1
|
Samur DN, Yıldırım S, Maytalman E, Kalay M, Tanrıöver G, Özbey G. Vortioxetine attenuates rotenone-induced enteric neuroinflammation via modulation of the TLR2/S100B/RAGE signaling pathway in a rat model of Parkinson's disease. Neuropharmacology 2025; 271:110385. [PMID: 40010563 DOI: 10.1016/j.neuropharm.2025.110385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 02/06/2025] [Accepted: 02/22/2025] [Indexed: 02/28/2025]
Abstract
Emerging evidence suggests that gastrointestinal dysfunction and enteric nervous system pathology play a critical role in the early stages of Parkinson's disease. Considering the bidirectional relationship between gastrointestinal symptoms and mood disorders, this study aimed to elucidate the effects and possible mechanisms of action of vortioxetine, a serotonergic antidepressant, on the pathophysiological changes induced by rotenone in the enteroglial cells. α-synuclein, phosphorylated α-synuclein, TLR2, S100B and RAGE expression were detected in duodenal tissues of rats administered rotenone (2 mg/kg/day, s.c.) and/or vortioxetine (10 mg/kg/day, s.c.) for 28 days. For the mechanism of action studies, rat-derived enteroglial cells were treated with rotenone (10 μM) and/or vortioxetine (5 μM or 1 μM) for 24 h. The effects of vortioxetine were evaluated in the presence of the TLR2 antagonist C29, RAGE antagonist FPS-ZM1 and the S100B inhibitor pentamidine. TLR2, S100B, RAGE, and NFκB mRNA levels and proinflammatory cytokines via RT-qPCR and ELISA. Our results demonstrate that rotenone treatment significantly increased α-synuclein, pS129-α-synuclein, TLR2, and S100B expression while reducing RAGE levels, indicating marked enteric pathology. Vortioxetine administration attenuated these effects, reducing α-synuclein accumulation and proinflammatory markers. In vitro, rotenone impaired glial responses, decreasing S100B, RAGE, and NFκB markers, while vortioxetine improved these responses, promoting resynthesis of inflammatory molecules. Notably, S100B, NFκB, and cytokine levels (TNF-α, IL-1β, IL-6) were affected by C29, FPS-ZM1, and pentamidine pretreatments. Thus, vortioxetine is thought to have beneficial effects on rotenone-induced pathological changes in EGCs, and some of these effects are thought to be mediated by the TLR2/S100B/RAGE pathway.
Collapse
Affiliation(s)
- Dilara Nemutlu Samur
- Alanya Alaaddin Keykubat University, Faculty of Medicine, Department of Pharmacology, 07450, Antalya, Turkey.
| | - Sendegül Yıldırım
- Akdeniz University, Faculty of Medicine, Department of Histology and Embryology, 07058, Antalya, Turkey
| | - Erkan Maytalman
- Alanya Alaaddin Keykubat University, Faculty of Medicine, Department of Pharmacology, 07450, Antalya, Turkey
| | - Merzuka Kalay
- Akdeniz University, Faculty of Medicine, Department of Histology and Embryology, 07058, Antalya, Turkey
| | - Gamze Tanrıöver
- Akdeniz University, Faculty of Medicine, Department of Histology and Embryology, 07058, Antalya, Turkey
| | - Gül Özbey
- Akdeniz University, Faculty of Medicine, Department of Pharmacology, 07058, Antalya, Turkey
| |
Collapse
|
2
|
Denizci E, Altun G, Kaplan S. Morphological evidence for the potential protective effects of curcumin and Garcinia kola against diabetes in the rat hippocampus. Brain Res 2024; 1839:149020. [PMID: 38788929 DOI: 10.1016/j.brainres.2024.149020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/16/2024] [Accepted: 05/22/2024] [Indexed: 05/26/2024]
Abstract
This research investigated the effects of sciatic nerve transection and diabetes on the hippocampus, and the protective effects of Garcinia kola and curcumin. Thirty-five adults male Wistar albino rats were divided into five groups: a control group (Cont), a transected group (Sham group), a transected + diabetes mellitus group (DM), a transected + diabetes mellitus + Garcinia kola group (DM + GK), and a transected + DM + curcumin group (DM + Cur), each containing seven animals. The experimental diabetes model was created with the intraperitoneal injection of a single dose of streptozotocin. No procedure was applied to the Cont group, while sciatic nerve transection was performed on the other groups. Garcinia kola was administered to the rats in DM + GK, and curcumin to those in DM + Cur. Cardiac perfusion was performed at the end of the experimental period. Brain tissues were dissected for stereological, histopathological, and immunohistochemical evaluations. The volume ratios of hippocampal layers to the entire hippocampus volume were compared between the groups. Anti-S100, anti-caspase 3, and anti-SOX 2 antibodies were used for immunohistochemical analysis. No statistically significant difference was observed in the volume ratios of the four hippocampal layers. However, the volume ratio of the stratum lucidum was higher in the Sham, DM, and DM + Cur groups compared to the Cont group. While curcumin exhibited a protective effect on hippocampal tissue following diabetes induction, Garcinia kola had only a weak protective effect. Increased cell density and nuclear deterioration due to diabetes and nerve transection can be partially ameliorated by treatment with Garcinia kola and curcumin.
Collapse
Affiliation(s)
- Eda Denizci
- Department of Histology and Embryology, Ondokuz Mayıs University, Samsun 55139, Turkey
| | - Gamze Altun
- Department of Histology and Embryology, Ondokuz Mayıs University, Samsun 55139, Turkey
| | - Süleyman Kaplan
- Department of Histology and Embryology, Ondokuz Mayıs University, Samsun 55139, Turkey; Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania.
| |
Collapse
|
3
|
Lionakis MS. Exploiting antifungal immunity in the clinical context. Semin Immunol 2023; 67:101752. [PMID: 37001464 PMCID: PMC10192293 DOI: 10.1016/j.smim.2023.101752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Indexed: 03/31/2023]
Abstract
The continuous expansion of immunocompromised patient populations at-risk for developing life-threatening opportunistic fungal infections in recent decades has helped develop a deeper understanding of antifungal host defenses, which has provided the foundation for eventually devising immune-based targeted interventions in the clinic. This review outlines how genetic variation in certain immune pathway-related genes may contribute to the observed clinical variability in the risk of acquisition and/or severity of fungal infections and how immunogenetic-based patient stratification may enable the eventual development of personalized strategies for antifungal prophylaxis and/or vaccination. Moreover, this review synthesizes the emerging cytokine-based, cell-based, and other immunotherapeutic strategies that have shown promise as adjunctive therapies for boosting or modulating tissue-specific antifungal immune responses in the context of opportunistic fungal infections.
Collapse
Affiliation(s)
- Michail S Lionakis
- From the Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy & Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
4
|
Vizuete AFK, Leal MB, Moreira AP, Seady M, Taday J, Gonçalves CA. Arundic acid (ONO-2506) downregulates neuroinflammation and astrocyte dysfunction after status epilepticus in young rats induced by Li-pilocarpine. Prog Neuropsychopharmacol Biol Psychiatry 2023; 123:110704. [PMID: 36565981 DOI: 10.1016/j.pnpbp.2022.110704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 08/08/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Astrocytes, the most abundant glial cells, have several metabolic functions, including ionic, neurotransmitter and energetic homeostasis for neuronal activity. Reactive astrocytes and their dysfunction have been associated with several brain disorders, including the epileptogenic process. Glial Fibrillary Acidic Protein (GFAP) and S100 calcium-binding protein B (S100B) are astrocyte biomarkers associated with brain injury. We hypothesize that arundic acid (ONO-2506), which is known as an inhibitor of S100B synthesis and secretion, protects the hippocampal tissue from neuroinflammation and astrocyte dysfunction after status epileptics (SE) induction by Li-pilocarpine in young rats. Herein, we investigated the effects of arundic acid treatment, at time points of 6 or 24 h after the induction of SE by Li-pilocarpine, in young rats. In SE animals, arundic acid was able to prevent the damage induced by Li-pilocarpine in the hippocampus, decreasing neuroinflammatory signaling (reducing IL-1β, COX2, TLR4 and RAGE contents), astrogliosis (decreasing GFAP and S100B) and astrocytic dysfunction (recovering levels of GSH, glutamine synthetase and connexin-43). Furthermore, arundic acid improved glucose metabolism and reduced the glutamate excitotoxicity found in epilepsy. Our data reinforce the role of astrocytes in epileptogenesis development and the neuroprotective role of arundic acid, which modulates astrocyte function and neuroinflammation in SE animals.
Collapse
Affiliation(s)
- Adriana Fernanda K Vizuete
- Laboratory of Calcium-Binding Proteins in CNS, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Pos Graduate Program in Biochemistry, Institute of Basic Health Sciences, UFRGS, Porto Alegre, RS, Brazil.
| | - Miriara B Leal
- Laboratory of Calcium-Binding Proteins in CNS, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Pos Graduate Program in Biochemistry, Institute of Basic Health Sciences, UFRGS, Porto Alegre, RS, Brazil
| | - Ana Paula Moreira
- Laboratory of Calcium-Binding Proteins in CNS, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Pos Graduate Program in Biochemistry, Institute of Basic Health Sciences, UFRGS, Porto Alegre, RS, Brazil
| | - Marina Seady
- Laboratory of Calcium-Binding Proteins in CNS, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Pos Graduate Program in Biochemistry, Institute of Basic Health Sciences, UFRGS, Porto Alegre, RS, Brazil
| | - Jéssica Taday
- Laboratory of Calcium-Binding Proteins in CNS, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Pos Graduate Program in Biochemistry, Institute of Basic Health Sciences, UFRGS, Porto Alegre, RS, Brazil
| | - Carlos-Alberto Gonçalves
- Laboratory of Calcium-Binding Proteins in CNS, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Pos Graduate Program in Biochemistry, Institute of Basic Health Sciences, UFRGS, Porto Alegre, RS, Brazil
| |
Collapse
|
5
|
Jungbluth H, Kaiser MLB, Lalaouni D, Winter J, Jepsen S. Immunohistochemical analysis of S100-proteins in normal and irreversibly inflamed human dental pulps. J Endod 2023; 49:504-513. [PMID: 36871746 DOI: 10.1016/j.joen.2023.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/04/2023] [Accepted: 02/05/2023] [Indexed: 03/07/2023]
Abstract
AIM S100 proteins convey important roles in innate immune responses to infection and regenerative processes. Their role in inflammatory or regenerative processes of the human dental pulp, however, is poorly elucidated. Aim of the present study was to detect, localize and compare the occurrence of eight S100 proteins in normal, symptomatic, and asymptomatic irreversibly inflamed dental pulp specimens. METHODOLOGY Human dental pulp specimens from forty-five individuals were clinically assigned to three groups of pulpal diagnosis, "normal pulp" (NP; n=17), "asymptomatic irreversible pulpitis" (AIP; n=13), and "symptomatic irreversible pulpitis" (SIP; n=15). The specimens were prepared and immunohistochemically stained for proteins S100A1, -A2, -A3, -A4, -A6, -A7, -A8, and -A9. Staining was classified using semi quantitative analysis and a four-degree staining score ("no", "decent", "medium" and "intense" staining) at four different anatomical or functional regions [odontoblast layer (OL), pulpal stroma (PS), border area of calcifications (BAC), and vessel walls (VW)]. Distribution of staining degrees between the three diagnostic groups was calculated using fisher´s exact text (p≤0.5) at the four regions. RESULTS Significant differences in staining were observed mainly in the OL, PS, and at BAC. The most significant differences were detected in PS and when comparing NP with one of the two irreversibly inflamed pulpal tissues (AIP or SIP). The inflamed tissues were then invariably stained more intensely than their normal counterparts at this location (S100A1, -A2, -A3, -A4, -A8, and -A9). In the OL, NP tissue was significantly stronger stained for S100A1, -A6, -A8, and -A9 compared with SIP, and for S100A9 when compared with AIP. Differences between AIP and SIP in direct comparison were rare and found only for one protein (S100A2) at the BAC. Also at the VW, only one statistical difference in staining was observed (SIP was stronger stained than NP for protein S100A3). CONCLUSIONS Occurrence of proteins S100A1, -A2, -A3, -A4, -A6, -A8, and -A9 is significantly altered in irreversibly inflamed compared with normal dental pulp tissue at different anatomical localizations. Some members of S100 proteins obviously participate in focal calcification processes and pulp stone formation of the dental pulp.
Collapse
Affiliation(s)
- Holger Jungbluth
- Department of Periodontology, Operative and Preventive Dentistry, University Hospital, Faculty of Medicine, University of Bonn, Bonn, Germany.
| | - Meta Lena Britta Kaiser
- Department of Periodontology, Operative and Preventive Dentistry, University Hospital, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Diana Lalaouni
- Department of Periodontology, Operative and Preventive Dentistry, University Hospital, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Jochen Winter
- Department of Periodontology, Operative and Preventive Dentistry, University Hospital, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Søren Jepsen
- Department of Periodontology, Operative and Preventive Dentistry, University Hospital, Faculty of Medicine, University of Bonn, Bonn, Germany
| |
Collapse
|
6
|
Infection and Immunity. Clin Immunol 2023. [DOI: 10.1016/b978-0-12-818006-8.00007-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
7
|
COMPARATIVE EVALUATION AND PROGNOSTIC UTILITY OF NEURONAL INJURY BIOMARKERS IN COVID-19 PATIENTS: A PROSPECTIVE STUDY. Shock 2022; 58:507-513. [PMID: 36548642 DOI: 10.1097/shk.0000000000002017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
ABSTRACT Background : COVID-19 disease severity markers include mostly molecules related to not only tissue perfusion, inflammation, and thrombosis, but also biomarkers of neural injury. Clinical and basic research has demonstrated that SARS-COV-2 affects the central nervous system. The aims of the present study were to investigate the role of neural injury biomarkers and to compare them with inflammatory markers in their predictive ability of mortality. Methods : We conducted a prospective observational study in critically ill patients with COVID-19 and in a cohort of patients with moderate/severe disease. S100b, neuron-specific enolase (NSE), and inflammatory markers, including soluble urokinase plasminogen activator receptor (suPAR), were measured on intensive care unit or ward admission, respectively. Statistical comparisons between patient groups were performed for all biomarkers under investigation. Correlations between different biomarkers were tested with Spearman correlation coefficient. Receiver operating characteristic curves were plotted using mortality as the classification variable and the biomarker levels on admission as the prognostic variables. Results : A total of 70 patients with COVID-19 were included in the final analysis. Of all studied biomarkers, s100b had the best predictive ability for death in the intensive care unit, with an area under the curve of 0.73 (0.61-0.83), P = 0.0003. S100b levels correlated with NSE, interleukin (IL)-8, and IL-10 (0.27 < rs < 0.37, P < 0.05), and tended to correlate with suPAR ( rs = 0.26, P = 0.05), but not with the vasopressor dose ( P = 0.62). Conclusion : Among the investigated biomarkers, s100b demonstrated the best predictive ability for death in COVID-19 patients. The overall biomarker profile of the patients implies direct involvement of the nervous system by the novel coronavirus.
Collapse
|
8
|
Singh P, Ali SA. Multifunctional Role of S100 Protein Family in the Immune System: An Update. Cells 2022; 11:cells11152274. [PMID: 35892571 PMCID: PMC9332480 DOI: 10.3390/cells11152274] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/12/2022] [Accepted: 07/21/2022] [Indexed: 12/04/2022] Open
Abstract
S100 is a broad subfamily of low-molecular weight calcium-binding proteins (9–14 kDa) with structural similarity and functional discrepancy. It is required for inflammation and cellular homeostasis, and can work extracellularly, intracellularly, or both. S100 members participate in a variety of activities in a healthy cell, including calcium storage and transport (calcium homeostasis). S100 isoforms that have previously been shown to play important roles in the immune system as alarmins (DAMPs), antimicrobial peptides, pro-inflammation stimulators, chemo-attractants, and metal scavengers during an innate immune response. Currently, during the pandemic, it was found that several members of the S100 family are implicated in the pathophysiology of COVID-19. Further, S100 family protein members were proposed to be used as a prognostic marker for COVID-19 infection identification using a nasal swab. In the present review, we compiled the vast majority of recent studies that focused on the multifunctionality of S100 proteins in the complex immune system and its associated activities. Furthermore, we shed light on the numerous molecular approaches and signaling cascades regulated by S100 proteins during immune response. In addition, we discussed the involvement of S100 protein members in abnormal defense systems during the pathogenesis of COVID-19.
Collapse
Affiliation(s)
- Parul Singh
- Cell Biology and Proteomics Lab, Animal Biotechnology Center, ICAR-NDRI, Karnal 132001, India;
| | - Syed Azmal Ali
- Cell Biology and Proteomics Lab, Animal Biotechnology Center, ICAR-NDRI, Karnal 132001, India;
- Division of Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Correspondence: ; Tel.: +91-8708591790
| |
Collapse
|
9
|
Jungbluth H, Brune L, Lalaouni D, Winter J, Jepsen S. Expression profiling of S100-proteins in healthy and irreversibly inflamed human dental pulps. J Endod 2022; 48:502-508. [PMID: 35032537 DOI: 10.1016/j.joen.2022.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 12/23/2021] [Accepted: 01/03/2022] [Indexed: 10/19/2022]
Abstract
AIM Several S100 proteins have been shown to play an important role in the innate immune response to infection and in regenerative processes. However, they have scarcely been investigated during inflammation of the dental pulp. Therefore, in this study we performed gene expression profiling of S100 proteins in healthy and inflamed human dental pulps. METHODOLOGY Tissue samples of human dental pulps were used including fifteen clinically diagnosed as symptomatic irreversible pulpitis (SIP), seven as asymptomatic irreversible pulpitis (AIP), and nineteen as healthy pulp (HP). S100 gene expression levels were quantitatively evaluated for S100 A1, A2, A3, A4, A6, A7, A8, A9, A10, A11, A13, A14, and A16 by qPCR technique. In order to monitor the status of inflammation and degradation of pulp tissues, IL-8, COX-2, and HMGB-1 gene expression was also analysed, with GAPDH serving as reference gene. Differential expression rates for each target gene between SIP, AIP, and HP were evaluated by analysis of variance (ANOVA) followed by Bonferroni post-hoc-test. RESULTS Significantly reduced gene expression levels could be detected in SIP compared to HP for S100A1, A2, A3, A4, A6, A10, A13, and for HMGB-1, while gene expression of S100A8, A14, and IL-8 were significantly increased. In AIP, significantly increased expression levels compared to HP were only detected for S100A14, A16, and for IL-8, with other genes of interest not being altered. CONCLUSIONS The present study revealed significant differences in gene expression profiles of S100 proteins comparing samples from healthy and inflamed dental pulps. More pronounced differences were observed for symptomatic than for asymptomatic pulpitis.
Collapse
Affiliation(s)
- Holger Jungbluth
- Department of Periodontology, Operative and Preventive Dentistry, University Hospital, Faculty of Medicine, University of Bonn, Welschnonnenstr. 17, 53111 Bonn, Germany.
| | - Lukas Brune
- Department of Periodontology, Operative and Preventive Dentistry, University Hospital, Faculty of Medicine, University of Bonn, Welschnonnenstr. 17, 53111 Bonn, Germany
| | - Diana Lalaouni
- Department of Periodontology, Operative and Preventive Dentistry, University Hospital, Faculty of Medicine, University of Bonn, Welschnonnenstr. 17, 53111 Bonn, Germany
| | - Jochen Winter
- Department of Periodontology, Operative and Preventive Dentistry, University Hospital, Faculty of Medicine, University of Bonn, Welschnonnenstr. 17, 53111 Bonn, Germany
| | - Søren Jepsen
- Department of Periodontology, Operative and Preventive Dentistry, University Hospital, Faculty of Medicine, University of Bonn, Welschnonnenstr. 17, 53111 Bonn, Germany
| |
Collapse
|
10
|
Mete E, Sabirli R, Goren T, Turkcuer I, Kurt Ö, Koseler A. Association Between S100b Levels and COVID-19 Pneumonia: A Case Control Study. In Vivo 2021; 35:2923-2928. [PMID: 34410988 DOI: 10.21873/invivo.12583] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/20/2021] [Accepted: 06/29/2021] [Indexed: 01/07/2023]
Abstract
BACKGROUND/AIM Extracellular S100b effects are mediated by the receptor for advanced glycation end products (RAGE), which is the S100b membrane receptor. RAGE belongs to the immunoglobulin superfamily of cell surface molecules and serves as a multiligand receptor and is expressed in high abundance by alveolar type I (AT-I) cells in adult pulmonary tissue. This study aimed to provide an insight into the association between the severity of COVID-19 disease and serum S100b levels during admission to the emergency department (ED). PATIENTS AND METHODS A total of 64 patients (34 mild cases; 30 severe cases) were diagnosed with COVID-19 pneumonia and 30 healthy volunteers were admitted to study. Serum S100b levels were measured by using enzymle linked immunoassay method from blood serum samples. RESULTS Serum S100b levels showed a significantly higher mean value in mild and severe disease cohorts than in healthy controls (p=0.036 and p=0.028 respectively). Receiver operating characteristic (ROC) analysis indicated greater area under the curve (AUC) for serum S100b levels of the COVID-19 patients (AUC=0.663, 95% CI=0.541-0.785; p=0.014). In addition, serum S100b concentration was measured as 151.7 ng/ml at 79.3% sensitivity and 51.7% specificity (p=0.014). Serum S100b protein levels can serve as a valuable clinical marker in establishing diagnosis of patients. Though not useful in identifying different stages of COVID-19 infection, serum S100b concentration along with other known markers can be utilized to reliably predict clinical severity along with other clinical parameters.
Collapse
Affiliation(s)
- Ergun Mete
- Department of Microbiology, Pamukkale University Faculty of Medicine, Denizli, Turkey
| | - Ramazan Sabirli
- Department of Emergency Medicine, Kafkas University Faculty of Medicine, Kars, Turkey
| | - Tarik Goren
- Department of Emergency Medicine, Pamukkale University Faculty of Medicine, Denizli, Turkey
| | - Ibrahim Turkcuer
- Department of Emergency Medicine, Pamukkale University Faculty of Medicine, Denizli, Turkey
| | - Özgür Kurt
- Department of Microbiology, Acibadem Mehmet Ali Aydinlar University School of Medicine, Istanbul, Turkey
| | - Aylin Koseler
- Department of Biophysics, Pamukkale University Faculty of Medicine, Denizli, Turkey
| |
Collapse
|
11
|
The S100 Protein Family as Players and Therapeutic Targets in Pulmonary Diseases. Pulm Med 2021; 2021:5488591. [PMID: 34239729 PMCID: PMC8214497 DOI: 10.1155/2021/5488591] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023] Open
Abstract
The S100 protein family consists of over 20 members in humans that are involved in many intracellular and extracellular processes, including proliferation, differentiation, apoptosis, Ca2+ homeostasis, energy metabolism, inflammation, tissue repair, and migration/invasion. Although there are structural similarities between each member, they are not functionally interchangeable. The S100 proteins function both as intracellular Ca2+ sensors and as extracellular factors. Dysregulated responses of multiple members of the S100 family are observed in several diseases, including the lungs (asthma, chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis, cystic fibrosis, pulmonary hypertension, and lung cancer). To this degree, extensive research was undertaken to identify their roles in pulmonary disease pathogenesis and the identification of inhibitors for several S100 family members that have progressed to clinical trials in patients for nonpulmonary conditions. This review outlines the potential role of each S100 protein in pulmonary diseases, details the possible mechanisms observed in diseases, and outlines potential therapeutic strategies for treatment.
Collapse
|
12
|
Rochette L, Malka G, Cottin Y. The Yin and Yang of alarmin S100B in the protection of myocardium. Arch Cardiovasc Dis 2021; 114:439-442. [PMID: 34119439 DOI: 10.1016/j.acvd.2021.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 11/16/2022]
Affiliation(s)
- Luc Rochette
- PEC2 Research Team, EA 7460, Department of Health Sciences, University of Burgundy, 7, boulevard Jeanne-d'Arc, BP 87900, 21079 Dijon cedex, France.
| | - Gabriel Malka
- Centre for Biological and Medical Sciences (CIAM), Mohammed VI Polytechnic University, Ben-Guerir 43150, Morocco
| | - Yves Cottin
- Department of Cardiology, CHU Dijon-Bourgogne, 21079 Dijon, France
| |
Collapse
|
13
|
Michetti F, Di Sante G, Clementi ME, Sampaolese B, Casalbore P, Volonté C, Romano Spica V, Parnigotto PP, Di Liddo R, Amadio S, Ria F. Growing role of S100B protein as a putative therapeutic target for neurological- and nonneurological-disorders. Neurosci Biobehav Rev 2021; 127:446-458. [PMID: 33971224 DOI: 10.1016/j.neubiorev.2021.04.035] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/15/2021] [Accepted: 04/29/2021] [Indexed: 02/07/2023]
Abstract
S100B is a calcium-binding protein mainly expressed by astrocytes, but also localized in other definite neural and extra-neural cell types. While its presence in biological fluids is widely recognized as a reliable biomarker of active injury, growing evidence now indicates that high levels of S100B are suggestive of pathogenic processes in different neural, but also extra-neural, disorders. Indeed, modulation of S100B levels correlates with the occurrence of clinical and/or toxic parameters in experimental models of diseases such as Alzheimer's and Parkinson's diseases, amyotrophic lateral sclerosis, muscular dystrophy, multiple sclerosis, acute neural injury, inflammatory bowel disease, uveal and retinal disorders, obesity, diabetes and cancer, thus directly linking the levels of S100B to pathogenic mechanisms. In general, deletion/inactivation of the protein causes the improvement of the disease, whereas its over-expression/administration induces a worse clinical presentation. This scenario reasonably proposes S100B as a common therapeutic target for several different disorders, also offering new clues to individuate possible unexpected connections among these diseases.
Collapse
Affiliation(s)
- Fabrizio Michetti
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; IRCCS San Raffaele Scientific Institute, Università Vita-Salute San Raffaele, 20132 Milan, Italy.
| | - Gabriele Di Sante
- Department of Translational Medicine and Surgery, Section of General Pathology, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 1-8, 00168 Rome, Italy.
| | - Maria Elisabetta Clementi
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" SCITEC-CNR, Largo Francesco Vito 1, 00168 Rome, Italy.
| | - Beatrice Sampaolese
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" SCITEC-CNR, Largo Francesco Vito 1, 00168 Rome, Italy.
| | - Patrizia Casalbore
- Institute for Systems Analysis and Computer Science, IASI-CNR, Largo Francesco Vito 1, 00168 Rome, Italy.
| | - Cinzia Volonté
- Institute for Systems Analysis and Computer Science, IASI-CNR, Largo Francesco Vito 1, 00168 Rome, Italy; Cellular Neurobiology Unit, Preclinical Neuroscience, IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 65, 00143 Rome, Italy.
| | - Vincenzo Romano Spica
- Department of Movement, Human and Health Sciences, Laboratory of Epidemiology and Biotechnologies, University of Rome "Foro Italico", Piazza Lauro De Bosis 6, 00135, Rome, Italy.
| | - Pier Paolo Parnigotto
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling (T.E.S.) Onlus, Padua, Italy.
| | - Rosa Di Liddo
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling (T.E.S.) Onlus, Padua, Italy; Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Italy.
| | - Susanna Amadio
- Cellular Neurobiology Unit, Preclinical Neuroscience, IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 65, 00143 Rome, Italy.
| | - Francesco Ria
- Department of Translational Medicine and Surgery, Section of General Pathology, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 1-8, 00168 Rome, Italy.
| |
Collapse
|
14
|
Angelopoulou E, Paudel YN, Piperi C. Emerging role of S100B protein implication in Parkinson's disease pathogenesis. Cell Mol Life Sci 2021; 78:1445-1453. [PMID: 33052436 PMCID: PMC11073186 DOI: 10.1007/s00018-020-03673-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/10/2020] [Accepted: 10/05/2020] [Indexed: 01/08/2023]
Abstract
The exact etiology of Parkinson's disease (PD) remains obscure, lacking effective diagnostic and prognostic biomarkers. In search of novel molecular factors that may contribute to PD pathogenesis, emerging evidence highlights the multifunctional role of the calcium-binding protein S100B that is widely expressed in the brain and predominantly in astrocytes. Preclinical evidence points towards the possible time-specific contributing role of S100B in the pathogenesis of neurodegenerative disorders including PD, mainly by regulating neuroinflammation and dopamine metabolism. Although existing clinical evidence presents some contradictions, estimation of S100B in the serum and cerebrospinal fluid seems to hold a great promise as a potential PD biomarker, particularly regarding the severity of motor and non-motor PD symptoms. Furthermore, given the recent development of S100B inhibitors that are able to cross the blood brain barrier, novel opportunities are arising in the research field of PD therapeutics. In this review, we provide an update on recent advances in the implication of S100B protein in the pathogenesis of PD and discuss relevant studies investigating the biomarker potential of S100B in PD, aiming to shed more light on clinical targeting approaches related to this incurable disorder.
Collapse
Affiliation(s)
- Efthalia Angelopoulou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 M. Asias Street, 11527, Athens, Greece
| | - Yam Nath Paudel
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 M. Asias Street, 11527, Athens, Greece.
| |
Collapse
|
15
|
Abstract
ABSTRACT Host cells recognize molecules that signal danger using pattern recognition receptors (PRRs). Toll-like receptors (TLRs) are the most studied class of PRRs and detect pathogen-associated molecular patterns and danger-associated molecular patterns. Cellular TLR activation and signal transduction can therefore contain, combat, and clear danger by enabling appropriate gene transcription. Here, we review the expression, regulation, and function of different TLRs, with an emphasis on TLR-4, and how TLR adaptor protein binding directs intracellular signaling resulting in activation or termination of an innate immune response. Finally, we highlight the recent progress of research on the involvement of S100 proteins as ligands for TLR-4 in inflammatory disease.
Collapse
|
16
|
Aceti A, Margarucci LM, Scaramucci E, Orsini M, Salerno G, Di Sante G, Gianfranceschi G, Di Liddo R, Valeriani F, Ria F, Simmaco M, Parnigotto PP, Vitali M, Romano Spica V, Michetti F. Serum S100B protein as a marker of severity in Covid-19 patients. Sci Rep 2020; 10:18665. [PMID: 33122776 PMCID: PMC7596559 DOI: 10.1038/s41598-020-75618-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 10/15/2020] [Indexed: 01/08/2023] Open
Abstract
SARS-CoV-2 infection shows a wide-ranging clinical severity, requiring prognostic markers. We focused on S100B, a calcium-binding protein present in biological fluids, being a reliable biomarker in disorders having inflammatory processes as common basis and RAGE as main receptor. Since Covid-19 is characterized by a potent inflammatory response also involving RAGE, we tested if S100B serum levels were related to disease severity. Serum samples (n = 74) were collected from hospitalized SARS-CoV-2 positive patients admitted to Covid center. Illness severity was established by admission clinical criteria and Covid risk score. Treatment protocols followed WHO guidelines available at the time. Circulating S100B was determined by ELISA assay. Statistical analysis used Pearson’s χ2 test, t-Test, and ANOVA, ANCOVA, Linear Regression. S100B was detected in serum from Covid-19 patients, significantly correlating with disease severity as shown both by the level of intensity of care (p < 0.006) as well by the value of Covid score (Multiple R-squared: 0.3751); the correlation between Covid-Score and S100B was 0.61 (p < 0.01). S100B concentration was associated with inflammation markers (Ferritin, C-Reactive Protein, Procalcitonin), and organ damage markers (Alanine Aminotransferase, Creatinine). Serum S100B plays a role in Covid-19 and can represent a marker of clinical severity in Sars-CoV-2 infected patients.
Collapse
Affiliation(s)
- Antonio Aceti
- Sant'Andrea Hospital A.O.U., Sapienza University of Rome, Via di Grottarossa 1035, 00189, Rome, Italy
| | - Lory Marika Margarucci
- Department of Movement, Human and Health Sciences, Laboratory of Epidemiology and Biotechnologies, University of Rome "Foro Italico", Piazza Lauro De Bosis 6, 00135, Rome, Italy
| | - Elena Scaramucci
- Sant'Andrea Hospital A.O.U., Sapienza University of Rome, Via di Grottarossa 1035, 00189, Rome, Italy
| | - Massimiliano Orsini
- Istituto Zooprofilattico Sperimentale Delle Venezie, Viale dell'Università 10, 35020, Legnaro, Padua, Italy
| | - Gerardo Salerno
- Sant'Andrea Hospital A.O.U., Sapienza University of Rome, Via di Grottarossa 1035, 00189, Rome, Italy
| | - Gabriele Di Sante
- Department of Translational Medicine and Surgery, Section of General Pathology, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168, Rome, Italy.,Fondazione Policlinico Universitario A. Gemelli - IRCCS, Largo A. Gemelli 1-8, 00168, Rome, Italy
| | - Gianluca Gianfranceschi
- Department of Movement, Human and Health Sciences, Laboratory of Epidemiology and Biotechnologies, University of Rome "Foro Italico", Piazza Lauro De Bosis 6, 00135, Rome, Italy
| | - Rosa Di Liddo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Via Marzolo 5, 35131, Padua, Italy
| | - Federica Valeriani
- Department of Movement, Human and Health Sciences, Laboratory of Epidemiology and Biotechnologies, University of Rome "Foro Italico", Piazza Lauro De Bosis 6, 00135, Rome, Italy
| | - Francesco Ria
- Department of Translational Medicine and Surgery, Section of General Pathology, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168, Rome, Italy.,Fondazione Policlinico Universitario A. Gemelli - IRCCS, Largo A. Gemelli 1-8, 00168, Rome, Italy
| | - Maurizio Simmaco
- Sant'Andrea Hospital A.O.U., Sapienza University of Rome, Via di Grottarossa 1035, 00189, Rome, Italy
| | - Pier Paolo Parnigotto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Via Marzolo 5, 35131, Padua, Italy.,Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling (T.E.S.) Onlus, Via De Sanctis 10, 35030, Caselle di Selvazzano Dentro, Padua, Italy
| | - Matteo Vitali
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185, Rome, Italy
| | - Vincenzo Romano Spica
- Department of Movement, Human and Health Sciences, Laboratory of Epidemiology and Biotechnologies, University of Rome "Foro Italico", Piazza Lauro De Bosis 6, 00135, Rome, Italy.
| | - Fabrizio Michetti
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168, Rome, Italy.,IRCCS San Raffaele Scientific Institute, Università Vita-Salute San Raffaele, Via Olgettina, 58, 20132, Milan, Italy
| |
Collapse
|
17
|
Abstract
Receptor for advanced glycation end products (RAGE) is an immunoglobulin-like receptor present on cell surface. RAGE binds to an array of structurally diverse ligands, acts as a pattern recognition receptor (PRR) and is expressed on cells of different origin performing different functions. RAGE ligation leads to the initiation of a cascade of signaling events and is implicated in diseases, such as inflammation, cancer, diabetes, vascular dysfunctions, retinopathy, and neurodegenerative diseases. Because of the significant involvement of RAGE in the progression of numerous diseases, RAGE signaling has been targeted through use of inhibitors and anti-RAGE antibodies as a treatment strategy and therapy. Here in this review, we have summarized the physical and physiological aspects of RAGE biology in mammalian system and the importance of targeting this molecule in the treatment of various RAGE mediated pathologies. Highlights Receptor for advanced glycation end products (RAGE) is a member of immunoglobulin superfamily of receptors and involved in many pathophysiological conditions. RAGE ligation with its ligands leads to initiation of distinct signaling cascades and activation of numerous transcription factors. Targeting RAGE signaling through inhibitors and anti-RAGE antibodies can be promising treatment strategy.
Collapse
Affiliation(s)
- Nitish Jangde
- Laboratory of Vascular Immunology, Institute of Life Sciences, Bhubaneswar, India.,Manipal Academy of Higher Education, Manipal, India
| | - Rashmi Ray
- Laboratory of Vascular Immunology, Institute of Life Sciences, Bhubaneswar, India
| | - Vivek Rai
- Laboratory of Vascular Immunology, Institute of Life Sciences, Bhubaneswar, India
| |
Collapse
|
18
|
Arastehfar A, Carvalho A, van de Veerdonk FL, Jenks JD, Koehler P, Krause R, Cornely OA, S. Perlin D, Lass-Flörl C, Hoenigl M. COVID-19 Associated Pulmonary Aspergillosis (CAPA)-From Immunology to Treatment. J Fungi (Basel) 2020; 6:E91. [PMID: 32599813 PMCID: PMC7346000 DOI: 10.3390/jof6020091] [Citation(s) in RCA: 260] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 01/09/2023] Open
Abstract
Like severe influenza, coronavirus disease-19 (COVID-19) resulting in acute respiratory distress syndrome (ARDS) has emerged as an important disease that predisposes patients to secondary pulmonary aspergillosis, with 35 cases of COVID-19 associated pulmonary aspergillosis (CAPA) published until June 2020. The release of danger-associated molecular patterns during severe COVID-19 results in both pulmonary epithelial damage and inflammatory disease, which are predisposing risk factors for pulmonary aspergillosis. Moreover, collateral effects of host recognition pathways required for the activation of antiviral immunity may, paradoxically, contribute to a highly permissive inflammatory environment that favors fungal pathogenesis. Diagnosis of CAPA remains challenging, mainly because bronchoalveolar lavage fluid galactomannan testing and culture, which represent the most sensitive diagnostic tests for aspergillosis in the ICU, are hindered by the fact that bronchoscopies are rarely performed in COVID-19 patients due to the risk of disease transmission. Similarly, autopsies are rarely performed, which may result in an underestimation of the prevalence of CAPA. Finally, the treatment of CAPA is complicated by drug-drug interactions associated with broad spectrum azoles, renal tropism and damage caused by SARS-CoV-2, which may challenge the use of liposomal amphotericin B, as well as the emergence of azole-resistance. This clinical reality creates an urgency for new antifungal drugs currently in advanced clinical development with more promising pharmacokinetic and pharmacodynamic profiles.
Collapse
Affiliation(s)
- Amir Arastehfar
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA;
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Frank L. van de Veerdonk
- Department of Internal Medicine, Radboud University Medical Center, 6525 Nijmegen, The Netherlands;
- Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, 6525Nijmegen, The Netherlands
| | - Jeffrey D. Jenks
- Department of Medicine, University of California San Diego, San Diego, CA 92103, USA;
- Clinical and Translational Fungal-Working Group, University of California San Diego, La Jolla, CA 92093, USA
| | - Philipp Koehler
- Department I of Internal Medicine, Medical Faculty and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (P.K.); (O.A.C.)
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50937Cologne, Germany
| | - Robert Krause
- Section of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria;
| | - Oliver A. Cornely
- Department I of Internal Medicine, Medical Faculty and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (P.K.); (O.A.C.)
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50937Cologne, Germany
- Zentrum fuer klinische Studien (ZKS) Köln, Clinical Trials Centre Cologne, 50937 Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Medical Faculty and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - David S. Perlin
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA;
| | - Cornelia Lass-Flörl
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - Martin Hoenigl
- Clinical and Translational Fungal-Working Group, University of California San Diego, La Jolla, CA 92093, USA
- Section of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria;
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California, San Diego, San Diego, CA 92093, USA
| |
Collapse
|
19
|
Merkhofer RM, Klein BS. Advances in Understanding Human Genetic Variations That Influence Innate Immunity to Fungi. Front Cell Infect Microbiol 2020; 10:69. [PMID: 32185141 PMCID: PMC7058545 DOI: 10.3389/fcimb.2020.00069] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/12/2020] [Indexed: 12/30/2022] Open
Abstract
Fungi are ubiquitous. Yet, despite our frequent exposure to commensal fungi of the normal mammalian microbiota and environmental fungi, serious, systemic fungal infections are rare in the general population. Few, if any, fungi are obligate pathogens that rely on infection of mammalian hosts to complete their lifecycle; however, many fungal species are able to cause disease under select conditions. The distinction between fungal saprophyte, commensal, and pathogen is artificial and heavily determined by the ability of an individual host's immune system to limit infection. Dramatic examples of commensal fungi acting as opportunistic pathogens are seen in hosts that are immune compromised due to congenital or acquired immune deficiency. Genetic variants that lead to immunological susceptibility to fungi have long been sought and recognized. Decreased myeloperoxidase activity in neutrophils was first reported as a mechanism for susceptibility to Candida infection in 1969. The ability to detect genetic variants and mutations that lead to rare or subtle susceptibilities has improved with techniques such as single nucleotide polymorphism (SNP) microarrays, whole exome sequencing (WES), and whole genome sequencing (WGS). Still, these approaches have been limited by logistical considerations and cost, and they have been applied primarily to Mendelian impairments in anti-fungal responses. For example, loss-of-function mutations in CARD9 were discovered by studying an extended family with a history of fungal infection. While discovery of such mutations furthers the understanding of human antifungal immunity, major Mendelian susceptibility loci are unlikely to explain genetic disparities in the rate or severity of fungal infection on the population level. Recent work using unbiased techniques has revealed, for example, polygenic mechanisms contributing to candidiasis. Understanding the genetic underpinnings of susceptibility to fungal infections will be a powerful tool in the age of personalized medicine. Future application of this knowledge may enable targeted health interventions for susceptible individuals, and guide clinical decision making based on a patient's individual susceptibility profile.
Collapse
Affiliation(s)
- Richard M Merkhofer
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Bruce S Klein
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States.,Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, United States.,Department of Medicine, University of Wisconsin-Madison, Madison, WI, United States.,Department of Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
20
|
Bergenfelz C, Leandersson K. The Generation and Identity of Human Myeloid-Derived Suppressor Cells. Front Oncol 2020; 10:109. [PMID: 32117758 PMCID: PMC7025543 DOI: 10.3389/fonc.2020.00109] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/21/2020] [Indexed: 12/29/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are cells of myeloid lineage with a potent immunosuppressive capacity. They are present in cancer patients as well as in patients with severe inflammatory conditions and infections. MDSCs exist as two main subtypes, the granulocytic (G-MDSCs) and the monocytic (Mo-MDSCs) type, as defined by their surface phenotype and functions. While the functions of MDSCs have been investigated in depth, the origin of human MDSCs is less characterized and even controversial. In this review, we recapitulate theories on how MDSCs are generated in mice, and whether this knowledge is translatable into human MDSC biology, as well as on problems of defining MDSCs by their immature cell surface phenotype in relation to the plasticity of myeloid cells. Finally, the challenge of pharmacological targeting of MDSCs in the future is envisioned.
Collapse
Affiliation(s)
- Caroline Bergenfelz
- Department of Translational Medicine, Division of Experimental Infection Medicine, Lund University, Malmö, Sweden
| | - Karin Leandersson
- Department of Translational Medicine, Cancer Immunology, Lund University, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
21
|
Sreejit G, Flynn MC, Patil M, Krishnamurthy P, Murphy AJ, Nagareddy PR. S100 family proteins in inflammation and beyond. Adv Clin Chem 2020; 98:173-231. [PMID: 32564786 DOI: 10.1016/bs.acc.2020.02.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The S100 family proteins possess a variety of intracellular and extracellular functions. They interact with multiple receptors and signal transducers to regulate pathways that govern inflammation, cell differentiation, proliferation, energy metabolism, apoptosis, calcium homeostasis, cell cytoskeleton and microbial resistance. S100 proteins are also emerging as novel diagnostic markers for identifying and monitoring various diseases. Strategies aimed at targeting S100-mediated signaling pathways hold a great potential in developing novel therapeutics for multiple diseases. In this chapter, we aim to summarize the current knowledge about the role of S100 family proteins in health and disease with a major focus on their role in inflammatory conditions.
Collapse
Affiliation(s)
| | - Michelle C Flynn
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Mallikarjun Patil
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Prasanna Krishnamurthy
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Andrew J Murphy
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia; Department of Immunology, Monash University, Melbourne, VIC, Australia
| | | |
Collapse
|
22
|
Riuzzi F, Chiappalupi S, Arcuri C, Giambanco I, Sorci G, Donato R. S100 proteins in obesity: liaisons dangereuses. Cell Mol Life Sci 2020; 77:129-147. [PMID: 31363816 PMCID: PMC11104817 DOI: 10.1007/s00018-019-03257-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/19/2019] [Accepted: 07/24/2019] [Indexed: 02/07/2023]
Abstract
Obesity is an endemic pathophysiological condition and a comorbidity associated with hypercholesterolemia, hypertension, cardiovascular disease, type 2 diabetes mellitus, and cancer. The adipose tissue of obese subjects shows hypertrophic adipocytes, adipocyte hyperplasia, and chronic low-grade inflammation. S100 proteins are Ca2+-binding proteins exclusively expressed in vertebrates in a cell-specific manner. They have been implicated in the regulation of a variety of functions acting as intracellular Ca2+ sensors transducing the Ca2+ signal and extracellular factors affecting cellular activity via ligation of a battery of membrane receptors. Certain S100 proteins, namely S100A4, the S100A8/S100A9 heterodimer and S100B, have been implicated in the pathophysiology of obesity-promoting macrophage-based inflammation via toll-like receptor 4 and/or receptor for advanced glycation end-products ligation. Also, serum levels of S100A4, S100A8/S100A9, S100A12, and S100B correlate with insulin resistance/type 2 diabetes, metabolic risk score, and fat cell size. Yet, secreted S100B appears to exert neurotrophic effects on sympathetic fibers in brown adipose tissue contributing to the larger sympathetic innervation of this latter relative to white adipose tissue. In the present review we first briefly introduce S100 proteins and then critically examine their role(s) in adipose tissue and obesity.
Collapse
Affiliation(s)
- Francesca Riuzzi
- Department of Experimental Medicine, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132, Perugia, Italy
- Interuniversity Institute of Myology (IIM), University of Perugia, 06132, Perugia, Italy
| | - Sara Chiappalupi
- Department of Experimental Medicine, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132, Perugia, Italy
- Interuniversity Institute of Myology (IIM), University of Perugia, 06132, Perugia, Italy
| | - Cataldo Arcuri
- Department of Experimental Medicine, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132, Perugia, Italy
| | - Ileana Giambanco
- Department of Experimental Medicine, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132, Perugia, Italy
| | - Guglielmo Sorci
- Department of Experimental Medicine, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132, Perugia, Italy
- Interuniversity Institute of Myology (IIM), University of Perugia, 06132, Perugia, Italy
- Centro Universitario di Ricerca sulla Genomica Funzionale, University of Perugia, 06132, Perugia, Italy
| | - Rosario Donato
- Department of Experimental Medicine, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132, Perugia, Italy.
| |
Collapse
|
23
|
Riuzzi F, Sorci G, Arcuri C, Giambanco I, Bellezza I, Minelli A, Donato R. Cellular and molecular mechanisms of sarcopenia: the S100B perspective. J Cachexia Sarcopenia Muscle 2018; 9:1255-1268. [PMID: 30499235 PMCID: PMC6351675 DOI: 10.1002/jcsm.12363] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 09/27/2018] [Indexed: 12/11/2022] Open
Abstract
Primary sarcopenia is a condition of reduced skeletal muscle mass and strength, reduced agility, and increased fatigability and risk of bone fractures characteristic of aged, otherwise healthy people. The pathogenesis of primary sarcopenia is not completely understood. Herein, we review the essentials of the cellular and molecular mechanisms of skeletal mass maintenance; the alterations of myofiber metabolism and deranged properties of muscle satellite cells (the adult stem cells of skeletal muscles) that underpin the pathophysiology of primary sarcopenia; the role of the Ca2+ -sensor protein, S100B, as an intracellular factor and an extracellular signal regulating cell functions; and the functional role of S100B in muscle tissue. Lastly, building on recent results pointing to S100B as to a molecular determinant of myoblast-brown adipocyte transition, we propose S100B as a transducer of the deleterious effects of accumulation of reactive oxygen species in myoblasts and, potentially, myofibers concurring to the pathophysiology of sarcopenia.
Collapse
Affiliation(s)
- Francesca Riuzzi
- Department of Experimental Medicine, University of Perugia, Perugia, 06132, Italy.,Interuniversity Institute of Myology
| | - Guglielmo Sorci
- Department of Experimental Medicine, University of Perugia, Perugia, 06132, Italy.,Interuniversity Institute of Myology
| | - Cataldo Arcuri
- Department of Experimental Medicine, University of Perugia, Perugia, 06132, Italy.,Interuniversity Institute of Myology
| | - Ileana Giambanco
- Department of Experimental Medicine, University of Perugia, Perugia, 06132, Italy.,Interuniversity Institute of Myology
| | - Ilaria Bellezza
- Department of Experimental Medicine, University of Perugia, Perugia, 06132, Italy
| | - Alba Minelli
- Department of Experimental Medicine, University of Perugia, Perugia, 06132, Italy
| | - Rosario Donato
- Department of Experimental Medicine, University of Perugia, Perugia, 06132, Italy.,Interuniversity Institute of Myology.,Centro Universitario di Ricerca sulla Genomica Funzionale, University of Perugia, Perugia, 06132, Italy
| |
Collapse
|
24
|
Riuzzi F, Sorci G, Sagheddu R, Chiappalupi S, Salvadori L, Donato R. RAGE in the pathophysiology of skeletal muscle. J Cachexia Sarcopenia Muscle 2018; 9:1213-1234. [PMID: 30334619 PMCID: PMC6351676 DOI: 10.1002/jcsm.12350] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/20/2018] [Accepted: 08/24/2018] [Indexed: 12/14/2022] Open
Abstract
Emerging evidence suggests that the signalling of the Receptor for Advanced Glycation End products (RAGE) is critical for skeletal muscle physiology controlling both the activity of muscle precursors during skeletal muscle development and the correct time of muscle regeneration after acute injury. On the other hand, the aberrant re-expression/activity of RAGE in adult skeletal muscle is a hallmark of muscle wasting that occurs in response to ageing, genetic disorders, inflammatory conditions, cancer, and metabolic alterations. In this review, we discuss the mechanisms of action and the ligands of RAGE involved in myoblast differentiation, muscle regeneration, and muscle pathological conditions. We highlight potential therapeutic strategies for targeting RAGE to improve skeletal muscle function.
Collapse
Affiliation(s)
- Francesca Riuzzi
- Department of Experimental Medicine, University of Perugia, Perugia, Italy.,Interuniversity Institute of Myology
| | - Guglielmo Sorci
- Department of Experimental Medicine, University of Perugia, Perugia, Italy.,Interuniversity Institute of Myology
| | - Roberta Sagheddu
- Department of Experimental Medicine, University of Perugia, Perugia, Italy.,Interuniversity Institute of Myology
| | - Sara Chiappalupi
- Department of Experimental Medicine, University of Perugia, Perugia, Italy.,Interuniversity Institute of Myology
| | - Laura Salvadori
- Department of Experimental Medicine, University of Perugia, Perugia, Italy.,Interuniversity Institute of Myology
| | - Rosario Donato
- Department of Experimental Medicine, University of Perugia, Perugia, Italy.,Interuniversity Institute of Myology.,Centro Universitario di Ricerca sulla Genomica Funzionale, University of Perugia, Perugia, Italy
| |
Collapse
|
25
|
Sagheddu R, Chiappalupi S, Salvadori L, Riuzzi F, Donato R, Sorci G. Targeting RAGE as a potential therapeutic approach to Duchenne muscular dystrophy. Hum Mol Genet 2018; 27:3734-3746. [DOI: 10.1093/hmg/ddy288] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 07/30/2018] [Indexed: 12/21/2022] Open
Affiliation(s)
- Roberta Sagheddu
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
- Interuniversity Institute of Myology (IIM)
| | - Sara Chiappalupi
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
- Interuniversity Institute of Myology (IIM)
| | - Laura Salvadori
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
- Interuniversity Institute of Myology (IIM)
| | - Francesca Riuzzi
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
- Interuniversity Institute of Myology (IIM)
| | - Rosario Donato
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
- Interuniversity Institute of Myology (IIM)
- Centro Universitario di Ricerca sulla Genomica Funzionale, University of Perugia, Perugia, Italy
| | - Guglielmo Sorci
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
- Interuniversity Institute of Myology (IIM)
| |
Collapse
|
26
|
Medkova A, Srovnal J, Potomkova J, Volejnikova J, Mihal V. Multifarious diagnostic possibilities of the S100 protein family: predominantly in pediatrics and neonatology. World J Pediatr 2018; 14:315-321. [PMID: 29858979 DOI: 10.1007/s12519-018-0163-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 05/11/2018] [Indexed: 01/05/2023]
Abstract
BACKGROUND Numerous articles related to S100 proteins have been recently published. This review aims to introduce this large protein family and its importance in the diagnostics of many pathological conditions in children and adults. DATA SOURCES Based on original publications found in database systems, we summarize the current knowledge about the S100 protein group and highlight the most important proteins with focus on pediatric use. RESULTS The S100 family is composed of Ca2+ and Zn2+ binding proteins, which are present only in vertebrates. Some of these proteins can be used as diagnostic markers in cardiology (S100A1, S100A12), oncology (S100A2, S100A5, S100A6, S100A14, S100A16, S100P, S100B), neurology (S100B), rheumatology (S100A8/A9, S100A4, S100A6, and S100A12), nephrology and infections (S100A8, S100A9, S100A8/A9, S100A12). The most useful S100 proteins in pediatrics are S100A8, S100A9, heterodimers S100A8/A9, S100B and S100A12. CONCLUSIONS The S100 family members are promising biomarkers and provide numerous possibilities for implementation into clinical practice to optimize the differential diagnostic process.
Collapse
Affiliation(s)
- Anna Medkova
- Department of Pediatrics, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, I. P. Pavlova 6, 779 00, Olomouc, Czech Republic.
| | - Josef Srovnal
- Department of Pediatrics, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, I. P. Pavlova 6, 779 00, Olomouc, Czech Republic
- Faculty of Medicine and Dentistry, Institute of Molecular and Translational Medicine, Palacky University Olomouc, Hněvotínská, 1333/5, 779 00, Olomouc, Czech Republic
| | - Jarmila Potomkova
- Department of Pediatrics, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, I. P. Pavlova 6, 779 00, Olomouc, Czech Republic
- Department of Science and Research, University Hospital Olomouc, I. P. Pavlova 6, 779 00, Olomouc, Czech Republic
| | - Jana Volejnikova
- Department of Pediatrics, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, I. P. Pavlova 6, 779 00, Olomouc, Czech Republic
- Faculty of Medicine and Dentistry, Institute of Molecular and Translational Medicine, Palacky University Olomouc, Hněvotínská, 1333/5, 779 00, Olomouc, Czech Republic
| | - Vladimir Mihal
- Department of Pediatrics, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, I. P. Pavlova 6, 779 00, Olomouc, Czech Republic
- Faculty of Medicine and Dentistry, Institute of Molecular and Translational Medicine, Palacky University Olomouc, Hněvotínská, 1333/5, 779 00, Olomouc, Czech Republic
| |
Collapse
|
27
|
Vizuete AFK, Hansen F, Negri E, Leite MC, de Oliveira DL, Gonçalves CA. Effects of dexamethasone on the Li-pilocarpine model of epilepsy: protection against hippocampal inflammation and astrogliosis. J Neuroinflammation 2018; 15:68. [PMID: 29506554 PMCID: PMC5839012 DOI: 10.1186/s12974-018-1109-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 02/28/2018] [Indexed: 11/25/2022] Open
Abstract
Background Temporal lobe epilepsy (TLE) is the most common form of partial epilepsy and is accompanied, in one third of cases, by resistance to antiepileptic drugs (AED). Most AED target neuronal activity modulated by ionic channels, and the steroid sensitivity of these channels has supported the use of corticosteroids as adjunctives to AED. Assuming the importance of astrocytes in neuronal activity, we investigated inflammatory and astroglial markers in the hippocampus, a key structure affected in TLE and in the Li-pilocarpine model of epilepsy. Methods Initially, hippocampal slices were obtained from sham rats and rats subjected to the Li-pilocarpine model of epilepsy, at 1, 14, and 56 days after status epilepticus (SE), which correspond to the acute, silent, and chronic phases. Dexamethasone was added to the incubation medium to evaluate the secretion of S100B, an astrocyte-derived protein widely used as a marker of brain injury. In the second set of experiments, we evaluated the in vivo effect of dexamethasone, administrated at 2 days after SE, on hippocampal inflammatory (COX-1/2, PGE2, and cytokines) and astroglial parameters: GFAP, S100B, glutamine synthetase (GS) and water (AQP-4), and K+ (Kir 4.1) channels. Results Basal S100B secretion and S100B secretion in high-K+ medium did not differ at 1, 14, and 56 days for the hippocampal slices from epileptic rats, in contrast to sham animal slices, where high-K+ medium decreased S100B secretion. Dexamethasone addition to the incubation medium per se induced a decrease in S100B secretion in sham and epileptic rats (1 and 56 days after SE induction). Following in vivo dexamethasone administration, inflammatory improvements were observed, astrogliosis was prevented (based on GFAP and S100B content), and astroglial dysfunction was partially abrogated (based on Kir 4.1 protein and GSH content). The GS decrease was not prevented by dexamethasone, and AQP-4 was not altered in this epileptic model. Conclusions Changes in astroglial parameters emphasize the importance of these cells for understanding alterations and mechanisms of epileptic disorders in this model. In vivo dexamethasone administration prevented most of the parameters analyzed, reinforcing the importance of anti-inflammatory steroid therapy in the Li-pilocarpine model and possibly in other epileptic conditions in which neuroinflammation is present. Electronic supplementary material The online version of this article (10.1186/s12974-018-1109-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Adriana Fernanda K Vizuete
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil.
| | - Fernanda Hansen
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Elisa Negri
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Marina Concli Leite
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Diogo Losch de Oliveira
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Carlos-Alberto Gonçalves
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| |
Collapse
|
28
|
Morozzi G, Beccafico S, Bianchi R, Riuzzi F, Bellezza I, Giambanco I, Arcuri C, Minelli A, Donato R. Oxidative stress-induced S100B accumulation converts myoblasts into brown adipocytes via an NF-κB/YY1/miR-133 axis and NF-κB/YY1/BMP-7 axis. Cell Death Differ 2017; 24:2077-2088. [PMID: 28885620 DOI: 10.1038/cdd.2017.132] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 06/20/2017] [Accepted: 07/03/2017] [Indexed: 12/17/2022] Open
Abstract
Muscles of sarcopenic people show hypotrophic myofibers and infiltration with adipose and, at later stages, fibrotic tissue. The origin of infiltrating adipocytes resides in fibro-adipogenic precursors and nonmyogenic mesenchymal progenitor cells, and in satellite cells, the adult stem cells of skeletal muscles. Myoblasts and brown adipocytes share a common Myf5+ progenitor cell: the cell fate depends on levels of bone morphogenetic protein 7 (BMP-7), a TGF-β family member. S100B, a Ca2+-binding protein of the EF-hand type, is expressed at relatively high levels in myoblasts from sarcopenic humans and exerts anti-myogenic effects via NF-κB-dependent inhibition of MyoD, a myogenic transcription factor acting upstream of the essential myogenic factor, myogenin. Adipogenesis requires high levels of ROS, and myoblasts of sarcopenic subjects show elevated ROS levels. Here we show that: (1) ROS overproduction in myoblasts results in upregulation of S100B levels via NF-κB activation; and (2) ROS/NF-κB-induced accumulation of S100B causes myoblast transition into brown adipocytes. S100B activates an NF-κB/Ying Yang 1 axis that negatively regulates the promyogenic and anti-adipogenic miR-133 with resultant accumulation of the brown adipogenic transcription regulator, PRDM-16. S100B also upregulates BMP-7 via NF-κB/Ying Yang 1 with resultant BMP-7 autocrine activity. Interestingly, myoblasts from sarcopenic humans show features of brown adipocytes. We also show that S100B levels and NF-κB activity are elevated in brown adipocytes obtained by culturing myoblasts in adipocyte differentiation medium and that S100B knockdown or NF-κB inhibition in myoblast-derived brown adipocytes reconverts them into fusion-competent myoblasts. At last, interstitial cells and, unexpectedly, a subpopulation of myofibers in muscles of geriatric but not young mice co-express S100B and the brown adipocyte marker, uncoupling protein-1. These results suggest that S100B is an important intracellular molecular signal regulating Myf5+ progenitor cell differentiation into fusion-competent myoblasts or brown adipocytes depending on its levels.
Collapse
Affiliation(s)
- Giulio Morozzi
- Department of Experimental Medicine, Istituto Interuniversitario di Miologia, Perugia Medical School, University of Perugia, Perugia, Italy
| | - Sara Beccafico
- Department of Experimental Medicine, Istituto Interuniversitario di Miologia, Perugia Medical School, University of Perugia, Perugia, Italy.,Istituto Interuniversitario di Miologia, Perugia, Italy
| | - Roberta Bianchi
- Department of Experimental Medicine, Istituto Interuniversitario di Miologia, Perugia Medical School, University of Perugia, Perugia, Italy
| | - Francesca Riuzzi
- Department of Experimental Medicine, Istituto Interuniversitario di Miologia, Perugia Medical School, University of Perugia, Perugia, Italy.,Istituto Interuniversitario di Miologia, Perugia, Italy
| | - Ilaria Bellezza
- Department of Experimental Medicine, Istituto Interuniversitario di Miologia, Perugia Medical School, University of Perugia, Perugia, Italy
| | - Ileana Giambanco
- Department of Experimental Medicine, Istituto Interuniversitario di Miologia, Perugia Medical School, University of Perugia, Perugia, Italy
| | - Cataldo Arcuri
- Department of Experimental Medicine, Istituto Interuniversitario di Miologia, Perugia Medical School, University of Perugia, Perugia, Italy
| | - Alba Minelli
- Department of Experimental Medicine, Istituto Interuniversitario di Miologia, Perugia Medical School, University of Perugia, Perugia, Italy
| | - Rosario Donato
- Department of Experimental Medicine, Istituto Interuniversitario di Miologia, Perugia Medical School, University of Perugia, Perugia, Italy.,Istituto Interuniversitario di Miologia, Perugia, Italy.,Centro Universitario per la Ricerca sulla Genomica Funzionale, Piazza Lucio Severi 1, Perugia 06132, Italy
| |
Collapse
|
29
|
Viana SD, Pita IR, Lemos C, Rial D, Couceiro P, Rodrigues-Santos P, Caramelo F, Carvalho F, Ali SF, Prediger RD, Fontes Ribeiro CA, Pereira FC. The effects of physical exercise on nonmotor symptoms and on neuroimmune RAGE network in experimental parkinsonism. J Appl Physiol (1985) 2017; 123:161-171. [PMID: 28385921 DOI: 10.1152/japplphysiol.01120.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/30/2017] [Accepted: 04/02/2017] [Indexed: 12/18/2022] Open
Abstract
Parkinson's disease (PD) prodromal stages comprise neuropsychiatric perturbations that critically compromise a patient's quality of life. These nonmotor symptoms (NMS) are associated with exacerbated innate immunity, a hallmark of overt PD. Physical exercise (PE) has the potential to improve neuropsychiatric deficits and to modulate immune network including receptor for advanced glycation end products (RAGE) and Toll-like receptors (TLRs) in distinct pathological settings. Accordingly, the present study aimed to test the hypothesis that PE 1) alleviates PD NMS and 2) modulates neuroimmune RAGE network in experimental PD. Adult Wistar rats subjected to long-term mild treadmill were administered intranasally with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and probed for PD NMS before the onset of motor abnormalities. Twelve days after MPTP, neuroimmune RAGE network transcriptomics (real-time quantitative PCR) was analyzed in frontal cortex, hippocampus, and striatum. Untrained MPTP animals displayed habit-learning and motivational deficits without gross motor impairments (cued version of water-maze, splash, and open-field tests, respectively). A suppression of RAGE and neuroimmune-related genes was observed in frontal cortex on chemical and physical stressors (untrained MPTP: RAGE, TLR5 and -7, and p22 NADPH oxidase; saline-trained animals: RAGE, TLR1 and -5 to -11, TNF-α, IL-1β, and p22 NADPH oxidase), suggesting the recruitment of compensatory mechanisms to restrain innate inflammation. Notably, trained MPTP animals displayed normal cognitive/motivational performances. Additionally, these animals showed normal RAGE expression and neuroprotective PD-related DJ-1 gene upregulation in frontal cortex when compared with untrained MPTP animals. These findings corroborate PE efficacy in improving PD NMS and newly identify RAGE network as a neural substrate for exercise intervention. Additional research is warranted to unveil functional consequences of PE-induced modulation of RAGE/DJ-1 transcriptomics in PD premotor stages.NEW & NOTEWORTHY This study newly shows that physical exercise (PE) corrects nonmotor symptoms of the intranasal 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of experimental parkinsonism. Additionally, we show that suppression of neuroimmune receptor for advanced glycation end products (RAGE) network occurs in frontal cortex on chemical (MPTP) and physical (PE) interventions. Finally, PE normalizes frontal cortical RAGE transcriptomics and upregulates the neuroprotective DJ-1 gene in the intranasal MPTP model of experimental parkinsonism.
Collapse
Affiliation(s)
- Sofia D Viana
- Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Neuroscience and Cell Biology-Institute for Biomedical Imaging and Life Sciences, University of Coimbra, Coimbra, Portugal
- Polytechnic Institute of Coimbra, Escola Superior de Tecnologia da Saúde de Coimbra-Coimbra Health School, Pharmacy, Coimbra, Portugal
| | - Inês R Pita
- Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Neuroscience and Cell Biology-Institute for Biomedical Imaging and Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Cristina Lemos
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Daniel Rial
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Patrícia Couceiro
- Immunology and Oncology Laboratory, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Paulo Rodrigues-Santos
- Immunology and Oncology Laboratory, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Institute of Immunology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center of Investigation in Environment, Genetics and Oncobiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Francisco Caramelo
- Laboratory of Biostatistics and Medical Informatics, Institute for Biomedical Imaging and Life Sciences, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Félix Carvalho
- Research Unit on Applied Molecular Biosciences, Rede de Química e Tecnologia, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal; and
| | - Syed F Ali
- Neurochemistry Laboratory, Division of Neurotoxicology, National Center of Toxicological Research, Food and Drug Administration, Jefferson, Arkansas
| | - Rui D Prediger
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Carlos A Fontes Ribeiro
- Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Neuroscience and Cell Biology-Institute for Biomedical Imaging and Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Frederico C Pereira
- Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences, Faculty of Medicine, University of Coimbra, Coimbra, Portugal;
- Center for Neuroscience and Cell Biology-Institute for Biomedical Imaging and Life Sciences, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
30
|
Hosokawa K, Hamada Y, Fujiya A, Murase M, Maekawa R, Niwa Y, Izumoto T, Seino Y, Tsunekawa S, Arima H. S100B impairs glycolysis via enhanced poly(ADP-ribosyl)ation of glyceraldehyde-3-phosphate dehydrogenase in rodent muscle cells. Am J Physiol Endocrinol Metab 2017; 312:E471-E481. [PMID: 28174179 DOI: 10.1152/ajpendo.00328.2016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 01/31/2017] [Accepted: 01/31/2017] [Indexed: 02/07/2023]
Abstract
S100 calcium-binding protein B (S100B), a multifunctional macromolecule mainly expressed in nerve tissues and adipocytes, has been suggested to contribute to the pathogenesis of obesity. To clarify the role of S100B in insulin action and glucose metabolism in peripheral tissues, we investigated the effect of S100B on glycolysis in myoblast and myotube cells. Rat myoblast L6 cells were treated with recombinant mouse S100B to examine glucose consumption, lactate production, glycogen accumulation, glycolytic metabolites and enzyme activity, insulin signaling, and poly(ADP-ribosyl)ation of glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Glycolytic metabolites were investigated by enzyme assays or metabolome analysis, and insulin signaling was assessed by Western blot analysis. Enzyme activity and poly(ADP-ribosyl)ation of GAPDH was evaluated by an enzyme assay and immunoprecipitation followed by dot blot with an anti-poly(ADP-ribose) antibody, respectively. S100B significantly decreased glucose consumption, glucose analog uptake, and lactate production in L6 cells, in either the presence or absence of insulin. In contrast, S100B had no effect on glycogen accumulation and insulin signaling. Metabolome analysis revealed that S100B increased the concentration of glycolytic intermediates upstream of GAPDH. S100B impaired GAPDH activity and increased poly(ADP-ribosyl)ated GAPDH proteins. The effects of S100B on glucose metabolism were mostly canceled by a poly(ADP-ribose) polymerase inhibitor. Similar results were obtained in C2C12 myotube cells. We conclude that S100B as a humoral factor may impair glycolysis in muscle cells independent of insulin action, and the effect may be attributed to the inhibition of GAPDH activity from enhanced poly(ADP-ribosyl)ation of the enzyme.
Collapse
MESH Headings
- Animals
- Cell Line
- Cells, Cultured
- Enzyme Induction/drug effects
- Glyceraldehyde-3-Phosphate Dehydrogenases/antagonists & inhibitors
- Glyceraldehyde-3-Phosphate Dehydrogenases/genetics
- Glyceraldehyde-3-Phosphate Dehydrogenases/metabolism
- Glycolysis/drug effects
- Hexokinase/chemistry
- Hexokinase/genetics
- Hexokinase/metabolism
- Insulin/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle Fibers, Skeletal/drug effects
- Muscle Fibers, Skeletal/enzymology
- Muscle Fibers, Skeletal/metabolism
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/enzymology
- Muscle, Skeletal/metabolism
- Myoblasts/drug effects
- Myoblasts/enzymology
- Myoblasts/metabolism
- Poly(ADP-ribose) Polymerase Inhibitors/pharmacology
- Poly(ADP-ribose) Polymerases/chemistry
- Poly(ADP-ribose) Polymerases/metabolism
- Protein Processing, Post-Translational/drug effects
- Rats
- Recombinant Proteins/metabolism
- S100 Calcium Binding Protein beta Subunit/genetics
- S100 Calcium Binding Protein beta Subunit/metabolism
Collapse
Affiliation(s)
- Kaori Hosokawa
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoji Hamada
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan;
| | - Atsushi Fujiya
- Department of Diabetology and Nephrology, Ogaki Municipal Hospital, Ogaki City, Gifu Prefecture, Japan
| | - Masatoshi Murase
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ryuya Maekawa
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yasuhiro Niwa
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takako Izumoto
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan; and
| | - Yusuke Seino
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shin Tsunekawa
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Hiroshi Arima
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
31
|
Antonelli A, Di Maggio S, Rejman J, Sanvito F, Rossi A, Catucci A, Gorzanelli A, Bragonzi A, Bianchi ME, Raucci A. The shedding-derived soluble receptor for advanced glycation endproducts sustains inflammation during acute Pseudomonas aeruginosa lung infection. Biochim Biophys Acta Gen Subj 2017; 1861:354-364. [DOI: 10.1016/j.bbagen.2016.11.040] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 11/22/2016] [Accepted: 11/28/2016] [Indexed: 01/07/2023]
|
32
|
Wang CH, Gu JY, Zhang XL, Dong J, Yang J, Zhang YL, Ning QF, Shan XW, Li Y. Venlafaxine ameliorates the depression-like behaviors and hippocampal S100B expression in a rat depression model. Behav Brain Funct 2016; 12:34. [PMID: 27931233 PMCID: PMC5146825 DOI: 10.1186/s12993-016-0116-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 11/22/2016] [Indexed: 01/02/2023] Open
Abstract
Background Accumulating evidence has indicated that S100B may be involved in the pathophysiology of depression. No published study has examined the effect of the antidepressant drug venlafaxine on S100B in animal models of depression. This study investigated S100B expression in the hippocampus and assessed the effect of venlafaxine on S100B mRNA level and protein expression in rats exposed to chronic unpredictable mild stress (CUMS). Methods Forty Sprague-Dawley rats were randomly divided into four groups as control, 0, 5 and 10 mg venlafaxine groups. The venlafaxine groups were exposed to CUMS from day 2 to day 43. Venlafaxine 0, 5 and 10 mg/kg were then administered from day 23 to day 43. We performed behavioral assessments with weight change, open-field and sucrose preference, and analyzed S100B protein expression and mRNA level in the hippocampus. Results The CUMS led to a decrease in body weight, locomotor activity and sucrose consumption, but venlafaxine treatment (10 mg) reversed these CUMS-induced decreases Also, CUMS increased S100B protein expression and mRNA level in the hippocampus, but venlafaxine treatment (10 mg) significantly decreased S100B protein expression and mRNA level, which were significantly lower than the other treatment groups, without significant difference between the 10 mg venlafaxine and the control groups. Conclusions Our findings showed that venlafaxine treatment (10 mg) may improve the depression-like behaviors and decrease over-expression of S100B protein and mRNA in the hippocampus in a rat model of depression. Electronic supplementary material The online version of this article (doi:10.1186/s12993-016-0116-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chang-Hong Wang
- Department of Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, Henan, China
| | - Jing-Yang Gu
- Department of Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, Henan, China
| | - Xiao-Li Zhang
- Department of Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, Henan, China
| | - Jiao Dong
- Department of Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, Henan, China
| | - Jun Yang
- Standard Technological Co. Ltd. (Xinxiang Institute for New Medicine), Xinxiang, 453003, Henan, China.,Xinjiang Hongda Food & Beverage Co. Ltd., Xinjiang, 043102, Shanxi, China
| | - Ying-Li Zhang
- Department of Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, Henan, China
| | - Qiu-Fen Ning
- Department of Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, Henan, China
| | - Xiao-Wen Shan
- Department of Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, Henan, China
| | - Yan Li
- Department of Child and Adolescent, Public Health College, Zhengzhou University, 100 Kexue Road, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
33
|
Wheeler LC, Donor MT, Prell JS, Harms MJ. Multiple Evolutionary Origins of Ubiquitous Cu2+ and Zn2+ Binding in the S100 Protein Family. PLoS One 2016; 11:e0164740. [PMID: 27764152 PMCID: PMC5072561 DOI: 10.1371/journal.pone.0164740] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 09/29/2016] [Indexed: 12/24/2022] Open
Abstract
The S100 proteins are a large family of signaling proteins that play critical roles in biology and disease. Many S100 proteins bind Zn2+, Cu2+, and/or Mn2+ as part of their biological functions; however, the evolutionary origins of binding remain obscure. One key question is whether divalent transition metal binding is ancestral, or instead arose independently on multiple lineages. To tackle this question, we combined phylogenetics with biophysical characterization of modern S100 proteins. We demonstrate an earlier origin for established S100 subfamilies than previously believed, and reveal that transition metal binding is widely distributed across the tree. Using isothermal titration calorimetry, we found that Cu2+ and Zn2+ binding are common features of the family: the full breadth of human S100 paralogs-as well as two early-branching S100 proteins found in the tunicate Oikopleura dioica-bind these metals with μM affinity and stoichiometries ranging from 1:1 to 3:1 (metal:protein). While binding is consistent across the tree, structural responses to binding are quite variable. Further, mutational analysis and structural modeling revealed that transition metal binding occurs at different sites in different S100 proteins. This is consistent with multiple origins of transition metal binding over the evolution of this protein family. Our work reveals an evolutionary pattern in which the overall phenotype of binding is a constant feature of S100 proteins, even while the site and mechanism of binding is evolutionarily labile.
Collapse
Affiliation(s)
- Lucas C. Wheeler
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon, 97403, United States of America
- Institute for Molecular Biology, University of Oregon, Eugene, Oregon, 97403, United States of America
| | - Micah T. Donor
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon, 97403, United States of America
| | - James S. Prell
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon, 97403, United States of America
| | - Michael J. Harms
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon, 97403, United States of America
- Institute for Molecular Biology, University of Oregon, Eugene, Oregon, 97403, United States of America
| |
Collapse
|
34
|
HMGB1, IL-1α, IL-33 and S100 proteins: dual-function alarmins. Cell Mol Immunol 2016; 14:43-64. [PMID: 27569562 PMCID: PMC5214941 DOI: 10.1038/cmi.2016.34] [Citation(s) in RCA: 344] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 05/16/2016] [Accepted: 05/17/2016] [Indexed: 02/08/2023] Open
Abstract
Our immune system is based on the close collaboration of the innate and adaptive immune systems for the rapid detection of any threats to the host. Recognition of pathogen-derived molecules is entrusted to specific germline-encoded signaling receptors. The same receptors have now also emerged as efficient detectors of misplaced or altered self-molecules that signal tissue damage and cell death following, for example, disruption of the blood supply and subsequent hypoxia. Many types of endogenous molecules have been shown to provoke such sterile inflammatory states when released from dying cells. However, a group of proteins referred to as alarmins have both intracellular and extracellular functions which have been the subject of intense research. Indeed, alarmins can either exert beneficial cell housekeeping functions, leading to tissue repair, or provoke deleterious uncontrolled inflammation. This group of proteins includes the high-mobility group box 1 protein (HMGB1), interleukin (IL)-1α, IL-33 and the Ca2+-binding S100 proteins. These dual-function proteins share conserved regulatory mechanisms, such as secretory routes, post-translational modifications and enzymatic processing, that govern their extracellular functions in time and space. Release of alarmins from mesenchymal cells is a highly relevant mechanism by which immune cells can be alerted of tissue damage, and alarmins play a key role in the development of acute or chronic inflammatory diseases and in cancer development.
Collapse
|
35
|
Viana SD, Valero J, Rodrigues-Santos P, Couceiro P, Silva AM, Carvalho F, Ali SF, Fontes-Ribeiro CA, Pereira FC. Regulation of striatal astrocytic receptor for advanced glycation end-products variants in an early stage of experimental Parkinson's disease. J Neurochem 2016; 138:598-609. [PMID: 27221633 DOI: 10.1111/jnc.13682] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 05/11/2016] [Accepted: 05/12/2016] [Indexed: 09/01/2023]
Abstract
Convincing evidence indicates that advanced glycation end-products and danger-associated protein S100B play a role in Parkinson's disease (PD). These agents operate through the receptor for advanced glycation end-products (RAGE), which displays distinct isoforms playing protective/deleterious effects. However, the nature of RAGE variants has been overlooked in PD studies. Hence, we attempted to characterize RAGE regulation in early stages of PD striatal pathology. A neurotoxin-based rodent model of PD was used in this study, through administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to C57BL/6 mice. Animals were killed 6 h post-MPTP to assess S100B/RAGE contents (RT-qPCR, ELISA) and RAGE isoform density (WB) and cellular distribution (immunohistochemistry). Dopaminergic and gliotic status were also mapped (HPLC-ED, WB, immunohistochemistry). At this preliminary stage of MPTP-induced PD in mice, RAGE inhibitory isoforms were increased whereas full-length RAGE was not affected. This putative cytoprotective RAGE phenotype paired an inflammatory and pro-oxidant setting fueling DAergic denervation. Increased RAGE inhibitory variants occur in astrocytes showing higher S100B density but no overt signs of hypertrophy or NF-κB activation, a canonical effector of RAGE. These findings expand our understanding of the toxic effect of MPTP on striatum and offer first in vivo evidence of RAGE being a responder in early stages of astrogliosis dynamics, supporting a protective rather tissue-destructive phenotype of RAGE in the initial phase of PD degeneration. These data lay the groundwork for future studies on the relevance of astrocytic RAGE in DAergic neuroprotection strategies. We report increased antagonistic RAGE variants paralleling S100B up-regulation in early stages of MPTP-induced astrogliosis dynamics . We propose that selective RAGE regulation reflects a self-protective mechanism to maintain low levels of RAGE ligands , preventing long-term inflammation and oxidative stress arising from sustained ligands/flRAGE activation . Understanding loss of RAGE protective response to stress may provide new therapeutic options to halt or slow down dopaminergic axonopathy and, ultimately, neuronal death .
Collapse
Affiliation(s)
- Sofia D Viana
- Laboratory of Pharmacology and Experimental Therapeutics/IBILI, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- CNC.IBILI - University of Coimbra, Coimbra, Portugal
- Polytechnic Institute of Coimbra, ESTESC-Coimbra Health School, Pharmacy, Coimbra, Portugal
| | - Jorge Valero
- CNC.IBILI - University of Coimbra, Coimbra, Portugal
- Achucarro Basque Center for Neuroscience, Zamudio, Bizkaia, Spain
- Ikerbasque Foundation, Bilbao, Bizkaia, Spain
| | - Paulo Rodrigues-Santos
- Institute of Immunology - Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Immunology and Oncology Laboratory, Center for Neurosciences and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
- Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Patrícia Couceiro
- Immunology and Oncology Laboratory, Center for Neurosciences and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Andréa M Silva
- Laboratory of Pharmacology and Experimental Therapeutics/IBILI, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- CNC.IBILI - University of Coimbra, Coimbra, Portugal
| | - Félix Carvalho
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Syed F Ali
- Neurochemistry Laboratory, Division of Neurotoxicology, National Center of Toxicological Research/Food and Drug Administration, Jefferson, Arkansas, USA
| | - Carlos A Fontes-Ribeiro
- Laboratory of Pharmacology and Experimental Therapeutics/IBILI, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- CNC.IBILI - University of Coimbra, Coimbra, Portugal
| | - Frederico C Pereira
- Laboratory of Pharmacology and Experimental Therapeutics/IBILI, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- CNC.IBILI - University of Coimbra, Coimbra, Portugal
| |
Collapse
|
36
|
Fuentes E, Palomo I, Rojas A. Cross-talk between platelet and tumor microenvironment: Role of multiligand/RAGE axis in platelet activation. Blood Rev 2016; 30:213-221. [PMID: 26723842 DOI: 10.1016/j.blre.2015.11.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 10/02/2015] [Accepted: 11/30/2015] [Indexed: 02/07/2023]
Affiliation(s)
- Eduardo Fuentes
- Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Interdisciplinary Excellence Research Program on Healthy Aging (PIEI-ES), Universidad de Talca, Talca, Chile; Centro de Estudios en Alimentos Procesados (CEAP), CONICYT-Regional, Gore Maule R09I2001, Talca, Chile.
| | - Iván Palomo
- Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Interdisciplinary Excellence Research Program on Healthy Aging (PIEI-ES), Universidad de Talca, Talca, Chile; Centro de Estudios en Alimentos Procesados (CEAP), CONICYT-Regional, Gore Maule R09I2001, Talca, Chile
| | - Armando Rojas
- Biomedical Research Laboratories, Medicine Faculty, Catholic University of Maule, Talca, Chile.
| |
Collapse
|
37
|
Dix A, Czakai K, Springer J, Fliesser M, Bonin M, Guthke R, Schmitt AL, Einsele H, Linde J, Löffler J. Genome-Wide Expression Profiling Reveals S100B as Biomarker for Invasive Aspergillosis. Front Microbiol 2016; 7:320. [PMID: 27047454 PMCID: PMC4800190 DOI: 10.3389/fmicb.2016.00320] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 02/29/2016] [Indexed: 12/26/2022] Open
Abstract
Invasive aspergillosis (IA) is a devastating opportunistic infection and its treatment constitutes a considerable burden for the health care system. Immunocompromised patients are at an increased risk for IA, which is mainly caused by the species Aspergillus fumigatus. An early and reliable diagnosis is required to initiate the appropriate antifungal therapy. However, diagnostic sensitivity and accuracy still needs to be improved, which can be achieved at least partly by the definition of new biomarkers. Besides the direct detection of the pathogen by the current diagnostic methods, the analysis of the host response is a promising strategy toward this aim. Following this approach, we sought to identify new biomarkers for IA. For this purpose, we analyzed gene expression profiles of hematological patients and compared profiles of patients suffering from IA with non-IA patients. Based on microarray data, we applied a comprehensive feature selection using a random forest classifier. We identified the transcript coding for the S100 calcium-binding protein B (S100B) as a potential new biomarker for the diagnosis of IA. Considering the expression of this gene, we were able to classify samples from patients with IA with 82.3% sensitivity and 74.6% specificity. Moreover, we validated the expression of S100B in a real-time reverse transcription polymerase chain reaction (RT-PCR) assay and we also found a down-regulation of S100B in A. fumigatus stimulated DCs. An influence on the IL1B and CXCL1 downstream levels was demonstrated by this S100B knockdown. In conclusion, this study covers an effective feature selection revealing a key regulator of the human immune response during IA. S100B may represent an additional diagnostic marker that in combination with the established techniques may improve the accuracy of IA diagnosis.
Collapse
Affiliation(s)
- Andreas Dix
- Systems Biology / Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology Hans-Knöll-Institute Jena, Germany
| | - Kristin Czakai
- University Hospital Würzburg, Medical Hospital II Würzburg, Germany
| | - Jan Springer
- University Hospital Würzburg, Medical Hospital II Würzburg, Germany
| | - Mirjam Fliesser
- University Hospital Würzburg, Medical Hospital II Würzburg, Germany
| | - Michael Bonin
- IMGM Laboratories Martinsried, Germany (Formerly Department of Medical Genetics and Applied Genomics, University Hospital Tübingen, Tübingen, Germany)
| | - Reinhard Guthke
- Systems Biology / Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology Hans-Knöll-Institute Jena, Germany
| | - Anna L Schmitt
- University Hospital Würzburg, Medical Hospital II Würzburg, Germany
| | - Hermann Einsele
- University Hospital Würzburg, Medical Hospital II Würzburg, Germany
| | - Jörg Linde
- Systems Biology / Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology Hans-Knöll-Institute Jena, Germany
| | - Jürgen Löffler
- University Hospital Würzburg, Medical Hospital II Würzburg, Germany
| |
Collapse
|
38
|
Apostolova P, Zeiser R. The role of danger signals and ectonucleotidases in acute graft-versus-host disease. Hum Immunol 2016; 77:1037-1047. [PMID: 26902992 DOI: 10.1016/j.humimm.2016.02.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 02/09/2016] [Accepted: 02/18/2016] [Indexed: 12/28/2022]
Abstract
Allogeneic hematopoietic cell transplantation (allo-HCT) represents the only curative treatment approach for many patients with benign or malignant diseases of the hematopoietic system. However, post-transplant morbidity and mortality are significantly increased by the development of acute graft-versus-host disease (GvHD). While alloreactive T cells act as the main cellular mediator of the GvH reaction, recent evidence suggests a critical role of the innate immune system in the early stages of GvHD initiation. Danger-associated molecular patterns released from the intracellular space as well as from the extracellular matrix activate antigen-presenting cells and set pro-inflammatory pathways in motion. This review gives an overview about danger signals representing therapeutic targets with a clinical perspective with a particular focus on extracellular nucleotides and ectonucleotidases.
Collapse
Affiliation(s)
- Petya Apostolova
- Department of Hematology, Oncology and Stem Cell Transplantation, Freiburg University Medical Center, Albert-Ludwigs-University, Freiburg, Germany.
| | - Robert Zeiser
- Department of Hematology, Oncology and Stem Cell Transplantation, Freiburg University Medical Center, Albert-Ludwigs-University, Freiburg, Germany.
| |
Collapse
|
39
|
Zhang J, Zhao GQ, Qu J, Che CY, Lin J, Jiang N, Zhao H, Wang XJ. Expression of S100B during the innate immune of corneal epithelium against fungi invasion. Int J Ophthalmol 2016; 9:191-7. [PMID: 26949634 DOI: 10.18240/ijo.2016.02.02] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 09/09/2015] [Indexed: 01/01/2023] Open
Abstract
AIM To explore the expression of S100B in corneal epithelial cells under Aspergillus stimulation both in vivo and in vitro. METHODS Immortalized human corneal epithelial cells (HCECs) were exposed to inactive Aspergillus fumigatus (A. fumigatus) conidia at 0, 4, 8, 12, 16, and 24h respectively. The corneas of Wistar rats were exposed to active A. fumigatus at 0, 12, 24, 48h and the normal rat corneas were used for normal control. The mRNA level of S100B was evaluated by real time quantitative reverse transcription-polymerase chain reaction (qRT-PCR). S100B protein expression in cornea epithelium was detected by immunohistochemical/immunocytochemical staining (IHC/ICC). RESULTS Histopathology revealed a significant inflammatory cell infiltration in fungal keratitis human and rat cornea. Corneal epithelial cells didn't express or rarely express S100B at baseline. A. fumigatus significantly induced S100B mRNA expression in cultured corneal epithelial cells in a time depended manner in vitro, the mRNA began to rise significantly at 8h in vitro (P<0.05) and continue to rise as time prolonged (P<0.01). In vivo, S100B mRNA level was low in the normal corneas. However, it was increased in keratitis corneas from 12h after infection (P<0.05) and reached to a peak at 24h (P<0.001). Immunochemistry revealed an obvious staining in fungal keratitis corneas as well as immortalized HCECs compared to the normal ones respectively, indicating an increased expression of S100B protein. CONCLUSION S100B exists in corneal epithelial cells and is over-expressed under A. fumigatus stimulation. S100B may play an important role in the innate immune response of the corneal epithelium during A. fumigatus infection.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Gui-Qiu Zhao
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Jing Qu
- Department of Administrative Management, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Cheng-Ye Che
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Jing Lin
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Nan Jiang
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Han Zhao
- Department of Pathology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Xue-Jun Wang
- Department of Pharmacy, the Second People's Hospital of Linyi, Linyi 276499, Shandong Province, China
| |
Collapse
|
40
|
Changyaleket B, Xu H, Vetri F, Valyi-Nagy T, Paisansathan C, Chong ZZ, Pelligrino DA, Testai FD. Intracerebroventricular application of S100B selectively impairs pial arteriolar dilating function in rats. Brain Res 2016; 1634:171-178. [PMID: 26773687 DOI: 10.1016/j.brainres.2015.12.061] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 12/22/2015] [Accepted: 12/29/2015] [Indexed: 10/22/2022]
Abstract
S100B is an astrocyte-derived protein that can act through the receptor for advanced glycation endproducts (RAGE) to mediate either "trophic" or "toxic" responses. Its levels increase in many neurological conditions with associated microvascular dysregulation, such as subarachnoid hemorrhage (SAH) and traumatic brain injury. The role of S100B in the pathogenesis of microvasculopathy has not been addressed. This study was designed to examine whether S100B alters pial arteriolar vasodilating function. Rats were randomized to receive (1) artificial cerebrospinal fluid (aCSF), (2) exogenous S100B, and (3) exogenous S100B+the decoy soluble RAGE (sRAGE). S100B was infused intracerebroventricularly (icv) using an osmotic pump and its levels in the CSF were adjusted to achieve a concentration similar to what we observed in SAH. After 48 h of continuous icv infusion, a cranial window/intravital microscopy was applied to animals for evaluation of pial arteriolar dilating responses to sciatic nerve stimulation (SNS), hypercapnia, and topical suffusion of vasodilators including acetylcholine (ACh), s-nitroso-N-acetyl penicillamine (SNAP), or adenosine (ADO). Pial arteriolar dilating responses were calculated as the percentage change of arteriolar diameter in relation to baseline. The continuous S100B infusion for 48 h was associated with reduced responses to the neuronal-dependent vasodilator SNS (p<0.05) and the endothelial-dependent vasodilator ACh (p<0.05), compared to controls. The inhibitory effects of S100B were prevented by sRAGE. On the other hand, S100B did not alter the responses elicited by vascular smooth muscle cell-dependent vasodilators, namely hypercapnia, SNAP, or ADO. These findings indicate that S100B regulates neuronal and endothelial dependent cerebral arteriolar dilation and suggest that this phenomenon is mediated through RAGE-associated pathways.
Collapse
Affiliation(s)
- Benjarat Changyaleket
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL, United States
| | - Haoliang Xu
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL, United States; Department of Pathology, University of Illinois at Chicago, Chicago, IL, United States.
| | - Francesco Vetri
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL, United States
| | - Tibor Valyi-Nagy
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, United States
| | | | - Zhao Zhong Chong
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL, United States
| | - Dale A Pelligrino
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL, United States
| | - Fernando D Testai
- Department of Neurology and Rehabilitation, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
41
|
DAMPs and neurodegeneration. Ageing Res Rev 2015; 24:17-28. [PMID: 25462192 DOI: 10.1016/j.arr.2014.11.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 11/06/2014] [Accepted: 11/16/2014] [Indexed: 12/22/2022]
Abstract
The concept of neuroinflammation has come a full circle; from being initially regarded as a controversial viewpoint to its present day acceptance as an integral component of neurodegenerative processes. A closer look at the etiopathogenesis of many neurodegenerative conditions will reveal a patho-symbiotic relationship between neuroinflammation and neurodegeneration, where the two liaise with each other to form a self-sustaining vicious cycle that facilitates neuronal demise. Here, we focus on damage associated molecular patterns or DAMPs as a potentially important nexus in the context of this lethal neuroinflammation-neurodegeneration alliance. Since their nomenclature as "DAMPs" about a decade ago, these endogenous moieties have consistently been reported as novel players in sterile (non-infective) inflammation. However, their roles in inflammatory responses in the central nervous system (CNS), especially during chronic neurodegenerative disorders are still being actively researched. The aim of this review is to first provide a general overview of the neuroimmune response in the CNS within the purview of DAMPs, its receptors and downstream signaling. This is then followed by discussions on some of the DAMP-mediated neuroinflammatory responses involved in chronic neurodegenerative diseases. Along the way, we also highlighted some important gaps in our existing knowledge regarding the role of DAMPs in neurodegeneration, the clarification of which we believe would aid in the prospects of developing treatment or screening strategies directed at these molecules.
Collapse
|
42
|
Glaser N, Lo W, Tancredi D, Orgain M, Puvenna V, Janigro D, O׳Donnell M. Levels of S100B in brain and blood of rats with diabetic ketoacidosis. Brain Res 2015; 1624:536-544. [DOI: 10.1016/j.brainres.2015.07.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 07/23/2015] [Accepted: 07/24/2015] [Indexed: 01/01/2023]
|
43
|
Abstract
Janeway's pattern recognition theory holds that the immune system detects infection through a limited number of the so-called pattern recognition receptors (PRRs). These receptors bind specific chemical compounds expressed by entire groups of related pathogens, but not by host cells (pathogen-associated molecular patterns (PAMPs). In contrast, Matzinger's danger hypothesis postulates that products released from stressed or damaged cells have a more important role in the activation of immune system than the recognition of nonself. These products, named by analogy to PAMPs as danger-associated molecular patterns (DAMPs), are proposed to act through the same receptors (PRRs) as PAMPs and, consequently, to stimulate largely similar responses. Herein, I review direct and indirect evidence that contradict the widely accepted danger theory, and suggest that it may be false.
Collapse
Affiliation(s)
- Szczepan Józefowski
- Department of Immunology, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
44
|
Niven J, Hoare J, McGowan D, Devarajan G, Itohara S, Gannagé M, Teismann P, Crane I. S100B Up-Regulates Macrophage Production of IL1β and CCL22 and Influences Severity of Retinal Inflammation. PLoS One 2015. [PMID: 26204512 PMCID: PMC4512682 DOI: 10.1371/journal.pone.0132688] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
S100B is a Ca2+ binding protein and is typically associated with brain and CNS disorders. However, the role of S100B in an inflammatory situation is not clear. The aim of the study was to determine whether S100B is likely to influence inflammation through its effect on macrophages. A murine macrophage cell line (RAW 264.7) and primary bone marrow derived macrophages were used for in vitro studies and a model of retinal inflammatory disease in which pathogenesis is highly dependent on macrophage infiltration, Experimental Autoimmune Uveoretinitis, for in vitro study. Experimental Autoimmune Uveoretinitis is a model for the human disease posterior endogenous uveoretinitis, a potentially blinding condition, with an autoimmune aetiology, that mainly affects the working age group. To date the involvement of S100B in autoimmune uveoretinitis has not been investigated. Real-time PCR array analysis on RAW 246.7 cells indicated up-regulation of gene expression for various cytokines/chemokines in response to S100B, IL-1β and CCL22 in particular and this was confirmed by real-time PCR. In addition flow cytometry and ELISA confirmed up-regulation of protein production in response to S100B for pro-IL-1β and CCL22 respectively. This was the case for both RAW 264.7 cells and bone marrow derived macrophages. Induction of EAU with retinal antigen in mice in which S100B had been deleted resulted in a significantly reduced level of disease compared to wild-type mice, as determined by topical endoscopic fundus imaging and histology grading. Macrophage infiltration was also significantly reduced in S100B deleted mice. Real-time PCR analysis indicated that this was associated with reduction in CCL22 and IL-1β in retinas from S100B knock-out mice. In conclusion S100B augments the inflammatory response in uveoretinitis and this is likely to be, at least in part, via a direct effect on macrophages.
Collapse
Affiliation(s)
- Jennifer Niven
- Division of Applied Medicine, University of Aberdeen Institute of Medical Sciences, Foresterhill, Aberdeen, Scotland, United Kingdom
- Division of Rheumatology and Department of Pathology and Immunology, School of Medicine, University of Geneva, Geneva, Switzerland
| | - Joseph Hoare
- Division of Applied Medicine, University of Aberdeen Institute of Medical Sciences, Foresterhill, Aberdeen, Scotland, United Kingdom
| | - Debbie McGowan
- Division of Applied Medicine, University of Aberdeen Institute of Medical Sciences, Foresterhill, Aberdeen, Scotland, United Kingdom
| | - Gayathri Devarajan
- Division of Applied Medicine, University of Aberdeen Institute of Medical Sciences, Foresterhill, Aberdeen, Scotland, United Kingdom
| | | | - Monique Gannagé
- Division of Rheumatology and Department of Pathology and Immunology, School of Medicine, University of Geneva, Geneva, Switzerland
| | - Peter Teismann
- Division of Applied Medicine, University of Aberdeen Institute of Medical Sciences, Foresterhill, Aberdeen, Scotland, United Kingdom
| | - Isabel Crane
- Division of Applied Medicine, University of Aberdeen Institute of Medical Sciences, Foresterhill, Aberdeen, Scotland, United Kingdom
- * E-mail:
| |
Collapse
|
45
|
Schaefer L. Complexity of danger: the diverse nature of damage-associated molecular patterns. J Biol Chem 2014; 289:35237-45. [PMID: 25391648 DOI: 10.1074/jbc.r114.619304] [Citation(s) in RCA: 446] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In reply to internal or external danger stimuli, the body orchestrates an inflammatory response. The endogenous triggers of this process are the damage-associated molecular patterns (DAMPs). DAMPs represent a heterogeneous group of molecules that draw their origin either from inside the various compartments of the cell or from the extracellular space. Following interaction with pattern recognition receptors in cross-talk with various non-immune receptors, DAMPs determine the downstream signaling outcome of septic and aseptic inflammatory responses. In this review, the diverse nature, structural characteristics, and signaling pathways elicited by DAMPs will be critically evaluated.
Collapse
Affiliation(s)
- Liliana Schaefer
- From the Pharmazentrum Frankfurt/Zentrum für Arzneimittelforschung, Entwicklung und -Sicherheit (ZAFES), Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt am Main, 60590 Frankfurt am Main, Germany
| |
Collapse
|
46
|
IL-37 inhibits inflammasome activation and disease severity in murine aspergillosis. PLoS Pathog 2014; 10:e1004462. [PMID: 25375146 PMCID: PMC4223056 DOI: 10.1371/journal.ppat.1004462] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 09/10/2014] [Indexed: 12/19/2022] Open
Abstract
Since IL-37 transgenic mice possesses broad anti-inflammatory properties, we assessed whether recombinant IL-37 affects inflammation in a murine model of invasive pulmonary aspergillosis. Recombinant human IL-37 was injected intraperitoneally into mice prior to infection and the effects on lung inflammation and inflammasome activation were evaluated. IL-37 markedly reduced NLRP3-dependent neutrophil recruitment and steady state mRNA levels of IL-1β production and mitigated lung inflammation and damage in a relevant clinical model, namely aspergillosis in mice with cystic fibrosis. The anti-inflammatory activity of IL-37 requires the IL-1 family decoy receptor TIR-8/SIGIRR. Thus, by preventing activation of the NLRP3 inflammasome and reducing IL-1β secretion, IL-37 functions as a broad spectrum inhibitor of the innate response to infection-mediated inflammation, and could be considered to be therapeutic in reducing the pulmonary damage due to non-resolving Aspergillus infection and disease. IL-37, firstly identified by in silico research in the year 2000, is a member of the IL-1 family. The biological properties of IL-37 are mainly those of down-regulating inflammation in models of septic shock, chemical colitis, cardiac ischemia and contact dermatitis. Whether and how IL-37 down-regulates the inflammation of infection, and its consequences, is not known. We observed that IL-37 limits inflammation and disease severity in murine invasive aspergillosis, an infection model in which cytokines of the IL-1 family have important roles. However, given that IL-1R1-deficient or caspase 1-deficient mice are resistant to lung inflammation during infection and that IL-1 signaling could drive the differentiation of antifungal inflammatory Th17 cells, the pro-inflammatory properties of IL 1-induced inflammation in aspergillosis is potentially dangerous for the host. IL-37 markedly reduced NLRP3-dependent neutrophil recruitment and steady state mRNA levels of IL-1β production and mitigated lung inflammation and damage in a relevant clinical model, namely aspergillosis in mice with cystic fibrosis. The anti-inflammatory activity of IL-37 requires the IL-1 receptor family decoy TIR-8/SIGIRR. Thus, IL-37 functions as a broad spectrum inhibitor of infection-mediated inflammation, and could be considered to be therapeutic in reducing the pulmonary damage due to non-resolving Aspergillus infection and disease.
Collapse
|
47
|
The pH-responsive PacC transcription factor of Aspergillus fumigatus governs epithelial entry and tissue invasion during pulmonary aspergillosis. PLoS Pathog 2014; 10:e1004413. [PMID: 25329394 PMCID: PMC4199764 DOI: 10.1371/journal.ppat.1004413] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 08/20/2014] [Indexed: 12/29/2022] Open
Abstract
Destruction of the pulmonary epithelium is a major feature of lung diseases caused by the mould pathogen Aspergillus fumigatus. Although it is widely postulated that tissue invasion is governed by fungal proteases, A. fumigatus mutants lacking individual or multiple enzymes remain fully invasive, suggesting a concomitant requirement for other pathogenic activities during host invasion. In this study we discovered, and exploited, a novel, tissue non-invasive, phenotype in A. fumigatus mutants lacking the pH-responsive transcription factor PacC. Our study revealed a novel mode of epithelial entry, occurring in a cell wall-dependent manner prior to protease production, and via the Dectin-1 β-glucan receptor. ΔpacC mutants are defective in both contact-mediated epithelial entry and protease expression, and significantly attenuated for pathogenicity in leukopenic mice. We combined murine infection modelling, in vivo transcriptomics, and in vitro infections of human alveolar epithelia, to delineate two major, and sequentially acting, PacC-dependent processes impacting epithelial integrity in vitro and tissue invasion in the whole animal. We demonstrate that A. fumigatus spores and germlings are internalised by epithelial cells in a contact-, actin-, cell wall- and Dectin-1 dependent manner and ΔpacC mutants, which aberrantly remodel the cell wall during germinative growth, are unable to gain entry into epithelial cells, both in vitro and in vivo. We further show that PacC acts as a global transcriptional regulator of secreted molecules during growth in the leukopenic mammalian lung, and profile the full cohort of secreted gene products expressed during invasive infection. Our study reveals a combinatorial mode of tissue entry dependent upon sequential, and mechanistically distinct, perturbations of the pulmonary epithelium and demonstrates, for the first time a protective role for Dectin-1 blockade in epithelial defences. Infecting ΔpacC mutants are hypersensitive to cell wall-active antifungal agents highlighting the value of PacC signalling as a target for antifungal therapy. Inhaled spores of the pathogenic mould Aspergillus fumigatus cause fungal lung infections in humans having immune defects. A. fumigatus spores germinate within the immunocompromised lung, producing invasively growing, elongated cells called hyphae. Hyphae degrade the surrounding pulmonary tissue, a process thought to be caused by secreted fungal enzymes; however, A. fumigatus mutants lacking one or more protease activities retain fully invasive phenotypes in mouse models of disease. Here we report the first discovery of a non-invasive A. fumigatus mutant, which lacks a pH-responsive transcription factor PacC. Using global transcriptional profiling of wild type and mutant isolates, and in vitro pulmonary invasion assays, we established that loss of PacC leads to a compound non-invasive phenotype characterised by deficits in both contact-mediated epithelial entry and protease expression. Consistent with an important role for epithelial entry in promoting invasive disease in mammalian tissues, PacC mutants remain surface-localised on mammalian epithelia, both in vitro and in vivo. Our study sets a new precedent for involvement of both host and pathogen activities in promoting epithelial invasion by A. fumigatus and supports a model wherein fungal protease activity acting subsequently to, or in parallel with, host-mediated epithelial entry provides the mechanistic basis for tissue invasion.
Collapse
|
48
|
Nagayach A, Patro N, Patro I. Astrocytic and microglial response in experimentally induced diabetic rat brain. Metab Brain Dis 2014; 29:747-61. [PMID: 24833555 DOI: 10.1007/s11011-014-9562-z] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Accepted: 04/30/2014] [Indexed: 02/06/2023]
Abstract
Diabetes Mellitus is associated with increased risk of cognitive and behavioural disorders with hitherto undeciphered role of glia. Glia as majority population in brain serve several vital functions, thus require pertinent revelation to further explicate the mechanisms affecting the brain function following diabetes. In this study we have evaluated glial changes in terms of phenotypic switching, proliferation and expression of activation cell surface markers and associated cellular degeneration in hippocampus following STZ-induced diabetes and caused cognitive impairments. Experimental diabetes was induced in Wistar rats by a single dose of STZ (45 mg/kg body weight; intraperitoneally) and changes were studied in 2nd, 4th and 6th week post diabetes confirmation using Barnes maze and T-maze test, immunohistochemistry and image analysis. An increase in GFAP expression sequentially from 2nd to 6th weeks of diabetes was analogous with the phenotypic changes and increased astrocyte number. Elevated level of S100β with defined stellate morphology further confirmed the astrocytosis following diabetes. Enhanced level of Iba-1 and MHC-II revealed the corroborated microglial activation and proliferation following diabetes, which was unresolved till date. Increased caspase-3 activity induced profound cell death upto 6th weeks post diabetes confirmation. Such caspase 3 mediated cellular damage with a concomitant activation of the astrocytes and microglia suggests that diabetes linked cell death activates the astrocytes and microglia in hippocampus which further underpin the progression and severity of brain disorders resulting in cognitive and behavioural impairments.
Collapse
Affiliation(s)
- Aarti Nagayach
- School of Studies in Neuroscience, Jiwaji University, Gwalior, 474011, Madhya Pradesh, India
| | | | | |
Collapse
|
49
|
Cell death-associated molecular-pattern molecules: inflammatory signaling and control. Mediators Inflamm 2014; 2014:821043. [PMID: 25140116 PMCID: PMC4130149 DOI: 10.1155/2014/821043] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 06/09/2014] [Indexed: 12/27/2022] Open
Abstract
Apoptosis, necroptosis, and pyroptosis are different cellular death programs characterized in organs and tissues as consequence of microbes infection, cell stress, injury, and chemotherapeutics exposure. Dying and death cells release a variety of self-proteins and bioactive chemicals originated from cytosol, nucleus, endoplasmic reticulum, and mitochondria. These endogenous factors are named cell death-associated molecular-pattern (CDAMP), damage-associated molecular-pattern (DAMP) molecules, and alarmins. Some of them cooperate or act as important initial or delayed inflammatory mediators upon binding to diverse membrane and cytosolic receptors coupled to signaling pathways for the activation of the inflammasome platforms and NF-κB multiprotein complexes. Current studies show that the nonprotein thiols and thiol-regulating enzymes as well as highly diffusible prooxidant reactive oxygen and nitrogen species released together in extracellular inflammatory milieu play essential role in controlling pro- and anti-inflammatory activities of CDAMP/DAMP and alarmins. Here, we provide an overview of these emerging concepts and mechanisms of triggering and maintenance of tissue inflammation under massive death of cells.
Collapse
|
50
|
Bargerstock E, Puvenna V, Iffland P, Falcone T, Hossain M, Vetter S, Man S, Dickstein L, Marchi N, Ghosh C, Carvalho-Tavares J, Janigro D. Is peripheral immunity regulated by blood-brain barrier permeability changes? PLoS One 2014; 9:e101477. [PMID: 24988410 PMCID: PMC4079719 DOI: 10.1371/journal.pone.0101477] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 06/06/2014] [Indexed: 12/19/2022] Open
Abstract
S100B is a reporter of blood-brain barrier (BBB) integrity which appears in blood when the BBB is breached. Circulating S100B derives from either extracranial sources or release into circulation by normal fluctuations in BBB integrity or pathologic BBB disruption (BBBD). Elevated S100B matches the clinical presence of indices of BBBD (gadolinium enhancement or albumin coefficient). After repeated sub-concussive episodes, serum S100B triggers an antigen-driven production of anti-S100B autoantibodies. We tested the hypothesis that the presence of S100B in extracranial tissue is due to peripheral cellular uptake of serum S100B by antigen presenting cells, which may induce the production of auto antibodies against S100B. To test this hypothesis, we used animal models of seizures, enrolled patients undergoing repeated BBBD, and collected serum samples from epileptic patients. We employed a broad array of techniques, including immunohistochemistry, RNA analysis, tracer injection and serum analysis. mRNA for S100B was segregated to barrier organs (testis, kidney and brain) but S100B protein was detected in immunocompetent cells in spleen, thymus and lymph nodes, in resident immune cells (Langerhans, satellite cells in heart muscle, etc.) and BBB endothelium. Uptake of labeled S100B by rat spleen CD4+ or CD8+ and CD86+ dendritic cells was exacerbated by pilocarpine-induced status epilepticus which is accompanied by BBBD. Clinical seizures were preceded by a surge of serum S100B. In patients undergoing repeated therapeutic BBBD, an autoimmune response against S100B was measured. In addition to its role in the central nervous system and its diagnostic value as a BBBD reporter, S100B may integrate blood-brain barrier disruption to the control of systemic immunity by a mechanism involving the activation of immune cells. We propose a scenario where extravasated S100B may trigger a pathologic autoimmune reaction linking systemic and CNS immune responses.
Collapse
Affiliation(s)
- Erin Bargerstock
- Cerebrovascular Research, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio, United States of America
| | - Vikram Puvenna
- Cerebrovascular Research, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio, United States of America
- Department of Neurosurgery, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio, United States of America
- Department of Biomedical Engineering, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio, United States of America
| | - Philip Iffland
- Cerebrovascular Research, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio, United States of America
- Kent State University, Kent, Ohio, United States of America
| | - Tatiana Falcone
- Cerebrovascular Research, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio, United States of America
- Department of Psychiatry, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio, United States of America
| | - Mohammad Hossain
- Cerebrovascular Research, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio, United States of America
- Department of Neurosurgery, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio, United States of America
- Department of Biomedical Engineering, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio, United States of America
| | - Stephen Vetter
- Cerebrovascular Research, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio, United States of America
| | - Shumei Man
- Cerebrovascular Research, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio, United States of America
| | - Leah Dickstein
- Cerebrovascular Research, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio, United States of America
| | - Nicola Marchi
- Cerebrovascular Research, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio, United States of America
| | - Chaitali Ghosh
- Cerebrovascular Research, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio, United States of America
- Department of Neurosurgery, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio, United States of America
- Department of Biomedical Engineering, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio, United States of America
| | - Juliana Carvalho-Tavares
- Cerebrovascular Research, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio, United States of America
| | - Damir Janigro
- Cerebrovascular Research, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio, United States of America
- Department of Neurosurgery, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio, United States of America
- Department of Biomedical Engineering, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio, United States of America
- Flocel, Inc. Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|