1
|
Singh N, Giri MK, Chattopadhyay D. Lighting the path: how light signaling regulates stomatal movement and plant immunity. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:769-786. [PMID: 39673781 DOI: 10.1093/jxb/erae475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 12/12/2024] [Indexed: 12/16/2024]
Abstract
Stomata, the small pores on the surfaces of plant leaves and stems, are crucial for gas exchange and also play a role in defense against pathogens. Stomatal movement is influenced not only by surrounding light conditions but also by the presence of foliar pathogens. Certain light wavelengths such as blue or high irradiance red light cause stomatal opening, making it easier for bacteria to enter through opened stomata and causing disease progression in plants. Illumination with blue or intense red light autophosphorylates phototropin, a blue light photoreceptor protein kinase, that in turn activates a signaling cascade to open the stomata. Undoubtedly stomatal defense is a fascinating aspect of plant immunology, especially in plant-foliar pathogen interactions. During these interactions, stomata fundamentally serve as entry points for intrusive pathogens and initiate the plant defense signaling cascade. This review highlights how light-activated photoreceptors such as cryptochromes (CRYs), phytochromes (phys), and UV-receptors (UVRs) influence stomatal movement and defense signaling after foliar pathogen intrusion. It also explores the link between stomatal defense, light signaling, and plant immunity, which is vital for safeguarding crops against pathogens.
Collapse
Affiliation(s)
- Nidhi Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Mrunmay Kumar Giri
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar-751024, Odisha,India
| | - Debasis Chattopadhyay
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| |
Collapse
|
2
|
Larrondo LF. Circadian rhythms: pervasive, and often times evasive. Philos Trans R Soc Lond B Biol Sci 2025; 380:20230477. [PMID: 39842475 DOI: 10.1098/rstb.2023.0477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/23/2024] [Accepted: 08/30/2024] [Indexed: 01/24/2025] Open
Abstract
Most circadian texts begin by stating that clocks are pervasive throughout the tree of life. Indeed, clock mechanisms have been described from cyanobacteria to humans, representing a notable example of convergent evolution: yet, there are several phyla in animals, protists or within fungi and bacteria, in which homologs of some-or all-known clock components seem to be absent, posing inevitable questions about the evolution of circadian systems. Moreover, as we move away from model organisms, there are several taxa in which core clock elements can be identified at the genomic levels. However, the functional description of those putative clocks has been hard to achieve, as rhythmicity is not observed unless defined abiotic or nutritional cues are provided. The mechanisms 'conditioning' the functionality of clocks remain uncertain, emphasizing the need to delve further into non-model circadian systems. As the absence of evidence is not evidence of absence, the lack of known core-clock homologs or of observable rhythms in a given organism, cannot be an a priori criterion to discard the presence of a functional clock, as rhythmicity may be limited to yet untested experimental conditions or phenotypes. This article seeks to reflect on these topics, highlighting some of the pressing questions awaiting to be addressed.This article is part of the Theo Murphy meeting issue 'Circadian rhythms in infection and immunity'.
Collapse
Affiliation(s)
- Luis F Larrondo
- ANID-Millennium Science Initiative Program-Millennium Institute for Integrative Biology (iBio), Santiago 8331150, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| |
Collapse
|
3
|
Rahman Bhuiyan MZ, Solanki S, Del Rio Mendoza LE, Borowicz P, Lakshman DK, Qi A, Ameen G, Khan MFR. Histopathological Investigation of Varietal Responses to Cercospora beticola Infection Process on Sugar Beet Leaves. PLANT DISEASE 2023; 107:3906-3912. [PMID: 37330633 DOI: 10.1094/pdis-03-23-0562-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Cercospora leaf spot (CLS) is the most destructive foliar disease in sugar beet (Beta vulgaris). It is caused by Cercospora beticola Sacc., a fungal pathogen that produces toxins and enzymes which affect membrane permeability and cause cell death during infection. In spite of its importance, little is known about the initial stages of leaf infection by C. beticola. Therefore, we investigated the progression of C. beticola on leaf tissues of susceptible and resistant sugar beet varieties at 12-h intervals during the first 5 days after inoculation using confocal microscopy. Inoculated leaf samples were collected and stored in DAB (3,3'-diaminobenzidine) solution until processed. Samples were stained with Alexa Fluor-488-WGA dye to visualize fungal structures. Fungal biomass accumulation, reactive oxygen species (ROS) production, and the area under the disease progress curve were evaluated and compared. ROS production was not detected on any variety before 36 h postinoculation (hpi). C. beticola biomass accumulation, percentage leaf cell death, and disease severity were all significantly greater in the susceptible variety compared with the resistant variety (P < 0.05). Conidia penetrated directly through stomata between 48 to 60 hpi and produced appressoria on stomatal guard cells at 60 to 72 hpi in susceptible and resistant varieties, respectively. Penetration of hyphae inside the parenchymatous tissues varied in accordance with time postinoculation and varietal genotypes. Overall, this study provides a detailed account to date of events leading to CLS disease development in two contrasting varieties.
Collapse
Affiliation(s)
| | - Shyam Solanki
- South Dakota State University, Brookings, SD 57007, U.S.A
| | | | - Pawel Borowicz
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58102, U.S.A
| | - Dilip K Lakshman
- Sustainable Agricultural Systems Laboratory, USDA-ARS, Beltsville, MD 20705, U.S.A
| | - Aiming Qi
- Centre for Agriculture, Food, and Environmental Management Research, School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, U.K
| | - Gazala Ameen
- South Dakota State University, Brookings, SD 57007, U.S.A
| | - Mohamed F R Khan
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102, U.S.A
| |
Collapse
|
4
|
Tang Y, Tang Y, Ren D, Wang C, Qu Y, Huang L, Xue Y, Jiang Y, Wang Y, Xu L, Zhu P. White Collar 1 Modulates Oxidative Sensitivity and Virulence by Regulating the HOG1 Pathway in Fusarium asiaticum. Microbiol Spectr 2023; 11:e0520622. [PMID: 37195224 PMCID: PMC10269464 DOI: 10.1128/spectrum.05206-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 04/21/2023] [Indexed: 05/18/2023] Open
Abstract
Fusarium asiaticum is an epidemiologically important pathogen of cereal crops in east Asia, accounting for both yield losses and mycotoxin contamination problems in food and feed products. FaWC1, a component of the blue-light receptor White Collar complex (WCC), relies on its transcriptional regulatory zinc finger domain rather than the light-oxygen-voltage domain to regulate pathogenicity of F. asiaticum, although the downstream mechanisms remain obscure. In this study, the pathogenicity factors regulated by FaWC1 were analyzed. It was found that loss of FaWC1 resulted in higher sensitivity to reactive oxygen species (ROS) than in the wild type, while exogenous application of the ROS quencher ascorbic acid restored the pathogenicity of the ΔFawc1 strain to the level of the wild type, indicating that the reduced pathogenicity of the ΔFawc1 strain is due to a defect in ROS tolerance. Moreover, the expression levels of the high-osmolarity glycerol (HOG) mitogen-activated protein kinase (MAPK) pathway genes and their downstream genes encoding ROS scavenging enzymes were downregulated in the ΔFawc1 mutant. Upon ROS stimulation, the FaHOG1-green fluorescent protein (GFP)-expressing signal driven by the native promoter was inducible in the wild type but negligible in the ΔFawc1 strain. Overexpressing Fahog1 in the ΔFawc1 strain could recover the ROS tolerance and pathogenicity of the ΔFawc1 mutant, but it remained defective in light responsiveness. In summary, this study dissected the roles of the blue-light receptor component FaWC1 in regulating expression levels of the intracellular HOG-MAPK signaling pathway to affect ROS sensitivity and pathogenicity in F. asiaticum. IMPORTANCE The well-conserved fungal blue-light receptor White Collar complex (WCC) is known to regulate virulence of several pathogenic species for either plant or human hosts, but how WCC determines fungal pathogenicity remains largely unknown. The WCC component FaWC1 in the cereal pathogen Fusarium asiaticum was previously found to be required for full virulence. The present study dissected the roles of FaWC1 in regulating the intracellular HOG MAPK signaling pathway to affect ROS sensitivity and pathogenicity in F. asiaticum. This work thus extends knowledge of the association between fungal light receptors and the intracellular stress signaling pathway to regulate oxidative stress tolerance and pathogenicity in an epidemiologically important fungal pathogen of cereal crops.
Collapse
Affiliation(s)
- Ying Tang
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Yan Tang
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Dandan Ren
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Congcong Wang
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Yao Qu
- School of Life Sciences, East China Normal University, Shanghai, China
- No. 2 High School of East China Normal University, Shanghai, China
| | - Li Huang
- School of Life Sciences, East China Normal University, Shanghai, China
- Suzhou Industrial Park Xingyang School, Suzhou, China
| | - Yongjun Xue
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Yina Jiang
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Yiwen Wang
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Ling Xu
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Pinkuan Zhu
- School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
5
|
Bhunjun CS, Phukhamsakda C, Hyde KD, McKenzie EHC, Saxena RK, Li Q. Do all fungi have ancestors with endophytic lifestyles? FUNGAL DIVERS 2023. [DOI: 10.1007/s13225-023-00516-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
6
|
Cerón-Bustamante M, Balducci E, Beccari G, Nicholson P, Covarelli L, Benincasa P. Effect of light spectra on cereal fungal pathogens, a review. FUNGAL BIOL REV 2022. [DOI: 10.1016/j.fbr.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Liao CJ, Hailemariam S, Sharon A, Mengiste T. Pathogenic strategies and immune mechanisms to necrotrophs: Differences and similarities to biotrophs and hemibiotrophs. CURRENT OPINION IN PLANT BIOLOGY 2022; 69:102291. [PMID: 36063637 DOI: 10.1016/j.pbi.2022.102291] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/20/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
Pathogenesis in plant diseases is complex comprising diverse pathogen virulence and plant immune mechanisms. These pathogens cause damaging plant diseases by deploying specialized and generic virulence strategies that are countered by intricate resistance mechanisms. The significant challenges that necrotrophs pose to crop production are predicted to increase with climate change. Immunity to biotrophs and hemibiotrophs is dominated by intracellular receptors that recognize specific effectors and activate resistance. These mechanisms play only minor roles in resistance to necrotrophs. Pathogen- or host-derived conserved pattern molecules trigger immune responses that broadly contribute to plant immunity. However, certain pathogen or host-derived immune elicitors are enriched by the virulence activities of necrotrophs. Different plant hormones modulate systemic resistance and cell death that have differential impacts on resistance to pathogens of different lifestyles. Knowledge of mechanisms that contribute to resistance to necrotrophs has expanded. Besides toxins and cell wall degrading enzymes that dominate the pathogenesis of necrotrophs, other effectors with subtle contributions are being identified.
Collapse
Affiliation(s)
- Chao-Jan Liao
- Department of Botany and Plant Pathology, Purdue University, 915 W. State Street, West Lafayette, IN 47907, USA
| | - Sara Hailemariam
- Department of Botany and Plant Pathology, Purdue University, 915 W. State Street, West Lafayette, IN 47907, USA
| | - Amir Sharon
- Department of Molecular Biology and Ecology of Plants, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Tesfaye Mengiste
- Department of Botany and Plant Pathology, Purdue University, 915 W. State Street, West Lafayette, IN 47907, USA.
| |
Collapse
|
8
|
Kilaru S, Fantozzi E, Cannon S, Schuster M, Chaloner TM, Guiu-Aragones C, Gurr SJ, Steinberg G. Zymoseptoria tritici white-collar complex integrates light, temperature and plant cues to initiate dimorphism and pathogenesis. Nat Commun 2022; 13:5625. [PMID: 36163135 PMCID: PMC9512790 DOI: 10.1038/s41467-022-33183-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/07/2022] [Indexed: 11/08/2022] Open
Abstract
Transitioning from spores to hyphae is pivotal to host invasion by the plant pathogenic fungus Zymoseptoria tritici. This dimorphic switch can be initiated by high temperature in vitro (~27 °C); however, such a condition may induce cellular heat stress, questioning its relevance to field infections. Here, we study the regulation of the dimorphic switch by temperature and other factors. Climate data from wheat-growing areas indicate that the pathogen sporadically experiences high temperatures such as 27 °C during summer months. However, using a fluorescent dimorphic switch reporter (FDR1) in four wild-type strains, we show that dimorphic switching already initiates at 15-18 °C, and is enhanced by wheat leaf surface compounds. Transcriptomics reveals 1261 genes that are up- or down-regulated in hyphae of all strains. These pan-strain core dimorphism genes (PCDGs) encode known effectors, dimorphism and transcription factors, and light-responsive proteins (velvet factors, opsins, putative blue light receptors). An FDR1-based genetic screen reveals a crucial role for the white-collar complex (WCC) in dimorphism and virulence, mediated by control of PCDG expression. Thus, WCC integrates light with biotic and abiotic cues to orchestrate Z. tritici infection.
Collapse
Affiliation(s)
- Sreedhar Kilaru
- Biosciences, University of Exeter, Stocker Road, EX4 4QD, Exeter, UK
| | - Elena Fantozzi
- Biosciences, University of Exeter, Stocker Road, EX4 4QD, Exeter, UK
| | - Stuart Cannon
- Biosciences, University of Exeter, Stocker Road, EX4 4QD, Exeter, UK
| | - Martin Schuster
- Biosciences, University of Exeter, Stocker Road, EX4 4QD, Exeter, UK
| | - Thomas M Chaloner
- Biosciences, University of Exeter, Stocker Road, EX4 4QD, Exeter, UK
| | | | - Sarah J Gurr
- Biosciences, University of Exeter, Stocker Road, EX4 4QD, Exeter, UK
- University of Utrecht, Padualaan 8, Utrecht, 3584 CH, The Netherlands
| | - Gero Steinberg
- Biosciences, University of Exeter, Stocker Road, EX4 4QD, Exeter, UK.
- University of Utrecht, Padualaan 8, Utrecht, 3584 CH, The Netherlands.
| |
Collapse
|
9
|
Henríquez-Urrutia M, Spanner R, Olivares-Yánez C, Seguel-Avello A, Pérez-Lara R, Guillén-Alonso H, Winkler R, Herrera-Estrella AH, Canessa P, Larrondo LF. Circadian oscillations in Trichoderma atroviride and the role of core clock components in secondary metabolism, development, and mycoparasitism against the phytopathogen Botrytis cinerea. eLife 2022; 11:71358. [PMID: 35950750 PMCID: PMC9427114 DOI: 10.7554/elife.71358] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
Circadian clocks are important for an individual’s fitness, and recent studies have underlined their role in the outcome of biological interactions. However, the relevance of circadian clocks in fungal–fungal interactions remains largely unexplored. We sought to characterize a functional clock in the biocontrol agent Trichoderma atroviride to assess its importance in the mycoparasitic interaction against the phytopathogen Botrytis cinerea. Thus, we confirmed the existence of circadian rhythms in T. atroviride, which are temperature-compensated and modulated by environmental cues such as light and temperature. Nevertheless, the presence of such molecular rhythms appears to be highly dependent on the nutritional composition of the media. Complementation of a clock null (Δfrq) Neurospora crassa strain with the T. atroviride-negative clock component (tafrq) restored core clock function, with the same period observed in the latter fungus, confirming the role of tafrq as a bona fide core clock component. Confrontation assays between wild-type and clock mutant strains of T. atroviride and B. cinerea, in constant light or darkness, revealed an inhibitory effect of light on T. atroviride’s mycoparasitic capabilities. Interestingly, when confrontation assays were performed under light/dark cycles, T. atroviride’s overgrowth capacity was enhanced when inoculations were at dawn compared to dusk. Deleting the core clock-negative element FRQ in B. cinerea, but not in T. atroviride, was vital for the daily differential phenotype, suggesting that the B. cinerea clock has a more significant influence on the result of this interaction. Additionally, we observed that T. atroviride clock components largely modulate development and secondary metabolism in this fungus, including the rhythmic production of distinct volatile organic compounds (VOCs). Thus, this study provides evidence on how clock components impact diverse aspects of T. atroviride lifestyle and how daily changes modulate fungal interactions and dynamics.
Collapse
Affiliation(s)
- Marlene Henríquez-Urrutia
- Molecular Genetics and Microbiology department, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rebecca Spanner
- Molecular Genetics and Microbiology department, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Consuelo Olivares-Yánez
- Millennium Science Initiative Program, Millennium Institute for Integrative Biology, Santiago, Chile
| | - Aldo Seguel-Avello
- Molecular Genetics and Microbiology department, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodrigo Pérez-Lara
- Molecular Genetics and Microbiology department, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Hector Guillén-Alonso
- Department of Biotechnology and Biochemistry, Cinvestav Unidad Irapuato, Irapuato, Mexico
| | - Robert Winkler
- Department of Biotechnology and Biochemistry, Cinvestav Unidad Irapuato, Irapuato, Mexico
| | | | - Paulo Canessa
- Centro de Biotecnología Vegetal, Universidad Andrés Bello, Santiago, Chile
| | - Luis F Larrondo
- Molecular Genetics and Microbiology department, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
10
|
Tiley AMM, Lawless C, Pilo P, Karki SJ, Lu J, Long Z, Gibriel H, Bailey AM, Feechan A. The Zymoseptoria tritici white collar-1 gene, ZtWco-1, is required for development and virulence on wheat. Fungal Genet Biol 2022; 161:103715. [PMID: 35709910 DOI: 10.1016/j.fgb.2022.103715] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 11/04/2022]
Abstract
The fungus Zymoseptoria tritici causes Septoria Tritici Blotch (STB), which is one of the most devastating diseases of wheat in Europe. There are currently no fully durable methods of control against Z. tritici, so novel strategies are urgently required. One of the ways in which fungi are able to respond to their surrounding environment is through the use of photoreceptor proteins which detect light signals. Although previous evidence suggests that Z. tritici can detect light, no photoreceptor genes have been characterised in this pathogen. This study characterises ZtWco-1, a predicted photoreceptor gene in Z. tritici. The ZtWco-1 gene is a putative homolog to the blue light photoreceptor from Neurospora crassa, wc-1. Z. tritici mutants with deletions in ZtWco-1 have defects in hyphal branching, melanisation and virulence on wheat. In addition, we identify the putative circadian clock gene ZtFrq in Z. tritici. This study provides evidence for the genetic regulation of light detection in Z. tritici and it open avenues for future research into whether this pathogen has a circadian clock.
Collapse
Affiliation(s)
- Anna M M Tiley
- Agri-Food Biosciences Institute, 18a Newforge Ln, Belfast BT9 5PX, United Kingdom; School of Agriculture and Food Science, University College Dublin, Dublin 4, Republic of Ireland.
| | - Colleen Lawless
- School of Agriculture and Food Science, University College Dublin, Dublin 4, Republic of Ireland; School of Biology and Environmental Science, University College Dublin, Dublin 4, Republic of Ireland
| | - Paola Pilo
- School of Agriculture and Food Science, University College Dublin, Dublin 4, Republic of Ireland
| | - Sujit J Karki
- School of Agriculture and Food Science, University College Dublin, Dublin 4, Republic of Ireland
| | - Jijun Lu
- School of Agriculture and Food Science, University College Dublin, Dublin 4, Republic of Ireland
| | - Zhuowei Long
- School of Agriculture and Food Science, University College Dublin, Dublin 4, Republic of Ireland
| | - Hesham Gibriel
- School of Agriculture and Food Science, University College Dublin, Dublin 4, Republic of Ireland; Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Andy M Bailey
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, United Kingdom
| | - Angela Feechan
- School of Agriculture and Food Science, University College Dublin, Dublin 4, Republic of Ireland.
| |
Collapse
|
11
|
Jeong MH, Park CH, Kim JA, Choi ED, Kim S, Hur JS, Park SY. Production and Activity of Cristazarin in the Lichen-Forming Fungus Cladonia metacorallifera. J Fungi (Basel) 2021; 7:601. [PMID: 34436140 PMCID: PMC8397021 DOI: 10.3390/jof7080601] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 11/18/2022] Open
Abstract
Lichens are a natural source of bioactive compounds. Cladonia metacorallifera var. reagens KoLRI002260 is a rare lichen known to produce phenolic compounds, such as rhodocladonic, thamnolic, and didymic acids. However, these metabolites have not been detected in isolated mycobionts. We investigated the effects of six carbon sources on metabolite biosynthesis in the C. metacorallifera mycobiont. Red pigments appeared only in Lilly and Barnett's media with fructose at 15 °C after 3 weeks of culture and decreased after 6 weeks. We purified these red pigments using preparative-scale high performance liquid chromatography and analyzed them via nuclear magnetic resonance. Results indicated that 1% fructose-induced cristazarin and 6-methylcristazarin production under light conditions. In total, 27 out of 30 putative polyketide synthase genes were differentially expressed after 3 weeks of culture, implying that these genes may be required for cristazarin production in C. metacorallifera. Moreover, the white collar genes Cmwc-1 and Cmwc-2 were highly upregulated at all times under light conditions, indicating a possible correlation between cristazarin production and gene expression. The cancer cell lines AGS, CT26, and B16F1 were sensitive to cristazarin, with IC50 values of 18.2, 26.1, and 30.9 μg/mL, respectively, which highlights the value of cristazarin. Overall, our results suggest that 1% fructose under light conditions is required for cristazarin production by C. metacorallifera mycobionts, and cristazarin could be a good bioactive compound.
Collapse
Affiliation(s)
- Min-Hye Jeong
- Korean Lichen Research Institute, Sunchon National University, Sunchoeon 57922, Korea; (M.-H.J.); (C.-H.P.)
- Department of Plant Medicine, Sunchon National University, Suncheon 57922, Korea;
| | - Chan-Ho Park
- Korean Lichen Research Institute, Sunchon National University, Sunchoeon 57922, Korea; (M.-H.J.); (C.-H.P.)
| | - Jung A Kim
- National Institute of Biological Resources, Incheon 22689, Korea; (J.A.K.); (S.K.)
| | - Eu Ddeum Choi
- Department of Plant Medicine, Sunchon National University, Suncheon 57922, Korea;
| | - Soonok Kim
- National Institute of Biological Resources, Incheon 22689, Korea; (J.A.K.); (S.K.)
| | - Jae-Seoun Hur
- Korean Lichen Research Institute, Sunchon National University, Sunchoeon 57922, Korea; (M.-H.J.); (C.-H.P.)
| | - Sook-Young Park
- Department of Plant Medicine, Sunchon National University, Suncheon 57922, Korea;
| |
Collapse
|
12
|
John E, Singh KB, Oliver RP, Tan K. Transcription factor control of virulence in phytopathogenic fungi. MOLECULAR PLANT PATHOLOGY 2021; 22:858-881. [PMID: 33973705 PMCID: PMC8232033 DOI: 10.1111/mpp.13056] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 05/12/2023]
Abstract
Plant-pathogenic fungi are a significant threat to economic and food security worldwide. Novel protection strategies are required and therefore it is critical we understand the mechanisms by which these pathogens cause disease. Virulence factors and pathogenicity genes have been identified, but in many cases their roles remain elusive. It is becoming increasingly clear that gene regulation is vital to enable plant infection and transcription factors play an essential role. Efforts to determine their regulatory functions in plant-pathogenic fungi have expanded since the annotation of fungal genomes revealed the ubiquity of transcription factors from a broad range of families. This review establishes the significance of transcription factors as regulatory elements in plant-pathogenic fungi and provides a systematic overview of those that have been functionally characterized. Detailed analysis is provided on regulators from well-characterized families controlling various aspects of fungal metabolism, development, stress tolerance, and the production of virulence factors such as effectors and secondary metabolites. This covers conserved transcription factors with either specialized or nonspecialized roles, as well as recently identified regulators targeting key virulence pathways. Fundamental knowledge of transcription factor regulation in plant-pathogenic fungi provides avenues to identify novel virulence factors and improve our understanding of the regulatory networks linked to pathogen evolution, while transcription factors can themselves be specifically targeted for disease control. Areas requiring further insight regarding the molecular mechanisms and/or specific classes of transcription factors are identified, and direction for future investigation is presented.
Collapse
Affiliation(s)
- Evan John
- Centre for Crop and Disease ManagementCurtin UniversityBentleyWestern AustraliaAustralia
- School of Molecular and Life SciencesCurtin UniversityBentleyWestern AustraliaAustralia
| | - Karam B. Singh
- Agriculture and FoodCommonwealth Scientific and Industrial Research OrganisationFloreatWestern AustraliaAustralia
| | - Richard P. Oliver
- School of Molecular and Life SciencesCurtin UniversityBentleyWestern AustraliaAustralia
| | - Kar‐Chun Tan
- Centre for Crop and Disease ManagementCurtin UniversityBentleyWestern AustraliaAustralia
- School of Molecular and Life SciencesCurtin UniversityBentleyWestern AustraliaAustralia
| |
Collapse
|
13
|
Ebert MK, Rangel LI, Spanner RE, Taliadoros D, Wang X, Friesen TL, de Jonge R, Neubauer JD, Secor GA, Thomma BPHJ, Stukenbrock EH, Bolton MD. Identification and characterization of Cercospora beticola necrosis-inducing effector CbNip1. MOLECULAR PLANT PATHOLOGY 2021; 22:301-316. [PMID: 33369055 PMCID: PMC7865086 DOI: 10.1111/mpp.13026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 05/30/2023]
Abstract
Cercospora beticola is a hemibiotrophic fungus that causes cercospora leaf spot disease of sugar beet (Beta vulgaris). After an initial symptomless biotrophic phase of colonization, necrotic lesions appear on host leaves as the fungus switches to a necrotrophic lifestyle. The phytotoxic secondary metabolite cercosporin has been shown to facilitate fungal virulence for several Cercospora spp. However, because cercosporin production and subsequent cercosporin-initiated formation of reactive oxygen species is light-dependent, cell death evocation by this toxin is only fully ensured during a period of light. Here, we report the discovery of the effector protein CbNip1 secreted by C. beticola that causes enhanced necrosis in the absence of light and, therefore, may complement light-dependent necrosis formation by cercosporin. Infiltration of CbNip1 protein into sugar beet leaves revealed that darkness is essential for full CbNip1-triggered necrosis, as light exposure delayed CbNip1-triggered host cell death. Gene expression analysis during host infection shows that CbNip1 expression is correlated with symptom development in planta. Targeted gene replacement of CbNip1 leads to a significant reduction in virulence, indicating the importance of CbNip1 during colonization. Analysis of 89 C. beticola genomes revealed that CbNip1 resides in a region that recently underwent a selective sweep, suggesting selection pressure exists to maintain a beneficial variant of the gene. Taken together, CbNip1 is a crucial effector during the C. beticola-sugar beet disease process.
Collapse
Affiliation(s)
- Malaika K. Ebert
- Edward T. Schafer Agricultural Research CenterUSDA Agricultural Research ServiceFargoNorth DakotaUSA
- Department of Plant PathologyNorth Dakota State UniversityFargoNorth DakotaUSA
- Laboratory of PhytopathologyWageningen UniversityWageningenNetherlands
- Present address:
Department of Plant BiologyMichigan State UniversityEast LansingMichiganUSA
| | - Lorena I. Rangel
- Edward T. Schafer Agricultural Research CenterUSDA Agricultural Research ServiceFargoNorth DakotaUSA
| | - Rebecca E. Spanner
- Edward T. Schafer Agricultural Research CenterUSDA Agricultural Research ServiceFargoNorth DakotaUSA
- Department of Plant PathologyNorth Dakota State UniversityFargoNorth DakotaUSA
| | - Demetris Taliadoros
- Environmental Genomics GroupMax Planck Institute for Evolutionary BiologyPlönGermany
- Christian‐Albrechts University of KielKielGermany
| | - Xiaoyun Wang
- Edward T. Schafer Agricultural Research CenterUSDA Agricultural Research ServiceFargoNorth DakotaUSA
- Present address:
Institute of BiotechnologyCornell UniversityIthacaNew YorkUSA
| | - Timothy L. Friesen
- Edward T. Schafer Agricultural Research CenterUSDA Agricultural Research ServiceFargoNorth DakotaUSA
- Department of Plant PathologyNorth Dakota State UniversityFargoNorth DakotaUSA
| | - Ronnie de Jonge
- Plant‐Microbe InteractionsDepartment of BiologyUtrecht UniversityUtrechtNetherlands
- Department of Plant Systems BiologyVIBGhentBelgium
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
| | - Jonathan D. Neubauer
- Edward T. Schafer Agricultural Research CenterUSDA Agricultural Research ServiceFargoNorth DakotaUSA
| | - Gary A. Secor
- Department of Plant PathologyNorth Dakota State UniversityFargoNorth DakotaUSA
| | - Bart P. H. J. Thomma
- Laboratory of PhytopathologyWageningen UniversityWageningenNetherlands
- University of Cologne, Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS)CologneGermany
| | - Eva H. Stukenbrock
- Environmental Genomics GroupMax Planck Institute for Evolutionary BiologyPlönGermany
- Christian‐Albrechts University of KielKielGermany
| | - Melvin D. Bolton
- Edward T. Schafer Agricultural Research CenterUSDA Agricultural Research ServiceFargoNorth DakotaUSA
- Department of Plant PathologyNorth Dakota State UniversityFargoNorth DakotaUSA
| |
Collapse
|
14
|
Losi A, Gärtner W. A light life together: photosensing in the plant microbiota. Photochem Photobiol Sci 2021; 20:451-473. [PMID: 33721277 DOI: 10.1007/s43630-021-00029-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/17/2021] [Indexed: 12/12/2022]
Abstract
Bacteria and fungi of the plant microbiota can be phytopathogens, parasites or symbionts that establish mutually advantageous relationships with plants. They are often rich in photoreceptors for UVA-Visible light, and in many cases, they exhibit light regulation of growth patterns, infectivity or virulence, reproductive traits, and production of pigments and of metabolites. In addition to the light-driven effects, often demonstrated via the generation of photoreceptor gene knock-outs, microbial photoreceptors can exert effects also in the dark. Interestingly, some fungi switch their attitude towards plants in dependence of illumination or dark conditions in as much as they may be symbiotic or pathogenic. This review summarizes the current knowledge about the roles of light and photoreceptors in plant-associated bacteria and fungi aiming at the identification of common traits and general working ideas. Still, reports on light-driven infection of plants are often restricted to the description of macroscopically observable phenomena, whereas detailed information on the molecular level, e.g., protein-protein interaction during signal transduction or induction mechanisms of infectivity/virulence initiation remains sparse. As it becomes apparent from still only few molecular studies, photoreceptors, often from the red- and the blue light sensitive groups interact and mutually modulate their individual effects. The topic is of great relevance, even in economic terms, referring to plant-pathogen or plant-symbionts interactions, considering the increasing usage of artificial illumination in greenhouses, the possible light-regulation of the synthesis of plant-growth stimulating substances or herbicides by certain symbionts, and the biocontrol of pests by selected fungi and bacteria in a sustainable agriculture.
Collapse
Affiliation(s)
- Aba Losi
- Department of Mathematical, Physical and Computer Sciences, University of Parma, Parco Area delle Scienze 7/A, 43124, Parma, Italy.
| | - Wolfgang Gärtner
- Institute for Analytical Chemistry, University of Leipzig, Linnéstrasse 3, 04103, Leipzig, Germany
| |
Collapse
|
15
|
Pérez-Arques C, Navarro-Mendoza MI, Murcia L, Lax C, Sanchis M, Capilla J, Navarro E, Garre V, Nicolás FE. A Mucoralean White Collar-1 Photoreceptor Controls Virulence by Regulating an Intricate Gene Network during Host Interactions. Microorganisms 2021; 9:459. [PMID: 33672193 PMCID: PMC7927057 DOI: 10.3390/microorganisms9020459] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/08/2021] [Accepted: 02/18/2021] [Indexed: 01/02/2023] Open
Abstract
Mucolares are an ancient group of fungi encompassing the causal agents for the lethal infection mucormycosis. The high lethality rates, the emerging character of this disease, and the broad antifungal resistance of its causal agents are mucormycosis features that are alarming clinicians and researchers. Thus, the research field around mucormycosis is currently focused on finding specific weaknesses and targets in Mucorales for developing new treatments. In this work, we tested the role of the white-collar genes family in the virulence potential of Mucor lusitanicus. Study of the three genes of this family, mcwc-1a, mcwc-1b, and mcwc-1c, resulted in a marked functional specialization, as only mcwc-1a was essential to maintain the virulence potential of M. lusitanicus. The traditional role of wc-1 genes regulating light-dependent responses is a thoroughly studied field, whereas their role in virulence remains uncharacterized. In this work, we investigated the mechanism involving mcwc-1a in virulence from an integrated transcriptomic and functional approach during the host-pathogen interaction. Our results revealed mcwc-1a as a master regulator controlling an extensive gene network. Further dissection of this gene network clustering its components by type of regulation and functional criteria disclosed a multifunctional mechanism depending on diverse pathways. In the absence of phagocytic cells, mcwc-1a controlled pathways related to cell motility and the cytoskeleton that could be associated with the essential tropism during tissue invasion. After phagocytosis, several oxidative response pathways dependent on mcwc-1a were activated during the germination of M. lusitanicus spores inside phagocytic cells, which is the first stage of the infection. The third relevant group of genes involved in virulence and regulated by mcwc-1a belonged to the "unknown function," indicating that new and hidden pathways are involved in virulence. The unknown function category is especially pertinent in the study of mucormycosis, as it is highly enriched in specific fungal genes that represent the most promising targets for developing new antifungal compounds. These results unveil a complex multifunctional mechanism used by wc-1 genes to regulate the pathogenic potential in Mucorales that could also apply to other fungal pathogens.
Collapse
Affiliation(s)
- Carlos Pérez-Arques
- Departmento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain; (C.P.-A.); (M.I.N.-M.); (L.M.); (C.L.); (E.N.)
| | - María Isabel Navarro-Mendoza
- Departmento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain; (C.P.-A.); (M.I.N.-M.); (L.M.); (C.L.); (E.N.)
| | - Laura Murcia
- Departmento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain; (C.P.-A.); (M.I.N.-M.); (L.M.); (C.L.); (E.N.)
| | - Carlos Lax
- Departmento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain; (C.P.-A.); (M.I.N.-M.); (L.M.); (C.L.); (E.N.)
| | - Marta Sanchis
- Unidad de Microbiología, Universitat Rovira i Virgili, IISPV, 43003 Tarragona, Spain; (M.S.); (J.C.)
| | - Javier Capilla
- Unidad de Microbiología, Universitat Rovira i Virgili, IISPV, 43003 Tarragona, Spain; (M.S.); (J.C.)
| | - Eusebio Navarro
- Departmento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain; (C.P.-A.); (M.I.N.-M.); (L.M.); (C.L.); (E.N.)
| | - Victoriano Garre
- Departmento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain; (C.P.-A.); (M.I.N.-M.); (L.M.); (C.L.); (E.N.)
| | - Francisco Esteban Nicolás
- Departmento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain; (C.P.-A.); (M.I.N.-M.); (L.M.); (C.L.); (E.N.)
| |
Collapse
|
16
|
Xiang Q, Lott AA, Assmann SM, Chen S. Advances and perspectives in the metabolomics of stomatal movement and the disease triangle. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 302:110697. [PMID: 33288010 DOI: 10.1016/j.plantsci.2020.110697] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/26/2020] [Accepted: 09/28/2020] [Indexed: 05/20/2023]
Abstract
Crops are continuously exposed to microbial pathogens that cause tremendous yield losses worldwide. Stomatal pores formed by pairs of specialized guard cells in the leaf epidermis represent a major route of pathogen entry. Guard cells have an essential role as a first line of defense against pathogens. Metabolomics is an indispensable systems biology tool that has facilitated discovery and functional studies of metabolites that regulate stomatal movement in response to pathogens and other environmental factors. Guard cells, pathogens and environmental factors constitute the "stomatal disease triangle". The aim of this review is to highlight recent advances toward understanding the stomatal disease triangle in the context of newly discovered signaling molecules, hormone crosstalk, and consequent molecular changes that integrate pathogens and environmental sensing into stomatal immune responses. Future perspectives on emerging single-cell studies, multiomics and molecular imaging in the context of stomatal defense are discussed. Advances in this important area of plant biology will inform rational crop engineering and breeding for enhanced stomatal defense without disruption of other pathways that impact crop yield.
Collapse
Affiliation(s)
- Qingyuan Xiang
- Department of Biology, University of Florida Genetics Institute, Gainesville, FL, USA
| | - Aneirin A Lott
- Department of Biology, University of Florida Genetics Institute, Gainesville, FL, USA; Plant Molecular and Cellular Biology Program, University of Florida, FL, USA
| | - Sarah M Assmann
- Department of Biology, Pennsylvania State University, State College, PA, USA
| | - Sixue Chen
- Department of Biology, University of Florida Genetics Institute, Gainesville, FL, USA; Plant Molecular and Cellular Biology Program, University of Florida, FL, USA; Proteomics and Mass Spectrometry Facility, University of Florida, FL, USA.
| |
Collapse
|
17
|
Nyanapah JO, Ayiecho PO, Nyabundi JO, Otieno W, Ojiambo PS. Field Characterization of Partial Resistance to Gray Leaf Spot in Elite Maize Germplasm. PHYTOPATHOLOGY 2020; 110:1668-1679. [PMID: 32441590 DOI: 10.1094/phyto-12-19-0446-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Forty-eight inbred lines of maize with varying levels of resistance to gray leaf spot (GLS) were artificially inoculated with Cercospora zeina and evaluated to characterize partial disease resistance in maize under field conditions from 2012 to 2014 across 12 environments in western Kenya. Eight measures of disease epidemic-that is, final percent diseased leaf area (FPDLA), standardized area under the disease progress curve (SAUDPC), weighted mean absolute rate of disease increase (ρ), disease severity scale (CDSG), percent diseased leaf area at the inflection point (PDLAIP), SAUDPC at the inflection point (SAUDPCIP), time from inoculation to transition of disease progress from the increasing to the decreasing phase of epidemic increase (TIP), and latent period (LP)-were examined. Inbred lines significantly (P < 0.05) affected all measures of disease epidemic except ρ. However, the proportion of the variation attributed to the analysis of variance model was most strongly associated with SAUDPC (R2 = 89.4%). Inbred lines were also most consistently ranked for disease resistance based on SAUDPC. Although SAUDPC was deemed the most useful variable for quantifying partial resistance in the test genotypes, the proportion of the variation in SAUDPC in each plot was most strongly (R2 = 93.9%) explained by disease ratings taken between the VT and R4 stages of plant development. Individual disease ratings at the R4 stage of plant development were nearly as effective as SAUDPC in discerning the differential reaction of test genotypes. Thus, GLS rankings of inbred lines based on disease ratings at these plant developmental stages should be useful in prebreeding nurseries and preliminary evaluation trials involving large germplasm populations.
Collapse
Affiliation(s)
- James O Nyanapah
- Department of Applied Plant Sciences, School of Agriculture and Food Security, Maseno University, Maseno, Kenya
| | - Patrick O Ayiecho
- Department of Applied Plant Sciences, School of Agriculture and Food Security, Maseno University, Maseno, Kenya
| | - Julius O Nyabundi
- Department of Applied Plant Sciences, School of Agriculture and Food Security, Maseno University, Maseno, Kenya
| | | | - Peter S Ojiambo
- Center for Integrated Fungal Research, Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, U.S.A
| |
Collapse
|
18
|
McCorison CB, Goodwin SB. The wheat pathogen Zymoseptoria tritici senses and responds to different wavelengths of light. BMC Genomics 2020; 21:513. [PMID: 32711450 PMCID: PMC7382159 DOI: 10.1186/s12864-020-06899-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 07/08/2020] [Indexed: 12/30/2022] Open
Abstract
Background The ascomycete fungus Zymoseptoria tritici (synonyms: Mycosphaerella graminicola, Septoria tritici) is a major pathogen of wheat that causes the economically important foliar disease Septoria tritici blotch. Despite its importance as a pathogen, little is known about the reaction of this fungus to light. To test for light responses, cultures of Z. tritici were grown in vitro for 16-h days under white, blue or red light, and their transcriptomes were compared with each other and to those obtained from control cultures grown in darkness. Results There were major differences in gene expression with over 3400 genes upregulated in one or more of the light conditions compared to dark, and from 1909 to 2573 genes specifically upregulated in the dark compared to the individual light treatments. Differences between light treatments were lower, ranging from only 79 differentially expressed genes in the red versus blue comparison to 585 between white light and red. Many of the differentially expressed genes had no functional annotations. For those that did, analysis of the Gene Ontology (GO) terms showed that those related to metabolism were enriched in all three light treatments, while those related to growth and communication were more prevalent in the dark. Interestingly, genes for effectors that have been shown previously to be involved in pathogenicity also were upregulated in one or more of the light treatments, suggesting a possible role of light for infection. Conclusions This analysis shows that Z. tritici can sense and respond to light with a huge effect on transcript abundance. High proportions of differentially expressed genes with no functional annotations illuminates the huge gap in our understanding of light responses in this fungus. Differential expression of genes for effectors indicates that light could be important for pathogenicity; unknown effectors may show a similar pattern of transcription. A better understanding of the effects of light on pathogenicity and other biological processes of Z. tritici could help to manage Septoria tritici blotch in the future.
Collapse
Affiliation(s)
- Cassandra B McCorison
- Department of Botany and Plant Pathology, Purdue University, 915 West State Street, West Lafayette, IN, 47907-2054, USA
| | - Stephen B Goodwin
- USDA-Agricultural Research Service, Crop Production and Pest Control Research Unit, Department of Botany and Plant Pathology, Purdue University, 915 West State Street, West Lafayette, IN, 47907-2054, USA.
| |
Collapse
|
19
|
Blakeslea trispora Photoreceptors: Identification and Functional Analysis. Appl Environ Microbiol 2020; 86:AEM.02962-19. [PMID: 32033952 DOI: 10.1128/aem.02962-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 02/04/2020] [Indexed: 11/20/2022] Open
Abstract
Blakeslea trispora is an industrial fungal species used for large-scale production of carotenoids. However, B. trispora light-regulated physiological processes, such as carotenoid biosynthesis and phototropism, are not fully understood. In this study, we isolated and characterized three photoreceptor genes, btwc-1a, btwc-1b, and btwc-1c, in B. trispora Bioinformatics analyses of these genes and their protein sequences revealed that the functional domains (PAS/LOV [Per-ARNT-Sim/light-oxygen-voltage] domain and zinc finger structure) of the proteins have significant homology to those of other fungal blue-light regulator proteins expressed by Mucor circinelloides and Neurospora crassa The photoreceptor proteins were synthesized by heterologous expression in Escherichia coli The chromogenic groups consisting of flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN) were detected to accompany BTWC-1 proteins by using high-performance liquid chromatography (HPLC) and fluorescence spectrometry, demonstrating that the proteins may be photosensitive. The absorbance changes of the purified BTWC-1 proteins seen under dark and light conditions indicated that they were light responsive and underwent a characteristic photocycle by light induction. Site-directed mutagenesis of the cysteine residual (Cys) in BTWC-1 did not affect the normal expression of the protein in E. coli but did lead to the loss of photocycle response, indicating that Cys represents a flavin-binding domain for photon detection. We then analyzed the functions of BTWC-1 proteins by complementing btwc-1a, btwc-1b, and btwc-1c into the counterpart knockout strains of M. circinelloides for each mcwc-1 gene. Transformation of the btwc-1a complement into mcwc-1a knockout strains restored the positive phototropism, while the addition of btwc-1c complement remedied the deficiency of carotene biosynthesis in the mcwc-1c knockout strains under conditions of illumination. These results indicate that btwc-1a and btwc-1c are involved in phototropism and light-inducible carotenogenesis. Thus, btwc-1 genes share a conserved flavin-binding domain and act as photoreceptors for control of different light transduction pathways in B. trispora IMPORTANCE Studies have confirmed that light-regulated carotenogenesis is prevalent in filamentous fungi, especially in mucorales. However, few investigations have been done to understand photoinduced synthesis of carotenoids and related mechanisms in B. trispora, a well-known industrial microbial strains. In the present study, three photoreceptor genes in B. trispora were cloned, expressed, and characterized by bioinformatics and photoreception analyses, and then in vivo functional analyses of these genes were constructed in M. circinelloides The results of this study will lead to a better understanding of photoreception and light-regulated carotenoid synthesis and other physiological responses in B. trispora.
Collapse
|
20
|
The Photoreceptor Components FaWC1 and FaWC2 of Fusarium asiaticum Cooperatively Regulate Light Responses but Play Independent Roles in Virulence Expression. Microorganisms 2020; 8:microorganisms8030365. [PMID: 32150839 PMCID: PMC7143034 DOI: 10.3390/microorganisms8030365] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/01/2020] [Accepted: 03/03/2020] [Indexed: 01/03/2023] Open
Abstract
Fusarium asiaticum belongs to one of the phylogenetical subgroups of the F. graminearum species complex and is epidemically predominant in the East Asia area. The life cycle of F. asiaticum is significantly regulated by light. In this study, the fungal blue light receptor white collar complex (WCC), including FaWC1 and FaWC2, were characterized in F. asiaticum. The knockout mutants ΔFawc1 and ΔFawc2 were generated by replacing the target genes via homologous recombination events. The two mutants showed similar defects in light-induced carotenoid biosynthesis, UV-C resistance, sexual fruiting body development, and the expression of the light-responsive marker genes, while in contrast, all these light responses were characteristics in wild-type (WT) and their complementation strains, indicating that FaWC1 and FaWC2 are involved in the light sensing of F. asiaticum. Unexpectedly, however, the functions of Fawc1 and Fawc2 diverged in regulating virulence, as the ΔFawc1 was avirulent to the tested host plant materials, but ΔFawc2 was equivalent to WT in virulence. Moreover, functional analysis of FaWC1 by partial disruption revealed that its light–oxygen–voltage (LOV) domain was required for light sensing but dispensable for virulence, and its Zinc-finger domain was required for virulence expression but not for light signal transduction. Collectively, these results suggest that the conserved fungal blue light receptor WCC not only endows F. asiaticum with light-sensing ability to achieve adaptation to environment, but it also regulates virulence expression by the individual component FaWC1 in a light-independent manner, and the latter function opens a way for investigating the pathogenicity mechanisms of this important crop disease agent.
Collapse
|
21
|
Pandaranayaka EP, Frenkel O, Elad Y, Prusky D, Harel A. Network analysis exposes core functions in major lifestyles of fungal and oomycete plant pathogens. BMC Genomics 2019; 20:1020. [PMID: 31878885 PMCID: PMC6933724 DOI: 10.1186/s12864-019-6409-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 12/17/2019] [Indexed: 12/12/2022] Open
Abstract
Background Genomic studies demonstrate that components of virulence mechanisms in filamentous eukaryotic pathogens (FEPs, fungi and oomycetes) of plants are often highly conserved, or found in gene families that include secreted hydrolytic enzymes (e.g., cellulases and proteases) and secondary metabolites (e.g., toxins), central to the pathogenicity process. However, very few large-scale genomic comparisons have utilized complete proteomes from dozens of FEPs to reveal lifestyle-associated virulence mechanisms. Providing a powerful means for exploration, and the discovery of trends in large-scale datasets, network analysis has been used to identify core functions of the primordial cyanobacteria, and ancient evolutionary signatures in oxidoreductases. Results We used a sequence-similarity network to study components of virulence mechanisms of major pathogenic lifestyles (necrotroph (ic), N; biotroph (ic), B; hemibiotroph (ic), H) in complete pan-proteomes of 65 FEPs and 17 saprobes. Our comparative analysis highlights approximately 190 core functions found in 70% of the genomes of these pathogenic lifestyles. Core functions were found mainly in: transport (in H, N, B cores); carbohydrate metabolism, secondary metabolite synthesis, and protease (H and N cores); nucleic acid metabolism and signal transduction (B core); and amino acid metabolism (H core). Taken together, the necrotrophic core contains functions such as cell wall-associated degrading enzymes, toxin metabolism, and transport, which are likely to support their lifestyle of killing prior to feeding. The biotrophic stealth growth on living tissues is potentially controlled by a core of regulatory functions, such as: small G-protein family of GTPases, RNA modification, and cryptochrome-based light sensing. Regulatory mechanisms found in the hemibiotrophic core contain light- and CO2-sensing functions that could mediate important roles of this group, such as transition between lifestyles. Conclusions The selected set of enriched core functions identified in our work can facilitate future studies aimed at controlling FEPs. One interesting example would be to facilitate the identification of the pathogenic potential of samples analyzed by metagenomics. Finally, our analysis offers potential evolutionary scenarios, suggesting that an early-branching saprobe (identified in previous studies) has probably evolved a necrotrophic lifestyle as illustrated by the highest number of shared gene families between saprobes and necrotrophs.
Collapse
Affiliation(s)
- Eswari Pj Pandaranayaka
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Volcani Center, Agricultural Research Organization, Rishon LeZion, Israel
| | - Omer Frenkel
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, Volcani Center, Agricultural Research Organization, Rishon LeZion, Israel
| | - Yigal Elad
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, Volcani Center, Agricultural Research Organization, Rishon LeZion, Israel
| | - Dov Prusky
- Department of Postharvest Science, Institute of Postharvest and Food Sciences, Volcani Center, Agricultural Research Organization, Rishon LeZion, Israel
| | - Arye Harel
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Volcani Center, Agricultural Research Organization, Rishon LeZion, Israel.
| |
Collapse
|
22
|
Abstract
In the past four decades, tremendous progress has been made in understanding how plants respond to microbial colonization and how microbial pathogens and symbionts reprogram plant cellular processes. In contrast, our knowledge of how environmental conditions impact plant-microbe interactions is less understood at the mechanistic level, as most molecular studies are performed under simple and static laboratory conditions. In this review, we highlight research that begins to shed light on the mechanisms by which environmental conditions influence diverse plant-pathogen, plant-symbiont, and plant-microbiota interactions. There is a great need to increase efforts in this important area of research in order to reach a systems-level understanding of plant-microbe interactions that are more reflective of what occurs in nature.
Collapse
Affiliation(s)
- Yu Ti Cheng
- Howard Hughes Medical Institute, Michigan State University, East Lansing, MI 48824, USA; Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA.
| | - Li Zhang
- Howard Hughes Medical Institute, Michigan State University, East Lansing, MI 48824, USA; Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA.
| | - Sheng Yang He
- Howard Hughes Medical Institute, Michigan State University, East Lansing, MI 48824, USA; Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA; Plant Resilient Institute, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
23
|
Tiley AMM, White HJ, Foster GD, Bailey AM. The ZtvelB Gene Is Required for Vegetative Growth and Sporulation in the Wheat Pathogen Zymoseptoria tritici. Front Microbiol 2019; 10:2210. [PMID: 31632366 PMCID: PMC6779691 DOI: 10.3389/fmicb.2019.02210] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 09/10/2019] [Indexed: 11/13/2022] Open
Abstract
The ascomycete fungus Zymoseptoria tritici is the causal agent of Septoria Tritici Blotch (STB), a major disease of wheat across Europe. Current understanding of the genetic components and the environmental cues which influence development and pathogenicity of this fungus is limited. The velvet B gene, velB, has conserved roles in development, secondary metabolism, and pathogenicity across fungi. The function of this gene is best characterised in the model ascomycete fungus Aspergillus nidulans, where it is involved in co-ordinating the light response with downstream processes. There is limited knowledge of the role of light in Z. tritici, and of the molecular mechanisms underpinning the light response. We show that Z. tritici is able to detect light, and that the vegetative morphology of this fungus is influenced by light conditions. We also identify and characterise the Z. tritici velB gene, ZtvelB, by gene disruption. The ΔztvelB deletion mutants were fixed in a filamentous growth pattern and are unable to form yeast-like vegetative cells. Their morphology was similar under light and dark conditions, showing an impairment in light-responsive growth. In addition, the ΔztvelB mutants produced abnormal pycnidia that were impaired in macropycnidiospore production but could still produce viable infectious micropycnidiospores. Our results show that ZtvelB is required for yeast-like growth and asexual sporulation in Z. tritici, and we provide evidence for a role of ZtvelB in integrating light perception and developmental regulation in this important plant pathogenic fungus.
Collapse
Affiliation(s)
- Anna M. M. Tiley
- Molecular Plant Pathology and Fungal Biology, School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Hannah J. White
- School of Biology and Environmental Science, O’Brien Centre for Science, University College Dublin, Dublin, Ireland
| | - Gary D. Foster
- Molecular Plant Pathology and Fungal Biology, School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Andy M. Bailey
- Molecular Plant Pathology and Fungal Biology, School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
24
|
Krobanan K, Liang SW, Chiu HC, Shen WC. The Blue-Light Photoreceptor Sfwc-1 Gene Regulates the Phototropic Response and Fruiting-Body Development in the Homothallic Ascomycete Sordaria fimicola. Appl Environ Microbiol 2019; 85:e02206-18. [PMID: 30979837 PMCID: PMC6544823 DOI: 10.1128/aem.02206-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 04/06/2019] [Indexed: 11/20/2022] Open
Abstract
Sordaria fimicola, a coprophilous ascomycete, is a homothallic fungus that can undergo sexual differentiation with cellular and morphological changes followed by multicellular tissue development to complete its sexual cycle. In this study, we identified and characterized the blue-light photoreceptor gene in S. fimicola The S. fimicola white collar-1 photoreceptor (SfWC-1) contains light-oxygen-voltage-sensing (LOV), Per-Arnt-Sim (PAS), and other conserved domains and is homologous to the WC-1 blue-light photoreceptor of Neurospora crassa The LOV domain of Sfwc-1 was deleted by homologous recombination using Agrobacterium-mediated protoplast transformation. The Sfwc-1(Δlov) mutant showed normal vegetative growth but produced less carotenoid pigment under illumination. The mutant showed delayed and less-pronounced fruiting-body formation, was defective in phototropism of the perithecial beaks, and lacked the fruiting-body zonation pattern compared with the wild type under the illumination condition. Gene expression analyses supported the light-induced functions of the Sfwc-1 gene in the physiology and developmental process of perithecial formation in S. fimicola Moreover, green fluorescent protein (GFP)-tagged SfWC-1 fluorescence signals were transiently strong upon light induction and prominently located inside the nuclei of living hyphae. Our studies focused on the putative blue-light photoreceptor in a model ascomycete and contribute to a better understanding of the photoregulatory functions and networks mediated by the evolutionarily conserved blue-light photoreceptors across diverse fungal phyla.IMPORTANCESordaria sp. has been a model for study of fruiting-body differentiation in fungi. Several environmental factors, including light, affect cellular and morphological changes during multicellular tissue development. Here, we created a light-oxygen-voltage-sensing (LOV) domain-deleted Sfwc-1 mutant to study blue-light photoresponses in Sordaria fimicola Phototropism and rhythmic zonation of perithecia were defective in the Sfwc-1(Δlov) mutant. Moreover, fruiting-body development in the mutant was reduced and also significantly delayed. Gene expression analysis and subcellular localization study further revealed the light-induced differential gene expression and cellular responses upon light stimulation in S. fimicola.
Collapse
Affiliation(s)
- Kulsumpun Krobanan
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| | - Syun-Wun Liang
- Institute of Biomedical Informatics and Center for Systems and Synthetic Biology, National Yang-Ming University, Taipei, Taiwan
| | - Ho-Chen Chiu
- Institute of Biomedical Informatics and Center for Systems and Synthetic Biology, National Yang-Ming University, Taipei, Taiwan
| | - Wei-Chiang Shen
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
25
|
Solanki S, Ameen G, Borowicz P, Brueggeman RS. Shedding Light on Penetration of Cereal Host Stomata by Wheat Stem Rust Using Improved Methodology. Sci Rep 2019; 9:7939. [PMID: 31138873 PMCID: PMC6538696 DOI: 10.1038/s41598-019-44280-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 05/08/2019] [Indexed: 11/09/2022] Open
Abstract
Asexual urediniospore infection of primary cereal hosts by Puccinia graminis f. sp. tritici (Pgt), the wheat stem rust pathogen, was considered biphasic. The first phase, spore germination and appressoria formation, requires a dark period and moisture. The second phase, host entry by the penetration peg originating from the appressoria formed over the guard cells, was thought to require light to induce natural stomata opening. Previous studies concluded that inhibition of colonization by the dark was due to lack of penetration through closed stomata. A sensitive WGA-Alexa Fluor 488 fungal staining, surface creation and biovolume analysis method was developed enabling visualization and quantification of fungal growth in planta at early infection stages surpassing visualization barriers using previous methods. The improved method was used to investigate infection processes of Pgt during stomata penetration and colonization in barley and wheat showing that penetration is light independent. Based on the visual growth and fungal biovolume analysis it was concluded that the differences in pathogen growth dynamics in both resistant and susceptible genotypes was due to light induced pathogen growth after penetration into the substomatal space. Thus, light induced plant or pathogen cues triggers pathogen growth in-planta post penetration.
Collapse
Affiliation(s)
- Shyam Solanki
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58108-6050, USA
| | - Gazala Ameen
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58108-6050, USA
| | - Pawel Borowicz
- Department of Animal Sciences, North Dakota State University, Fargo, ND, 58108-6050, USA
| | - Robert S Brueggeman
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58108-6050, USA.
| |
Collapse
|
26
|
Zhang C, Huang H, Deng W, Li T. Genome-Wide Analysis of the Zn(II)₂Cys₆ Zinc Cluster-Encoding Gene Family in Tolypocladium guangdongense and Its Light-Induced Expression. Genes (Basel) 2019; 10:genes10030179. [PMID: 30813610 PMCID: PMC6471507 DOI: 10.3390/genes10030179] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 02/08/2019] [Accepted: 02/08/2019] [Indexed: 01/17/2023] Open
Abstract
The Zn(II)2Cys6 zinc cluster gene family is a subclass of zinc-finger proteins, which are transcriptional regulators involved in a wide variety of biological processes in fungi. We performed genome-wide identification and characterization of Zn(II)2Cys6 zinc-cluster gene (C6 zinc gene) family in Tolypocladiumguangdongense, Cordycepsmilitaris and Ophiocordycepssinensis. Based on the structures of the C6 zinc domains, these proteins were observed to be evolutionarily conserved in ascomycete fungi. We focused on T.guangdongense, a medicinal fungus, and identified 139 C6 zinc genes which could be divided into three groups. Among them, 49.6% belonged to the fungal specific transcriptional factors, and 16% had a DUF3468 domain. Homologous and phylogenetic analysis indicated that 29 C6 zinc genes were possibly involved in the metabolic process, while five C6 zinc genes were supposed to be involved in asexual or sexual development. Gene expression analysis revealed that 54 C6 zinc genes were differentially expressed under light, including two genes that possibly influenced the development, and seven genes that possibly influenced the metabolic processes. This indicated that light may affect the development and metabolic processes, at least partially, through the regulation of C6 zinc genes in T.guangdongense. Our results provide comprehensive data for further analyzing the functions of the C6 zinc genes.
Collapse
Affiliation(s)
- Chenghua Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou 510070, China.
| | - Hong Huang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou 510070, China.
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100190, China.
| | - Wangqiu Deng
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou 510070, China.
| | - Taihui Li
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou 510070, China.
| |
Collapse
|
27
|
Carvalho SD, Castillo JA. Influence of Light on Plant-Phyllosphere Interaction. FRONTIERS IN PLANT SCIENCE 2018; 9:1482. [PMID: 30369938 PMCID: PMC6194327 DOI: 10.3389/fpls.2018.01482] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 09/21/2018] [Indexed: 05/11/2023]
Abstract
Plant-phyllosphere interactions depend on microbial diversity, the plant host and environmental factors. Light is perceived by plants and by microorganisms and is used as a cue for their interaction. Photoreceptors respond to narrow-bandwidth wavelengths and activate specific internal responses. Light-induced plant responses include changes in hormonal levels, production of secondary metabolites, and release of volatile compounds, which ultimately influence plant-phyllosphere interactions. On the other hand, microorganisms contribute making some essential elements (N, P, and Fe) biologically available for plants and producing growth regulators that promote plant growth and fitness. Therefore, light directly or indirectly influences plant-microbe interactions. The usage of light-emitting diodes in plant growth facilities is helping increasing knowledge in the field. This progress will help define light recipes to optimize outputs on plant-phyllosphere communications. This review describes research advancements on light-regulated plant-phyllosphere interactions. The effects of full light spectra and narrow bandwidth-wavelengths from UV to far-red light are discussed.
Collapse
Affiliation(s)
- Sofia D. Carvalho
- Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador
| | - José A. Castillo
- School of Biological Sciences and Engineering, Yachay Tech University, Urcuquí, Ecuador
| |
Collapse
|
28
|
The contribution of the White Collar complex to Cryptococcus neoformans virulence is independent of its light-sensing capabilities. Fungal Genet Biol 2018; 121:56-64. [PMID: 30266690 DOI: 10.1016/j.fgb.2018.09.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/22/2018] [Accepted: 09/22/2018] [Indexed: 01/09/2023]
Abstract
The White Collar complex is responsible for sensing light and transmitting that signal in many fungal species. In Cryptococcus neoformans and C. deneoformans the complex is involved in protection against damage from ultraviolet (UV) light, repression of mating in response to light, and is also required for virulence. The mechanism by which the Bwc1 photoreceptor contributes to virulence is unknown. In this study, a bwc1 deletion mutant of C. neoformans was transformed with three versions of the BWC1 gene, the wild type, BWC1C605A or BWC1C605S, in which the latter two have the conserved cysteine residue replaced with either alanine or serine within the light-oxygen-voltage (LOV) domain that interacts with the flavin chromophore. The bwc1+ BWC1 strain complemented the UV sensitivity and the repression of mating in the light. The bwc1+ BWC1C605A and bwc1+ BWC1C605S strains were not fully complemented for either of the phenotypes, indicating that these BWC1 alleles impair the light responses for strains with them. Transcript analysis showed that neither of the mutated strains (bwc1+ BWC1C605A and bwc1+ BWC1C605S) showed the light-inducible expression pattern of the HEM15 and UVE1 genes as occurs in the wild type strain. These results indicate that the conserved flavin-binding site in the LOV domain of Bwc1 is required for sensing and responding to light in C. neoformans. In contrast to defects in light responses, the wild type, bwc1+ BWC1, bwc1+ BWC1C605A and bwc1+ BWC1C605S strains were equally virulent, whereas the bwc1 knock out mutant was less virulent. Furthermore, pre-exposure of the strains to light prior to inoculation had no influence on the outcome of infection. These findings define a division in function of the White Collar complex in fungi, in that in C. neoformans the role of Bwc1 in virulence is independent of light sensing.
Collapse
|
29
|
Beattie GA, Hatfield BM, Dong H, McGrane RS. Seeing the Light: The Roles of Red- and Blue-Light Sensing in Plant Microbes. ANNUAL REVIEW OF PHYTOPATHOLOGY 2018; 56:41-66. [PMID: 29768135 DOI: 10.1146/annurev-phyto-080417-045931] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Plants collect, concentrate, and conduct light throughout their tissues, thus enhancing light availability to their resident microbes. This review explores the role of photosensing in the biology of plant-associated bacteria and fungi, including the molecular mechanisms of red-light sensing by phytochromes and blue-light sensing by LOV (light-oxygen-voltage) domain proteins in these microbes. Bacteriophytochromes function as major drivers of the bacterial transcriptome and mediate light-regulated suppression of virulence, motility, and conjugation in some phytopathogens and light-regulated induction of the photosynthetic apparatus in a stem-nodulating symbiont. Bacterial LOV proteins also influence light-mediated changes in both symbiotic and pathogenic phenotypes. Although red-light sensing by fungal phytopathogens is poorly understood, fungal LOV proteins contribute to blue-light regulation of traits, including asexual development and virulence. Collectively, these studies highlight that plant microbes have evolved to exploit light cues and that light sensing is often coupled with sensing other environmental signals.
Collapse
Affiliation(s)
- Gwyn A Beattie
- Department of Plant Pathology & Microbiology, Iowa State University, Ames, Iowa 50011, USA;
| | - Bridget M Hatfield
- Department of Plant Pathology & Microbiology, Iowa State University, Ames, Iowa 50011, USA;
| | - Haili Dong
- Department of Plant Pathology & Microbiology, Iowa State University, Ames, Iowa 50011, USA;
| | - Regina S McGrane
- Department of Biological Sciences, Southwestern Oklahoma State University, Weatherford, Oklahoma 73096, USA
| |
Collapse
|
30
|
Zhu P, Li Q, Azad SM, Qi Y, Wang Y, Jiang Y, Xu L. Fungal Gene Mutation Analysis Elucidating Photoselective Enhancement of UV-C Disinfection Efficiency Toward Spoilage Agents on Fruit Surface. Front Microbiol 2018; 9:1141. [PMID: 29951038 PMCID: PMC6008522 DOI: 10.3389/fmicb.2018.01141] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 05/14/2018] [Indexed: 12/05/2022] Open
Abstract
Short-wave ultraviolet (UV-C) treatment represents a potent, clean and safe substitute to chemical sanitizers for fresh fruit preservation. However, the dosage requirement for microbial disinfection may have negative effects on fruit quality. In this study, UV-C was found to be more efficient in killing spores of Botrytis cinerea in dark and red light conditions when compared to white and blue light. Loss of the blue light receptor gene Bcwcl1, a homolog of wc-1 in Neurospora crassa, led to hypersensitivity to UV-C in all light conditions tested. The expression of Bcuve1 and Bcphr1, which encode UV-damage endonuclease and photolyase, respectively, were strongly induced by white and blue light in a Bcwcl1-dependent manner. Gene mutation analyses of Bcuve1 and Bcphr1 indicated that they synergistically contribute to survival after UV-C treatment. In vivo assays showed that UV-C (1.0 kJ/m2) abolished decay in drop-inoculated fruit only if the UV-C treatment was followed by a dark period or red light, while in contrast, typical decay appeared on UV-C irradiated fruits exposed to white or blue light. In summary, blue light enhances UV-C resistance in B. cinerea by inducing expression of the UV damage repair-related enzymes, while the efficiency of UV-C application for fruit surface disinfection can be enhanced in dark or red light conditions; these principles seem to be well conserved among postharvest fungal pathogens.
Collapse
Affiliation(s)
- Pinkuan Zhu
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Qianwen Li
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Sepideh M Azad
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Yu Qi
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Yiwen Wang
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Yina Jiang
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Ling Xu
- School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
31
|
Liversage J, Coetzee MP, Bluhm BH, Berger DK, Crampton BG. LOVe across kingdoms: Blue light perception vital for growth and development in plant–fungal interactions. FUNGAL BIOL REV 2018. [DOI: 10.1016/j.fbr.2017.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
32
|
Larrondo LF, Canessa P. The Clock Keeps on Ticking: Emerging Roles for Circadian Regulation in the Control of Fungal Physiology and Pathogenesis. Curr Top Microbiol Immunol 2018; 422:121-156. [PMID: 30255278 DOI: 10.1007/82_2018_143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Tic-tac, tic-tac, the sound of time is familiar to us, yet, it also silently shapes daily biological processes conferring 24-hour rhythms in, among others, cellular and systemic signaling, gene expression, and metabolism. Indeed, circadian clocks are molecular machines that permit temporal control of a variety of processes in individuals, with a close to 24-hour period, optimizing cellular dynamics in synchrony with daily environmental cycles. For over three decades, the molecular bases of these clocks have been extensively described in the filamentous fungus Neurospora crassa, yet, there have been few molecular studies in fungi other than Neurospora, despite evidence of rhythmic phenomena in many fungal species, including pathogenic ones. This chapter will revise the mechanisms underlying clock regulation in the model fungus N. crassa, as well as recent findings obtained in several fungi. In particular, this chapter will review the effect of circadian regulation of virulence and organismal interactions, focusing on the phytopathogen Botrytis cinerea, as well as several entomopathogenic fungi, including the behavior-manipulating species Ophiocordyceps kimflemingiae and Entomophthora muscae. Finally, this review will comment current efforts in the study of mammalian pathogenic fungi, while highlighting recent circadian lessons from parasites such as Trypanosoma and Plasmodium. The clock keeps on ticking, whether we can hear it or not.
Collapse
Affiliation(s)
- Luis F Larrondo
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile. .,Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Paulo Canessa
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile.,Facultad de Ciencias de la Vida, Centro de Biotecnologia Vegetal, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
33
|
Girard IJ, Tong C, Becker MG, Mao X, Huang J, de Kievit T, Fernando WGD, Liu S, Belmonte MF. RNA sequencing of Brassica napus reveals cellular redox control of Sclerotinia infection. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:5079-5091. [PMID: 29036633 PMCID: PMC5853404 DOI: 10.1093/jxb/erx338] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 09/14/2017] [Indexed: 05/12/2023]
Abstract
Brassica napus is one of the world's most valuable oilseeds and is under constant pressure by the necrotrophic fungal pathogen, Sclerotinia sclerotiorum, the causal agent of white stem rot. Despite our growing understanding of host pathogen interactions at the molecular level, we have yet to fully understand the biological processes and underlying gene regulatory networks responsible for determining disease outcomes. Using global RNA sequencing, we profiled gene activity at the first point of infection on the leaf surface 24 hours after pathogen exposure in susceptible (B. napus cv. Westar) and tolerant (B. napus cv. Zhongyou 821) plants. We identified a family of ethylene response factors that may contribute to host tolerance to S. sclerotiorum by activating genes associated with fungal recognition, subcellular organization, and redox homeostasis. Physiological investigation of redox homeostasis was further studied by quantifying cellular levels of the glutathione and ascorbate redox pathway and the cycling enzymes associated with host tolerance to S. sclerotiorum. Functional characterization of an Arabidopsis redox mutant challenged with the fungus provides compelling evidence into the role of the ascorbate-glutathione redox hub in the maintenance and enhancement of plant tolerance against fungal pathogens.
Collapse
Affiliation(s)
- Ian J Girard
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Chaobo Tong
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture, Wuhan 430062, Hubei, China
| | - Michael G Becker
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Xingyu Mao
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Junyan Huang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture, Wuhan 430062, Hubei, China
| | - Teresa de Kievit
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | | | - Shengyi Liu
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture, Wuhan 430062, Hubei, China
| | - Mark F Belmonte
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
34
|
|
35
|
Swart V, Crampton BG, Ridenour JB, Bluhm BH, Olivier NA, Meyer JJM, Berger DK. Complementation of CTB7 in the Maize Pathogen Cercospora zeina Overcomes the Lack of In Vitro Cercosporin Production. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:710-724. [PMID: 28535078 DOI: 10.1094/mpmi-03-17-0054-r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Gray leaf spot (GLS), caused by the sibling species Cercospora zeina or Cercospora zeae-maydis, is cited as one of the most important diseases threatening global maize production. C. zeina fails to produce cercosporin in vitro and, in most cases, causes large coalescing lesions during maize infection, a symptom generally absent from cercosporin-deficient mutants in other Cercospora spp. Here, we describe the C. zeina cercosporin toxin biosynthetic (CTB) gene cluster. The oxidoreductase gene CTB7 contained several insertions and deletions as compared with the C. zeae-maydis ortholog. We set out to determine whether complementing the defective CTB7 gene with the full-length gene from C. zeae-maydis could confer in vitro cercosporin production. C. zeina transformants containing C. zeae-maydis CTB7 were generated by Agrobacterium tumefaciens-mediated transformation and were evaluated for in vitro cercosporin production. When grown on nitrogen-limited medium in the light-conditions conducive to cercosporin production in other Cercospora spp.-one transformant accumulated a red pigment that was confirmed to be cercosporin by the KOH assay, thin-layer chromatography, and ultra performance liquid chromatography-quadrupole-time-of-flight mass spectrometry. Our results indicated that C. zeina has a defective CTB7, but all other necessary machinery required for synthesizing cercosporin-like molecules and, thus, C. zeina may produce a structural variant of cercosporin during maize infection.
Collapse
Affiliation(s)
- Velushka Swart
- 1 Department of Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute (FABI), Genomics Research Institute, University of Pretoria, Private Bag x20, Hatfield 0028, South Africa
| | - Bridget G Crampton
- 1 Department of Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute (FABI), Genomics Research Institute, University of Pretoria, Private Bag x20, Hatfield 0028, South Africa
| | - John B Ridenour
- 2 Department of Plant Pathology, University of Arkansas, Fayetteville, AR 72701, U.S.A.; and
| | - Burt H Bluhm
- 2 Department of Plant Pathology, University of Arkansas, Fayetteville, AR 72701, U.S.A.; and
| | - Nicholas A Olivier
- 1 Department of Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute (FABI), Genomics Research Institute, University of Pretoria, Private Bag x20, Hatfield 0028, South Africa
| | | | - Dave K Berger
- 1 Department of Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute (FABI), Genomics Research Institute, University of Pretoria, Private Bag x20, Hatfield 0028, South Africa
| |
Collapse
|
36
|
Ridenour JB, Bluhm BH. The novel fungal-specific gene FUG1 has a role in pathogenicity and fumonisin biosynthesis in Fusarium verticillioides. MOLECULAR PLANT PATHOLOGY 2017; 18:513-528. [PMID: 27071505 PMCID: PMC6638258 DOI: 10.1111/mpp.12414] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 04/06/2016] [Accepted: 04/07/2016] [Indexed: 05/05/2023]
Abstract
Fusarium verticillioides is a globally important pathogen of maize, capable of causing severe yield reductions and economic losses. In addition, F. verticillioides produces toxic secondary metabolites during kernel colonization that pose significant threats to human and animal health. Fusarium verticillioides and other plant-pathogenic fungi possess a large number of genes with no known or predicted function, some of which could encode novel virulence factors or antifungal targets. In this study, we identified and characterized the novel gene FUG1 (Fungal Unknown Gene 1) in F. verticillioides through functional genetics. Deletion of FUG1 impaired maize kernel colonization and fumonisin biosynthesis. In addition, deletion of FUG1 increased sensitivity to the antimicrobial compound 2-benzoxazolinone and to hydrogen peroxide, which indicates that FUG1 may play a role in mitigating stresses associated with host defence. Transcriptional profiling via RNA-sequencing (RNA-seq) identified numerous fungal genes that were differentially expressed in the kernel environment following the deletion of FUG1, including genes involved in secondary metabolism and mycelial development. Sequence analysis of the Fug1 protein provided evidence for nuclear localization, DNA binding and a domain of unknown function associated with previously characterized transcriptional regulators. This information, combined with the observed transcriptional reprogramming in the deletion mutant, suggests that FUG1 represents a novel class of fungal transcription factors or genes otherwise involved in signal transduction.
Collapse
Affiliation(s)
- John B. Ridenour
- Department of Plant PathologyUniversity of Arkansas Division of AgricultureFayettevilleAR 72701USA
| | - Burton H. Bluhm
- Department of Plant PathologyUniversity of Arkansas Division of AgricultureFayettevilleAR 72701USA
| |
Collapse
|
37
|
Lu Y, Xiao S, Wang F, Sun J, Zhao L, Yan L, Xue C. Agrobacterium tumefaciens -mediated transformation as an efficient tool for insertional mutagenesis of Cercospora zeae-maydis. J Microbiol Methods 2017; 133:8-13. [DOI: 10.1016/j.mimet.2016.12.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 12/05/2016] [Accepted: 12/08/2016] [Indexed: 10/20/2022]
|
38
|
Hevia MA, Canessa P, Larrondo LF. Circadian clocks and the regulation of virulence in fungi: Getting up to speed. Semin Cell Dev Biol 2016; 57:147-155. [DOI: 10.1016/j.semcdb.2016.03.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/25/2016] [Accepted: 03/29/2016] [Indexed: 11/24/2022]
|
39
|
Heath-Heckman EAC. The Metronome of Symbiosis: Interactions Between Microbes and the Host Circadian Clock. Integr Comp Biol 2016; 56:776-783. [PMID: 27371387 DOI: 10.1093/icb/icw067] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The entrainment of circadian rhythms, physiological cycles with a period of about 24 h, is regulated by a variety of mechanisms, including nonvisual photoreception. While circadian rhythms have been shown to be integral to many processes in multicellular organisms, including immune regulation, the effect of circadian rhythms on symbiosis, or host-microbe interactions, has only recently begun to be studied. This review summarizes recent work in the interactions of both pathogenic and mutualistic associations with host and symbiont circadian rhythms, focusing specifically on three mutualistic systems in which this phenomenon has been best studied. One important theme taken from these studies is the fact that mutualisms are profoundly affected by the circadian rhythms of the host, but that the microbial symbionts in these associations can, in turn, manipulate host rhythms. The interplay between circadian rhythms and symbiosis is a promising new field with effects that should be kept in mind when designing future studies across biology.
Collapse
|
40
|
Fuller K, Dunlap J, Loros J. Fungal Light Sensing at the Bench and Beyond. ADVANCES IN GENETICS 2016; 96:1-51. [DOI: 10.1016/bs.adgen.2016.08.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
41
|
Dasgupta A, Fuller KK, Dunlap JC, Loros JJ. Seeing the world differently: variability in the photosensory mechanisms of two model fungi. Environ Microbiol 2015; 18:5-20. [PMID: 26373782 DOI: 10.1111/1462-2920.13055] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 09/01/2015] [Accepted: 09/12/2015] [Indexed: 12/14/2022]
Abstract
Light plays an important role for most organisms on this planet, serving either as a source of energy or information for the adaptation of biological processes to specific times of day. The fungal kingdom is estimated to contain well over a million species, possibly 10-fold more, and it is estimated that a majority of the fungi respond to light, eliciting changes in several physiological characteristics including pathogenesis, development and secondary metabolism. Two model organisms for photobiological studies have taken centre-stage over the last few decades--Neurospora crassa and Aspergillus nidulans. In this review, we will first discuss our understanding of the light response in N. crassa, about which the most is known, and will then juxtapose N. crassa with A. nidulans, which, as will be described below, provides an excellent template for understanding photosensory cross-talk. Finally, we will end with a commentary on the variability of the light response among other relevant fungi, and how our molecular understanding in the aforementioned model organisms still provides a strong base for dissecting light responses in such species.
Collapse
Affiliation(s)
- Arko Dasgupta
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Kevin K Fuller
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Jay C Dunlap
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Jennifer J Loros
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| |
Collapse
|
42
|
Kim H, Kim HK, Lee S, Yun SH. The white collar complex is involved in sexual development of Fusarium graminearum. PLoS One 2015; 10:e0120293. [PMID: 25785736 PMCID: PMC4364711 DOI: 10.1371/journal.pone.0120293] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 01/20/2015] [Indexed: 11/22/2022] Open
Abstract
Sexual spores (ascospores) of Fusarium graminearum, a homothallic ascomycetous fungus, are believed to be the primary inocula for epidemics of the diseases caused by this species in cereal crops. Based on the light requirement for the formation of fruiting bodies (perithecia) of F. graminearum under laboratory conditions, we explored whether photoreceptors play an important role in sexual development. Here, we evaluated the roles of three genes encoding putative photoreceptors [a phytochrome gene (FgFph) and two white collar genes (FgWc-1 and FgWc-2)] during sexual development in F. graminearum. For functional analyses, we generated transgenic strains lacking one or two genes from the self-fertile Z3643 strain. Unlike the wild-type (WT) and add-back strains, the single deletion strains (ΔFgWc-1 and ΔFgWc-2) produced fertile perithecia under constant light on complete medium (CM, an unfavorable medium for sexual development) as well as on carrot agar (a perithecial induction condition). The expression of mating-type (MAT) genes increased significantly in the gene deletion strains compared to the WT under both conditions. Deletion of FgFph had no significant effect on sexual development or MAT gene expression. In contrast, all of the deletion strains examined did not show significant changes in other traits such as hyphal growth, mycotoxin production, and virulence. A split luciferase assay confirmed the in vivo protein-protein interactions among three photoreceptors along with FgLaeA, a global regulator of secondary metabolism and fungal development. Introduction of an intact copy of the A. nidulans LreA and LreB genes, which are homologs of FgWc-1 and FgWc-2, into the ΔFgWc-1 and ΔFgWc-2 strains, respectively, failed to repress perithecia formation on CM in the gene deletion strains. Taken together, these results demonstrate that FgWc-1 and FgWc-2, two central components of the blue-light sensing system, negatively regulate sexual development in F. graminearum, which differs from the regulation pattern in A. nidulans.
Collapse
Affiliation(s)
- Hun Kim
- Research Center for Biobased Chemistry, Division of Convergence Chemistry, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Hee-Kyoung Kim
- Department of Medical Biotechnology, Soonchunhyang University, Asan, Republic of Korea
| | - Seunghoon Lee
- Department of Medical Biotechnology, Soonchunhyang University, Asan, Republic of Korea
| | - Sung-Hwan Yun
- Department of Medical Biotechnology, Soonchunhyang University, Asan, Republic of Korea
| |
Collapse
|
43
|
Stael S, Kmiecik P, Willems P, Van Der Kelen K, Coll NS, Teige M, Van Breusegem F. Plant innate immunity--sunny side up? TRENDS IN PLANT SCIENCE 2015; 20:3-11. [PMID: 25457110 PMCID: PMC4817832 DOI: 10.1016/j.tplants.2014.10.002] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 09/17/2014] [Accepted: 10/02/2014] [Indexed: 05/03/2023]
Abstract
Reactive oxygen species (ROS)- and calcium- dependent signaling pathways play well-established roles during plant innate immunity. Chloroplasts host major biosynthetic pathways and have central roles in energy production, redox homeostasis, and retrograde signaling. However, the organelle's importance in immunity has been somehow overlooked. Recent findings suggest that the chloroplast also has an unanticipated function as a hub for ROS- and calcium-signaling that affects immunity responses at an early stage after pathogen attack. In this opinion article, we discuss a chloroplastic calcium-ROS signaling branch of plant innate immunity. We propose that this chloroplastic branch acts as a light-dependent rheostat that, through the production of ROS, influences the severity of the immune response.
Collapse
Affiliation(s)
- Simon Stael
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Department of Medical Protein Research, VIB, 9000 Ghent, Belgium; Department of Biochemistry, Ghent University, 9000 Ghent, Belgium
| | - Przemyslaw Kmiecik
- Department of Ecogenomics and Systems Biology, Vienna University, Vienna, Austria
| | - Patrick Willems
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Department of Medical Protein Research, VIB, 9000 Ghent, Belgium; Department of Biochemistry, Ghent University, 9000 Ghent, Belgium
| | - Katrien Van Der Kelen
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Nuria S Coll
- Department of Molecular Genetics, Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB Consortium, 08193 Barcelona, Spain
| | - Markus Teige
- Department of Ecogenomics and Systems Biology, Vienna University, Vienna, Austria; Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Frank Van Breusegem
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium.
| |
Collapse
|
44
|
Fuller KK, Loros JJ, Dunlap JC. Fungal photobiology: visible light as a signal for stress, space and time. Curr Genet 2014; 61:275-88. [PMID: 25323429 DOI: 10.1007/s00294-014-0451-0] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 08/25/2014] [Accepted: 08/29/2014] [Indexed: 12/25/2022]
Abstract
Visible light is an important source of energy and information for much of life on this planet. Though fungi are neither photosynthetic nor capable of observing adjacent objects, it is estimated that the majority of fungal species display some form of light response, ranging from developmental decision-making to metabolic reprogramming to pathogenesis. As such, advances in our understanding of fungal photobiology will likely reach the broad fields impacted by these organisms, including agriculture, industry and medicine. In this review, we will first describe the mechanisms by which fungi sense light and then discuss the selective advantages likely imparted by their ability to do so.
Collapse
Affiliation(s)
- Kevin K Fuller
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA,
| | | | | |
Collapse
|
45
|
Canessa P, Schumacher J, Hevia MA, Tudzynski P, Larrondo LF. Assessing the effects of light on differentiation and virulence of the plant pathogen Botrytis cinerea: characterization of the White Collar Complex. PLoS One 2013; 8:e84223. [PMID: 24391918 PMCID: PMC3877267 DOI: 10.1371/journal.pone.0084223] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 11/20/2013] [Indexed: 12/21/2022] Open
Abstract
Organisms are exposed to a tough environment, where acute daily challenges, like light, can strongly affect several aspects of an individual's physiology, including pathogenesis. While several fungal models have been widely employed to understand the physiological and molecular events associated with light perception, various other agricultural-relevant fungi still remain, in terms of their responsiveness to light, in the dark. The fungus Botrytis cinerea is an aggressive pathogen able to cause disease on a wide range of plant species. Natural B. cinerea isolates exhibit a high degree of diversity in their predominant mode of reproduction. Thus, the majority of naturally occurring strains are known to reproduce asexually via conidia and sclerotia, and sexually via apothecia. Studies from the 1970's reported on specific developmental responses to treatments with near-UV, blue, red and far-red light. To unravel the signaling machinery triggering development--and possibly also connected with virulence--we initiated the functional characterization of the transcription factor/photoreceptor BcWCL1 and its partner BcWCL2, that form the White Collar Complex (WCC) in B. cinerea. Using mutants either abolished in or exhibiting enhanced WCC signaling (overexpression of both bcwcl1 and bcwcl2), we demonstrate that the WCC is an integral part of the mentioned machinery by mediating transcriptional responses to white light and the inhibition of conidiation in response to this stimulus. Furthermore, the WCC is required for coping with excessive light, oxidative stress and also to achieve full virulence. Although several transcriptional responses are abolished in the absence of bcwcl1, the expression of some genes is still light induced and a distinct conidiation pattern in response to daily light oscillations is enhanced, revealing a complex underlying photobiology. Though overlaps with well-studied fungal systems exist, the light-associated machinery of B. cinerea appears more complex than those of Neurospora crassa and Aspergillus nidulans.
Collapse
Affiliation(s)
- Paulo Canessa
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Julia Schumacher
- Institut für Biologie und Biotechnologie der Pflanzen, Westf. Wilhelms-Universität Münster, Münster, Germany
| | - Montserrat A. Hevia
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Paul Tudzynski
- Institut für Biologie und Biotechnologie der Pflanzen, Westf. Wilhelms-Universität Münster, Münster, Germany
| | - Luis F. Larrondo
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
46
|
Kim H, Son H, Lee YW. Effects of light on secondary metabolism and fungal development of Fusarium graminearum. J Appl Microbiol 2013; 116:380-9. [DOI: 10.1111/jam.12381] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 10/10/2013] [Accepted: 10/13/2013] [Indexed: 01/07/2023]
Affiliation(s)
- H. Kim
- Department of Agricultural Biotechnology and Center for Fungal Pathogenesis; Seoul National University; Seoul Korea
| | - H. Son
- Department of Agricultural Biotechnology and Center for Fungal Pathogenesis; Seoul National University; Seoul Korea
| | - Y.-W. Lee
- Department of Agricultural Biotechnology and Center for Fungal Pathogenesis; Seoul National University; Seoul Korea
| |
Collapse
|
47
|
Light sensing in Aspergillus fumigatus highlights the case for establishing new models for fungal photobiology. mBio 2013; 4:e00260-13. [PMID: 23631920 PMCID: PMC3648905 DOI: 10.1128/mbio.00260-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Microbes inhabit diverse environmental locations, and many species need to shift their physiology between different niches. To do this effectively requires the accurate sensing of and response to the environment. For pathogens, exposure to light is one major change between a free-living saprophyte lifestyle and causation of disease within the host. However, how light may act as a signal to influence pathogenesis, on the side of either the host or the pathogen, is poorly understood. Research during the last 2 decades has uncovered aspects about the machinery for light sensing in a small number of fungi. Now, Fuller et al. have initiated studies into the role that light and two photosensor homologs play in the behavior of the ubiquitous fungal pathogen Aspergillus fumigatus [K. K. Fuller, C. S. Ringelberg, J. J. Loros, and J. C. Dunlap, mBio 4(2):e00142-13, 2013, doi:10.1128/mBio.00142-13]. Light represses the germination of A. fumigatus spores and enhances resistance to ultraviolet light, oxidative stresses, and cell wall perturbations. The phenotypes of the strains with mutations in the LreA and FphA homologs revealed that these sensors control some, but not all, responses to light. Furthermore, interactions occur between blue and red light signaling pathways, as has been described for a related saprophytic species, Aspergillus nidulans. Genome-wide transcript analyses found that about 2.6% of genes increase or decrease their transcript levels in response to light. This use of A. fumigatus establishes common elements between model filamentous species and pathogenic species, underscoring the benefits of extending photobiology to new species of fungi.
Collapse
|
48
|
Canessa P, Schumacher J, Hevia MA, Tudzynski P, Larrondo LF. Assessing the effects of light on differentiation and virulence of the plant pathogen Botrytis cinerea: characterization of the White Collar Complex. PLoS One 2013. [PMID: 24391918 DOI: 10.1371/journal.pone.084223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023] Open
Abstract
Organisms are exposed to a tough environment, where acute daily challenges, like light, can strongly affect several aspects of an individual's physiology, including pathogenesis. While several fungal models have been widely employed to understand the physiological and molecular events associated with light perception, various other agricultural-relevant fungi still remain, in terms of their responsiveness to light, in the dark. The fungus Botrytis cinerea is an aggressive pathogen able to cause disease on a wide range of plant species. Natural B. cinerea isolates exhibit a high degree of diversity in their predominant mode of reproduction. Thus, the majority of naturally occurring strains are known to reproduce asexually via conidia and sclerotia, and sexually via apothecia. Studies from the 1970's reported on specific developmental responses to treatments with near-UV, blue, red and far-red light. To unravel the signaling machinery triggering development--and possibly also connected with virulence--we initiated the functional characterization of the transcription factor/photoreceptor BcWCL1 and its partner BcWCL2, that form the White Collar Complex (WCC) in B. cinerea. Using mutants either abolished in or exhibiting enhanced WCC signaling (overexpression of both bcwcl1 and bcwcl2), we demonstrate that the WCC is an integral part of the mentioned machinery by mediating transcriptional responses to white light and the inhibition of conidiation in response to this stimulus. Furthermore, the WCC is required for coping with excessive light, oxidative stress and also to achieve full virulence. Although several transcriptional responses are abolished in the absence of bcwcl1, the expression of some genes is still light induced and a distinct conidiation pattern in response to daily light oscillations is enhanced, revealing a complex underlying photobiology. Though overlaps with well-studied fungal systems exist, the light-associated machinery of B. cinerea appears more complex than those of Neurospora crassa and Aspergillus nidulans.
Collapse
Affiliation(s)
- Paulo Canessa
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Julia Schumacher
- Institut für Biologie und Biotechnologie der Pflanzen, Westf. Wilhelms-Universität Münster, Münster, Germany
| | - Montserrat A Hevia
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Paul Tudzynski
- Institut für Biologie und Biotechnologie der Pflanzen, Westf. Wilhelms-Universität Münster, Münster, Germany
| | - Luis F Larrondo
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|