRM1 leads to a delay in gametocyte stage progression. We show that FRM2 controls the actin and microtubule cytoskeletons in developing gametocytes, with premature removal of the protein resulting in a loss of transmissible stage V gametocytes. Lastly, we show that targeting formin proteins with the small molecule inhibitor of formin homology domain 2 (SMIFH2) leads to a multistage block in asexual and sexual stage parasite development.
Collapse
Affiliation(s)
- Sophie Collier
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Emma Pietsch
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Madeline Dans
- The Macfarlane Burnet Institute for Medical Research, 85 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Dawson Ling
- The Macfarlane Burnet Institute for Medical Research, 85 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Tatyana A Tavella
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Sash Lopaticki
- Department of Infectious Diseases, Doherty Institute, University of Melbourne, Parkville, VIC, 3010, Australia
- Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, VIC, 3052, Australia
| | - Danushka S Marapana
- Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, VIC, 3052, Australia
| | - Mohini A Shibu
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Dean Andrew
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Snigdha Tiash
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Paul J McMillan
- Biological Optical Microscopy Platform, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Paul Gilson
- The Macfarlane Burnet Institute for Medical Research, 85 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Leann Tilley
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Matthew W A Dixon
- Department of Infectious Diseases, Doherty Institute, University of Melbourne, Parkville, VIC, 3010, Australia.
- Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, VIC, 3052, Australia.
| |
Collapse
|
5
|
Li J, Xiao Q, Tan Q, Chen J, Sun L, Chen X, Chu Z, Wu H, Zhang Z, Li H, Zhao X, Zhang X. TgMORN2, a MORN Family Protein Involved in the Regulation of Endoplasmic Reticulum Stress in Toxoplasma gondii. Int J Mol Sci 2023; 24:10228. [PMID: 37373373 DOI: 10.3390/ijms241210228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
MORN proteins play a key role in the cytoskeletal structure of eukaryotes and are essential for the close arrangement of the endoplasmic reticulum and plasma membrane. A gene with nine MORN motifs (TGGT1_292120, named TgMORN2) was identified in the Toxoplasma gondii genome; it was presumed to belong to the MORN protein family and to have the function of forming the cytoskeleton, which affects the survival of T. gondii. However, the genetic deletion of MORN2 did not noticeably affect parasite growth and virulence. Using adjacent protein labeling techniques, we identified a network of TgMORN2 interactions, which mainly included endoplasmic reticulum stress (ER stress)-related proteins. In exploring these data, we found that the pathogenicity of the KO-TgMORN2 strain was significantly reduced in the case of tunicamycin-induced ER stress. Reticulon TgRTN (TGGT1_226430) and tubulin β-Tubulin were identified as interaction proteins of TgMORN2. Collectively, TgMORN2 plays a role in ER stress, which lays a foundation for further research on the function of the MORN protein in T. gondii.
Collapse
Affiliation(s)
- Jinxuan Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Qianqian Xiao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Qianqian Tan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Junpeng Chen
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Lingyu Sun
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Xiao Chen
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Ziyu Chu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Hongxia Wu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Zhenzhao Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Hongmei Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an 271018, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an 271018, China
| | - Xiaomin Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an 271018, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an 271018, China
| | - Xiao Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an 271018, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an 271018, China
| |
Collapse
|
6
|
Chen J, Wang X, Li J, Sun L, Chen X, Chu Z, Zhang Z, Wu H, Zhao X, Li H, Zhang X. Influenza A Virus Weakens the Immune Response of Mice to Toxoplasma gondii, Thereby Aggravating T. gondii Infection. Vet Sci 2023; 10:vetsci10050354. [PMID: 37235437 DOI: 10.3390/vetsci10050354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
This study aimed to investigate the relationship between the T. gondii type II strain (Pru) and respiratory viral infections, specifically focusing on the co-infection with PR8 (influenza A/Puerto Rico/8/34). In this study, we found that the number of T. gondii (Pru) in the lungs of co-infected mice was significantly higher and lesions were more severe than those in the group infected with T. gondii (Pru) alone, whereas IAV (influenza A virus) copy numbers of co-infected and PR8 alone infected groups were negligible, suggesting that infection with IAV increased the pathogenicity of T. gondii (Pru) in mice. The invasion and proliferation assays demonstrated no significant effect of co-infection on T. gondii (Pru) infection or replication in vitro. To further explore the factors causing the altered pathogenicity of T. gondii (Pru) caused by co-infection, we found that decreased expression levels of IL-1β, IL-6, and IL-12 in the co-infected group were associated with the early immune responses against T. gondii (Pru), which affected the division of T. gondii (Pru). Moreover, the significant decrease in the CD4+/CD8+ ratio indicated a weakened long-term immune killing ability of the host against T. gondii (Pru) following IAV infection. In conclusion, a T. gondii type II strain (Pru) could not be properly cleared by the host immune system after IAV infection, resulting in toxoplasmosis and even death in mice.
Collapse
Affiliation(s)
- Junpeng Chen
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271002, China
| | - Xiaoli Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271002, China
| | - Jinxuan Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271002, China
| | - Lingyu Sun
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271002, China
| | - Xiao Chen
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271002, China
| | - Ziyu Chu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271002, China
| | - Zhenzhao Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271002, China
| | - Hongxia Wu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271002, China
| | - Xiaomin Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271002, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an 271002, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an 271002, China
| | - Hongmei Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271002, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an 271002, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an 271002, China
| | - Xiao Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271002, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an 271002, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an 271002, China
| |
Collapse
|
7
|
Lopez AJ, Andreadaki M, Vahokoski J, Deligianni E, Calder LJ, Camerini S, Freitag A, Bergmann U, Rosenthal PB, Sidén-Kiamos I, Kursula I. Structure and function of Plasmodium actin II in the parasite mosquito stages. PLoS Pathog 2023; 19:e1011174. [PMID: 36877739 PMCID: PMC10019781 DOI: 10.1371/journal.ppat.1011174] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/16/2023] [Accepted: 02/03/2023] [Indexed: 03/07/2023] Open
Abstract
Actins are filament-forming, highly-conserved proteins in eukaryotes. They are involved in essential processes in the cytoplasm and also have nuclear functions. Malaria parasites (Plasmodium spp.) have two actin isoforms that differ from each other and from canonical actins in structure and filament-forming properties. Actin I has an essential role in motility and is fairly well characterized. The structure and function of actin II are not as well understood, but mutational analyses have revealed two essential functions in male gametogenesis and in the oocyst. Here, we present expression analysis, high-resolution filament structures, and biochemical characterization of Plasmodium actin II. We confirm expression in male gametocytes and zygotes and show that actin II is associated with the nucleus in both stages in filament-like structures. Unlike actin I, actin II readily forms long filaments in vitro, and near-atomic structures in the presence or absence of jasplakinolide reveal very similar structures. Small but significant differences compared to other actins in the openness and twist, the active site, the D-loop, and the plug region contribute to filament stability. The function of actin II was investigated through mutational analysis, suggesting that long and stable filaments are necessary for male gametogenesis, while a second function in the oocyst stage also requires fine-tuned regulation by methylation of histidine 73. Actin II polymerizes via the classical nucleation-elongation mechanism and has a critical concentration of ~0.1 μM at the steady-state, like actin I and canonical actins. Similarly to actin I, dimers are a stable form of actin II at equilibrium.
Collapse
Affiliation(s)
- Andrea J. Lopez
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Maria Andreadaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Juha Vahokoski
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Elena Deligianni
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Lesley J. Calder
- Structural Biology of Cells and Viruses Laboratory, Francis Crick Institute, London, United Kingdom
| | | | - Anika Freitag
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Ulrich Bergmann
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Peter B. Rosenthal
- Structural Biology of Cells and Viruses Laboratory, Francis Crick Institute, London, United Kingdom
| | - Inga Sidén-Kiamos
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
- * E-mail: (ISK); (IK)
| | - Inari Kursula
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
- * E-mail: (ISK); (IK)
| |
Collapse
|
8
|
Haase R, Dos Santos Pacheco N, Soldati-Favre D. Nanoscale imaging of the conoid and functional dissection of its dynamics in Apicomplexa. Curr Opin Microbiol 2022; 70:102226. [PMID: 36332501 DOI: 10.1016/j.mib.2022.102226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/27/2022] [Accepted: 10/03/2022] [Indexed: 11/08/2022]
Abstract
Members of the Apicomplexa phylum are unified by an apical complex tailored for motility and host cell invasion. It includes regulated secretory organelles and a conoid attached to the apical polar ring (APR) from which subpellicular microtubules emerge. In coccidia, the conoid is composed of a cone of spiraling tubulin fibers, two preconoidal rings, and two intraconoidal microtubules. The conoid extrudes through the APR in motile parasites. Recent advances in proteomics, cryo-electron tomography, super-resolution, and expansion microscopy provide a more comprehensive view of the spatial and temporal resolution of proteins belonging to the conoid subcomponents. In combination with the phenotyping of targeted mutants, the biogenesis, turnover, dynamics, and function of the conoid begin to be elucidated.
Collapse
Affiliation(s)
- Romuald Haase
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Switzerland
| | - Nicolas Dos Santos Pacheco
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Switzerland
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Switzerland.
| |
Collapse
|
9
|
Dos Santos Pacheco N, Brusini L, Haase R, Tosetti N, Maco B, Brochet M, Vadas O, Soldati-Favre D. Conoid extrusion regulates glideosome assembly to control motility and invasion in Apicomplexa. Nat Microbiol 2022; 7:1777-1790. [DOI: 10.1038/s41564-022-01212-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 07/22/2022] [Indexed: 12/18/2022]
|
10
|
Boisard J, Duvernois-Berthet E, Duval L, Schrével J, Guillou L, Labat A, Le Panse S, Prensier G, Ponger L, Florent I. Marine gregarine genomes reveal the breadth of apicomplexan diversity with a partially conserved glideosome machinery. BMC Genomics 2022; 23:485. [PMID: 35780080 PMCID: PMC9250747 DOI: 10.1186/s12864-022-08700-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/13/2022] [Indexed: 12/29/2022] Open
Abstract
Our current view of the evolutionary history, coding and adaptive capacities of Apicomplexa, protozoan parasites of a wide range of metazoan, is currently strongly biased toward species infecting humans, as data on early diverging apicomplexan lineages infecting invertebrates is extremely limited. Here, we characterized the genome of the marine eugregarine Porospora gigantea, intestinal parasite of Lobsters, remarkable for the macroscopic size of its vegetative feeding forms (trophozoites) and its gliding speed, the fastest so far recorded for Apicomplexa. Two highly syntenic genomes named A and B were assembled. Similar in size (~ 9 Mb) and coding capacity (~ 5300 genes), A and B genomes are 10.8% divergent at the nucleotide level, corresponding to 16-38 My in divergent time. Orthogroup analysis across 25 (proto)Apicomplexa species, including Gregarina niphandrodes, showed that A and B are highly divergent from all other known apicomplexan species, revealing an unexpected breadth of diversity. Phylogenetically these two species branch sisters to Cephaloidophoroidea, and thus expand the known crustacean gregarine superfamily. The genomes were mined for genes encoding proteins necessary for gliding, a key feature of apicomplexans parasites, currently studied through the molecular model called glideosome. Sequence analysis shows that actin-related proteins and regulatory factors are strongly conserved within apicomplexans. In contrast, the predicted protein sequences of core glideosome proteins and adhesion proteins are highly variable among apicomplexan lineages, especially in gregarines. These results confirm the importance of studying gregarines to widen our biological and evolutionary view of apicomplexan species diversity, and to deepen our understanding of the molecular bases of key functions such as gliding, well known to allow access to the intracellular parasitic lifestyle in Apicomplexa.
Collapse
Affiliation(s)
- Julie Boisard
- Département Adaptations du Vivant (AVIV), Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245 CNRS), Muséum National d'Histoire Naturelle, CNRS, CP 52, 57 rue Cuvier, 75231 Cedex 05, Paris, France. .,Département Adaptations du Vivant (AVIV), Structure et instabilité des génomes (STRING UMR 7196 CNRS/INSERM U1154), Muséum National d'Histoire Naturelle, CNRS, INSERM, CP 26, 57 rue Cuvier, 75231 Cedex 05, Paris, France. .,Department of Biology, Lund University, Sölvegatan 35, 223 62, Lund, Sweden.
| | - Evelyne Duvernois-Berthet
- Département Adaptations du Vivant (AVIV), Physiologie Moléculaire et Adaptation (PhyMA UMR 7221 CNRS), Muséum national d'Histoire naturelle, CNRS, CP 32, 7 rue Cuvier, 75005, Paris, France
| | - Linda Duval
- Département Adaptations du Vivant (AVIV), Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245 CNRS), Muséum National d'Histoire Naturelle, CNRS, CP 52, 57 rue Cuvier, 75231 Cedex 05, Paris, France
| | - Joseph Schrével
- Département Adaptations du Vivant (AVIV), Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245 CNRS), Muséum National d'Histoire Naturelle, CNRS, CP 52, 57 rue Cuvier, 75231 Cedex 05, Paris, France
| | - Laure Guillou
- CNRS, UMR7144 Adaptation et Diversité en Milieu Marin, Ecology of Marine Plankton (ECOMAP), Station Biologique de Roscoff SBR, Sorbonne Université, 29680, Roscoff, France
| | - Amandine Labat
- Département Adaptations du Vivant (AVIV), Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245 CNRS), Muséum National d'Histoire Naturelle, CNRS, CP 52, 57 rue Cuvier, 75231 Cedex 05, Paris, France
| | - Sophie Le Panse
- Plateforme d'Imagerie Merimage, FR2424, Centre National de la Recherche Scientifique, Station Biologique de Roscoff, 29680, Roscoff, France
| | - Gérard Prensier
- Cell biology and Electron Microscopy Laboratory, François Rabelais University, 10 Boulevard Tonnellé, 3223 Cedex, Tours, BP, France
| | - Loïc Ponger
- Département Adaptations du Vivant (AVIV), Structure et instabilité des génomes (STRING UMR 7196 CNRS/INSERM U1154), Muséum National d'Histoire Naturelle, CNRS, INSERM, CP 26, 57 rue Cuvier, 75231 Cedex 05, Paris, France.
| | - Isabelle Florent
- Département Adaptations du Vivant (AVIV), Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245 CNRS), Muséum National d'Histoire Naturelle, CNRS, CP 52, 57 rue Cuvier, 75231 Cedex 05, Paris, France.
| |
Collapse
|
11
|
Santos JM, Frénal K. Dominique Soldati-Favre: Bringing Toxoplasma gondii to the Molecular World. Front Cell Infect Microbiol 2022; 12:910611. [PMID: 35711657 PMCID: PMC9196188 DOI: 10.3389/fcimb.2022.910611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 04/29/2022] [Indexed: 11/25/2022] Open
Affiliation(s)
- Joana M Santos
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Karine Frénal
- Université Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
| |
Collapse
|
12
|
Involvement of Urm1, a Ubiquitin-Like Protein, in the Regulation of Oxidative Stress Response of Toxoplasma gondii. Microbiol Spectr 2022; 10:e0239421. [PMID: 35323018 PMCID: PMC9045335 DOI: 10.1128/spectrum.02394-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ubiquitin-related modifier 1 (Urm1) is a ubiquitin-like molecule (UBL) with the ability to act as a posttranslational protein modifier. Here, we characterized the Toxoplasma gondii homolog of URM1 located in the tachyzoite cytoplasm. The total loss of the TgURM1 resulted in a significant reduction in parasite invasion, replication, and virulence in mice, revealing that TgURM1 plays a pivotal role in T. gondii survival. For TgURM1, urmylation was significantly induced by oxidative stress, and mutations of the C-terminal glycine-glycine motif of TgURM1 blocked the urmylation process. Furthermore, the TgURM1 knockout strain was intolerant to oxidative stress, suggesting that TgURM1 is involved in the oxidative stress process. TgAHP1, an alkyl hydroperoxide reductase, was screened via proximity-based protein labeling techniques and proteomics and was shown to interact with TgURM1 under oxidative stress conditions. In conclusion, TgURM1 is a UBL protein involved in the response of Toxoplasma to oxidative stress. IMPORTANCE T. gondii has an intricate life cycle which involves multiple morphologically and physiologically distinct stages, and posttranslational modifications (PTMs) may be key regulators of protein expression at relevant life cycle stages. In recent years, ubiquitin-like proteins with modification functions have been discovered and studied, including Sumo, Rub1, ATG8, and ATG12. Ubiquitin-related modifier 1 (Urm1) is a ubiquitin-like molecule (UBL), which is considered to be the oldest ubiquitin-like system. In this study, we identified the Urm1 gene in Toxoplasma and explored that the urmylation of Urm1 was significantly induced by oxidative stress. Fewer studies have been conducted on ubiquitin-like proteins of parasites, and our results provide theoretical support for the research of metabolic regulation and antioxidative stress processes in T. gondii.
Collapse
|
13
|
Briquet S, Gissot M, Silvie O. A toolbox for conditional control of gene expression in apicomplexan parasites. Mol Microbiol 2021; 117:618-631. [PMID: 34564906 PMCID: PMC9293482 DOI: 10.1111/mmi.14821] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 01/29/2023]
Abstract
Apicomplexan parasites encompass diverse pathogens for humans and animals, including the causative agents of malaria and toxoplasmosis, Plasmodium spp. and Toxoplasma gondii. Genetic manipulation of these parasites has become central to explore parasite biology, unravel gene function and identify new targets for therapeutic strategies. Tremendous progress has been achieved over the past years with the advent of next generation sequencing and powerful genome editing methods. In particular, various methods for conditional gene expression have been developed in both Plasmodium and Toxoplasma to knockout or knockdown essential genes, or for inducible expression of master developmental regulators or mutant versions of proteins. Conditional gene expression can be achieved at three distinct levels. At the DNA level, inducible site‐specific recombinases allow conditional genome editing. At the RNA level, regulation can be achieved during transcription, using stage‐specific or regulatable promoters, or post‐transcriptionally through alteration of mRNA stability or translation. At the protein level, several systems have been developed for inducible degradation or displacement of a protein of interest. In this review, we provide an overview of current systems for conditional control of gene expression in Plasmodium and Toxoplasma parasites, highlighting the advantages and limitations of each approach.
Collapse
Affiliation(s)
- Sylvie Briquet
- INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses, Sorbonne Université, Paris, France
| | - Mathieu Gissot
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, Center for Infection and Immunity of Lille, CIIL, Univ. Lille, Lille, France
| | - Olivier Silvie
- INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses, Sorbonne Université, Paris, France
| |
Collapse
|
14
|
Das S, Stortz JF, Meissner M, Periz J. The multiple functions of actin in apicomplexan parasites. Cell Microbiol 2021; 23:e13345. [PMID: 33885206 DOI: 10.1111/cmi.13345] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 11/29/2022]
Abstract
The cytoskeletal protein actin is highly abundant and conserved in eukaryotic cells. It occurs in two different states- the globular (G-actin) form, which can polymerise into the filamentous (F-actin) form, fulfilling various critical functions including cytokinesis, cargo trafficking and cellular motility. In higher eukaryotes, there are several actin isoforms with nearly identical amino acid sequences. Despite the high level of amino acid identity, they display regulated expression patterns and unique non-redundant roles. The number of actin isoforms together with conserved sequences may reflect the selective pressure exerted by scores of actin binding proteins (ABPs) in higher eukaryotes. In contrast, in many protozoans such as apicomplexan parasites which possess only a few ABPs, the regulatory control of actin and its multiple functions are still obscure. Here, we provide a summary of the regulation and biological functions of actin in higher eukaryotes and compare it with the current knowledge in apicomplexans. We discuss future experiments that will help us understand the multiple, critical roles of this fascinating system in apicomplexans.
Collapse
Affiliation(s)
- Sujaan Das
- Faculty of Veterinary Medicine, Experimental Parasitology, Ludwig Maximilian University, Munich, Germany
| | - Johannes Felix Stortz
- Department Metabolism of Infection, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Markus Meissner
- Faculty of Veterinary Medicine, Experimental Parasitology, Ludwig Maximilian University, Munich, Germany
| | - Javier Periz
- Faculty of Veterinary Medicine, Experimental Parasitology, Ludwig Maximilian University, Munich, Germany
| |
Collapse
|
15
|
McGovern OL, Rivera-Cuevas Y, Carruthers VB. Emerging Mechanisms of Endocytosis in Toxoplasma gondii. Life (Basel) 2021; 11:life11020084. [PMID: 33503859 PMCID: PMC7911406 DOI: 10.3390/life11020084] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 02/07/2023] Open
Abstract
Eukaryotes critically rely on endocytosis of autologous and heterologous material to maintain homeostasis and to proliferate. Although mechanisms of endocytosis have been extensively identified in mammalian and plant systems along with model systems including budding yeast, relatively little is known about endocytosis in protozoan parasites including those belonging to the phylum Apicomplexa. Whereas it has been long established that the apicomplexan agents of malaria (Plasmodium spp.) internalize and degrade hemoglobin from infected red blood cells to acquire amino acids for growth, that the related and pervasive parasite Toxoplasma gondii has a functional and active endocytic system was only recently discovered. Here we discuss emerging and hypothesized mechanisms of endocytosis in Toxoplasma gondii with reference to model systems and malaria parasites. Establishing a framework for potential mechanisms of endocytosis in Toxoplasma gondii will help guide future research aimed at defining the molecular basis and biological relevance of endocytosis in this tractable and versatile parasite.
Collapse
|
16
|
Uboldi AD, Wilde ML, Bader SM, Tonkin CJ. Environmental sensing and regulation of motility in Toxoplasma. Mol Microbiol 2020; 115:916-929. [PMID: 33278047 DOI: 10.1111/mmi.14661] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/27/2020] [Accepted: 12/01/2020] [Indexed: 12/28/2022]
Abstract
Toxoplasma and other apicomplexan parasites undergo a unique form of cellular locomotion referred to as "gliding motility." Gliding motility is crucial for parasite survival as it powers tissue dissemination, host cell invasion and egress. Distinct environmental cues lead to activation of gliding motility and have become a prominent focus of recent investigation. Progress has been made toward understanding what environmental cues are sensed and how these signals are transduced in order to regulate the machinery and cellular events powering gliding motility. In this review, we will discuss new findings and integrate these into our current understanding to propose a model of how environmental sensing is achieved to regulate gliding motility in Toxoplasma. Collectively, these findings also have implications for the understanding of gliding motility across Apicomplexa more broadly.
Collapse
Affiliation(s)
- Alessandro D Uboldi
- Division of Infectious Disease and Immune Defense, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,The Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Mary-Louise Wilde
- Division of Infectious Disease and Immune Defense, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,The Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Stefanie M Bader
- Division of Infectious Disease and Immune Defense, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Christopher J Tonkin
- Division of Infectious Disease and Immune Defense, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,The Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
17
|
Frénal K, Krishnan A, Soldati-Favre D. The Actomyosin Systems in Apicomplexa. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1239:331-354. [PMID: 32451865 DOI: 10.1007/978-3-030-38062-5_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The phylum of Apicomplexa groups obligate intracellular parasites that exhibit unique classes of unconventional myosin motors. These parasites also encode a limited repertoire of actins, actin-like proteins, actin-binding proteins and nucleators of filamentous actin (F-actin) that display atypical properties. In the last decade, significant progress has been made to visualize F-actin and to unravel the functional contribution of actomyosin systems in the biology of Toxoplasma and Plasmodium, the most genetically-tractable members of the phylum. In addition to assigning specific roles to each myosin, recent biochemical and structural studies have begun to uncover mechanistic insights into myosin function at the atomic level. In several instances, the myosin light chains associated with the myosin heavy chains have been identified, helping to understand the composition of the motor complexes and their mode of regulation. Moreover, the considerable advance in proteomic methodologies and especially in assignment of posttranslational modifications is offering a new dimension to our understanding of the regulation of actin dynamics and myosin function. Remarkably, the actomyosin system contributes to three major processes in Toxoplasma gondii: (i) organelle trafficking, positioning and inheritance, (ii) basal pole constriction and intravacuolar cell-cell communication and (iii) motility, invasion, and egress from infected cells. In this chapter, we summarize how the actomyosin system harnesses these key events to ensure successful completion of the parasite life cycle.
Collapse
Affiliation(s)
- Karine Frénal
- Microbiologie Fondamentale et Pathogénicité, UMR 5234, University of Bordeaux and CNRS, Bordeaux Cedex, France. .,Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| | - Aarti Krishnan
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
18
|
Stortz JF, Del Rosario M, Singer M, Wilkes JM, Meissner M, Das S. Formin-2 drives polymerisation of actin filaments enabling segregation of apicoplasts and cytokinesis in Plasmodium falciparum. eLife 2019; 8:e49030. [PMID: 31322501 PMCID: PMC6688858 DOI: 10.7554/elife.49030] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 07/17/2019] [Indexed: 12/16/2022] Open
Abstract
In addition to its role in erythrocyte invasion, Plasmodium falciparum actin is implicated in endocytosis, cytokinesis and inheritance of the chloroplast-like organelle called the apicoplast. Previously, the inability to visualise filamentous actin (F-actin) dynamics had restricted the characterisation of both F-actin and actin regulatory proteins, a limitation we recently overcame for Toxoplasma (Periz et al, 2017). Here, we have expressed and validated actin-binding chromobodies as F-actin-sensors in Plasmodium falciparum and characterised in-vivo actin dynamics. F-actin could be chemically modulated, and genetically disrupted upon conditionally deleting actin-1. In a comparative approach, we demonstrate that Formin-2, a predicted nucleator of F-actin, is responsible for apicoplast inheritance in both Plasmodium and Toxoplasma, and additionally mediates efficient cytokinesis in Plasmodium. Finally, time-averaged local intensity measurements of F-actin in Toxoplasma conditional mutants revealed molecular determinants of spatiotemporally regulated F-actin flow. Together, our data indicate that Formin-2 is the primary F-actin nucleator during apicomplexan intracellular growth, mediating multiple essential functions.
Collapse
Affiliation(s)
- Johannes Felix Stortz
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity & InflammationUniversity of GlasgowGlasgowUnited Kingdom
| | - Mario Del Rosario
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity & InflammationUniversity of GlasgowGlasgowUnited Kingdom
| | - Mirko Singer
- Faculty of Veterinary Medicine, Experimental ParasitologyLudwig Maximilian UniversityMunichGermany
| | - Jonathan M Wilkes
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity & InflammationUniversity of GlasgowGlasgowUnited Kingdom
| | - Markus Meissner
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity & InflammationUniversity of GlasgowGlasgowUnited Kingdom
- Faculty of Veterinary Medicine, Experimental ParasitologyLudwig Maximilian UniversityMunichGermany
| | - Sujaan Das
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity & InflammationUniversity of GlasgowGlasgowUnited Kingdom
- Faculty of Veterinary Medicine, Experimental ParasitologyLudwig Maximilian UniversityMunichGermany
| |
Collapse
|
19
|
Tosetti N, Dos Santos Pacheco N, Soldati-Favre D, Jacot D. Three F-actin assembly centers regulate organelle inheritance, cell-cell communication and motility in Toxoplasma gondii. eLife 2019; 8:e42669. [PMID: 30753127 PMCID: PMC6372287 DOI: 10.7554/elife.42669] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/29/2019] [Indexed: 01/06/2023] Open
Abstract
Toxoplasma gondii possesses a limited set of actin-regulatory proteins and relies on only three formins (FRMs) to nucleate and polymerize actin. We combined filamentous actin (F-actin) chromobodies with gene disruption to assign specific populations of actin filaments to individual formins. FRM2 localizes to the apical juxtanuclear region and participates in apicoplast inheritance. Restricted to the residual body, FRM3 maintains the intravacuolar cell-cell communication. Conoidal FRM1 initiates a flux of F-actin crucial for motility, invasion and egress. This flux depends on myosins A and H and is controlled by phosphorylation via PKG (protein kinase G) and CDPK1 (calcium-dependent protein kinase 1) and by methylation via AKMT (apical lysine methyltransferase). This flux is independent of microneme secretion and persists in the absence of the glideosome-associated connector (GAC). This study offers a coherent model of the key players controlling actin polymerization, stressing the importance of well-timed post-translational modifications to power parasite motility.
Collapse
Affiliation(s)
- Nicolò Tosetti
- Department of Microbiology and Molecular Medicine, CMUUniversity of GenevaGenevaSwitzerland
| | | | | | - Damien Jacot
- Department of Microbiology and Molecular Medicine, CMUUniversity of GenevaGenevaSwitzerland
| |
Collapse
|
20
|
Micronemal protein 13 contributes to the optimal growth of Toxoplasma gondii under stress conditions. Parasitol Res 2019; 118:935-944. [PMID: 30635773 DOI: 10.1007/s00436-018-06197-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 12/28/2018] [Indexed: 10/27/2022]
Abstract
Toxoplasma gondii is a ubiquitous parasitic protozoan infecting humans and a wide variety of animals. Fast-replicating tachyzoites during acute infection and slowly growing bradyzoites during chronic infection are the two basic forms of T. gondii in intermediate hosts. Interconversion between the two contributes to the transmission and pathogenesis of this parasite. Secretory micronemal proteins are thought to mediate interactions with host cells and facilitate parasite invasion, therefore the majority of them are highly expressed in tachyzoites. Micronemal protein 13 (MIC13) is unique in that its expression is low in tachyzoites and is upregulated under bradyzoite-inducing conditions. Previous attempts to disrupt this gene were not successful, implying that it may play critical roles during parasite growth. However, in this study, MIC13 was successfully disrupted in type 1 strain RH and type 2 strain ME49 using CRISPR/Cas9-mediated gene disruption techniques. Consistent with its low expression in tachyzoites and increased expression under stress or bradyzoite-inducing conditions, MIC13-inactivated mutants displayed normal growth, host cell invasion, intracellular replication, and egress, as well as acute virulence at the tachyzoite stage. However, under stress conditions, such as high pH or oxygen limitation, MIC13-disrupted parasites showed significantly slower growth rates compared to the parental strains, suggesting that it is required for optimal parasite growth under bradyzoite-inducing or stress conditions. This is the first micronemal protein reported to have such expression pattern and function modes, which expands our understanding of the diverse functions of micronemal proteins.
Collapse
|
21
|
Berry L, Chen CT, Francia ME, Guerin A, Graindorge A, Saliou JM, Grandmougin M, Wein S, Bechara C, Morlon-Guyot J, Bordat Y, Gubbels MJ, Lebrun M, Dubremetz JF, Daher W. Toxoplasma gondii chromosomal passenger complex is essential for the organization of a functional mitotic spindle: a prerequisite for productive endodyogeny. Cell Mol Life Sci 2018; 75:4417-4443. [PMID: 30051161 PMCID: PMC6260807 DOI: 10.1007/s00018-018-2889-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/28/2018] [Accepted: 07/23/2018] [Indexed: 12/20/2022]
Abstract
The phylum Apicomplexa encompasses deadly pathogens such as malaria and Cryptosporidium. Apicomplexa cell division is mechanistically divergent from that of their mammalian host, potentially representing an attractive source of drug targets. Depending on the species, apicomplexan parasites can modulate the output of cell division, producing two to thousands of daughter cells at once. The inherent flexibility of their cell division mechanisms allows these parasites to adapt to different niches, facilitating their dissemination. Toxoplasma gondii tachyzoites divide using a unique form of cell division called endodyogeny. This process involves a single round of DNA replication, closed nuclear mitosis, and assembly of two daughter cells within a mother. In higher Eukaryotes, the four-subunit chromosomal passenger complex (CPC) (Aurora kinase B (ARKB)/INCENP/Borealin/Survivin) promotes chromosome bi-orientation by detaching incorrect kinetochore-microtubule attachments, playing an essential role in controlling cell division fidelity. Herein, we report the characterization of the Toxoplasma CPC (Aurora kinase 1 (Ark1)/INCENP1/INCENP2). We show that the CPC exhibits dynamic localization in a cell cycle-dependent manner. TgArk1 interacts with both TgINCENPs, with TgINCENP2 being essential for its translocation to the nucleus. While TgINCENP1 appears to be dispensable, interfering with TgArk1 or TgINCENP2 results in pronounced division and growth defects. Significant anti-cancer drug development efforts have focused on targeting human ARKB. Parasite treatment with low doses of hesperadin, a known inhibitor of human ARKB at higher concentrations, phenocopies the TgArk1 and TgINCENP2 mutants. Overall, our study provides new insights into the mechanisms underpinning cell cycle control in Apicomplexa, and highlights TgArk1 as potential drug target.
Collapse
Affiliation(s)
- Laurence Berry
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Chun-Ti Chen
- Department of Biology, Boston College, Chestnut Hill, MA, 02467, USA
| | - Maria E Francia
- Molecular Biology Unit, Institut Pasteur de Montevideo, Mataojo 2020, 11400, Montevideo, Uruguay
| | - Amandine Guerin
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS, INSERM, Université de Montpellier, Montpellier, France
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800, Spruce Street, Philadelphia, PA, 19104, USA
| | - Arnault Graindorge
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Jean-Michel Saliou
- CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019, UMR 8204, CIIL-Centre d'Infection et d'Immunité de Lille, University of Lille, 59000, Lille, France
| | - Maurane Grandmougin
- CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019, UMR 8204, CIIL-Centre d'Infection et d'Immunité de Lille, University of Lille, 59000, Lille, France
| | - Sharon Wein
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Chérine Bechara
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS, INSERM, Université de Montpellier, Montpellier, France
- Institut de Génomique Fonctionnelle, CNRS, UMR5230 INSERM U1191, University of Montpellier, 34094, Montpellier, France
| | - Juliette Morlon-Guyot
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Yann Bordat
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Marc-Jan Gubbels
- Department of Biology, Boston College, Chestnut Hill, MA, 02467, USA
| | - Maryse Lebrun
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Jean-François Dubremetz
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Wassim Daher
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS, INSERM, Université de Montpellier, Montpellier, France.
| |
Collapse
|
22
|
Morlon-Guyot J, El Hajj H, Martin K, Fois A, Carrillo A, Berry L, Burchmore R, Meissner M, Lebrun M, Daher W. A proteomic analysis unravels novel CORVET and HOPS proteins involved in Toxoplasma gondii
secretory organelles biogenesis. Cell Microbiol 2018; 20:e12870. [DOI: 10.1111/cmi.12870] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/23/2018] [Accepted: 06/05/2018] [Indexed: 01/10/2023]
Affiliation(s)
- Juliette Morlon-Guyot
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS, INSERM; Université de Montpellier; Montpellier France
| | - Hiba El Hajj
- Departments of Internal Medicine and Experimental Pathology, Immunology and Microbiology; American University of Beirut; Beirut Lebanon
| | - Kevin Martin
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS, INSERM; Université de Montpellier; Montpellier France
| | - Adrien Fois
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS, INSERM; Université de Montpellier; Montpellier France
| | - Amandine Carrillo
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS, INSERM; Université de Montpellier; Montpellier France
| | - Laurence Berry
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS, INSERM; Université de Montpellier; Montpellier France
| | | | - Markus Meissner
- Wellcome Centre for Molecular Parasitology; University of Glasgow; Glasgow UK
- Department of Veterinary Sciences, Experimental Parasitology; Ludwig-Maximilians-Universität München; Munich Germany
| | - Maryse Lebrun
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS, INSERM; Université de Montpellier; Montpellier France
| | - Wassim Daher
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS, INSERM; Université de Montpellier; Montpellier France
| |
Collapse
|
23
|
Morlon-Guyot J, Berry L, Sauquet I, Singh Pall G, El Hajj H, Meissner M, Daher W. Conditional knock-down of a novel coccidian protein leads to the formation of aberrant apical organelles and abrogates mature rhoptry positioning in Toxoplasma gondii. Mol Biochem Parasitol 2018; 223:19-30. [DOI: 10.1016/j.molbiopara.2018.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/23/2018] [Accepted: 06/23/2018] [Indexed: 01/21/2023]
|
24
|
Abstract
Plasmodium species cause malaria by proliferating in human erythrocytes. Invasion of immunologically privileged erythrocytes provides a relatively protective niche as well as access to a rich source of nutrients. Plasmodium spp. target erythrocytes of different ages, but share a common mechanism of invasion. Specific engagement of erythrocyte receptors defines target cell tropism, activating downstream events and resulting in the physical penetration of the erythrocyte, powered by the parasite's actinomyosin-based motor. Here we review the latest in our understanding of the molecular composition of this highly complex and fascinating biological process.
Collapse
|
25
|
Jia Y, Marq JB, Bisio H, Jacot D, Mueller C, Yu L, Choudhary J, Brochet M, Soldati-Favre D. Crosstalk between PKA and PKG controls pH-dependent host cell egress of Toxoplasma gondii. EMBO J 2017; 36:3250-3267. [PMID: 29030485 PMCID: PMC5666616 DOI: 10.15252/embj.201796794] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 09/08/2017] [Accepted: 09/12/2017] [Indexed: 12/27/2022] Open
Abstract
Toxoplasma gondii encodes three protein kinase A catalytic (PKAc1-3) and one regulatory (PKAr) subunits to integrate cAMP-dependent signals. Here, we show that inactive PKAc1 is maintained at the parasite pellicle by interacting with acylated PKAr. Either a conditional knockdown of PKAr or the overexpression of PKAc1 blocks parasite division. Conversely, down-regulation of PKAc1 or stabilisation of a dominant-negative PKAr isoform that does not bind cAMP triggers premature parasite egress from infected cells followed by serial invasion attempts leading to host cell lysis. This untimely egress depends on host cell acidification. A phosphoproteome analysis suggested the interplay between cAMP and cGMP signalling as PKAc1 inactivation changes the phosphorylation profile of a putative cGMP-phosphodiesterase. Concordantly, inhibition of the cGMP-dependent protein kinase G (PKG) blocks egress induced by PKAc1 inactivation or environmental acidification, while a cGMP-phosphodiesterase inhibitor circumvents egress repression by PKAc1 or pH neutralisation. This indicates that pH and PKAc1 act as balancing regulators of cGMP metabolism to control egress. These results reveal a crosstalk between PKA and PKG pathways to govern egress in T. gondii.
Collapse
Affiliation(s)
- Yonggen Jia
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, Geneva 4, Switzerland
| | - Jean-Baptiste Marq
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, Geneva 4, Switzerland
| | - Hugo Bisio
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, Geneva 4, Switzerland
| | - Damien Jacot
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, Geneva 4, Switzerland
| | - Christina Mueller
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, Geneva 4, Switzerland
| | - Lu Yu
- Proteomic Mass-spectrometry Team, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Jyoti Choudhary
- Proteomic Mass-spectrometry Team, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Mathieu Brochet
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, Geneva 4, Switzerland
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, Geneva 4, Switzerland
| |
Collapse
|
26
|
|
27
|
Alvarez CA, Suvorova ES. Checkpoints of apicomplexan cell division identified in Toxoplasma gondii. PLoS Pathog 2017; 13:e1006483. [PMID: 28671988 PMCID: PMC5510908 DOI: 10.1371/journal.ppat.1006483] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 07/14/2017] [Accepted: 06/20/2017] [Indexed: 11/18/2022] Open
Abstract
The unusual cell cycles of Apicomplexa parasites are remarkably flexible with the ability to complete cytokinesis and karyokinesis coordinately or postpone cytokinesis for several rounds of chromosome replication, and are well recognized. Despite this surprising biology, the molecular machinery required to achieve this flexibility is largely unknown. In this study, we provide comprehensive experimental evidence that apicomplexan parasites utilize multiple Cdk-related kinases (Crks) to coordinate cell division. We determined that Toxoplasma gondii encodes seven atypical P-, H-, Y- and L- type cyclins and ten Crks to regulate cellular processes. We generated and analyzed conditional tet-OFF mutants for seven TgCrks and four TgCyclins that are expressed in the tachyzoite stage. These experiments demonstrated that TgCrk1, TgCrk2, TgCrk4 and TgCrk6, were required or essential for tachyzoite growth revealing a remarkable number of Crk factors that are necessary for parasite replication. G1 phase arrest resulted from the loss of cytoplasmic TgCrk2 that interacted with a P-type cyclin demonstrating that an atypical mechanism controls half the T. gondii cell cycle. We showed that T. gondii employs at least three TgCrks to complete mitosis. Novel kinases, TgCrk6 and TgCrk4 were required for spindle function and centrosome duplication, respectively, while TgCrk1 and its partner TgCycL were essential for daughter bud assembly. Intriguingly, mitotic kinases TgCrk4 and TgCrk6 did not interact with any cyclin tested and were instead dynamically expressed during mitosis indicating they may not require a cyclin timing mechanism. Altogether, our findings demonstrate that apicomplexan parasites utilize distinctive and complex mechanisms to coordinate their novel replicative cycles. Apicomplexan parasites are unicellular eukaryotes that replicate in unusual ways different from their multicellular hosts. From a single infection, different apicomplexans can produce as few as two or up to many hundreds of progeny. How these flexible division cycles are regulated is poorly understood. In the current study we have defined the major mechanisms controlling the growth of the Toxoplasma gondii acute pathogenic stage called the tachyzoite. We show that T. gondii tachyzoites require not only multiple protein kinases to coordinate chromosome replication and the assembly of new daughter parasites, but also each kinase has unique responsibilities. By contrast, the mammalian cell that T. gondii infects requires far fewer kinase regulators to complete cell division, which suggests that these parasites have unique vulnerabilities. The increased complexity in parasite cell cycle controls likely evolved from the need to adapt to different hosts and the need to construct the specialized invasion apparatus in order to invade those hosts.
Collapse
Affiliation(s)
- Carmelo A. Alvarez
- Department of Global Health and the Florida Center for Drug Discovery and Innovation, University of South Florida, Tampa, Florida, United States of America
| | - Elena S. Suvorova
- Department of Global Health and the Florida Center for Drug Discovery and Innovation, University of South Florida, Tampa, Florida, United States of America
- * E-mail:
| |
Collapse
|
28
|
Jacot D, Tosetti N, Pires I, Stock J, Graindorge A, Hung YF, Han H, Tewari R, Kursula I, Soldati-Favre D. An Apicomplexan Actin-Binding Protein Serves as a Connector and Lipid Sensor to Coordinate Motility and Invasion. Cell Host Microbe 2016; 20:731-743. [PMID: 27978434 DOI: 10.1016/j.chom.2016.10.020] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/16/2016] [Accepted: 10/27/2016] [Indexed: 01/06/2023]
Abstract
Apicomplexa exhibit a unique form of substrate-dependent gliding motility central for host cell invasion and parasite dissemination. Gliding is powered by rearward translocation of apically secreted transmembrane adhesins via their interaction with the parasite actomyosin system. We report a conserved armadillo and pleckstrin homology (PH) domain-containing protein, termed glideosome-associated connector (GAC), that mediates apicomplexan gliding motility, invasion, and egress by connecting the micronemal adhesins with the actomyosin system. TgGAC binds to and stabilizes filamentous actin and specifically associates with the transmembrane adhesin TgMIC2. GAC localizes to the apical pole in invasive stages of Toxoplasma gondii and Plasmodium berghei, and apical positioning of TgGAC depends on an apical lysine methyltransferase, TgAKMT. GAC PH domain also binds to phosphatidic acid, a lipid mediator associated with microneme exocytosis. Collectively, these findings indicate a central role for GAC in spatially and temporally coordinating gliding motility and invasion.
Collapse
Affiliation(s)
- Damien Jacot
- Department of Microbiology & Molecular Medicine, University of Geneva, 1 Rue Michel-Servet, 1211 Geneva, Switzerland
| | - Nicolò Tosetti
- Department of Microbiology & Molecular Medicine, University of Geneva, 1 Rue Michel-Servet, 1211 Geneva, Switzerland
| | - Isa Pires
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7, 90220 Oulu, Finland
| | - Jessica Stock
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham NG2 7UH, UK
| | - Arnault Graindorge
- Department of Microbiology & Molecular Medicine, University of Geneva, 1 Rue Michel-Servet, 1211 Geneva, Switzerland
| | - Yu-Fu Hung
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7, 90220 Oulu, Finland
| | - Huijong Han
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7, 90220 Oulu, Finland
| | - Rita Tewari
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham NG2 7UH, UK
| | - Inari Kursula
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7, 90220 Oulu, Finland; Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway.
| | - Dominique Soldati-Favre
- Department of Microbiology & Molecular Medicine, University of Geneva, 1 Rue Michel-Servet, 1211 Geneva, Switzerland.
| |
Collapse
|
29
|
Berry L, Chen CT, Reininger L, Carvalho TG, El Hajj H, Morlon-Guyot J, Bordat Y, Lebrun M, Gubbels MJ, Doerig C, Daher W. The conserved apicomplexan Aurora kinase TgArk3 is involved in endodyogeny, duplication rate and parasite virulence. Cell Microbiol 2016; 18:1106-1120. [PMID: 26833682 DOI: 10.1111/cmi.12571] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 01/19/2016] [Accepted: 01/20/2016] [Indexed: 12/25/2022]
Abstract
Aurora kinases are eukaryotic serine/threonine protein kinases that regulate key events associated with chromatin condensation, centrosome and spindle function and cytokinesis. Elucidating the roles of Aurora kinases in apicomplexan parasites is crucial to understand the cell cycle control during Plasmodium schizogony or Toxoplasma endodyogeny. Here, we report on the localization of two previously uncharacterized Toxoplasma Aurora-related kinases (Ark2 and Ark3) in tachyzoites and of the uncharacterized Ark3 orthologue in Plasmodium falciparum erythrocytic stages. In Toxoplasma gondii, we show that TgArk2 and TgArk3 concentrate at specific sub-cellular structures linked to parasite division: the mitotic spindle and intranuclear mitotic structures (TgArk2), and the outer core of the centrosome and the budding daughter cells cytoskeleton (TgArk3). By tagging the endogenous PfArk3 gene with the green fluorescent protein in live parasites, we show that PfArk3 protein expression peaks late in schizogony and localizes at the periphery of budding schizonts. Disruption of the TgArk2 gene reveals no essential function for tachyzoite propagation in vitro, which is surprising giving that the P. falciparum and P. berghei orthologues are essential for erythrocyte schizogony. In contrast, knock-down of TgArk3 protein results in pronounced defects in parasite division and a major growth deficiency. TgArk3-depleted parasites display several defects, such as reduced parasite growth rate, delayed egress and parasite duplication, defect in rosette formation, reduced parasite size and invasion efficiency and lack of virulence in mice. Our study provides new insights into cell cycle control in Toxoplasma and malaria parasites and highlights Aurora kinase 3 as potential drug target.
Collapse
Affiliation(s)
- Laurence Berry
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS, Université Montpellier, Montpellier, France
| | - Chun-Ti Chen
- Department of Biology, Boston College, Chestnut Hill, MA 02467, USA
| | - Luc Reininger
- Laboratoire de Biologie Cellulaire Comparative des Apicomplexes, INSERM U1016, Institut Cochin, Paris, France
| | - Teresa G Carvalho
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Victoria, Australia, 3800
| | - Hiba El Hajj
- Department of Internal Medicine and Experimental Pathology, Immunology and Microbiology, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Juliette Morlon-Guyot
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS, Université Montpellier, Montpellier, France
| | - Yann Bordat
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS, Université Montpellier, Montpellier, France
| | - Maryse Lebrun
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS, Université Montpellier, Montpellier, France
| | - Marc-Jan Gubbels
- Department of Biology, Boston College, Chestnut Hill, MA 02467, USA
| | - Christian Doerig
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Victoria, Australia, 3800
| | - Wassim Daher
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS, Université Montpellier, Montpellier, France
| |
Collapse
|
30
|
Graindorge A, Frénal K, Jacot D, Salamun J, Marq JB, Soldati-Favre D. The Conoid Associated Motor MyoH Is Indispensable for Toxoplasma gondii Entry and Exit from Host Cells. PLoS Pathog 2016; 12:e1005388. [PMID: 26760042 PMCID: PMC4711953 DOI: 10.1371/journal.ppat.1005388] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 12/17/2015] [Indexed: 11/23/2022] Open
Abstract
Many members of the phylum of Apicomplexa have adopted an obligate intracellular life style and critically depend on active invasion and egress from the infected cells to complete their lytic cycle. Toxoplasma gondii belongs to the coccidian subgroup of the Apicomplexa, and as such, the invasive tachyzoite contains an organelle termed the conoid at its extreme apex. This motile organelle consists of a unique polymer of tubulin fibres and protrudes in both gliding and invading parasites. The class XIV myosin A, which is conserved across the Apicomplexa phylum, is known to critically contribute to motility, invasion and egress from infected cells. The MyoA-glideosome is anchored to the inner membrane complex (IMC) and is assumed to translocate the components of the circular junction secreted by the micronemes and rhoptries, to the rear of the parasite. Here we comprehensively characterise the class XIV myosin H (MyoH) and its associated light chains. We show that the 3 alpha-tubulin suppressor domains, located in MyoH tail, are necessary to anchor this motor to the conoid. Despite the presence of an intact MyoA-glideosome, conditional disruption of TgMyoH severely compromises parasite motility, invasion and egress from infected cells. We demonstrate that MyoH is necessary for the translocation of the circular junction from the tip of the parasite, where secretory organelles exocytosis occurs, to the apical position where the IMC starts. This study attributes for the first time a direct function of the conoid in motility and invasion, and establishes the indispensable role of MyoH in initiating the first step of motility along this unique organelle, which is subsequently relayed by MyoA to enact effective gliding and invasion. The Apicomplexa phylum groups important pathogens that infect humans and animals. Host cell invasion and egress from infected cells are key events in the lytic cycle of these obligate intracellular parasites. Host cell entry is powered by gliding motility and initiated by the discharge of apical secretory organelles at the site of contact with the host cell. Anchored to the parasite pellicle, the glideosome composed of myosin A and the gliding associated proteins is the molecular machine which translocates the secreted adhesins from the apical to the posterior pole of the parasite and hence propels the parasite into the host cell. Toxoplasma gondii exhibits a helical form of gliding motility and as member of the coccidian-subgroup of Apicomplexa possesses an apical organelle called the conoid, which protrudes during invasion and egress and consists in helically organized polymer of tubulin fibers. We have deciphered here the function of a novel myosin associated to the microtubules composing the conoid. Myosin H is essential and prerequisite for motility, invasion and egress from infected cells. This unusual motor links actin- and tubulin-based cytoskeletons and uncovers a direct role of the conoid in motility and invasion.
Collapse
Affiliation(s)
- Arnault Graindorge
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Karine Frénal
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Damien Jacot
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Julien Salamun
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Jean Baptiste Marq
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- * E-mail:
| |
Collapse
|
31
|
Unconventional actins and actin-binding proteins in human protozoan parasites. Int J Parasitol 2015; 45:435-47. [DOI: 10.1016/j.ijpara.2015.01.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 12/19/2014] [Accepted: 01/27/2015] [Indexed: 12/11/2022]
|
32
|
Kumpula EP, Kursula I. Towards a molecular understanding of the apicomplexan actin motor: on a road to novel targets for malaria remedies? Acta Crystallogr F Struct Biol Commun 2015; 71:500-13. [PMID: 25945702 PMCID: PMC4427158 DOI: 10.1107/s2053230x1500391x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 02/25/2015] [Indexed: 11/10/2022] Open
Abstract
Apicomplexan parasites are the causative agents of notorious human and animal diseases that give rise to considerable human suffering and economic losses worldwide. The most prominent parasites of this phylum are the malaria-causing Plasmodium species, which are widespread in tropical and subtropical regions, and Toxoplasma gondii, which infects one third of the world's population. These parasites share a common form of gliding motility which relies on an actin-myosin motor. The components of this motor and the actin-regulatory proteins in Apicomplexa have unique features compared with all other eukaryotes. This, together with the crucial roles of these proteins, makes them attractive targets for structure-based drug design. In recent years, several structures of glideosome components, in particular of actins and actin regulators from apicomplexan parasites, have been determined, which will hopefully soon allow the creation of a complete molecular picture of the parasite actin-myosin motor and its regulatory machinery. Here, current knowledge of the function of this motor is reviewed from a structural perspective.
Collapse
Affiliation(s)
- Esa-Pekka Kumpula
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, PO Box 3000, 90014 Oulu, Finland
- Helmholtz Centre for Infection Research, Notkestrasse 85, 22607 Hamburg, Germany
- German Electron Synchrotron, Notkestrasse 85, 22607 Hamburg, Germany
| | - Inari Kursula
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, PO Box 3000, 90014 Oulu, Finland
- Helmholtz Centre for Infection Research, Notkestrasse 85, 22607 Hamburg, Germany
- German Electron Synchrotron, Notkestrasse 85, 22607 Hamburg, Germany
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| |
Collapse
|
33
|
Boucher LE, Bosch J. The apicomplexan glideosome and adhesins - Structures and function. J Struct Biol 2015; 190:93-114. [PMID: 25764948 PMCID: PMC4417069 DOI: 10.1016/j.jsb.2015.02.008] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Revised: 02/20/2015] [Accepted: 02/26/2015] [Indexed: 01/10/2023]
Abstract
The apicomplexan family of pathogens, which includes Plasmodium spp. and Toxoplasma gondii, are primarily obligate intracellular parasites and invade multiple cell types. These parasites express extracellular membrane protein receptors, adhesins, to form specific pathogen-host cell interaction complexes. Various adhesins are used to invade a variety of cell types. The receptors are linked to an actomyosin motor, which is part of a complex comprised of many proteins known as the invasion machinery or glideosome. To date, reviews on invasion have focused primarily on the molecular pathways and signals of invasion, with little or no structural information presented. Over 75 structures of parasite receptors and glideosome proteins have been deposited with the Protein Data Bank. These structures include adhesins, motor proteins, bridging proteins, inner membrane complex and cytoskeletal proteins, as well as co-crystal structures with peptides and antibodies. These structures provide information regarding key interactions necessary for target receptor engagement, machinery complex formation, how force is transmitted, and the basis of inhibitory antibodies. Additionally, these structures can provide starting points for the development of antibodies and inhibitory molecules targeting protein-protein interactions, with the aim to inhibit invasion. This review provides an overview of the parasite adhesin protein families, the glideosome components, glideosome architecture, and discuss recent work regarding alternative models.
Collapse
Affiliation(s)
- Lauren E Boucher
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, 615 N Wolfe St, Baltimore, MD 21205, USA; Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, 615 N Wolfe St, Baltimore, MD 21205, USA.
| | - Jürgen Bosch
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, 615 N Wolfe St, Baltimore, MD 21205, USA; Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, 615 N Wolfe St, Baltimore, MD 21205, USA.
| |
Collapse
|
34
|
Yeoh LM, Goodman CD, Hall NE, van Dooren GG, McFadden GI, Ralph SA. A serine-arginine-rich (SR) splicing factor modulates alternative splicing of over a thousand genes in Toxoplasma gondii. Nucleic Acids Res 2015; 43:4661-75. [PMID: 25870410 PMCID: PMC4482073 DOI: 10.1093/nar/gkv311] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 03/27/2015] [Indexed: 11/12/2022] Open
Abstract
Single genes are often subject to alternative splicing, which generates alternative mature mRNAs. This phenomenon is widespread in animals, and observed in over 90% of human genes. Recent data suggest it may also be common in Apicomplexa. These parasites have small genomes, and economy of DNA is evolutionarily favoured in this phylum. We investigated the mechanism of alternative splicing in Toxoplasma gondii, and have identified and localized TgSR3, a homologue of ASF/SF2 (alternative-splicing factor/splicing factor 2, a serine-arginine–rich, or SR protein) to a subnuclear compartment. In addition, we conditionally overexpressed this protein, which was deleterious to growth. qRT-PCR was used to confirm perturbation of splicing in a known alternatively-spliced gene. We performed high-throughput RNA-seq to determine the extent of splicing modulated by this protein. Current RNA-seq algorithms are poorly suited to compact parasite genomes, and hence we complemented existing tools by writing a new program, GeneGuillotine, that addresses this deficiency by segregating overlapping reads into distinct genes. In order to identify the extent of alternative splicing, we released another program, JunctionJuror, that detects changes in intron junctions. Using this program, we identified about 2000 genes that were constitutively alternatively spliced in T. gondii. Overexpressing the splice regulator TgSR3 perturbed alternative splicing in over 1000 genes.
Collapse
Affiliation(s)
- Lee M Yeoh
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Christopher D Goodman
- School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Nathan E Hall
- Department of Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3086, Australia Life Sciences Computation Centre, Victorian Life Sciences Computation Initiative, Carlton, Victoria 3010, Australia
| | - Giel G van Dooren
- Research School of Biology, The Australian National University, Acton, ACT 2601, Australia
| | - Geoffrey I McFadden
- School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Stuart A Ralph
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
35
|
Morlon‐Guyot J, Pastore S, Berry L, Lebrun M, Daher W. Toxoplasma gondii
Vps11, a subunit of
HOPS
and
CORVET
tethering complexes, is essential for the biogenesis of secretory organelles. Cell Microbiol 2015; 17:1157-78. [DOI: 10.1111/cmi.12426] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Revised: 01/20/2015] [Accepted: 01/28/2015] [Indexed: 12/17/2022]
Affiliation(s)
- Juliette Morlon‐Guyot
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS Université Montpellier Montpellier France
| | - Sandra Pastore
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS Université Montpellier Montpellier France
| | - Laurence Berry
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS Université Montpellier Montpellier France
| | - Maryse Lebrun
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS Université Montpellier Montpellier France
| | - Wassim Daher
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS Université Montpellier Montpellier France
| |
Collapse
|
36
|
Daher W, Morlon-Guyot J, Sheiner L, Lentini G, Berry L, Tawk L, Dubremetz JF, Wengelnik K, Striepen B, Lebrun M. Lipid kinases are essential for apicoplast homeostasis in Toxoplasma gondii. Cell Microbiol 2014; 17:559-78. [PMID: 25329540 DOI: 10.1111/cmi.12383] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Revised: 09/26/2014] [Accepted: 10/10/2014] [Indexed: 12/25/2022]
Abstract
Phosphoinositides regulate numerous cellular processes by recruiting cytosolic effector proteins and acting as membrane signalling entities. The cellular metabolism and localization of phosphoinositides are tightly regulated by distinct lipid kinases and phosphatases. Here, we identify and characterize a unique phosphatidylinositol 3 kinase (PI3K) in Toxoplasma gondii, a protozoan parasite belonging to the phylum Apicomplexa. Conditional depletion of this enzyme and subsequently of its product, PI(3)P, drastically alters the morphology and inheritance of the apicoplast, an endosymbiotic organelle of algal origin that is a unique feature of many Apicomplexa. We searched the T. gondii genome for PI(3)P-binding proteins and identified in total six PX and FYVE domain-containing proteins including a PIKfyve lipid kinase, which phosphorylates PI(3)P into PI(3,5)P2 . Although depletion of putative PI(3)P-binding proteins shows that they are not essential for parasite growth and apicoplast biology, conditional disruption of PIKfyve induces enlarged apicoplasts, as observed upon loss of PI(3)P. A similar defect of apicoplast homeostasis was also observed by knocking down the PIKfyve regulatory protein ArPIKfyve, suggesting that in T. gondii, PI(3)P-related function for the apicoplast might mainly be to serve as a precursor for the synthesis of PI(3,5)P2 . Accordingly, PI3K is conserved in all apicomplexan parasites whereas PIKfyve and ArPIKfyve are absent in Cryptosporidium species that lack an apicoplast, supporting a direct role of PI(3,5)P2 in apicoplast homeostasis. This study enriches the already diverse functions attributed to PI(3,5)P2 in eukaryotic cells and highlights these parasite lipid kinases as potential drug targets.
Collapse
Affiliation(s)
- Wassim Daher
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS, Université de Montpellier 1 et 2, Montpellier, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Bargieri D, Lagal V, Andenmatten N, Tardieux I, Meissner M, Ménard R. Host cell invasion by apicomplexan parasites: the junction conundrum. PLoS Pathog 2014; 10:e1004273. [PMID: 25232721 PMCID: PMC4169498 DOI: 10.1371/journal.ppat.1004273] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Daniel Bargieri
- Institut Pasteur, Malaria Biology and Genetics Unit, Department of Parasitology and Mycology, Paris, France
| | - Vanessa Lagal
- Institut Cochin, Laboratory Barriers and Pathogens, INSERM U-1016, CNRS UMR-8104, University of Paris Descartes, Paris, France
| | - Nicole Andenmatten
- Institute of Infection, Immunity and Inflammation, Wellcome Centre for Molecular Parasitology, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Isabelle Tardieux
- Institut Cochin, Laboratory Barriers and Pathogens, INSERM U-1016, CNRS UMR-8104, University of Paris Descartes, Paris, France
| | - Markus Meissner
- Institute of Infection, Immunity and Inflammation, Wellcome Centre for Molecular Parasitology, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Robert Ménard
- Institut Pasteur, Malaria Biology and Genetics Unit, Department of Parasitology and Mycology, Paris, France
- * E-mail:
| |
Collapse
|
38
|
Salamun J, Kallio JP, Daher W, Soldati-Favre D, Kursula I. Structure of Toxoplasma gondii coronin, an actin-binding protein that relocalizes to the posterior pole of invasive parasites and contributes to invasion and egress. FASEB J 2014; 28:4729-47. [PMID: 25114175 DOI: 10.1096/fj.14-252569] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Coronins are involved in the regulation of actin dynamics in a multifaceted way, participating in cell migration and vesicular trafficking. Apicomplexan parasites, which exhibit an actin-dependent gliding motility that is essential for traversal through tissues, as well as invasion of and egress from host cells, express only a single coronin, whereas higher eukaryotes possess several isoforms. We set out to characterize the 3-D structure, biochemical function, subcellular localization, and genetic ablation of Toxoplasma gondii coronin (TgCOR), to shed light on its biological role. A combination of X-ray crystallography, small-angle scattering of X-rays, and light scattering revealed the atomic structure of the conserved WD40 domain and the dimeric arrangement of the full-length protein. TgCOR binds to F-actin and increases the rate and extent of actin polymerization. In vivo, TgCOR relocalizes transiently to the posterior pole of motile and invading parasites, independent of actin dynamics, but concomitant to microneme secretory organelle discharge. TgCOR contributes to, but is not essential for, invasion and egress. Taken together, our data point toward a role for TgCOR in stabilizing newly formed, short filaments and F-actin cross-linking, as well as functions linked to endocytosis and recycling of membranes.
Collapse
Affiliation(s)
- Julien Salamun
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Juha P Kallio
- Centre for Structural Systems Biology, Helmholtz Centre for Infection Research and German Electron Synchrotron (DESY), Hamburg, Germany; and
| | - Wassim Daher
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland;
| | - Inari Kursula
- Centre for Structural Systems Biology, Helmholtz Centre for Infection Research and German Electron Synchrotron (DESY), Hamburg, Germany; and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| |
Collapse
|
39
|
Advantages and disadvantages of conditional systems for characterization of essential genes in Toxoplasma gondii. Parasitology 2014; 141:1390-8. [PMID: 24926834 DOI: 10.1017/s0031182014000559] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The dissection of apicomplexan biology has been highly influenced by the genetic tools available for manipulation of parasite DNA. Here, we describe different techniques available for the generation of conditional mutants. Comparison of the advantages and disadvantages of the three most commonly used regulation systems: the tetracycline inducible system, the regulation of protein stability and site-specific recombination are discussed. Using some previously described examples we explore some of the pitfalls involved in gene-function analysis using these systems that can lead to wrong or over-interpretation of phenotypes. We will also mention different options to standardize the application of these techniques for the characterization of gene function in high-throughput.
Collapse
|
40
|
Lei T, Wang H, Liu J, Nan H, Liu Q. ROP18 is a key factor responsible for virulence difference between Toxoplasma gondii and Neospora caninum. PLoS One 2014; 9:e99744. [PMID: 24927100 PMCID: PMC4057265 DOI: 10.1371/journal.pone.0099744] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 05/17/2014] [Indexed: 01/16/2023] Open
Abstract
Toxoplasma gondii (T. gondii) and Neospora caninum (N. caninum) are both obligate intracellular protozoan parasites and share many common morphological and biological features. Despite these similarities the two parasites differ dramatically in virulence in mice, but the factors involved in virulence differences between the two parasites remain unknown. A secreted serine-threonine kinase called rhoptry protein 18 (ROP18) was identified to play a crucial role on virulence differences among different T. gondii clonal lineages. Intriguingly, we found that ROP18 in Nc1 strain of N. caninum (NcROP18) is a pseudogene due to several interrupting stop codons in the sequence in our previous studies. We assume that the difference of ROP18 leads to virulence difference between T. gondii and N. caninum. We constructed a transgenic N. caninum Nc1 stain by transfecting the TgROP18 from the T. gondii RH strain. Phenotype and virulence assays showed that the expression of TgROP18 in N. caninum did not affect the motility and cell invasion, but resulted in a significant increase in intracellular parasite proliferation and virulence in mice. Immunity-Related GTPase (IRG) phosphorylation assay showed that the transgenic parasite Nc1-TgROP18 was able to phosphorylate IRGs as T. gondii did. The present study indicated that the ROP18 plays a crucial role in virulence of the closely related parasites T. gondii and N. caninum and it is indeed a key factor responsible for the virulence difference between T. gondii and N. caninum.
Collapse
Affiliation(s)
- Tao Lei
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, and National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Hui Wang
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, and National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jing Liu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, and National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Huizhu Nan
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, and National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Qun Liu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, and National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
41
|
Jacot D, Frénal K, Marq JB, Sharma P, Soldati-Favre D. Assessment of phosphorylation inToxoplasmaglideosome assembly and function. Cell Microbiol 2014; 16:1518-32. [DOI: 10.1111/cmi.12307] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 04/16/2014] [Indexed: 01/10/2023]
Affiliation(s)
- Damien Jacot
- Department of Microbiology & Molecular Medicine; CMU/University of Geneva; Rue Michel-Servet 1 CH-1211 Geneva 4 Switzerland
| | - Karine Frénal
- Department of Microbiology & Molecular Medicine; CMU/University of Geneva; Rue Michel-Servet 1 CH-1211 Geneva 4 Switzerland
| | - Jean-Baptiste Marq
- Department of Microbiology & Molecular Medicine; CMU/University of Geneva; Rue Michel-Servet 1 CH-1211 Geneva 4 Switzerland
| | - Pushkar Sharma
- Eukaryotic Gene Expression Laboratory; National Institute of Immunology; New Delhi 110067 India
| | - Dominique Soldati-Favre
- Department of Microbiology & Molecular Medicine; CMU/University of Geneva; Rue Michel-Servet 1 CH-1211 Geneva 4 Switzerland
| |
Collapse
|
42
|
Tao Q, Xiao J, Wang Y, Fang K, Li N, Hu M, Zhou Y, Zhao J. Identification of genes expressed during Toxoplasma gondii infection by in vivo-induced antigen technology (IVIAT) with positive porcine sera. J Parasitol 2014; 100:470-9. [PMID: 24646180 DOI: 10.1645/13-240.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Infection of pigs with Toxoplasma gondii is a common source of human toxoplasmosis and causes serious economic losses. In vivo-induced antigen technology (IVIAT) is an effective immunological technique to identify the antigens that a pathogen specifically expressed during infection. To discover the genes that are important in T. gondii infection of pigs, we employed IVIAT using sera from infected pigs. Fourteen antigens were identified including microneme protein 11 (MIC11), dense granule protein 5 (GRA5), 18 kDa cyclophilin (C-18), serine proteinase inhibitor (PI), calmodulin (CaM), leucine-rich repeat protein ( LRRP), D-3-phosphoglycerate dehydrogenase (D3PD), elongation factor 1-gamma (EF1), and 6 hypothetical proteins. The increased transcription levels of 5 (MIC11, GRA5, C-18, PI, and CaM) of the 14 molecules identified by IVIAT were confirmed by real-time PCR. The full length or partial proteins encoded by these 5 genes were expressed in Escherichia coli , and their immunogenicity was confirmed by Western blot analysis with positive porcine sera. Further functional studies were conducted with CaM. Suppression of CaM expression by RNA interference decreased T. gondii tachyzoites cell attachment, invasion, and egress but did not influence their replication. The proteins identified in this study are predicted to be involved in cell invasion, ion-protein binding, protein folding, biosynthesis, and metabolism. The results of the functional analysis support the hypothesis that CaM contributes to parasite pathogenesis during infection. These results may have significant implications for the discovery of candidate molecules for the development of potential therapies and preventive measures against toxoplasmosis in pigs.
Collapse
Affiliation(s)
- Qing Tao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, P. R. China
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Egarter S, Andenmatten N, Jackson AJ, Whitelaw JA, Pall G, Black JA, Ferguson DJP, Tardieux I, Mogilner A, Meissner M. The toxoplasma Acto-MyoA motor complex is important but not essential for gliding motility and host cell invasion. PLoS One 2014; 9:e91819. [PMID: 24632839 PMCID: PMC3954763 DOI: 10.1371/journal.pone.0091819] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 02/13/2014] [Indexed: 12/23/2022] Open
Abstract
Apicomplexan parasites are thought to actively invade the host cell by gliding motility. This movement is powered by the parasite's own actomyosin system, and depends on the regulated polymerisation and depolymerisation of actin to generate the force for gliding and host cell penetration. Recent studies demonstrated that Toxoplasma gondii can invade the host cell in the absence of several core components of the invasion machinery, such as the motor protein myosin A (MyoA), the microneme proteins MIC2 and AMA1 and actin, indicating the presence of alternative invasion mechanisms. Here the roles of MyoA, MLC1, GAP45 and Act1, core components of the gliding machinery, are re-dissected in detail. Although important roles of these components for gliding motility and host cell invasion are verified, mutant parasites remain invasive and do not show a block of gliding motility, suggesting that other mechanisms must be in place to enable the parasite to move and invade the host cell. A novel, hypothetical model for parasite gliding motility and invasion is presented based on osmotic forces generated in the cytosol of the parasite that are converted into motility.
Collapse
Affiliation(s)
- Saskia Egarter
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Nicole Andenmatten
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Allison J. Jackson
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Jamie A. Whitelaw
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Gurman Pall
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Jennifer Ann Black
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - David J. P. Ferguson
- Nuffield Department of Clinical Laboratory Science, Oxford University, Oxford, United Kingdom
| | - Isabelle Tardieux
- Institut Cochin, University of Paris Descartes, INSERM U-1016, CNRS UMR-8104, Paris, France
| | - Alex Mogilner
- Department of Neurobiology, Physiology, and Behavior and Department of Mathematics, University of California Davis, Davis, California, United States of America
| | - Markus Meissner
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- * E-mail:
| |
Collapse
|
44
|
Yin LT, Hao HX, Wang HL, Zhang JH, Meng XL, Yin GR. Intranasal immunisation with recombinant Toxoplasma gondii actin partly protects mice against toxoplasmosis. PLoS One 2013; 8:e82765. [PMID: 24386114 PMCID: PMC3873923 DOI: 10.1371/journal.pone.0082765] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 10/27/2013] [Indexed: 12/31/2022] Open
Abstract
Toxoplasma gondii is a ubiquitous protozoan intracellular parasite, the causative agent of toxoplasmosis, and a worldwide zoonosis for which an effective vaccine is needed. Actin is a highly conserved microfilament protein that plays an important role in the invasion of host cells by T. gondii. This study investigated the immune responses elicited by BALB/c mice after nasal immunisation with a recombinant T. gondii actin (rTgACT) and the subsequent protection against chronic and lethal T. gondii infections. We evaluated the systemic response by proliferation, cytokine and antibody measurements, and we assessed the mucosal response by examining the levels of TgACT-specific secretory IgA (SIgA) in nasal, vaginal and intestinal washes. Parasite load was assessed in the liver and brain, and the survival of mice challenged with a virulent strain was determined. The results showed that the mice immunised with rTgACT developed high levels of specific anti-rTgACT IgG titres and a mixed IgG1/IgG2a response with a predominance of IgG2a. The systemic immune response was associated with increased production of Th1 (IFN-γ and IL-2), Th2 (IL-4) and Treg (IL-10) cytokines, indicating that not only Th1-type response was induced, but also Th2- and Treg-types responses were induced, and the splenocyte stimulation index (SI) was increased in the mice immunised with rTgACT. Nasal immunisation with rTgACT led to strong mucosal immune responses, as seen by the increased secretion of SIgA in nasal, vaginal and intestinal washes. The vaccinated mice displayed significant protection against lethal infection with the virulent RH strain (survival increased by 50%), while the mice chronically infected with RH exhibited lower liver and brain parasite loads (60.05% and 49.75%, respectively) than the controls. Our data demonstrate, for the first time, that actin triggers a strong systemic and mucosal response against T. gondii. Therefore, actin may be a promising vaccine candidate against toxoplasmosis.
Collapse
Affiliation(s)
- Li-Tian Yin
- Department of physiology, Key Laboratory of Cellular Physiology Co-constructed by Province and Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Hai-Xia Hao
- Research Institute of Medical Parasitology, Shanxi Medical University, Taiyuan, Shanxi, PR China
- General Hospital of the Datong Coal Mine Co. Ltd., Datong, Shanxi, PR China
| | - Hai-Long Wang
- Research Institute of Medical Parasitology, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Jian-Hong Zhang
- Research Institute of Medical Parasitology, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Xiao-Li Meng
- Research Institute of Medical Parasitology, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Guo-Rong Yin
- Research Institute of Medical Parasitology, Shanxi Medical University, Taiyuan, Shanxi, PR China
| |
Collapse
|
45
|
Morlon-Guyot J, Berry L, Chen CT, Gubbels MJ, Lebrun M, Daher W. The Toxoplasma gondii calcium-dependent protein kinase 7 is involved in early steps of parasite division and is crucial for parasite survival. Cell Microbiol 2013; 16:95-114. [PMID: 24011186 DOI: 10.1111/cmi.12186] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 08/12/2013] [Accepted: 08/14/2013] [Indexed: 12/22/2022]
Abstract
Apicomplexan parasites express various calcium-dependent protein kinases (CDPKs), and some of them play essential roles in invasion and egress. Five of the six CDPKs conserved in most Apicomplexa have been studied at the molecular and cellular levels in Plasmodium species and/or in Toxoplasma gondii parasites, but the function of CDPK7 was so far uncharacterized. In T. gondii, during intracellular replication, two parasites are formed within a mother cell through a unique process called endodyogeny. Here we demonstrate that the knock-down of CDPK7 protein in T. gondii results in pronounced defects in parasite division and a major growth deficiency, while it is dispensable for motility, egress and microneme exocytosis. In cdpk7-depleted parasites, the overall DNA content was not impaired, but the polarity of daughter cells budding and the fate of several subcellular structures or proteins involved in cell division were affected, such as the centrosomes and the kinetochore. Overall, our data suggest that CDPK7 is crucial for proper maintenance of centrosome integrity required for the initiation of endodyogeny. Our findings provide a first insight into the probable role of calcium-dependent signalling in parasite multiplication, in addition to its more widely explored role in invasion and egress.
Collapse
Affiliation(s)
- Juliette Morlon-Guyot
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS, Université de Montpellier I et II, Montpellier, France
| | | | | | | | | | | |
Collapse
|
46
|
Invasion factors of apicomplexan parasites: essential or redundant? Curr Opin Microbiol 2013; 16:438-44. [DOI: 10.1016/j.mib.2013.05.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 04/25/2013] [Accepted: 05/05/2013] [Indexed: 02/03/2023]
|
47
|
Goo YK, Ueno A, Terkawi MA, Aboge GO, Junya Y, Igarashi M, Kim JY, Hong YC, Chung DI, Nishikawa Y, Xuan X. Actin polymerization mediated by Babesia gibsoni aldolase is required for parasite invasion. Exp Parasitol 2013; 135:42-9. [PMID: 23792005 DOI: 10.1016/j.exppara.2013.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 05/03/2013] [Accepted: 06/09/2013] [Indexed: 01/05/2023]
Abstract
Host cell invasion by apicomplexan parasites driven by gliding motility and empowered by actin-based movement is essential for parasite survival and pathogenicity. The parasites share a conserved invasion process: actin-based motility led by the coordination of adhesin-cytoskeleton via aldolase. A number of studies of host cell invasion in the Plasmodium species and Toxoplasma gondii have been performed. However, the mechanisms of host cell invasion by Babesia species have not yet been studied. Here, we show that Babesia gibsoni aldolase (BgALD) forms a complex with B. gibsoni thrombospondin-related anonymous protein (BgTRAP) and B. gibsoni actin (BgACT), depending on tryptophan-734 (W-734) in BgTRAP. In addition, actin polymerization is mediated by BgALD. Moreover, cytochalasin D, which disrupts actin polymerization, suppressed B. gibsoni parasite growth and inhibited the host cell invasion by parasites, indicating that actin dynamics are essential for erythrocyte invasion by B. gibsoni. This study is the first molecular approach to determine the invasion mechanisms of Babesia species.
Collapse
Affiliation(s)
- Youn-Kyoung Goo
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Frénal K, Soldati-Favre D. [The glideosome, a unique machinery that assists the Apicomplexa in gliding into host cells]. Med Sci (Paris) 2013; 29:515-22. [PMID: 23732101 DOI: 10.1051/medsci/2013295015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Protozoan parasites belonging to the phylum Apicomplexa are of considerable medical and veterinary significance. These obligate intracellular parasites use a unique form of locomotion to traverse biological barriers and actively invade in and egress from host cells. An actin-myosin-based complex named "glideosome" drives this unusual substrate-dependent motility, which is essential for the establishment of the infection. The mechanisms involved in motility, invasion and egress are conserved throughout the phylum. This article describes the current knowledge on the invasion process of two experimentally tractable apicomplexan parasites: Toxoplasma gondii and Plasmodium falciparum.
Collapse
Affiliation(s)
- Karine Frénal
- Département de microbiologie et médecine moléculaire, faculté de médecine, université de Genève, centre médical universitaire, 1 rue Michel Servet, 1211 Genève, Suisse.
| | | |
Collapse
|
49
|
Jacot D, Daher W, Soldati-Favre D. Toxoplasma gondii myosin F, an essential motor for centrosomes positioning and apicoplast inheritance. EMBO J 2013; 32:1702-16. [PMID: 23695356 DOI: 10.1038/emboj.2013.113] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 04/22/2013] [Indexed: 11/09/2022] Open
Abstract
Members of the Apicomplexa phylum possess an organelle surrounded by four membranes, originating from the secondary endosymbiosis of a red alga. This so-called apicoplast hosts essential metabolic pathways. We report here that apicoplast inheritance is an actin-based process. Concordantly, parasites depleted in either profilin or actin depolymerizing factor, or parasites overexpressing the FH2 domain of formin 2, result in loss of the apicoplast. The class XXII myosin F (MyoF) is conserved across the phylum and localizes in the vicinity of the Toxoplasma gondii apicoplast during division. Conditional knockdown of TgMyoF severely affects apicoplast turnover, leading to parasite death. This recapitulates the phenotype observed upon perturbation of actin dynamics that led to the accumulation of the apicoplast and secretory organelles in enlarged residual bodies. To further dissect the mode of action of this motor, we conditionally stabilized the tail of MyoF, which forms an inactive heterodimer with endogenous TgMyoF. This dominant negative mutant reveals a central role of this motor in the positioning of the two centrosomes prior to daughter cell formation and in apicoplast segregation.
Collapse
Affiliation(s)
- Damien Jacot
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, Geneva, Switzerland
| | | | | |
Collapse
|
50
|
Abstract
Toxoplasma gondii, an Apicomplexan, is a pathogic protozoan that can infect the central nervous system. Infection during pregnancy can result in a congenial infection with severe neurological sequelae. In immunocompromised individuals reactivation of latent neurological foci can result in encephalitis. Immunocompetent individuals infected with T. gondii are typically asymptomatic and maintain this infection for life. However, recent studies suggest that these asymptomatic infections may have effects on behavior and other physiological processes. Toxoplasma gondii infects approximately one-third of the world population, making it one of the most successful parasitic organisms. Cats and other felidae serve as the definite host producing oocysts, an environmentally resistant life cycle stage found in cat feces, which can transmit the infection when ingested orally. A wide variety of warm-blooded animals, including humans, can serve as the intermediate host in which tissue cysts (containing bradyzoites) develop. Transmission also occurs due to ingestion of the tissue cysts. There are three predominant clonal lineages, termed Types I, II and III, and an association with higher pathogenicity with the Type I strains in humans has emerged. This chapter presents a review of the biology of this infection including the life cycle, transmission, epidemiology, parasite strains, and the host immune response. The major clinical outcomes of congenital infection, chorioretinitis and encephalitis, and the possible association of infection of toxoplasmosis with neuropsychiatric disorders such as schizophrenia, are reviewed.
Collapse
Affiliation(s)
- Sandra K Halonen
- Department of Microbiology, Montana State University, Bozeman, MT, USA
| | | |
Collapse
|