1
|
Deng S, Xu Z, Hu J, Yang Y, Zhu F, Liu Z, Zhang H, Wu S, Jin T. The molecular mechanisms of CD8 + T cell responses to SARS-CoV-2 infection mediated by TCR-pMHC interactions. Front Immunol 2024; 15:1468456. [PMID: 39450171 PMCID: PMC11499136 DOI: 10.3389/fimmu.2024.1468456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/16/2024] [Indexed: 10/26/2024] Open
Abstract
Cytotoxic CD8+ T lymphocytes (CTLs) have been implicated in the severity of COVID-19. The TCR-pMHC ternary complex, formed by the T cell receptor (TCR) and peptide-MHC (major histocompatibility complex), constitutes the molecular basis of CTL responses against SARS-CoV-2. While numerous studies have been conducted on T cell immunity, the molecular mechanisms underlying CTL-mediated immunity against SARS-CoV-2 infection have not been well elaborated. In this review, we described the association between HLA variants and different immune responses to SARS-CoV-2 infection, which may lead to varying COVID-19 outcomes. We also summarized the specific TCR repertoires triggered by certain SARS-CoV-2 CTL epitopes, which might explain the variations in disease outcomes among different patients. Importantly, we have highlighted the primary strategies used by SARS-CoV-2 variants to evade T-cell killing: disrupting peptide-MHC binding, TCR recognition, and antigen processing. This review provides valuable insights into the molecule mechanism of CTL responses during SARS-CoV-2 infection, aiding efforts to control the pandemic and prepare for future challenges.
Collapse
Affiliation(s)
- Shasha Deng
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Zhihao Xu
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, China
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jing Hu
- Laboratory of Structural Immunology, the Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yunru Yang
- Laboratory of Structural Immunology, the Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Fang Zhu
- Laboratory of Structural Immunology, the Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhuan Liu
- Laboratory of Structural Immunology, the Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Hongliang Zhang
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, China
| | - Songquan Wu
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, China
| | - Tengchuan Jin
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Laboratory of Structural Immunology, the Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science & Technology of China, Hefei, China
- Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, China
| |
Collapse
|
2
|
Al-kaabi M, Deshpande P, Firth M, Pavlos R, Chopra A, Basiri H, Currenti J, Alves E, Kalams S, Fellay J, Phillips E, Mallal S, John M, Gaudieri S. Epistatic interaction between ERAP2 and HLA modulates HIV-1 adaptation and disease outcome in an Australian population. PLoS Pathog 2024; 20:e1012359. [PMID: 38980912 PMCID: PMC11259285 DOI: 10.1371/journal.ppat.1012359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 07/19/2024] [Accepted: 06/19/2024] [Indexed: 07/11/2024] Open
Abstract
A strong genetic predictor of outcome following untreated HIV-1 infection is the carriage of specific alleles of human leukocyte antigens (HLAs) that present viral epitopes to T cells. Residual variation in outcome measures may be attributed, in part, to viral adaptation to HLA-restricted T cell responses. Variants of the endoplasmic reticulum aminopeptidases (ERAPs) influence the repertoire of T cell epitopes presented by HLA alleles as they trim pathogen-derived peptide precursors to optimal lengths for antigen presentation, along with other functions unrelated to antigen presentation. We investigated whether ERAP variants influence HLA-associated HIV-1 adaptation with demonstrable effects on overall HIV-1 disease outcome. Utilizing host and viral data of 249 West Australian individuals with HIV-1 subtype B infection, we identified a novel association between two linked ERAP2 single nucleotide polymorphisms (SNPs; rs2248374 and rs2549782) with plasma HIV RNA concentration (viral load) (P adjusted = 0.0024 for both SNPs). Greater HLA-associated HIV-1 adaptation in the HIV-1 Gag gene correlated significantly with higher viral load, lower CD4+ T cell count and proportion; P = 0.0103, P = 0.0061, P = 0.0061, respectively). When considered together, there was a significant interaction between the two ERAP2 SNPs and HLA-associated HIV-1 adaptation on viral load (P = 0.0111). In a comprehensive multivariate model, addition of ERAP2 haplotypes and HLA associated adaptation as an interaction term to known HLA and CCR5 determinants and demographic factors, increased the explanatory variance of population viral load from 17.67% to 45.1% in this dataset. These effects were not replicated in publicly available datasets with comparably sized cohorts, suggesting that any true global epistasis may be dependent on specific HLA-ERAP allelic combinations. Our data raises the possibility that ERAP2 variants may shape peptide repertoires presented to HLA class I-restricted T cells to modulate the degree of viral adaptation within individuals, in turn contributing to disease variability at the population level. Analyses of other populations and experimental studies, ideally with locally derived ERAP genotyping and HLA-specific viral adaptations are needed to elucidate this further.
Collapse
Affiliation(s)
- Marwah Al-kaabi
- School of Human Sciences, University of Western Australia, Crawley, Australia
| | - Pooja Deshpande
- School of Human Sciences, University of Western Australia, Crawley, Australia
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Australia
| | - Martin Firth
- School of Physics, Mathematics and Computing, Department of Mathematics and Statistics, University of Western Australia, Crawley, Australia
| | - Rebecca Pavlos
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Australia
| | - Abha Chopra
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Australia
| | - Hamed Basiri
- School of Human Sciences, University of Western Australia, Crawley, Australia
| | - Jennifer Currenti
- School of Human Sciences, University of Western Australia, Crawley, Australia
| | - Eric Alves
- School of Human Sciences, University of Western Australia, Crawley, Australia
| | - Spyros Kalams
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Jacques Fellay
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Swiss HIV Cohort Study, Zurich, Switzerland
| | - Elizabeth Phillips
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Australia
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Simon Mallal
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Australia
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Mina John
- School of Human Sciences, University of Western Australia, Crawley, Australia
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Australia
- Department of Clinical Immunology, Royal Perth Hospital, Perth, Australia
| | - Silvana Gaudieri
- School of Human Sciences, University of Western Australia, Crawley, Australia
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Australia
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| |
Collapse
|
3
|
Wellington D, Yin Z, Yu Z, Heilig R, Davis S, Fischer R, Felce SL, Antoun E, Hublitz P, Beveridge R, Dong D, Liu G, Yao X, Peng Y, Kessler BM, Dong T. SARS-CoV-2 mutations affect antigen processing by the proteasome to alter CD8 + T cell responses. Heliyon 2023; 9:e20076. [PMID: 37842619 PMCID: PMC10570596 DOI: 10.1016/j.heliyon.2023.e20076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 08/22/2023] [Accepted: 09/11/2023] [Indexed: 10/17/2023] Open
Abstract
Mutations within viral epitopes can result in escape from T cells, but the contribution of mutations in flanking regions of epitopes in SARS-CoV-2 has not been investigated. Focusing on two SARS-CoV-2 nucleoprotein CD8+ epitopes, we investigated the contribution of these flanking mutations to proteasomal processing and T cell activation. We found decreased NP9-17-B*27:05 CD8+ T cell responses to the NP-Q7K mutation, likely due to a lack of efficient epitope production by the proteasome, suggesting immune escape caused by this mutation. In contrast, NP-P6L and NP-D103 N/Y mutations flanking the NP9-17-B*27:05 and NP105-113-B*07:02 epitopes, respectively, increased CD8+ T cell responses associated with enhanced epitope production by the proteasome. Our results provide evidence that SARS-CoV-2 mutations outside the epitope could have a significant impact on proteasomal processing, either contributing to T cell escape or enhancement that may be exploited for future vaccine design.
Collapse
Affiliation(s)
- Dannielle Wellington
- Chinese Academy of Medical Sciences (CAMS) Oxford Institute, Nuffield Department of Medicine, Oxford University, Oxford, OX3 7FZ, UK
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford University, Oxford, OX3 9DS, UK
| | - Zixi Yin
- Chinese Academy of Medical Sciences (CAMS) Oxford Institute, Nuffield Department of Medicine, Oxford University, Oxford, OX3 7FZ, UK
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford University, Oxford, OX3 9DS, UK
| | - Zhanru Yu
- Chinese Academy of Medical Sciences (CAMS) Oxford Institute, Nuffield Department of Medicine, Oxford University, Oxford, OX3 7FZ, UK
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, Oxford University, Oxford, OX3 7FZ, UK
| | - Raphael Heilig
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, Oxford University, Oxford, OX3 7FZ, UK
| | - Simon Davis
- Chinese Academy of Medical Sciences (CAMS) Oxford Institute, Nuffield Department of Medicine, Oxford University, Oxford, OX3 7FZ, UK
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, Oxford University, Oxford, OX3 7FZ, UK
| | - Roman Fischer
- Chinese Academy of Medical Sciences (CAMS) Oxford Institute, Nuffield Department of Medicine, Oxford University, Oxford, OX3 7FZ, UK
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, Oxford University, Oxford, OX3 7FZ, UK
| | - Suet Ling Felce
- Chinese Academy of Medical Sciences (CAMS) Oxford Institute, Nuffield Department of Medicine, Oxford University, Oxford, OX3 7FZ, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Elie Antoun
- Chinese Academy of Medical Sciences (CAMS) Oxford Institute, Nuffield Department of Medicine, Oxford University, Oxford, OX3 7FZ, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Philip Hublitz
- Genome Engineering Facility, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford University, Oxford, OX3 9DS, UK
| | - Ryan Beveridge
- Virus Screening Facility, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Danning Dong
- Chinese Academy of Medical Sciences (CAMS) Oxford Institute, Nuffield Department of Medicine, Oxford University, Oxford, OX3 7FZ, UK
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford University, Oxford, OX3 9DS, UK
| | - Guihai Liu
- Chinese Academy of Medical Sciences (CAMS) Oxford Institute, Nuffield Department of Medicine, Oxford University, Oxford, OX3 7FZ, UK
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford University, Oxford, OX3 9DS, UK
| | - Xuan Yao
- Chinese Academy of Medical Sciences (CAMS) Oxford Institute, Nuffield Department of Medicine, Oxford University, Oxford, OX3 7FZ, UK
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford University, Oxford, OX3 9DS, UK
| | - Yanchun Peng
- Chinese Academy of Medical Sciences (CAMS) Oxford Institute, Nuffield Department of Medicine, Oxford University, Oxford, OX3 7FZ, UK
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford University, Oxford, OX3 9DS, UK
| | - Benedikt M. Kessler
- Chinese Academy of Medical Sciences (CAMS) Oxford Institute, Nuffield Department of Medicine, Oxford University, Oxford, OX3 7FZ, UK
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, Oxford University, Oxford, OX3 7FZ, UK
| | - Tao Dong
- Chinese Academy of Medical Sciences (CAMS) Oxford Institute, Nuffield Department of Medicine, Oxford University, Oxford, OX3 7FZ, UK
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford University, Oxford, OX3 9DS, UK
| |
Collapse
|
4
|
Abstract
In this issue of Cell Host & Microbe, Grifoni et al. provide reassuring evidence that the majority of epitopes induced by vaccinia virus vaccines are conserved in monkeypox virus and can elicit memory T cell responses, while also providing an extensive list of potential T cell epitopes.
Collapse
Affiliation(s)
- Dannielle Wellington
- Chinese Academy of Medical Science Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Tao Dong
- Chinese Academy of Medical Science Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK; MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
5
|
Kessler BM. Nilabh Shastri - Towards understanding classical and non-classical MHC-I antigen processing and presentation. Cell Immunol 2022; 382:104638. [PMID: 36371991 DOI: 10.1016/j.cellimm.2022.104638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
Abstract
Major histocompatibility complex (MHC-I) peptide antigen processing and presentation has experienced a revived interest in the context of immuno oncology, immune surveillance escape by pathogen mutations and technical advances that accelerate vaccine design. This sheds new light on the discoveries made by Nilabh Shastri and colleagues that includes the characterisation of cryptic MHC-I peptide antigen epitopes derived from untranslated regions and the N-terminal trimming of peptide antigen precursors by the aminopeptidase ERAAP (ERAP1/2 / ARTS1/LRAP) in the endoplasmic reticulum (ER) prior to the complete assembly of MHC-I complexes and their subsequent exposure to the cell surface. These scientific findings have important implications for developing novel therapeutic approaches in immunotherapy and modern vaccine design.
Collapse
Affiliation(s)
- Benedikt M Kessler
- Chinese Academy of Medical Science Oxford Institute, Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, OX3 7FZ, UK.
| |
Collapse
|
6
|
Ma K, Chai Y, Guan J, Tan S, Qi J, Kawana-Tachikawa A, Dong T, Iwamoto A, Shi Y, Gao GF. Molecular Basis for the Recognition of HIV Nef138-8 Epitope by a Pair of Human Public T Cell Receptors. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:1652-1661. [PMID: 36130828 DOI: 10.4049/jimmunol.2200191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 08/30/2022] [Indexed: 11/07/2022]
Abstract
Cross-recognized public TCRs against HIV epitopes have been proposed to be important for the control of AIDS disease progression and HIV variants. The overlapping Nef138-8 and Nef138-10 peptides from the HIV Nef protein are HLA-A24-restricted immunodominant T cell epitopes, and an HIV mutant strain with a Y139F substitution in Nef protein can result in immune escape and is widespread in Japan. Here, we identified a pair of public TCRs specific to the HLA-A24-restricted Nef-138-8 epitope using PBMCs from White and Japanese patients, respectively, namely TD08 and H25-11. The gene use of the variable domain for TD08 and H25-11 is TRAV8-3, TRAJ10 for the α-chain and TRBV7-9, TRBD1*01, TRBJ2-5 for the β-chain. Both TCRs can recognize wild-type and Y2F-mutated Nef138-8 epitopes. We further determined three complex structures, including TD08/HLA-A24-Nef138-8, H25-11/HLA-A24-Nef138-8, and TD08/HLA-A24-Nef138-8 (2F). Then, we revealed the molecular basis of the public TCR binding to the peptide HLA, which mostly relies on the interaction between the TCR and HLA and can tolerate the mutation in the Nef138-8 peptide. These findings promote the molecular understanding of T cell immunity against HIV epitopes and provide an important basis for the engineering of TCRs to develop T cell-based immunotherapy against HIV infection.
Collapse
Affiliation(s)
- Keke Ma
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.,Chinese Academy of Sciences Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yan Chai
- Chinese Academy of Sciences Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jiawei Guan
- Chinese Academy of Sciences Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Shuguang Tan
- Chinese Academy of Sciences Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jianxun Qi
- Chinese Academy of Sciences Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Ai Kawana-Tachikawa
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tao Dong
- Chinese Academy of Medical Sciences Oxford Institute, Nuffield Department of Medicine, Oxford University, Oxford, UK; and
| | - Aikichi Iwamoto
- Department of Research Promotion, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Yi Shi
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China; .,Chinese Academy of Sciences Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - George F Gao
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China; .,Chinese Academy of Sciences Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Zhang H, He C, Jiang F, Cao S, Zhao B, Ding H, Dong T, Han X, Shang H. A longitudinal analysis of immune escapes from HLA-B*13-restricted T-cell responses at early stage of CRF01_AE subtype HIV-1 infection and implications for vaccine design. BMC Immunol 2022; 23:15. [PMID: 35366796 PMCID: PMC8976269 DOI: 10.1186/s12865-022-00491-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/24/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Identifying immunogens which can elicit effective T cell responses against human immunodeficiency virus type 1 (HIV-1) is important for developing a T-cell based vaccine. It has been reported that human leukocyte antigen (HLA)-B*13-restricted T-cell responses contributed to HIV control in subtype B' and C infected individuals. However, the kinetics of B*13-restricted T-cell responses, viral evolution within epitopes, and the impact on disease progression in CRF01_AE subtype HIV-1-infected men who have sex with men (MSM) are not known. RESULTS Interferon-γ ELISPOT assays and deep sequencing of viral RNAs were done in 14 early HLA-B*13-positive CRF01_AE subtype HIV-1-infected MSM. We found that responses to RQEILDLWV (Nef106-114, RV9), GQMREPRGSDI (Gag226-236, GI11), GQDQWTYQI (Pol487-498, GI9), and VQNAQGQMV (Gag135-143, VV9) were dominant. A higher relative magnitude of Gag-specific T-cell responses, contributed to viral control, whereas Nef-specific T-cell responses were associated with rapid disease progression. GI11 (Gag) was conserved and strong GI11 (Gag)-specific T-cell responses showed cross-reactivity with a dominant variant, M228I, found in 3/12 patients; GI11 (Gag)-specific T-cell responses were positively associated with CD4 T-cell counts (R = 0.716, P = 0.046). Interestingly, the GI9 (Pol) epitope was also conserved, but GI9 (Pol)-specific T-cell responses did not influence disease progression (P > 0.05), while a D490G variant identified in one patient did not affect CD4 T-cell counts. All the other epitopes studied [VV9 (Gag), RQYDQILIEI (Pol113-122, RI10), HQSLSPRTL (Gag144-152, HL9), and RQANFLGRL (Gag429-437, RL9)] developed escape mutations within 1 year of infection, which may have contributed to overall disease progression. Intriguingly, we found early RV9 (Nef)-specific T-cell responses were associated with rapid disease progression, likely due to escape mutations. CONCLUSIONS Our study strongly suggested the inclusion of GI11 (Gag) and exclusion of RV9 (Nef) for T-cell-based vaccine design for B*13-positive CRF01_AE subtype HIV-1-infected MSM and high-risk individuals.
Collapse
Affiliation(s)
- Hui Zhang
- grid.412636.40000 0004 1757 9485NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001 Liaoning Province China ,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001 China ,Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, 110001 China ,grid.13402.340000 0004 1759 700XCollaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou, 310003 China
| | - Chuan He
- grid.412636.40000 0004 1757 9485NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001 Liaoning Province China ,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001 China ,Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, 110001 China ,grid.13402.340000 0004 1759 700XCollaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou, 310003 China ,grid.412636.40000 0004 1757 9485Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001 China
| | - Fanming Jiang
- grid.412636.40000 0004 1757 9485NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001 Liaoning Province China ,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001 China ,Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, 110001 China ,grid.13402.340000 0004 1759 700XCollaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou, 310003 China ,grid.412636.40000 0004 1757 9485Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001 China
| | - Shuang Cao
- grid.412636.40000 0004 1757 9485NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001 Liaoning Province China ,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001 China ,Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, 110001 China ,grid.13402.340000 0004 1759 700XCollaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou, 310003 China ,grid.412449.e0000 0000 9678 1884Department of Laboratory Medicine, China Medical University Shengjing Hospital Nanhu Branch, Shenyang, 110001 China
| | - Bin Zhao
- grid.412636.40000 0004 1757 9485NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001 Liaoning Province China ,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001 China ,Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, 110001 China ,grid.13402.340000 0004 1759 700XCollaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou, 310003 China
| | - Haibo Ding
- grid.412636.40000 0004 1757 9485NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001 Liaoning Province China ,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001 China ,Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, 110001 China ,grid.13402.340000 0004 1759 700XCollaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou, 310003 China
| | - Tao Dong
- grid.4991.50000 0004 1936 8948Nuffield Department of Medicine, Chinese Academy of Medical Sciences Oxford Institute, Oxford University, Oxford, UK ,grid.4991.50000 0004 1936 8948Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford University, Oxford, UK
| | - Xiaoxu Han
- grid.412636.40000 0004 1757 9485NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001 Liaoning Province China ,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001 China ,Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, 110001 China ,grid.13402.340000 0004 1759 700XCollaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou, 310003 China
| | - Hong Shang
- grid.412636.40000 0004 1757 9485NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001 Liaoning Province China ,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001 China ,Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, 110001 China ,grid.13402.340000 0004 1759 700XCollaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou, 310003 China
| |
Collapse
|
8
|
Zhang H, Cao S, Gao Y, Sun X, Jiang F, Zhao B, Ding H, Dong T, Han X, Shang H. HIV-1-Specific Immunodominant T-Cell Responses Drive the Dynamics of HIV-1 Recombination Following Superinfection. Front Immunol 2022; 12:820628. [PMID: 35095925 PMCID: PMC8794799 DOI: 10.3389/fimmu.2021.820628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/24/2021] [Indexed: 11/13/2022] Open
Abstract
A series of HIV-1 CRF01_AE/CRF07_BC recombinants were previously found to have emerged gradually in a superinfected patient (patient LNA819). However, the extent to which T-cell responses influenced the development of these recombinants after superinfection is unclear. In this study, we undertook a recombination structure analysis of the gag, pol, and nef genes from longitudinal samples of patient LNA819. A total of 9 pol and 5 nef CRF01_AE/CRF07_BC recombinants were detected. The quasispecies makeup and the composition of the pol and nef gene recombinants changed continuously, suggestive of continuous evolution in vivo. T-cell responses targeting peptides of the primary strain and the recombination regions were screened. The results showed that Pol-LY10, Pol-RY9, and Nef-GL9 were the immunodominant epitopes. Pol-LY10 overlapped with the recombination breakpoints in multiple recombinants. For the LY10 epitope, escape from T-cell responses was mediated by both recombination with a CRF07_BC insertion carrying the T467E/T472V variants and T467N/T472V mutations originating in the CRF01_AE strain. In pol recombinants R8 and R9, the recombination breakpoints were located ~23 amino acids upstream of the RY9 epitope. The appearance of new recombination breakpoints harboring a CRF07_BC insertion carrying a R984K variant was associated with escape from RY9-specific T-cell responses. Although the Nef-GL9 epitope was located either within or 10~11 amino acids downstream of the recombination breakpoints, no variant of this epitope was observed in the nef recombinants. Instead, a F85V mutation originating in the CRF01_AE strain was the main immune escape mechanism. Understanding the cellular immune pressure on recombination is critical for monitoring the new circulating recombinant forms of HIV and designing epitope-based vaccines. Vaccines targeting antigens that are less likely to escape immune pressure by recombination and/or mutation are likely to be of benefit to patients with HIV-1.
Collapse
Affiliation(s)
- Hui Zhang
- National Health Commission (NHC) Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, China
| | - Shuang Cao
- National Health Commission (NHC) Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, China.,Clinical Laboratory, China Medical University Shengjing Hospital Nanhu Branch, Shenyang, China
| | - Yang Gao
- National Health Commission (NHC) Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, China
| | - Xiao Sun
- National Health Commission (NHC) Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, China
| | - Fanming Jiang
- National Health Commission (NHC) Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, China
| | - Bin Zhao
- National Health Commission (NHC) Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, China
| | - Haibo Ding
- National Health Commission (NHC) Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, China
| | - Tao Dong
- Chinese Academy of Medical Sciences Oxford Institute, Nuffield Department of Medicine, Oxford University, Oxford, United Kingdom.,Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford University, Oxford, United Kingdom
| | - Xiaoxu Han
- National Health Commission (NHC) Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, China
| | - Hong Shang
- National Health Commission (NHC) Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, China.,Chinese Academy of Medical Sciences Oxford Institute, Nuffield Department of Medicine, Oxford University, Oxford, United Kingdom
| |
Collapse
|
9
|
Peng Y, Felce SL, Dong D, Penkava F, Mentzer AJ, Yao X, Liu G, Yin Z, Chen JL, Lu Y, Wellington D, Wing PAC, Dominey-Foy DCC, Jin C, Wang W, Hamid MA, Fernandes RA, Wang B, Fries A, Zhuang X, Ashley N, Rostron T, Waugh C, Sopp P, Hublitz P, Beveridge R, Tan TK, Dold C, Kwok AJ, Rich-Griffin C, Dejnirattisa W, Liu C, Kurupati P, Nassiri I, Watson RA, Tong O, Taylor CA, Kumar Sharma P, Sun B, Curion F, Revale S, Garner LC, Jansen K, Ferreira RC, Attar M, Fry JW, Russell RA, Stauss HJ, James W, Townsend A, Ho LP, Klenerman P, Mongkolsapaya J, Screaton GR, Dendrou C, Sansom SN, Bashford-Rogers R, Chain B, Smith GL, McKeating JA, Fairfax BP, Bowness P, McMichael AJ, Ogg G, Knight JC, Dong T. An immunodominant NP 105-113-B*07:02 cytotoxic T cell response controls viral replication and is associated with less severe COVID-19 disease. Nat Immunol 2022; 23:50-61. [PMID: 34853448 PMCID: PMC8709787 DOI: 10.1038/s41590-021-01084-z] [Citation(s) in RCA: 122] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/26/2021] [Indexed: 11/11/2022]
Abstract
NP105-113-B*07:02-specific CD8+ T cell responses are considered among the most dominant in SARS-CoV-2-infected individuals. We found strong association of this response with mild disease. Analysis of NP105-113-B*07:02-specific T cell clones and single-cell sequencing were performed concurrently, with functional avidity and antiviral efficacy assessed using an in vitro SARS-CoV-2 infection system, and were correlated with T cell receptor usage, transcriptome signature and disease severity (acute n = 77, convalescent n = 52). We demonstrated a beneficial association of NP105-113-B*07:02-specific T cells in COVID-19 disease progression, linked with expansion of T cell precursors, high functional avidity and antiviral effector function. Broad immune memory pools were narrowed postinfection but NP105-113-B*07:02-specific T cells were maintained 6 months after infection with preserved antiviral efficacy to the SARS-CoV-2 Victoria strain, as well as Alpha, Beta, Gamma and Delta variants. Our data show that NP105-113-B*07:02-specific T cell responses associate with mild disease and high antiviral efficacy, pointing to inclusion for future vaccine design.
Collapse
Affiliation(s)
- Yanchun Peng
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford, UK
| | - Suet Ling Felce
- Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Danning Dong
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford, UK
- CAMS Key Laboratory of Tumor Immunology and Radiation Therapy, Xinjiang Tumor Hospital, Xinjiang Medical University, Urumqi, China
| | - Frank Penkava
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Alexander J Mentzer
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Xuan Yao
- Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford, UK
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Guihai Liu
- Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford, UK
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Beijing You'an Hospital, Capital Medical University, Beijing, China
| | - Zixi Yin
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford, UK
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Ji-Li Chen
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford, UK
| | - Yongxu Lu
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Dannielle Wellington
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford, UK
| | - Peter A C Wing
- Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford, UK
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Delaney C C Dominey-Foy
- Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford, UK
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Chen Jin
- Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford, UK
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Wenbo Wang
- Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford, UK
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Megat Abd Hamid
- Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford, UK
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Ricardo A Fernandes
- Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford, UK
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Beibei Wang
- Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford, UK
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Anastasia Fries
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Xiaodong Zhuang
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Neil Ashley
- Single Cell Facility, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Timothy Rostron
- Sequencing Facility, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Craig Waugh
- Flow Cytometry Facility, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Paul Sopp
- Flow Cytometry Facility, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Philip Hublitz
- Genome Engineering Facility, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Ryan Beveridge
- Virus Screening Facility, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Tiong Kit Tan
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Christina Dold
- Oxford Vaccine Group, Department of Paediatrics, and NIHR Oxford Biomedical Research Centre, Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Oxford, UK
| | - Andrew J Kwok
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Wanwisa Dejnirattisa
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Chang Liu
- Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Prathiba Kurupati
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Isar Nassiri
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Department of Oncology, University of Oxford, Oxford, UK
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Robert A Watson
- Department of Oncology, University of Oxford, Oxford, UK
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Orion Tong
- Department of Oncology, University of Oxford, Oxford, UK
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Chelsea A Taylor
- Department of Oncology, University of Oxford, Oxford, UK
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Piyush Kumar Sharma
- Department of Oncology, University of Oxford, Oxford, UK
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Bo Sun
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Fabiola Curion
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Helmholtz Center Munich-German Research Center for Environmental Health, Institute of Computational Biology, Neuherberg, Germany
| | - Santiago Revale
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Lucy C Garner
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Kathrin Jansen
- Kennedy Institute for Rheumatology, University of Oxford, Oxford, UK
| | | | - Moustafa Attar
- Kennedy Institute for Rheumatology, University of Oxford, Oxford, UK
| | | | - Rebecca A Russell
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Hans J Stauss
- Institute of Immunity and Transplantation, University College London, London, UK
| | - William James
- James & Lillian Martin Centre, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Alain Townsend
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford, UK
| | - Ling-Pei Ho
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Paul Klenerman
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Juthathip Mongkolsapaya
- Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Dengue Hemorrhagic Fever Research Unit, Office for Research and Development, Faculty of Medicine, Siriaj Hospital, Mahidol Unviversity, Bangkok, Thailand
| | - Gavin R Screaton
- Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Calliope Dendrou
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Stephen N Sansom
- Kennedy Institute for Rheumatology, University of Oxford, Oxford, UK
| | | | - Benny Chain
- Division of Infection and Immunity, University College London, London, UK
| | | | - Jane A McKeating
- Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford, UK
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Benjamin P Fairfax
- Department of Oncology, University of Oxford, Oxford, UK
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Paul Bowness
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Andrew J McMichael
- Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford, UK
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Graham Ogg
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford, UK
| | - Julian C Knight
- Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford, UK.
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
- Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Tao Dong
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
- Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford, UK.
- Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
10
|
Boucau J, Le Gall S. Antigen processing and presentation in HIV infection. Mol Immunol 2019; 113:67-74. [PMID: 29636181 PMCID: PMC6174111 DOI: 10.1016/j.molimm.2018.03.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 01/09/2018] [Accepted: 03/29/2018] [Indexed: 12/11/2022]
Abstract
The presentation of virus-derived peptides by MHC molecules constitutes the earliest signals for immune recognition by T cells. In HIV infection, immune responses elicited during infection do not enable to clear infection and correlates of immune protection are not well defined. Here we review features of antigen processing and presentation specific to HIV, analyze how HIV has adapted to the antigen processing machinery and discuss how advances in biochemical and computational protein degradation analyses and in immunopeptidome definition may help identify targets for efficient immune clearance and vaccine immunogen design.
Collapse
Affiliation(s)
- Julie Boucau
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, United States
| | - Sylvie Le Gall
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, United States.
| |
Collapse
|
11
|
High polymorphism rates in well-known T cell epitopes restricted by protective HLA alleles during HIV infection are associated with rapid disease progression in early-infected MSM in China. Med Microbiol Immunol 2019; 208:239-251. [PMID: 30848362 DOI: 10.1007/s00430-019-00585-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 02/21/2019] [Indexed: 11/26/2022]
Abstract
T cell epitopes restricted by several protective HLA alleles, such as B*57, B*5801, B*27, B*51 and B*13, have been very well defined over the past two decades. We investigated 32 well-known T cell epitopes restricted by protective HLA molecules among 54 Chinese men who have sex with men (MSM) at the early stage of HIV-1 infection. Subjects in our cohort carrying protective HLA types did not exhibit slow CD4 T cell count decline (P = 0.489) or low viral load set points (P = 0.500). Variations occurred in 96.88% (31/32) of the known wild-type epitopes (rate 1.85-100%), and the variation rates of the strains of two CRF01_AE lineages were significantly higher than those of non-CRF01_AE strains (76.82% vs. 48.96%, P = 0.004; 71.27% vs. 8.96%, P = 0.025). Subjects infected with CRF01_AE exhibited relatively rapid disease progression (P = 0.035). Therefore, the lack of wild-type protective T cell epitopes restricted by classic protective HLA alleles in CRF01_AE HIV-1 strains may be one of the reasons why rapid disease progression is observed in Chinese MSM with HIV-1 infection.
Collapse
|
12
|
Borzooee F, Joris KD, Grant MD, Larijani M. APOBEC3G Regulation of the Evolutionary Race Between Adaptive Immunity and Viral Immune Escape Is Deeply Imprinted in the HIV Genome. Front Immunol 2019; 9:3032. [PMID: 30687306 PMCID: PMC6338068 DOI: 10.3389/fimmu.2018.03032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 12/07/2018] [Indexed: 12/16/2022] Open
Abstract
APOBEC3G (A3G) is a host enzyme that mutates the genomes of retroviruses like HIV. Since A3G is expressed pre-infection, it has classically been considered an agent of innate immunity. We and others previously showed that the impact of A3G-induced mutations on the HIV genome extends to adaptive immunity also, by generating cytotoxic T cell (CTL) escape mutations. Accordingly, HIV genomic sequences encoding CTL epitopes often contain A3G-mutable “hotspot” sequence motifs, presumably to channel A3G action toward CTL escape. Here, we studied the depths and consequences of this apparent viral genome co-evolution with A3G. We identified all potential CTL epitopes in Gag, Pol, Env, and Nef restricted to several HLA class I alleles. We simulated A3G-induced mutations within CTL epitope-encoding sequences, and flanking regions. From the immune recognition perspective, we analyzed how A3G-driven mutations are predicted to impact CTL-epitope generation through modulating proteasomal processing and HLA class I binding. We found that A3G mutations were most often predicted to result in diminishing/abolishing HLA-binding affinity of peptide epitopes. From the viral genome evolution perspective, we evaluated enrichment of A3G hotspots at sequences encoding CTL epitopes and included control sequences in which the HIV genome was randomly shuffled. We found that sequences encoding immunogenic epitopes exhibited a selective enrichment of A3G hotspots, which were strongly biased to translate to non-synonymous amino acid substitutions. When superimposed on the known mutational gradient across the entire length of the HIV genome, we observed a gradient of A3G hotspot enrichment, and an HLA-specific pattern of the potential of A3G hotspots to lead to CTL escape mutations. These data illuminate the depths and extent of the co-evolution of the viral genome to subvert the host mutator A3G.
Collapse
Affiliation(s)
- Faezeh Borzooee
- Immunology and Infectious Diseases Program, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Krista D Joris
- Immunology and Infectious Diseases Program, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Michael D Grant
- Immunology and Infectious Diseases Program, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Mani Larijani
- Immunology and Infectious Diseases Program, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
13
|
Jiang F, Han X, Zhang H, Zhao B, An M, Xu J, Chu Z, Dong T, Shang H. Multi-layered Gag-specific immunodominant responses contribute to improved viral control in the CRF01_AE subtype of HIV-1-infected MSM subjects. BMC Immunol 2016; 17:28. [PMID: 27577610 PMCID: PMC5006414 DOI: 10.1186/s12865-016-0166-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 08/20/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The purpose of this study was to characterize specific cytotoxic T-cell (CTL) responses in men who have sex with men (MSM) subjects infected with the human immunodeficiency virus type 1 (HIV-1) CRF01_AE subtype during the first year of infection and impacts on viral control and evolution. RESULTS Fifteen HIV-1 primary infected cases were recruited from Liaoning MSM prospective cohort. CTL responses to Gag, Pol and Nef proteins at 3 month and 1 year post infection were detected with Gamma interferon enzyme-linked immunospot (ELISPOT) assay using optimized consensus overlapping peptides, as well as the viral quasispecies sequences from the synchronous plasma. Gag and Nef proteins were the main targets of CTL responses during the first year of HIV-1 infection, and this was evident from the data after adjusting for the length of amino acids by dividing the amino acids number of the corresponding protein and multiplying by 100. Additionally, relative magnitudes of Gag at both 3 months and 1 year post infection were significantly negatively correlated with the viral set point (p = 0.002, r = -0.726; p = 0.025, r = -0.574). While the relative magnitude of Nef at 1 year post infection were significantly positively correlated with viral set point (p = 0.004, r = 0.697). Subjects with multi-layered Gag immunodominant responses during the first year of infection had significantly lower viral set points than subjects without such responses (p = 0.002). CONCLUSION Multi-layered Gag immunodominant responses during the first year of infection were correlated with viral control, which provides a theoretical basis for vaccine design targeting MSM subjects with the CRF01_AE subtype.
Collapse
Affiliation(s)
- Fanming Jiang
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Xiaoxu Han
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Hui Zhang
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Bin Zhao
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Minghui An
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Junjie Xu
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Zhenxing Chu
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Tao Dong
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford University, Oxford, OX3 9DS United Kingdom
| | - Hong Shang
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| |
Collapse
|
14
|
Jallow S, Leligdowicz A, Kramer HB, Onyango C, Cotten M, Wright C, Whittle HC, McMichael A, Dong T, Kessler BM, Rowland-Jones SL. The presence of prolines in the flanking region of an immunodominant HIV-2 gag epitope influences the quality and quantity of the epitope generated. Eur J Immunol 2015; 45:2232-42. [PMID: 26018465 PMCID: PMC4832300 DOI: 10.1002/eji.201545451] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 04/02/2015] [Accepted: 05/22/2015] [Indexed: 12/31/2022]
Abstract
Both the recognition of HIV‐infected cells and the immunogenicity of candidate CTL vaccines depend on the presentation of a peptide epitope at the cell surface, which in turn depends on intracellular antigen processing. Differential antigen processing maybe responsible for the differences in both the quality and the quantity of epitopes produced, influencing the immunodominance hierarchy of viral epitopes. Previously, we showed that the magnitude of the HIV‐2 gag‐specific T‐cell response is inversely correlated with plasma viral load, particularly when responses are directed against an epitope, 165DRFYKSLRA173, within the highly conserved Major Homology Region of gag‐p26. We also showed that the presence of three proline residues, at positions 119, 159 and 178 of gag‐p26, was significantly correlated with low viral load. Since this proline motif was also associated with stronger gag‐specific CTL responses, we investigated the impact of these prolines on proteasomal processing of the protective 165DRFYKSLRA173 epitope. Our data demonstrate that the 165DRFYKSLRA173 epitope is most efficiently processed from precursors that contain two flanking proline residues, found naturally in low viral‐load patients. Superior antigen processing and enhanced presentation may account for the link between infection with HIV‐2 encoding the “PPP‐gag” sequence and both strong gag‐specific CTL responses as well as lower viral load.
Collapse
Affiliation(s)
- Sabelle Jallow
- Radcliffe Department of Medicine, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Headington, Oxford, UK
| | | | - Holger B Kramer
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | | | | | - Cynthia Wright
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
| | | | - Andrew McMichael
- Radcliffe Department of Medicine, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Headington, Oxford, UK
| | - Tao Dong
- Radcliffe Department of Medicine, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Headington, Oxford, UK
| | - Benedikt M Kessler
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
| | - Sarah L Rowland-Jones
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
| |
Collapse
|
15
|
Multilayered HIV-1 gag-specific T-cell responses contribute to slow progression in HLA-A*30-B*13-C*06-positive patients. AIDS 2015; 29:993-1002. [PMID: 25756195 PMCID: PMC4444423 DOI: 10.1097/qad.0000000000000652] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Objective: The HLA-A∗30-B∗13-C∗06 haplotype is reported to be associated with slow disease progression in the HIV-1-infected Northern Han Chinese population, but the mechanism remains unknown. Design: Gag-specific T-cell responses and gag sequencing were performed in nine B′ clade HIV-1-infected HLA-A∗30-B∗13-C∗06-positive slow progressors to understand HLA-associated viral control. Methods: Interferon-γ ELISPOT assays were performed to determine the Gag-specific T-cell responses and cross-reactivity to variant peptides. Longitudinal HIV-1 gag sequencing was performed at the clonal level. Results: The overlapping peptides (OLP)-48: RQANFLGKIWPSHKGRPGNF (RL42 Gag434-453); OLP-2: GQLDRWEKIRLRPGGKKKYR (RL42 Gag11-30); OLP-15: VQNLQGQMVHQPISPRTLNA (RL42 Gag135-154) and OLP-16: HQPISPRTLNAWVKVVEEKA (RL42 Gag144-163) were dominant in HLA-A∗30-B∗13-C∗06-positive patients. A new epitope [HQPISPRTL (Gag144-152, HL9)] within OLP-15 and OLP-16 was identified. Results showed that strong cross-reactive responses to multiple immunodominant peptides were associated with better clinical outcomes. In addition, efficient cross-recognition of HL9 autologous variants developed in patients was associated with high CD4+ T-cell counts. However, two patients who had developed mutations to their dominant responses during the follow-up experienced decrease in CD4+ T-cell counts. It appears that Gag-specific T-cell responses against one or more unmutated epitopes or cross-recognition of autologous epitope variants contribute to slow disease progression in HLA-A∗30-B∗13-C∗06-positive patients. Conclusion: We conclude that a single ‘appropriate’ Gag-specific T-cell response appears to be sufficient to protect patients from disease progression. HLA-A∗30-B∗13-C∗06-positive individuals benefited from having a choice of numerous immunodominant gag epitopes for T cells to react. The study offers new insight for future design of T-cell-based HIV-1 vaccine.
Collapse
|
16
|
Dinter J, Duong E, Lai NY, Berberich MJ, Kourjian G, Bracho-Sanchez E, Chu D, Su H, Zhang SC, Le Gall S. Variable processing and cross-presentation of HIV by dendritic cells and macrophages shapes CTL immunodominance and immune escape. PLoS Pathog 2015; 11:e1004725. [PMID: 25781895 PMCID: PMC4364612 DOI: 10.1371/journal.ppat.1004725] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 02/03/2015] [Indexed: 12/20/2022] Open
Abstract
Dendritic cells (DCs) and macrophages (Møs) internalize and process exogenous HIV-derived antigens for cross-presentation by MHC-I to cytotoxic CD8+ T cells (CTL). However, how degradation patterns of HIV antigens in the cross-presentation pathways affect immunodominance and immune escape is poorly defined. Here, we studied the processing and cross-presentation of dominant and subdominant HIV-1 Gag-derived epitopes and HLA-restricted mutants by monocyte-derived DCs and Møs. The cross-presentation of HIV proteins by both DCs and Møs led to higher CTL responses specific for immunodominant epitopes. The low CTL responses to subdominant epitopes were increased by pretreatment of target cells with peptidase inhibitors, suggestive of higher intracellular degradation of the corresponding peptides. Using DC and Mø cell extracts as a source of cytosolic, endosomal or lysosomal proteases to degrade long HIV peptides, we identified by mass spectrometry cell-specific and compartment-specific degradation patterns, which favored the production of peptides containing immunodominant epitopes in all compartments. The intracellular stability of optimal HIV-1 epitopes prior to loading onto MHC was highly variable and sequence-dependent in all compartments, and followed CTL hierarchy with immunodominant epitopes presenting higher stability rates. Common HLA-associated mutations in a dominant epitope appearing during acute HIV infection modified the degradation patterns of long HIV peptides, reduced intracellular stability and epitope production in cross-presentation-competent cell compartments, showing that impaired epitope production in the cross-presentation pathway contributes to immune escape. These findings highlight the contribution of degradation patterns in the cross-presentation pathway to HIV immunodominance and provide the first demonstration of immune escape affecting epitope cross-presentation. Pathogens such as HIV can enter cells by fusion at the plasma membrane for delivery in the cytosol, or by internalization in endolysosomal vesicles. Pathogens can be degraded in these various compartments into peptides (epitopes) displayed at the cell surface by MHC-I. The presentation of pathogen-derived peptides triggers the activation of T cell immune responses and the clearance of infected cells. How the diversity of compartments in which HIV traffics combined with the diversity of HIV sequences affects the degradation of HIV and the recognition of infected cells by immune cells is not understood. We compared the degradation of HIV proteins in subcellular compartments of dendritic cells and macrophages, two cell types targeted by HIV and the subsequent presentation of epitopes to T cells. We show variable degradation patterns of HIV according to compartments, and the preferential production and superior intracellular stability of immunodominant epitopes corresponding to stronger T cell responses. Frequent mutations in immunodominant epitopes during acute infection resulted in decreased production and intracellular stability of these epitopes. Together these results demonstrate the importance of protein degradation patterns in shaping immunodominant epitopes and the contribution of impaired epitope production in all cellular compartments to immune escape during HIV infection.
Collapse
Affiliation(s)
- Jens Dinter
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Harvard Medical School, Cambridge, Massachusetts, United States of America
| | - Ellen Duong
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Harvard Medical School, Cambridge, Massachusetts, United States of America
| | - Nicole Y. Lai
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Harvard Medical School, Cambridge, Massachusetts, United States of America
| | - Matthew J. Berberich
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Harvard Medical School, Cambridge, Massachusetts, United States of America
| | - Georgio Kourjian
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Harvard Medical School, Cambridge, Massachusetts, United States of America
| | - Edith Bracho-Sanchez
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Harvard Medical School, Cambridge, Massachusetts, United States of America
| | - Duong Chu
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Harvard Medical School, Cambridge, Massachusetts, United States of America
| | - Hang Su
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Harvard Medical School, Cambridge, Massachusetts, United States of America
| | - Shao Chong Zhang
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Harvard Medical School, Cambridge, Massachusetts, United States of America
| | - Sylvie Le Gall
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Harvard Medical School, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
17
|
Lema D, Garcia A, De Sanctis JB. HIV vaccines: a brief overview. Scand J Immunol 2014; 80:1-11. [PMID: 24813074 DOI: 10.1111/sji.12184] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 04/22/2014] [Indexed: 02/06/2023]
Abstract
The scope of the article is to review the different approaches that have been used for HIV vaccines. The review is based on articles retrieved by PubMed and clinical trials from 1990 up to date. The article discusses virus complexity, protective and non-protective immune responses against the virus, and the most important approaches for HIV vaccine development.
Collapse
Affiliation(s)
- D Lema
- Instituto de Inmunología, Facultad de Medicina, Universidad Central de Venezuela, Caracas, Venezuela
| | | | | |
Collapse
|
18
|
Steers NJ, Currier JR, Jobe O, Tovanabutra S, Ratto-Kim S, Marovich MA, Kim JH, Michael NL, Alving CR, Rao M. Designing the epitope flanking regions for optimal generation of CTL epitopes. Vaccine 2014; 32:3509-16. [DOI: 10.1016/j.vaccine.2014.04.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 01/15/2014] [Accepted: 04/17/2014] [Indexed: 12/25/2022]
|
19
|
Tenzer S, Crawford H, Pymm P, Gifford R, Sreenu VB, Weimershaus M, de Oliveira T, Burgevin A, Gerstoft J, Akkad N, Lunn D, Fugger L, Bell J, Schild H, van Endert P, Iversen AKN. HIV-1 adaptation to antigen processing results in population-level immune evasion and affects subtype diversification. Cell Rep 2014; 7:448-463. [PMID: 24726370 PMCID: PMC4005910 DOI: 10.1016/j.celrep.2014.03.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 12/04/2013] [Accepted: 03/11/2014] [Indexed: 02/01/2023] Open
Abstract
The recent HIV-1 vaccine failures highlight the need to better understand virus-host interactions. One key question is why CD8(+) T cell responses to two HIV-Gag regions are uniquely associated with delayed disease progression only in patients expressing a few rare HLA class I variants when these regions encode epitopes presented by ~30 more common HLA variants. By combining epitope processing and computational analyses of the two HIV subtypes responsible for ~60% of worldwide infections, we identified a hitherto unrecognized adaptation to the antigen-processing machinery through substitutions at subtype-specific motifs. Multiple HLA variants presenting epitopes situated next to a given subtype-specific motif drive selection at this subtype-specific position, and epitope abundances correlate inversely with the HLA frequency distribution in affected populations. This adaptation reflects the sum of intrapatient adaptations, is predictable, facilitates viral subtype diversification, and increases global HIV diversity. Because low epitope abundance is associated with infrequent and weak T cell responses, this most likely results in both population-level immune evasion and inadequate responses in most people vaccinated with natural HIV-1 sequence constructs. Our results suggest that artificial sequence modifications at subtype-specific positions in vitro could refocus and reverse the poor immunogenicity of HIV proteins.
Collapse
Affiliation(s)
- Stefan Tenzer
- Institute of Immunology, University Medical Center of the Johannes-Gutenberg University of Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Hayley Crawford
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, Oxford University, John Radcliffe Hospital, Headley Way, Oxford OX3 9DS, UK; Division of Clinical Neurology, Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, Oxford University, John Radcliffe Hospital, Headley Way, Oxford OX3 9DS, UK
| | - Phillip Pymm
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, Oxford University, John Radcliffe Hospital, Headley Way, Oxford OX3 9DS, UK; Division of Clinical Neurology, Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, Oxford University, John Radcliffe Hospital, Headley Way, Oxford OX3 9DS, UK
| | - Robert Gifford
- Aaron Diamond AIDS Research Center, 455 First Avenue, New York, NY 10016, USA
| | - Vattipally B Sreenu
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, Oxford University, John Radcliffe Hospital, Headley Way, Oxford OX3 9DS, UK
| | - Mirjana Weimershaus
- Institut National de la Santé et de la Recherche Médicale, Unité 1151, Centre National de la Recherche Scientifique, UMR8253, Université Paris Descartes, Sorbonne Paris Cité, Hôpital Necker, 149 rue de Sèvres, 75015 Paris, France
| | - Tulio de Oliveira
- Africa Centre for Health and Population Studies, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, KwaZulu-Natal 3935, South Africa; Research Department of Infection, University College London, Cruciform Building, 90 Gower Street, London WC1E 6BT, UK
| | - Anne Burgevin
- Institut National de la Santé et de la Recherche Médicale, Unité 1151, Centre National de la Recherche Scientifique, UMR8253, Université Paris Descartes, Sorbonne Paris Cité, Hôpital Necker, 149 rue de Sèvres, 75015 Paris, France
| | - Jan Gerstoft
- Department of Infectious Diseases, Rigshospitalet, The National University Hospital, Blegdamsvej 9, 2100 Kbh Ø Copenhagen, Denmark
| | - Nadja Akkad
- Institute of Immunology, University Medical Center of the Johannes-Gutenberg University of Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Daniel Lunn
- Department of Statistics, University of Oxford, 1 South Parks Road, Oxford OX1 3TG, UK
| | - Lars Fugger
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, Oxford University, John Radcliffe Hospital, Headley Way, Oxford OX3 9DS, UK; Division of Clinical Neurology, Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, Oxford University, John Radcliffe Hospital, Headley Way, Oxford OX3 9DS, UK
| | - John Bell
- Office of the Regius Professor of Medicine, The Richard Doll Building, University of Oxford, Old Road Campus, Roosevelt Drive 1, Oxford OX3 7LF, UK
| | - Hansjörg Schild
- Institute of Immunology, University Medical Center of the Johannes-Gutenberg University of Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Peter van Endert
- Institut National de la Santé et de la Recherche Médicale, Unité 1151, Centre National de la Recherche Scientifique, UMR8253, Université Paris Descartes, Sorbonne Paris Cité, Hôpital Necker, 149 rue de Sèvres, 75015 Paris, France
| | - Astrid K N Iversen
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, Oxford University, John Radcliffe Hospital, Headley Way, Oxford OX3 9DS, UK; Division of Clinical Neurology, Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, Oxford University, John Radcliffe Hospital, Headley Way, Oxford OX3 9DS, UK.
| |
Collapse
|
20
|
The link between CD8⁺ T-cell antigen-sensitivity and HIV-suppressive capacity depends on HLA restriction, target epitope and viral isolate. AIDS 2014; 28:477-86. [PMID: 24384691 DOI: 10.1097/qad.0000000000000175] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Although it is established that CD8 T-cell immunity is critical for the control of HIV replication in vivo, the key factors that determine antiviral efficacy are yet to be fully elucidated. Antigen-sensitivity and T-cell receptor (TCR) avidity have been identified as potential determinants of CD8⁺ T-cell efficacy. However, there is no general consensus in this regard because the relationship between these parameters and the control of HIV infection has been established primarily in the context of immunodominant CD8⁺ T-cell responses against the Gag₂₆₃₋₂₇₂ KK10 epitope restricted by human leukocyte antigen (HLA)-B27. METHODS To investigate the relationship between antigen-sensitivity, TCR avidity and HIV-suppressive capacity in vitro across epitope specificities and HLA class I restriction elements, we used a variety of techniques to study CD8⁺ T-cell clones specific for Nef₇₃₋₈₂ QK10 and Gag₂₀₋₂₉ RY10, both restricted by HLA-A3, alongside CD8⁺ T-cell clones specific for Gag₂₆₃₋₂₇₂ KK10. RESULTS For each targeted epitope, the linked parameters of antigen-sensitivity and TCR avidity correlated directly with antiviral efficacy. However, marked differences in HIV-suppressive capacity were observed between epitope specificities, HLA class I restriction elements and viral isolates. CONCLUSIONS Collectively, these data emphasize the central role of the TCR as a determinant of CD8⁺ T-cell efficacy and demonstrate that the complexities of antigen recognition across epitope and HLA class I boundaries can confound simple relationships between TCR engagement and HIV suppression.
Collapse
|
21
|
Karlsson I, Kløverpris H, Jensen KJ, Stryhn A, Buus S, Karlsson A, Vinner L, Goulder P, Fomsgaard A. Identification of conserved subdominant HIV Type 1 CD8(+) T Cell epitopes restricted within common HLA Supertypes for therapeutic HIV Type 1 vaccines. AIDS Res Hum Retroviruses 2012; 28:1434-43. [PMID: 22747336 DOI: 10.1089/aid.2012.0081] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The high HIV-1 prevalence, up to 4.6% in Guinea-Bissau, West Africa, makes it a relevant location for testing of therapeutic vaccines. With the aim of performing a clinical study in Guinea-Bissau, after first testing the vaccine for safety in Denmark, Europe, we here describe the design of a universal epitope peptide-based T cell vaccine with relevance for any geographic locations. The two major obstacles when designing such a vaccine are the high diversities of the HIV-1 genome and of the human major histocompatibility complex (MHC) class I. We selected 15 CD8-restricted epitopes predicted from conserved regions of HIV-1 that were subdominant (i.e., infrequently targeted) within natural infections. Moreover, the epitopes were predicted to be restricted to at least one of the five common HLA supertypes (HLA-A01, A02, A03, B07, and B44). Here, we validated the resulting peptide-specific, HLA-restricted T cell specificities using peptide-MHC class I tetramer labeling of CD8(+) T cells from HIV-1-infected individuals. The selected vaccine epitopes are infrequently targeted in HIV-1-infected individuals from both locations. Moreover, we HLA-typed HIV-1-infected individuals and demonstrated that the selected vaccine epitopes, when targeted, are restricted to the five most common HLA supertypes at both locations. Thus, the HLA supertype-directed approach achieved HLA coverage of 95% and 100% of the examined cohorts in Guinea-Bissau and Denmark, respectively. In conclusion, the selected vaccine epitopes match the host populations and HIV-1 strains of these two distant geographic regions, justifying clinical testing in both locations.
Collapse
Affiliation(s)
- Ingrid Karlsson
- Department of Virology, Statens Serum Institut, Copenhagen, Denmark
| | - Henrik Kløverpris
- Department of Virology, Statens Serum Institut, Copenhagen, Denmark
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Kristoffer Jarlov Jensen
- Department of Virology, Statens Serum Institut, Copenhagen, Denmark
- The Bandim Health Project, Bissau, Guinea-Bissau
| | - Anette Stryhn
- Department of International Health, Immunology and Microbiology, Panum Institut, University of Copenhagen, Copenhagen, Denmark
| | - Søren Buus
- Department of International Health, Immunology and Microbiology, Panum Institut, University of Copenhagen, Copenhagen, Denmark
| | - Annika Karlsson
- Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Lasse Vinner
- Department of Virology, Statens Serum Institut, Copenhagen, Denmark
| | - Philip Goulder
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Anders Fomsgaard
- Department of Virology, Statens Serum Institut, Copenhagen, Denmark
| |
Collapse
|
22
|
Hemelaar J. Implications of HIV diversity for the HIV-1 pandemic. J Infect 2012; 66:391-400. [PMID: 23103289 DOI: 10.1016/j.jinf.2012.10.026] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 10/21/2012] [Indexed: 11/17/2022]
Abstract
HIV-1 genetic variability within individuals and populations plays a central role in the HIV pandemic. Multiple zoonotic transmissions of SIV to humans have resulted in distinct HIV lineages in humans which have further diversified within the population over time. High rates of mutation and recombination during HIV reverse transcription create a genetic diversity in the host which is subject to selection pressures by the immune response and antiretroviral treatment. The global distribution of HIV genetic variants and the impact of HIV diversity on pathogenesis, transmission and clinical management are reviewed. Finally, the key role of escape mutations in the immune response to HIV is discussed as well as the major challenge which HIV-1 diversity poses to HIV vaccine development.
Collapse
Affiliation(s)
- Joris Hemelaar
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Women's Centre, Level 3, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom.
| |
Collapse
|
23
|
HLA-B may be more protective against HIV-1 than HLA-A because it resists negative regulatory factor (Nef) mediated down-regulation. Proc Natl Acad Sci U S A 2012; 109:13353-8. [PMID: 22826228 DOI: 10.1073/pnas.1204199109] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human leukocyte antigen HLA-B alleles have better protective activity against HIV-1 than HLA-A alleles, possibly due to differences in HLA-restricted HIV-1-specific CD8+ cytotoxic T lymphocyte (CTL) function, but the mechanism is unknown. HIV-1 negative regulatory factor (Nef) mediates down-regulation of surface expression of class I HLA (HLA-I) and may therefore impair immune recognition by CTL. Because of sequence differences in the cytoplasmic domains, HLA-A and -B are down-regulated by Nef but HLA-C and -E are not affected. However, the latter are expressed at low levels and are not of major importance in the CTL responses to HIV-1. Here, we compared the role of the cytoplasmic domains of HLA-A and -B in Nef-mediated escape from CTL. We found HLA-B cytoplasmic domains were more resistant to Nef-mediated down-regulation than HLA-A cytoplasmic domains and demonstrated that these differences affect CTL recognition of virus-infected cells in vitro. We propose that the relative resistance to Nef-mediated down-regulation by the cytoplasmic domains of HLA-B compared with HLA-A contributes to the better control of HIV-1 infection associated with HLA-B-restricted CTLs.
Collapse
|
24
|
A 2 amino acid shift in position leads to a substantial difference in the pattern of processing of 2 HIV-1 epitopes. J Acquir Immune Defic Syndr 2012; 59:335-9. [PMID: 22217677 DOI: 10.1097/qai.0b013e318248780c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The sequence diversity that exists between HIV-1 strains presents a major obstacle to the design of a vaccine that will be effective on a global scale. Focusing on highly conserved cytotoxic T-lymphocyte epitopes as vaccine targets has been called into question by evidence that variation within epitope flanking regions can affect processing and presentation. METHODS Using epitope-specific T-cell clones tested for recognition of HLA-matched target cells infected with vaccinia viruses expressing HIV-1 nef genes derived from different HIV-1 clades, we examined the efficiency of presentation of an HLA-B*40 restricted HIV-1 nef epitope compared to that of an HLA-B*08 restricted epitope with which it overlaps by 6 amino acides. RESULTS This small shift in epitope position substantially changed the patter or epitope processing and led either to an increase or decrease in antigen generation dependent on the viral sequences present. CONCLUSIONS These data demonstrate the complexity of the antigen presentation pathway and the difficulties associated with selecting CTL epitopes as targets for an HIV-1 vaccine that will be effective in many populations and against several viral strains.
Collapse
|