1
|
D'Orso I. The HIV-1 Transcriptional Program: From Initiation to Elongation Control. J Mol Biol 2025; 437:168690. [PMID: 38936695 PMCID: PMC11994015 DOI: 10.1016/j.jmb.2024.168690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 06/29/2024]
Abstract
A large body of work in the last four decades has revealed the key pillars of HIV-1 transcription control at the initiation and elongation steps. Here, I provide a recount of this collective knowledge starting with the genomic elements (DNA and nascent TAR RNA stem-loop) and transcription factors (cellular and the viral transactivator Tat), and later transitioning to the assembly and regulation of transcription initiation and elongation complexes, and the role of chromatin structure. Compelling evidence support a core HIV-1 transcriptional program regulated by the sequential and concerted action of cellular transcription factors and Tat to promote initiation and sustain elongation, highlighting the efficiency of a small virus to take over its host to produce the high levels of transcription required for viral replication. I summarize new advances including the use of CRISPR-Cas9, genetic tools for acute factor depletion, and imaging to study transcriptional dynamics, bursting and the progression through the multiple phases of the transcriptional cycle. Finally, I describe current challenges to future major advances and discuss areas that deserve more attention to both bolster our basic knowledge of the core HIV-1 transcriptional program and open up new therapeutic opportunities.
Collapse
Affiliation(s)
- Iván D'Orso
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
2
|
Mbonye U, Karn J. The cell biology of HIV-1 latency and rebound. Retrovirology 2024; 21:6. [PMID: 38580979 PMCID: PMC10996279 DOI: 10.1186/s12977-024-00639-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024] Open
Abstract
Transcriptionally latent forms of replication-competent proviruses, present primarily in a small subset of memory CD4+ T cells, pose the primary barrier to a cure for HIV-1 infection because they are the source of the viral rebound that almost inevitably follows the interruption of antiretroviral therapy. Over the last 30 years, many of the factors essential for initiating HIV-1 transcription have been identified in studies performed using transformed cell lines, such as the Jurkat T-cell model. However, as highlighted in this review, several poorly understood mechanisms still need to be elucidated, including the molecular basis for promoter-proximal pausing of the transcribing complex and the detailed mechanism of the delivery of P-TEFb from 7SK snRNP. Furthermore, the central paradox of HIV-1 transcription remains unsolved: how are the initial rounds of transcription achieved in the absence of Tat? A critical limitation of the transformed cell models is that they do not recapitulate the transitions between active effector cells and quiescent memory T cells. Therefore, investigation of the molecular mechanisms of HIV-1 latency reversal and LRA efficacy in a proper physiological context requires the utilization of primary cell models. Recent mechanistic studies of HIV-1 transcription using latently infected cells recovered from donors and ex vivo cellular models of viral latency have demonstrated that the primary blocks to HIV-1 transcription in memory CD4+ T cells are restrictive epigenetic features at the proviral promoter, the cytoplasmic sequestration of key transcription initiation factors such as NFAT and NF-κB, and the vanishingly low expression of the cellular transcription elongation factor P-TEFb. One of the foremost schemes to eliminate the residual reservoir is to deliberately reactivate latent HIV-1 proviruses to enable clearance of persisting latently infected cells-the "Shock and Kill" strategy. For "Shock and Kill" to become efficient, effective, non-toxic latency-reversing agents (LRAs) must be discovered. Since multiple restrictions limit viral reactivation in primary cells, understanding the T-cell signaling mechanisms that are essential for stimulating P-TEFb biogenesis, initiation factor activation, and reversing the proviral epigenetic restrictions have become a prerequisite for the development of more effective LRAs.
Collapse
Affiliation(s)
- Uri Mbonye
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| | - Jonathan Karn
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| |
Collapse
|
3
|
Zheng C, Rej RK, Wang M, Huang L, Fernandez-Salas E, Yang CY, Wang S. Discovery of Pyrrolo[2,3- c]pyridines as Potent and Reversible LSD1 Inhibitors. ACS Med Chem Lett 2023; 14:1389-1395. [PMID: 37849536 PMCID: PMC10577893 DOI: 10.1021/acsmedchemlett.3c00292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/14/2023] [Indexed: 10/19/2023] Open
Abstract
Lysine specific demethylase 1 (LSD1) acts as an epigenetic eraser by specifically demethylating mono- and histone 3 lysine 4 (H3K4) and H3 lysine 9 (H3K9) residues. LSD1 has been pursued as a promising therapeutic target for the treatment of human cancer, and a number of LSD1 inhibitors have been advanced into clinical development. In the present study, we describe our discovery of pyrrolo[2,3-c]pyridines as a new class of highly potent and reversible LSD1 inhibitors, designed on the basis of a previously reported LSD1 inhibitor GSK-354. Among them, 46 shows an IC50 value of 3.1 nM in inhibition of LSD1 enzymatic activity and inhibits cell growth with IC50 values of 0.6 nM in the MV4;11 acute leukemia cell line and 1.1 nM in the H1417 small-cell lung cancer cell line. Compound 46 (LSD1-UM-109) is a novel, highly potent, and reversible LSD1 inhibitor and serves as a promising lead compound for further optimization.
Collapse
Affiliation(s)
- Canhui Zheng
- Department
of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United
States
| | - Rohan Kalyan Rej
- Department
of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United
States
| | - Mi Wang
- Department
of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United
States
| | - Liyue Huang
- Department
of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United
States
| | - Ester Fernandez-Salas
- Department
of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United
States
- Rogel
Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United
States
| | - Chao-Yie Yang
- Department
of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United
States
| | - Shaomeng Wang
- Department
of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United
States
- Department of Pharmacology, Medical School, University of Michigan, Ann Arbor, Michigan 48109, United States
- Medicinal
Chemistry, College of Pharmacy, University
of Michigan, Ann Arbor, Michigan 48109, United States
- Rogel
Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United
States
| |
Collapse
|
4
|
Noce B, Di Bello E, Fioravanti R, Mai A. LSD1 inhibitors for cancer treatment: Focus on multi-target agents and compounds in clinical trials. Front Pharmacol 2023; 14:1120911. [PMID: 36817147 PMCID: PMC9932783 DOI: 10.3389/fphar.2023.1120911] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 01/20/2023] [Indexed: 02/05/2023] Open
Abstract
Histone lysine-specific demethylase 1 (LSD1/KDM1A) was first identified in 2004 as an epigenetic enzyme able to demethylate specific lysine residues of histone H3, namely H3K4me1/2 and H3K9me1/2, using FAD as the cofactor. It is ubiquitously overexpressed in many types of cancers (breast, gastric, prostate, hepatocellular, and esophageal cancer, acute myeloid leukemia, and others) leading to block of differentiation and increase of proliferation, migration and invasiveness at cellular level. LSD1 inhibitors can be grouped in covalent and non-covalent agents. Each group includes some hybrid compounds, able to inhibit LSD1 in addition to other target(s) at the same time (dual or multitargeting compounds). To date, 9 LSD1 inhibitors have entered clinical trials, for hematological and/or solid cancers. Seven of them (tranylcypromine, iadademstat (ORY-1001), bomedemstat (IMG-7289), GSK-2879552, INCB059872, JBI-802, and Phenelzine) covalently bind the FAD cofactor, and two are non-covalent LSD1 inhibitors [pulrodemstat (CC-90011) and seclidemstat (SP-2577)]. Another TCP-based LSD1/MAO-B dual inhibitor, vafidemstat (ORY-2001), is in clinical trial for Alzheimer's diseases and personality disorders. The present review summarizes the structure and functions of LSD1, its pathological implications in cancer and non-cancer diseases, and the identification of LSD1 covalent and non-covalent inhibitors with different chemical scaffolds, including those involved in clinical trials, highlighting their potential as potent and selective anticancer agents.
Collapse
Affiliation(s)
- Beatrice Noce
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, Rome, Italy
| | - Elisabetta Di Bello
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, Rome, Italy
| | - Rossella Fioravanti
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, Rome, Italy,*Correspondence: Rossella Fioravanti,
| | - Antonello Mai
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, Rome, Italy,Pasteur Institute, Cenci-Bolognetti Foundation, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
5
|
He X, Zhang B, Cao P, Wang H, Wu S, Wang G, Yang F, Leng A, Liang G, Li D. Biotransformation of dihydrocapsaicin by human intestinal fungi and the inhibitory effects of metabolites against LSD1. Heliyon 2022; 8:e12325. [PMID: 36578383 PMCID: PMC9791335 DOI: 10.1016/j.heliyon.2022.e12325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/22/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Dihydrocapsaicin is the main bioactive component in Capsicum plants, which is widely used in China and India as a food drug and additive. In this study, the biotransformation of dihydrocapsaicin was performed using four cultivated human intestinal fungal strains in vitro. Eight metabolites, including seven previously undescribed metabolites (1 and 3-8) and one known analog (2), were obtained. Numerous spectroscopic data, such as NMR and HRESIMS, were collected to determine their structures. Based on the structures of the dihydrocapsaicin metabolites, the main biotransformation reactions were revealed to be hydroxylation, alcohol oxidation, and lactylation. In particular, the lactylation of hydroxyl groups is mainly mediated by Rhizopus oryzae R2701. In addition, metabolite 1 showed significant inhibitory effect on lysine-specific demethylase 1 (LSD1) (IC50 1.99 μM). Therefore, the biotransformation of dihydrocapsaicin by intestinal fungi afforded various derivatives, which were important resources for developing LSD1 inhibitors and potential application in cancer treatment.
Collapse
Affiliation(s)
- Xin He
- The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China,College of Pharmacy, Dalian Medical University, Dalian 116044, China,School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Baojing Zhang
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Peng Cao
- General Hospital of Northern Theater Command (General Hospital of Shenyang Military Command), Department of Neurosurgery, Shenyang 110016, China
| | - Honglei Wang
- The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China,College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Shan Wu
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Gang Wang
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Fangyu Yang
- College of Pharmacy, Dalian Medical University, Dalian 116044, China,General Hospital of Northern Theater Command (General Hospital of Shenyang Military Command), Department of Neurosurgery, Shenyang 110016, China
| | - Aijing Leng
- The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Guobiao Liang
- General Hospital of Northern Theater Command (General Hospital of Shenyang Military Command), Department of Neurosurgery, Shenyang 110016, China,Corresponding author.
| | - Dawei Li
- The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China,Corresponding author.
| |
Collapse
|
6
|
Xue M, Feng T, Chen Z, Yan Y, Chen Z, Dai J. Protein Acetylation Going Viral: Implications in Antiviral Immunity and Viral Infection. Int J Mol Sci 2022; 23:11308. [PMID: 36232610 PMCID: PMC9570087 DOI: 10.3390/ijms231911308] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/10/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
During viral infection, both host and viral proteins undergo post-translational modifications (PTMs), including phosphorylation, ubiquitination, methylation, and acetylation, which play critical roles in viral replication, pathogenesis, and host antiviral responses. Protein acetylation is one of the most important PTMs and is catalyzed by a series of acetyltransferases that divert acetyl groups from acetylated molecules to specific amino acid residues of substrates, affecting chromatin structure, transcription, and signal transduction, thereby participating in the cell cycle as well as in metabolic and other cellular processes. Acetylation of host and viral proteins has emerging roles in the processes of virus adsorption, invasion, synthesis, assembly, and release as well as in host antiviral responses. Methods to study protein acetylation have been gradually optimized in recent decades, providing new opportunities to investigate acetylation during viral infection. This review summarizes the classification of protein acetylation and the standard methods used to map this modification, with an emphasis on viral and host protein acetylation during viral infection.
Collapse
Affiliation(s)
- Minfei Xue
- Department of Respiratory Medicine, Children’s Hospital of Soochow University, Soochow University, Suzhou 215025, China
- Jiangsu Key Laboratory of Infection and Immunity, Institute of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Tingting Feng
- Jiangsu Key Laboratory of Infection and Immunity, Institute of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Zhiqiang Chen
- Jiangsu Key Laboratory of Infection and Immunity, Institute of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Yongdong Yan
- Department of Respiratory Medicine, Children’s Hospital of Soochow University, Soochow University, Suzhou 215025, China
| | - Zhengrong Chen
- Department of Respiratory Medicine, Children’s Hospital of Soochow University, Soochow University, Suzhou 215025, China
| | - Jianfeng Dai
- Jiangsu Key Laboratory of Infection and Immunity, Institute of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| |
Collapse
|
7
|
Lindqvist B, Jütte BB, Love L, Assi W, Roux J, Sönnerborg A, Tezil T, Verdin E, Svensson JP. T cell stimulation remodels the latently HIV-1 infected cell population by differential activation of proviral chromatin. PLoS Pathog 2022; 18:e1010555. [PMID: 35666761 PMCID: PMC9203004 DOI: 10.1371/journal.ppat.1010555] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 06/16/2022] [Accepted: 04/26/2022] [Indexed: 01/22/2023] Open
Abstract
The reservoir of latently HIV-1 infected cells is heterogeneous. To achieve an HIV-1 cure, the reservoir of activatable proviruses must be eliminated while permanently silenced proviruses may be tolerated. We have developed a method to assess the proviral nuclear microenvironment in single cells. In latently HIV-1 infected cells, a zinc finger protein tethered to the HIV-1 promoter produced a fluorescent signal as a protein of interest came in its proximity, such as the viral transactivator Tat when recruited to the nascent RNA. Tat is essential for viral replication. In these cells we assessed the proviral activation and chromatin composition. By linking Tat recruitment to proviral activity, we dissected the mechanisms of HIV-1 latency reversal and the consequences of HIV-1 production. A pulse of promoter-associated Tat was identified that contrasted to the continuous production of viral proteins. As expected, promoter H3K4me3 led to substantial expression of the provirus following T cell stimulation. However, the activation-induced cell cycle arrest and death led to a surviving cell fraction with proviruses encapsulated in repressive chromatin. Further, this cellular model was used to reveal mechanisms of action of small molecules. In a proof-of-concept study we determined the effect of modifying enhancer chromatin on HIV-1 latency reversal. Only proviruses resembling active enhancers, associated with H3K4me1 and H3K27ac and subsequentially recognized by BRD4, efficiently recruited Tat upon cell stimulation. Tat-independent HIV-1 latency reversal of unknown significance still occurred. We present a method for single cell assessment of the microenvironment of the latent HIV-1 proviruses, used here to reveal how T cell stimulation modulates the proviral activity and how the subsequent fate of the infected cell depends on the chromatin context.
Collapse
Affiliation(s)
- Birgitta Lindqvist
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Bianca B. Jütte
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Luca Love
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Wlaa Assi
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- Laboratory of Viral Infectious Diseases, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Julie Roux
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Anders Sönnerborg
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden, Division of Infectious Diseases, Department of Medicine Huddinge, I73, Karolinska University Hospital, Stockholm, Sweden
| | - Tugsan Tezil
- Buck Institute for Research on Aging, Novato, California, United States of America
| | - Eric Verdin
- Buck Institute for Research on Aging, Novato, California, United States of America
| | - J. Peter Svensson
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- * E-mail:
| |
Collapse
|
8
|
Battaglia DM, Sanchez-Pino MD, Nichols CD, Foster TP. Herpes Simplex Virus-1 Induced Serotonin-Associated Metabolic Pathways Correlate With Severity of Virus- and Inflammation-Associated Ocular Disease. Front Microbiol 2022; 13:859866. [PMID: 35391733 PMCID: PMC8982329 DOI: 10.3389/fmicb.2022.859866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/22/2022] [Indexed: 11/13/2022] Open
Abstract
Herpes simplex virus-associated diseases are a complex interaction between cytolytic viral replication and inflammation. Within the normally avascular and immunoprivileged cornea, HSV ocular infection can result in vision-threatening immune-mediated herpetic keratitis, the leading infectious cause of corneal blindness in the industrialized world. Viral replicative processes are entirely dependent upon numerous cellular biosynthetic and metabolic pathways. Consistent with this premise, HSV infection was shown to profoundly alter gene expression associated with cellular amino acid biosynthetic pathways, including key tryptophan metabolism genes. The essential amino acid tryptophan is crucial for pathogen replication, the generation of host immune responses, and the synthesis of neurotransmitters, such as serotonin. Intriguingly, Tryptophan hydroxylase 2 (TPH2), the neuronal specific rate-limiting enzyme for serotonin synthesis, was the most significantly upregulated gene by HSV in an amino acid metabolism PCR array. Despite the well-defined effects of serotonin in the nervous system, the association of peripheral serotonin in disease-promoting inflammation has only recently begun to be elucidated. Likewise, the impact of serotonin on viral replication and ocular disease is also largely unknown. We therefore examined the effect of HSV-induced serotonin-associated synthesis and transport pathways on HSV-1 replication, as well as the correlation between HSV-induced ocular serotonin levels and disease severity. HSV infection induced expression of the critical serotonin synthesis enzymes TPH-1, TPH-2, and DOPA decarboxylase (DDC), as well as the serotonin transporter, SERT. Concordantly, HSV-infected cells upregulated serotonin synthesis and its intracellular uptake. Increased serotonin synthesis and uptake was shown to influence HSV replication. Exogenous addition of serotonin increased HSV-1 yield, while both TPH-1/2 and SERT pharmacological inhibition reduced viral yield. Congruent with these in vitro findings, rabbits intraocularly infected with HSV-1 exhibited significantly higher aqueous humor serotonin concentrations that positively and strongly correlated with viral load and ocular disease severity. Collectively, our findings indicate that HSV-1 promotes serotonin synthesis and cellular uptake to facilitate viral replication and consequently, serotonin's proinflammatory effects may enhance the development of ocular disease.
Collapse
Affiliation(s)
- Diana Marie Battaglia
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Maria D. Sanchez-Pino
- Department of Interdisciplinary Oncology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, United States
- The Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Charles D. Nichols
- Department of Pharmacology and Experimental Therapeutics, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Timothy P. Foster
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
- The Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, United States
- Department of Ophthalmology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
- The Louisiana Vaccine Center, New Orleans, LA, United States
| |
Collapse
|
9
|
Xu Y, Shi Z, Bao L. An expanding repertoire of protein acylations. Mol Cell Proteomics 2022; 21:100193. [PMID: 34999219 PMCID: PMC8933697 DOI: 10.1016/j.mcpro.2022.100193] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/22/2021] [Accepted: 01/04/2022] [Indexed: 01/03/2023] Open
Abstract
Protein post-translational modifications play key roles in multiple cellular processes by allowing rapid reprogramming of individual protein functions. Acylation, one of the most important post-translational modifications, is involved in different physiological activities including cell differentiation and energy metabolism. In recent years, the progression in technologies, especially the antibodies against acylation and the highly sensitive and effective mass spectrometry–based proteomics, as well as optimized functional studies, greatly deepen our understanding of protein acylation. In this review, we give a general overview of the 12 main protein acylations (formylation, acetylation, propionylation, butyrylation, malonylation, succinylation, glutarylation, palmitoylation, myristoylation, benzoylation, crotonylation, and 2-hydroxyisobutyrylation), including their substrates (histones and nonhistone proteins), regulatory enzymes (writers, readers, and erasers), biological functions (transcriptional regulation, metabolic regulation, subcellular targeting, protein–membrane interactions, protein stability, and folding), and related diseases (cancer, diabetes, heart disease, neurodegenerative disease, and viral infection), to present a complete picture of protein acylations and highlight their functional significance in future research. Provide a general overview of the 12 main protein acylations. Acylation of viral proteins promotes viral integration and infection. Hyperacylation of histone has antitumous and neuroprotective effects. MS is widely used in the identification of acylation but has its challenges.
Collapse
Affiliation(s)
- Yuxuan Xu
- Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research center for Cancer, 300060, Tianjin, China
| | - Zhenyu Shi
- Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research center for Cancer, 300060, Tianjin, China
| | - Li Bao
- Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research center for Cancer, 300060, Tianjin, China.
| |
Collapse
|
10
|
Han J, Ye S, Chen J, Wang K, Jin J, Zeng Z, Xue S. Lysine-Specific Histone Demethylase 1 Promotes Oncogenesis of the Esophageal Squamous Cell Carcinoma by Upregulating DUSP4. BIOCHEMISTRY. BIOKHIMIIA 2021; 86:1624-1634. [PMID: 34937541 DOI: 10.1134/s0006297921120117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC) is a predominant subtype of esophageal cancer (EC) and has a poor prognosis due to its aggressive nature. Accordingly, it is necessary to find novel prognostic biomarkers and therapeutic targets for ESCC. Lysine-specific histone demethylase 1 (LSD1) plays a core role in the regulation of ESCC oncogenesis. However, the detailed mechanism of LSD1-regulated ESCC growth has not been elucidated. This study aims to explore molecular mechanism underlying the LSD1-regulated ESCC's oncogenesis. After LSD1 silencing, we detected differentially expressed genes (DEGs) in human ESCC cell line, TE-1, by transcriptome sequencing. Subsequently, we investigated expression pattern of the selected molecules in the ESCC tissues and cell lines by qRT-PCR and Western blotting. Furthermore, we explored the roles of selected molecules in ESCC using gene silencing and overexpression assays. Transcriptome sequencing showed that the expression of dual specificity phosphatase 4 (DUSP4) in TE-1 was significantly attenuated after the LSD1 silencing. In addition, the DUSP4 mRNA expression level was significantly higher in the ESCC tissues, especially in those derived from patients with invasion or metastasis. Moreover, the DUSP4 expression was positively associated with the LSD1 expression in the ESCC tissues. DUSP4 overexpression promoted proliferation, invasion, and migration of the ESCC cells, while DUSP4 silencing had an opposite effect. DUSP4 overexpression also enhanced tumorigenicity of the ESCC cells in vivo, while DUSP4 silencing inhibited tumor growth. Importantly, inhibition of cell proliferation, invasion, and migration by the LSD1 inhibitor (ZY0511) was reversed by DUSP4 overexpression. Conclusively, we found that LSD1 promotes ESCC's oncogenesis by upregulating DUSP4, the potential therapeutic and diagnostic target in ESCC.
Collapse
Affiliation(s)
- Junyong Han
- Department of Immunization, Fujian Academy of Medical Sciences, Fuzhou, Fujian, 350003, China. .,Fujian Institute of Medical Sciences, Fujian Provincial Key Laboratory of Medical Analysis, Fuzhou, Fujian, 350003, China
| | - Shixin Ye
- Department of Cardiothoracic Surgery, 900 Hospital of the Joint Logistics Team, Fuzhou, Fujian, 350025, China.
| | - Jinyan Chen
- Department of Immunization, Fujian Academy of Medical Sciences, Fuzhou, Fujian, 350003, China. .,Fujian Institute of Medical Sciences, Fujian Provincial Key Laboratory of Medical Analysis, Fuzhou, Fujian, 350003, China
| | - Kun Wang
- Department of Immunization, Fujian Academy of Medical Sciences, Fuzhou, Fujian, 350003, China. .,Fujian Institute of Medical Sciences, Fujian Provincial Key Laboratory of Medical Analysis, Fuzhou, Fujian, 350003, China
| | - Jingjun Jin
- Department of Immunization, Fujian Academy of Medical Sciences, Fuzhou, Fujian, 350003, China. .,Fujian Institute of Medical Sciences, Fujian Provincial Key Laboratory of Medical Analysis, Fuzhou, Fujian, 350003, China
| | - Zhiyong Zeng
- Department of Cardiothoracic Surgery, 900 Hospital of the Joint Logistics Team, Fuzhou, Fujian, 350025, China.
| | - Shijie Xue
- Department of Immunization, Fujian Academy of Medical Sciences, Fuzhou, Fujian, 350003, China. .,Fujian Institute of Medical Sciences, Fujian Provincial Key Laboratory of Medical Analysis, Fuzhou, Fujian, 350003, China
| |
Collapse
|
11
|
Tu WJ, McCuaig RD, Melino M, Rawle DJ, Le TT, Yan K, Suhrbier A, Johnston RL, Koufariotis LT, Waddell N, Cross EM, Tsimbalyuk S, Bain A, Ahern E, Collinson N, Phipps S, Forwood JK, Seddiki N, Rao S. Targeting novel LSD1-dependent ACE2 demethylation domains inhibits SARS-CoV-2 replication. Cell Discov 2021; 7:37. [PMID: 34031383 PMCID: PMC8143069 DOI: 10.1038/s41421-021-00279-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 04/24/2021] [Indexed: 02/07/2023] Open
Abstract
Treatment options for COVID-19 remain limited, especially during the early or asymptomatic phase. Here, we report a novel SARS-CoV-2 viral replication mechanism mediated by interactions between ACE2 and the epigenetic eraser enzyme LSD1, and its interplay with the nuclear shuttling importin pathway. Recent studies have shown a critical role for the importin pathway in SARS-CoV-2 infection, and many RNA viruses hijack this axis to re-direct host cell transcription. LSD1 colocalized with ACE2 at the cell surface to maintain demethylated SARS-CoV-2 spike receptor-binding domain lysine 31 to promote virus-ACE2 interactions. Two newly developed peptide inhibitors competitively inhibited virus-ACE2 interactions, and demethylase access to significantly inhibit viral replication. Similar to some other predominantly plasma membrane proteins, ACE2 had a novel nuclear function: its cytoplasmic domain harbors a nuclear shuttling domain, which when demethylated by LSD1 promoted importin-α-dependent nuclear ACE2 entry following infection to regulate active transcription. A novel, cell permeable ACE2 peptide inhibitor prevented ACE2 nuclear entry, significantly inhibiting viral replication in SARS-CoV-2-infected cell lines, outperforming other LSD1 inhibitors. These data raise the prospect of post-exposure prophylaxis for SARS-CoV-2, either through repurposed LSD1 inhibitors or new, nuclear-specific ACE2 inhibitors.
Collapse
Affiliation(s)
- Wen Juan Tu
- Gene Regulation and Translational Medicine Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Robert D McCuaig
- Gene Regulation and Translational Medicine Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Michelle Melino
- Gene Regulation and Translational Medicine Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Daniel J Rawle
- The Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Thuy T Le
- The Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Kexin Yan
- The Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Andreas Suhrbier
- The Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Rebecca L Johnston
- Medical Genomics, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Lambros T Koufariotis
- Medical Genomics, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Nicola Waddell
- Medical Genomics, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Emily M Cross
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Sofiya Tsimbalyuk
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Amanda Bain
- Gene Regulation and Translational Medicine Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Elizabeth Ahern
- Department of Medical Oncology, Monash Health, Clayton, VIC, Australia
- School of Clinical Sciences, Monash University, Clayton, VIC, Australia
| | - Natasha Collinson
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Simon Phipps
- Respiratory Immunology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Jade K Forwood
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Nabila Seddiki
- U955, Equipe 16, Créteil, France
- Université Paris-Est Créteil, Faculté de médecine, Créteil, France
- Vaccine Research Institute (VRI), Créteil, France
| | - Sudha Rao
- Gene Regulation and Translational Medicine Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.
| |
Collapse
|
12
|
Acharya A, Olwenyi OA, Thurman M, Pandey K, Morsey BM, Lamberty B, Ferguson N, Callen S, Fang Q, Buch SJ, Fox HS, Byrareddy SN. Chronic morphine administration differentially modulates viral reservoirs in SIVmac251 infected rhesus macaque model. J Virol 2021; 95:JVI.01657-20. [PMID: 33328304 PMCID: PMC8092838 DOI: 10.1128/jvi.01657-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/03/2020] [Indexed: 12/11/2022] Open
Abstract
HIV persists in cellular reservoirs despite effective combined antiretroviral therapy (cART) and there is viremia flare up upon therapy interruption. Opioids modulate the immune system and suppress antiviral gene responses, which significantly impact people living with HIV (PLWH). However, the effect of opioids on viral reservoir dynamics remain elusive. Herein, we developed a morphine dependent SIVmac251 infected Rhesus macaque (RM) model to study the impact of opioids on HIV reservoirs. RMs on a morphine (or saline control) regimen were infected with SIVmac251. The cART was initiated in approximately half the animals five weeks post-infection, and morphine/saline administration continued until the end of the study. Among the untreated RM, we did not find any difference in plasma/CSF or in cell-associated DNA/RNA viral load in anatomical tissues. On the other hand, within the cART suppressed macaques, there was a reduction in cell-associated DNA load, intact proviral DNA levels, and in inducible SIV reservoir in lymph nodes (LNs) of morphine administered RMs. In distinction to LNs, in the CNS, the size of latent SIV reservoirs was higher in the CD11b+ microglia/macrophages in morphine dependent RMs. These results suggest that in the proposed model, morphine plays a differential role in SIV reservoirs by reducing the CD4+ T-cell reservoir in lymphoid tissues, while increasing the microglia/reservoir size in CNS tissue. The findings from this pre-clinical model will serve as a tool for screening therapeutic strategies to reduce/eliminate HIV reservoirs in opioid dependent PLWH.IMPORTANCE Identification and clearance of HIV reservoirs is a major challenge in achieving a cure for HIV. This is further complicated by co-morbidities that may alter the size of the reservoirs. There is an overlap between the risk factors for HIV and opioid abuse. Opiates have been recognized as prominent co-morbidities in HIV-infected populations. People infected with HIV also abusing opioids have immune modulatory effects and more severe neurological disease. However, the impact of opioid abuse on HIV reservoirs remains unclear. In this study, we used morphine dependent SIVmac251 infected rhesus macaque (RM) model to study the impact of opioids on HIV reservoirs. Our studies suggested that people with HIV who abuse opioids had higher reservoirs in CNS than the lymphoid system. Extrapolating the macaque findings in humans suggests that such differential modulation of HIV reservoirs among people living with HIV abusing opioids could be considered for future HIV cure research efforts.
Collapse
Affiliation(s)
- Arpan Acharya
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Omalla A Olwenyi
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Michellie Thurman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kabita Pandey
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Brenda M Morsey
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Benjamin Lamberty
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Natasha Ferguson
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Shannon Callen
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Qiu Fang
- Department of Biostatistics, College of Public Health, University of Nebraska Medical Center, Omaha, NE, USA
| | - Shilpa J Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Howard S Fox
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Siddappa N Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
13
|
Role of Host-Mediated Post-Translational Modifications (PTMs) in RNA Virus Pathogenesis. Int J Mol Sci 2020; 22:ijms22010323. [PMID: 33396899 PMCID: PMC7796338 DOI: 10.3390/ijms22010323] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 12/17/2022] Open
Abstract
Being opportunistic intracellular pathogens, viruses are dependent on the host for their replication. They hijack host cellular machinery for their replication and survival by targeting crucial cellular physiological pathways, including transcription, translation, immune pathways, and apoptosis. Immediately after translation, the host and viral proteins undergo a process called post-translational modification (PTM). PTMs of proteins involves the attachment of small proteins, carbohydrates/lipids, or chemical groups to the proteins and are crucial for the proteins’ functioning. During viral infection, host proteins utilize PTMs to control the virus replication, using strategies like activating immune response pathways, inhibiting viral protein synthesis, and ultimately eliminating the virus from the host. PTM of viral proteins increases solubility, enhances antigenicity and virulence properties. However, RNA viruses are devoid of enzymes capable of introducing PTMs to their proteins. Hence, they utilize the host PTM machinery to promote their survival. Proteins from viruses belonging to the family: Togaviridae, Flaviviridae, Retroviridae, and Coronaviridae such as chikungunya, dengue, zika, HIV, and coronavirus are a few that are well-known to be modified. This review discusses various host and virus-mediated PTMs that play a role in the outcome during the infection.
Collapse
|
14
|
Fujinaga K, Cary DC. Experimental Systems for Measuring HIV Latency and Reactivation. Viruses 2020; 12:v12111279. [PMID: 33182414 PMCID: PMC7696534 DOI: 10.3390/v12111279] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 11/02/2020] [Accepted: 11/05/2020] [Indexed: 02/07/2023] Open
Abstract
The final obstacle to achieving a cure to HIV/AIDS is the presence of latent HIV reservoirs scattered throughout the body. Although antiretroviral therapy maintains plasma viral loads below the levels of detection, upon cessation of therapy, the latent reservoir immediately produces infectious progeny viruses. This results in elevated plasma viremia, which leads to clinical progression to AIDS. Thus, if a HIV cure is ever to become a reality, it will be necessary to target and eliminate the latent reservoir. To this end, tremendous effort has been dedicated to locate the viral reservoir, understand the mechanisms contributing to latency, find optimal methods to reactivate HIV, and specifically kill latently infected cells. Although we have not yet identified a therapeutic approach to completely eliminate HIV from patients, these efforts have provided many technological breakthroughs in understanding the underlying mechanisms that regulate HIV latency and reactivation in vitro. In this review, we summarize and compare experimental systems which are frequently used to study HIV latency. While none of these models are a perfect proxy for the complex systems at work in HIV+ patients, each aim to replicate HIV latency in vitro.
Collapse
Affiliation(s)
- Koh Fujinaga
- Division of Rheumatology, Department of Medicine, School of Medicine, University of California, San Francisco, CA 94143-0703, USA
- Correspondence: ; Tel.: +1-415-502-1908
| | - Daniele C. Cary
- Department of Medicine, Microbiology, and Immunology, School of Medicine, University of California, San Francisco, CA 94143-0703, USA;
| |
Collapse
|
15
|
Abstract
Antiviral drugs have traditionally been developed by directly targeting essential viral components. However, this strategy often fails due to the rapid generation of drug-resistant viruses. Recent genome-wide approaches, such as those employing small interfering RNA (siRNA) or clustered regularly interspaced short palindromic repeats (CRISPR) or those using small molecule chemical inhibitors targeting the cellular "kinome," have been used successfully to identify cellular factors that can support virus replication. Since some of these cellular factors are critical for virus replication, but are dispensable for the host, they can serve as novel targets for antiviral drug development. In addition, potentiation of immune responses, regulation of cytokine storms, and modulation of epigenetic changes upon virus infections are also feasible approaches to control infections. Because it is less likely that viruses will mutate to replace missing cellular functions, the chance of generating drug-resistant mutants with host-targeted inhibitor approaches is minimized. However, drug resistance against some host-directed agents can, in fact, occur under certain circumstances, such as long-term selection pressure of a host-directed antiviral agent that can allow the virus the opportunity to adapt to use an alternate host factor or to alter its affinity toward the target that confers resistance. This review describes novel approaches for antiviral drug development with a focus on host-directed therapies and the potential mechanisms that may account for the acquisition of antiviral drug resistance against host-directed agents.
Collapse
|
16
|
Marayati BF, Tucker JF, De La Cerda DA, Hou TC, Chen R, Sugiyama T, Pease JB, Zhang K. The Catalytic-Dependent and -Independent Roles of Lsd1 and Lsd2 Lysine Demethylases in Heterochromatin Formation in Schizosaccharomyces pombe. Cells 2020; 9:E955. [PMID: 32295063 PMCID: PMC7226997 DOI: 10.3390/cells9040955] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/06/2020] [Accepted: 04/10/2020] [Indexed: 12/30/2022] Open
Abstract
In eukaryotes, heterochromatin plays a critical role in organismal development and cell fate acquisition, through regulating gene expression. The evolutionarily conserved lysine-specific demethylases, Lsd1 and Lsd2, remove mono- and dimethylation on histone H3, serving complex roles in gene expression. In the fission yeast Schizosaccharomyces pombe, null mutations of Lsd1 and Lsd2 result in either severe growth defects or inviability, while catalytic inactivation causes minimal defects, indicating that Lsd1 and Lsd2 have essential functions beyond their known demethylase activity. Here, we show that catalytic mutants of Lsd1 or Lsd2 partially assemble functional heterochromatin at centromeres in RNAi-deficient cells, while the C-terminal truncated alleles of Lsd1 or Lsd2 exacerbate heterochromatin formation at all major heterochromatic regions, suggesting that Lsd1 and Lsd2 repress heterochromatic transcripts through mechanisms both dependent on and independent of their catalytic activities. Lsd1 and Lsd2 are also involved in the establishment and maintenance of heterochromatin. At constitutive heterochromatic regions, Lsd1 and Lsd2 regulate one another and cooperate with other histone modifiers, including the class II HDAC Clr3 and the Sirtuin family protein Sir2 for gene silencing, but not with the class I HDAC Clr6. Our findings explore the roles of lysine-specific demethylases in epigenetic gene silencing at heterochromatic regions.
Collapse
Affiliation(s)
- Bahjat F. Marayati
- Department of Biology, Center for Molecular Signaling, Wake Forest University, Winston-Salem, NC 27109, USA; (B.F.M.); (J.F.T.); (D.A.D.L.C.); (T.-C.H.); (J.B.P.)
| | - James F. Tucker
- Department of Biology, Center for Molecular Signaling, Wake Forest University, Winston-Salem, NC 27109, USA; (B.F.M.); (J.F.T.); (D.A.D.L.C.); (T.-C.H.); (J.B.P.)
| | - David A. De La Cerda
- Department of Biology, Center for Molecular Signaling, Wake Forest University, Winston-Salem, NC 27109, USA; (B.F.M.); (J.F.T.); (D.A.D.L.C.); (T.-C.H.); (J.B.P.)
| | - Tien-Chi Hou
- Department of Biology, Center for Molecular Signaling, Wake Forest University, Winston-Salem, NC 27109, USA; (B.F.M.); (J.F.T.); (D.A.D.L.C.); (T.-C.H.); (J.B.P.)
| | - Rong Chen
- Physiology and pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA;
| | - Tomoyasu Sugiyama
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China;
| | - James B. Pease
- Department of Biology, Center for Molecular Signaling, Wake Forest University, Winston-Salem, NC 27109, USA; (B.F.M.); (J.F.T.); (D.A.D.L.C.); (T.-C.H.); (J.B.P.)
| | - Ke Zhang
- Department of Biology, Center for Molecular Signaling, Wake Forest University, Winston-Salem, NC 27109, USA; (B.F.M.); (J.F.T.); (D.A.D.L.C.); (T.-C.H.); (J.B.P.)
| |
Collapse
|
17
|
Mahesh A, Khan MIK, Govindaraju G, Verma M, Awasthi S, Chavali PL, Chavali S, Rajavelu A, Dhayalan A. SET7/9 interacts and methylates the ribosomal protein, eL42 and regulates protein synthesis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118611. [DOI: 10.1016/j.bbamcr.2019.118611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/21/2019] [Accepted: 11/13/2019] [Indexed: 12/14/2022]
|
18
|
Li ZH, Ma JL, Liu GZ, Zhang XH, Qin TT, Ren WH, Zhao TQ, Chen XH, Zhang ZQ. [1,2,3]Triazolo[4,5-d]pyrimidine derivatives incorporating (thio)urea moiety as a novel scaffold for LSD1 inhibitors. Eur J Med Chem 2020; 187:111989. [DOI: 10.1016/j.ejmech.2019.111989] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/27/2019] [Accepted: 12/17/2019] [Indexed: 01/02/2023]
|
19
|
Chromatin maturation of the HIV-1 provirus in primary resting CD4+ T cells. PLoS Pathog 2020; 16:e1008264. [PMID: 31999790 PMCID: PMC6991963 DOI: 10.1371/journal.ppat.1008264] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/09/2019] [Indexed: 12/14/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) infection is a chronic condition, where viral DNA integrates into the genome. Latently infected cells form a persistent, heterogeneous reservoir that at any time can reactivate the integrated HIV-1. Here we confirmed that latently infected cells from HIV-1 positive study participants exhibited active HIV-1 transcription but without production of mature spliced mRNAs. To elucidate the mechanisms behind this we employed primary HIV-1 latency models to study latency establishment and maintenance. We characterized proviral transcription and chromatin development in cultures of resting primary CD4+ T-cells for four months after ex vivo HIV-1 infection. As heterochromatin (marked with H3K9me3 or H3K27me3) gradually stabilized, the provirus became less accessible with reduced activation potential. In a subset of infected cells, active marks (e.g. H3K27ac) and elongating RNAPII remained detectable at the latent provirus, despite prolonged proviral silencing. In many aspects, latent HIV-1 resembled an active enhancer in a subset of resting cells. The enhancer chromatin actively promoted latency and the enhancer-specific CBP/P300-inhibitor GNE049 was identified as a new latency reversal agent. The division of the latent reservoir according to distinct chromatin compositions with different reactivation potential enforces the notion that even though a relatively large set of cells contains the HIV-1 provirus, only a discrete subset is readily able to reactivate the provirus and spread the infection. HIV infection is a devastating disease affecting 35 million people worldwide. Current anti-retroviral treatment is highly effective and has made the HIV infection chronic. However, despite more effective treatments, the prospects of a cure are distant. The problem for an HIV cure is that, even though the virus particles are eradicated, the infected cells maintain the information of remake the virus. This information is integrated in the host cell as a provirus. The provirus switches between active and inactive states. Thereby, the infected cells evade both the immune system and death associated with massive viral production. We have characterized the composition of proviral chromatin and how it connects with transcription and viral production. In resting primary CD4+ T-cells, we follow the fate of the provirus starting at infection until latency is firmly established. Only in a fraction of intact proviruses were we able to reverse latency and that this was highly regulated by the chromatin composition. Whereas the proviruses encompassed in heterochromatin were refractory to activation, latent proviruses with “enhancer” characteristics were readily activated. Our study provides key insights as to detect the remaining HIV-1 infected cells capable of reseeding the infection, and the mechanisms whereby they are maintained.
Collapse
|
20
|
Lee A, Borrello MT, Ganesan A. LSD
(Lysine‐Specific Demethylase): A Decade‐Long Trip from Discovery to Clinical Trials. ACTA ACUST UNITED AC 2019. [DOI: 10.1002/9783527809257.ch10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
21
|
Bobardt M, Kuo J, Chatterji U, Chanda S, Little SJ, Wiedemann N, Vuagniaux G, Gallay PA. The inhibitor apoptosis protein antagonist Debio 1143 Is an attractive HIV-1 latency reversal candidate. PLoS One 2019; 14:e0211746. [PMID: 30716099 PMCID: PMC6361451 DOI: 10.1371/journal.pone.0211746] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/18/2019] [Indexed: 01/08/2023] Open
Abstract
Antiretroviral therapy (ART) suppresses HIV replication, but does not cure the infection because replication-competent virus persists within latently infected CD4+ T cells throughout years of therapy. These reservoirs contain integrated HIV-1 genomes and can resupply active virus. Thus, the development of strategies to eliminate the reservoir of latently infected cells is a research priority of global significance. In this study, we tested efficacy of a new inhibitor of apoptosis protein antagonist (IAPa) called Debio 1143 at reversing HIV latency and investigated its mechanisms of action. Debio 1143 activates HIV transcription via NF-kB signaling by degrading the ubiquitin ligase baculoviral IAP repeat-containing 2 (BIRC2), a repressor of the non-canonical NF-kB pathway. Debio 1143-induced BIRC2 degradation results in the accumulation of NF-κB-inducing kinase (NIK) and proteolytic cleavage of p100 into p52, leading to nuclear translocation of p52 and RELB. Debio 1143 greatly enhances the binding of RELB to the HIV-1 LTR. These data indicate that Debio 1143 activates the non-canonical NF-kB signaling pathway by promoting the binding of RELB:p52 complexes to the HIV-1 LTR, resulting in the activation of the LTR-dependent HIV-1 transcription. Importantly, Debio 1143 reverses viral latency in HIV-1 latent T cell lines. Using knockdown (siRNA BIRC2), knockout (CRIPSR NIK) and proteasome machinery neutralization (MG132) approaches, we found that Debio 1143-mediated HIV latency reversal is BIRC2 degradation- and NIK stabilization-dependent. Debio 1143 also reverses HIV-1 latency in resting CD4+ T cells derived from ART-treated patients or HIV-1-infected humanized mice under ART. Interestingly, daily oral administration of Debio 1143 in cancer patients at well-tolerated doses elicited BIRC2 target engagement in PBMCs and induced a moderate increase in cytokines and chemokines mechanistically related to NF-kB signaling. In conclusion, we provide strong evidences that the IAPa Debio 1143, by initially activating the non-canonical NF-kB signaling and subsequently reactivating HIV-1 transcription, represents a new attractive viral latency reversal agent (LRA).
Collapse
Affiliation(s)
- Michael Bobardt
- Department of Immunology & Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Joseph Kuo
- Department of Immunology & Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Udayan Chatterji
- Department of Immunology & Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Sumit Chanda
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, United States of America
| | - Susan J. Little
- Department of Medicine, University of California, San Diego, California, United States of America
| | | | | | - Philippe A. Gallay
- Department of Immunology & Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
22
|
Kurnaeva MA, Sheval EV, Musinova YR, Vassetzky YS. Tat basic domain: A "Swiss army knife" of HIV-1 Tat? Rev Med Virol 2019; 29:e2031. [PMID: 30609200 DOI: 10.1002/rmv.2031] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/05/2018] [Accepted: 12/06/2018] [Indexed: 01/16/2023]
Abstract
Tat (transactivator of transcription) regulates transcription from the HIV provirus. It plays a crucial role in disease progression, supporting efficient replication of the viral genome. Tat also modulates many functions in the host genome via its interaction with chromatin and proteins. Many of the functions of Tat are associated with its basic domain rich in arginine and lysine residues. It is still unknown why the basic domain exhibits so many diverse functions. However, the highly charged basic domain, coupled with the overall structural flexibility of Tat protein itself, makes the basic domain a key player in binding to or associating with cellular and viral components. In addition, the basic domain undergoes diverse posttranslational modifications, which further expand and modulate its functions. Here, we review the current knowledge of Tat basic domain and its versatile role in the interaction between the virus and the host cell.
Collapse
Affiliation(s)
- Margarita A Kurnaeva
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Eugene V Sheval
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia.,LIA 1066 LFR2O French-Russian Joint Cancer Research Laboratory, CNRS, Villejuif, France
| | - Yana R Musinova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,LIA 1066 LFR2O French-Russian Joint Cancer Research Laboratory, CNRS, Villejuif, France.,Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Yegor S Vassetzky
- LIA 1066 LFR2O French-Russian Joint Cancer Research Laboratory, CNRS, Villejuif, France.,Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia.,Nuclear Organization and Pathologies, CNRS, UMR8126, Université Paris-Sud, Institut Gustave Roussy, Villejuif, France
| |
Collapse
|
23
|
Jean MJ, Fiches G, Hayashi T, Zhu J. Current Strategies for Elimination of HIV-1 Latent Reservoirs Using Chemical Compounds Targeting Host and Viral Factors. AIDS Res Hum Retroviruses 2019; 35:1-24. [PMID: 30351168 DOI: 10.1089/aid.2018.0153] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Since the implementation of combination antiretroviral therapy (cART), rates of HIV type 1 (HIV-1) mortality, morbidity, and newly acquired infections have decreased dramatically. In fact, HIV-1-infected individuals under effective suppressive cART approach normal life span and quality of life. However, long-term therapy is required because the virus establish a reversible state of latency in memory CD4+ T cells. Two principle strategies, namely "shock and kill" approach and "block and lock" approach, are currently being investigated for the eradication of these HIV-1 latent reservoirs. Actually, both of these contrasting approaches are based on the use of small-molecule compounds to achieve the cure for HIV-1. In this review, we discuss the recent progress that has been made in designing and developing small-molecule compounds for both strategies.
Collapse
Affiliation(s)
- Maxime J. Jean
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York
| | - Guillaume Fiches
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Tsuyoshi Hayashi
- National Institute of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Jian Zhu
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| |
Collapse
|
24
|
Liu Y, Zhou D, Qi D, Feng J, Liu Z, Hu Y, Shen W, Liu C, Kong X. Lysine-specific demethylase 1 cooperates with BRAF-histone deacetylase complex 80 to enhance HIV-1 Tat-mediated transactivation. Virus Genes 2018; 54:662-671. [PMID: 30105631 DOI: 10.1007/s11262-018-1589-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 07/12/2018] [Indexed: 12/29/2022]
Abstract
Despite the notable success of combination antiretroviral therapy, how to eradicate latent HIV-1 from reservoirs poses a challenge. The Tat protein plays an indispensable role in HIV reactivation and histone demethylase LSD1 promotes Tat-mediated long terminal repeats (LTR) activation. However, the role of LSD1 in remodeling chromatin and the role of its component BHC80 in activation of latent HIV-1 in T cells are unknown. Our findings indicate that LSD1 could decrease the level of histone H3 lysine 4 trimethylation (H3K4me3) at the HIV-1 promoter by recruiting histone lysine demethylase 5A (KDM5A) and preventing histone methyltransferase Set1A and WD-40 repeat protein 5 (WDR5) from binding to LTR. Moreover, BHC80 is necessary for LSD1-triggered LTR activation and assists LSD1 in activating LTR by binding to nucleotides 305-631 of LTR. In activated J-Lat-A2 cells, BHC80 expression was elevated and its isoform BHC80-6 promoted the association of BHC80 with LSD1. These results suggest that the LSD1-BHC80 complex enhances HIV-1 transcription by a decrease of H3K4me3 level at the viral promoter. Therefore, it might be used as a new drug target to reactivate latent HIV-1.
Collapse
Affiliation(s)
- Yu Liu
- Laboratory of Medical Molecular Virology, School of Medicine, Nankai University, 94 Weijin Road, Nankai District, Tianjin, 300071, China
| | - Deyu Zhou
- Laboratory of Medical Molecular Virology, School of Medicine, Nankai University, 94 Weijin Road, Nankai District, Tianjin, 300071, China
| | - Di Qi
- Laboratory of Medical Molecular Virology, School of Medicine, Nankai University, 94 Weijin Road, Nankai District, Tianjin, 300071, China
| | - Jiabin Feng
- Laboratory of Medical Molecular Virology, School of Medicine, Nankai University, 94 Weijin Road, Nankai District, Tianjin, 300071, China
| | - Zhou Liu
- Laboratory of Medical Molecular Virology, School of Medicine, Nankai University, 94 Weijin Road, Nankai District, Tianjin, 300071, China
| | - Yue Hu
- Laboratory of Medical Molecular Virology, School of Medicine, Nankai University, 94 Weijin Road, Nankai District, Tianjin, 300071, China
| | - Wenyuan Shen
- Laboratory of Medical Molecular Virology, School of Medicine, Nankai University, 94 Weijin Road, Nankai District, Tianjin, 300071, China
| | - Chang Liu
- Laboratory of Medical Molecular Virology, School of Medicine, Nankai University, 94 Weijin Road, Nankai District, Tianjin, 300071, China
| | - Xiaohong Kong
- Laboratory of Medical Molecular Virology, School of Medicine, Nankai University, 94 Weijin Road, Nankai District, Tianjin, 300071, China.
| |
Collapse
|
25
|
Lopes RS, Queiroz MAF, Gomes STM, Vallinoto ACR, Goulart LR, Ishak R. Phage display: an important tool in the discovery of peptides with anti-HIV activity. Biotechnol Adv 2018; 36:1847-1854. [PMID: 30012540 DOI: 10.1016/j.biotechadv.2018.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 06/14/2018] [Accepted: 07/12/2018] [Indexed: 10/28/2022]
Abstract
Human immunodeficiency virus (HIV) remains a worldwide health problem despite huge investments and research breakthroughs, and no single drug is effective in killing the virus yet. Among new strategies to control HIV infection, the phage display (PD) technology has become a promising tool in the discovery of peptides that can be used as new drugs, or also as possible vaccine candidates. This review discusses basic aspects of PD and its use to advance two main objectives related to combating HIV-1 infection: the identification of peptides that inhibit virus replication and the identification of peptides that induce the production of neutralizing antibodies. We will cover the different approaches used for mapping and selection of mimotopes, and discuss the promising results of these biologicals as antiviral agents.
Collapse
Affiliation(s)
- Ronaldo Souza Lopes
- Biological Sciences Institute, Federal University of Para (Instituto de Ciências Biológicas/Universidade Feral do Pará - ICB/UFPA), Rua Augusto Corrêa, 1 - Guamá, Belém, PA 66075-110, Brazil.
| | - Maria Alice Freitas Queiroz
- Biological Sciences Institute, Federal University of Para (Instituto de Ciências Biológicas/Universidade Feral do Pará - ICB/UFPA), Rua Augusto Corrêa, 1 - Guamá, Belém, PA 66075-110, Brazil
| | - Samara Tatielle Monteiro Gomes
- Biological Sciences Institute, Federal University of Para (Instituto de Ciências Biológicas/Universidade Feral do Pará - ICB/UFPA), Rua Augusto Corrêa, 1 - Guamá, Belém, PA 66075-110, Brazil
| | - Antonio Carlos Rosário Vallinoto
- Biological Sciences Institute, Federal University of Para (Instituto de Ciências Biológicas/Universidade Feral do Pará - ICB/UFPA), Rua Augusto Corrêa, 1 - Guamá, Belém, PA 66075-110, Brazil.
| | - Luiz Ricardo Goulart
- Institute of Biotechnology, Federal University of Uberlândia (Universidade Federal de Uberlândia - UFU), Laboratory of Nanobiotechnology, Av. Amazonas s/n, Bloco 2E, Sala 248 - Campus Umuarama, Uberlândia, MG, CEP 38400-902, Brazil.
| | - Ricardo Ishak
- Biological Sciences Institute, Federal University of Para (Instituto de Ciências Biológicas/Universidade Feral do Pará - ICB/UFPA), Rua Augusto Corrêa, 1 - Guamá, Belém, PA 66075-110, Brazil.
| |
Collapse
|
26
|
Biological processes and signal transduction pathways regulated by the protein methyltransferase SETD7 and their significance in cancer. Signal Transduct Target Ther 2018; 3:19. [PMID: 30013796 PMCID: PMC6043541 DOI: 10.1038/s41392-018-0017-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 02/05/2018] [Accepted: 03/21/2018] [Indexed: 02/07/2023] Open
Abstract
Protein methyltransferases have been shown to methylate histone and non-histone proteins, leading to regulation of several biological processes that control cell homeostasis. Over the past few years, the histone-lysine N-methyltransferase SETD7 (SETD7; also known as SET7/9, KIAA1717, KMT7, SET7, SET9) has emerged as an important regulator of at least 30 non-histone proteins and a potential target for the treatment of several human diseases. This review discusses current knowledge of the structure and subcellular localization of SETD7, as well as its function as a histone and non-histone methyltransferase. This work also underlines the putative contribution of SETD7 to the regulation of gene expression, control of cell proliferation, differentiation and endoplasmic reticulum stress, which indicate that SETD7 is a candidate for novel targeted therapies with the aim of either stimulating or inhibiting its activity, depending on the cell signaling context.
Collapse
|
27
|
Khoury G, Mota TM, Li S, Tumpach C, Lee MY, Jacobson J, Harty L, Anderson JL, Lewin SR, Purcell DFJ. HIV latency reversing agents act through Tat post translational modifications. Retrovirology 2018; 15:36. [PMID: 29751762 PMCID: PMC5948896 DOI: 10.1186/s12977-018-0421-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 05/05/2018] [Indexed: 12/18/2022] Open
Abstract
Background Different classes of latency reversing agents (LRAs) are being evaluated to measure their effects in reactivating HIV replication from latently infected cells. A limited number of studies have demonstrated additive effects of LRAs with the viral protein Tat in initiating transcription, but less is known about how LRAs interact with Tat, particularly through basic residues that may be post-translationally modified to alter the behaviour of Tat for processive transcription and co-transcriptional RNA processing. Results Here we show that various lysine and arginine mutations reduce the capacity of Tat to induce both transcription and mRNA splicing. The lysine 28 and lysine 50 residues of Tat, or the acetylation and methylation modifications of these basic amino acids, were essential for Tat transcriptional control, and also for the proviral expression effects elicited by histone deacetylase inhibitors (HDACi) or the bromodomain inhibitor JQ1. We also found that JQ1 was the only LRA tested that could induce HIV mRNA splicing in the absence of Tat, or rescue splicing for Tat lysine mutants in a BRD4-dependent manner. Conclusions Our data provide evidence that Tat activities in both co-transcriptional RNA processing together with transcriptional initiation and processivity are crucial during reactivation of latent HIV infection. The HDACi and JQ1 LRAs act with Tat to increase transcription, but JQ1 also enables post-transcriptional mRNA splicing. Tat residues K28 and K50, or their modifications through acetylation or methylation, are critical for LRAs that function in conjunction with Tat. Electronic supplementary material The online version of this article (10.1186/s12977-018-0421-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Georges Khoury
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Talia M Mota
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia.,The Peter Doherty Institute for Infection and Immunity, Royal Melbourne Hospital, University of Melbourne, Melbourne, Australia
| | - Shuang Li
- School of Life Sciences, Peking University, Beijing, China
| | - Carolin Tumpach
- The Peter Doherty Institute for Infection and Immunity, Royal Melbourne Hospital, University of Melbourne, Melbourne, Australia
| | - Michelle Y Lee
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Jonathan Jacobson
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Leigh Harty
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Jenny L Anderson
- The Peter Doherty Institute for Infection and Immunity, Royal Melbourne Hospital, University of Melbourne, Melbourne, Australia
| | - Sharon R Lewin
- The Peter Doherty Institute for Infection and Immunity, Royal Melbourne Hospital, University of Melbourne, Melbourne, Australia.,Department of Infectious Diseases, Alfred Health and Monash University, Melbourne, Australia
| | - Damian F J Purcell
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia.
| |
Collapse
|
28
|
|
29
|
Ne E, Palstra RJ, Mahmoudi T. Transcription: Insights From the HIV-1 Promoter. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 335:191-243. [DOI: 10.1016/bs.ircmb.2017.07.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
30
|
Shan J, Zhao B, Shan Z, Nie J, Deng R, Xiong R, Tsun A, Pan W, Zhao H, Chen L, Jin Y, Qian Z, Lui K, Liang R, Li D, Sun B, Lavillette D, Xu K, Li B. Histone demethylase LSD1 restricts influenza A virus infection by erasing IFITM3-K88 monomethylation. PLoS Pathog 2017; 13:e1006773. [PMID: 29281729 PMCID: PMC5760097 DOI: 10.1371/journal.ppat.1006773] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 01/09/2018] [Accepted: 11/27/2017] [Indexed: 11/30/2022] Open
Abstract
The histone demethylase LSD1 has been known as a key transcriptional coactivator for DNA viruses such as herpes virus. Inhibition of LSD1 was found to block viral genome transcription and lytic replication of DNA viruses. However, RNA virus genomes do not rely on chromatin structure and histone association, and the role of demethylase activity of LSD1 in RNA virus infections is not anticipated. Here, we identify that, contrary to its role in enhancing DNA virus replication, LSD1 limits RNA virus replication by demethylating and activating IFITM3 which is a host restriction factor for many RNA viruses. We have found that LSD1 is recruited to demethylate IFITM3 at position K88 under IFNα treatment. However, infection by either Vesicular Stomatitis Virus (VSV) or Influenza A Virus (IAV) triggers methylation of IFITM3 by promoting its disassociation from LSD1. Accordingly, inhibition of the enzymatic activity of LSD1 by Trans-2-phenylcyclopropylamine hydrochloride (TCP) increases IFITM3 monomethylation which leads to more severe disease outcomes in IAV-infected mice. In summary, our findings highlight the opposite role of LSD1 in fighting RNA viruses comparing to DNA viruses infection. Our data suggest that the demethylation of IFITM3 by LSD1 is beneficial for the host to fight against RNA virus infection. The viral genomes of DNA viruses but not RNA viruses form chromatin structure during infection. Thus, epigenetic modulators are not expected to have crucial roles in RNA viral infection. However, here, we identify for the first time, that, opposite to its role in enhancing DNA virus replication, LSD1, a histone demethylase, limits RNA virus replication. We show that, under IFNα treatment, LSD1 is involved in the demethylation of IFITM3, a well-known host restriction factor for many RNA viruses. To counteract IFITM3 activation by demethylation, several RNA viruses, such as VSV and IAV, but not Zika virus, have developed strategy to inactive IFITM3 by promoting its dissociation from LSD1. In agreement with our findings, the inhibition of the enzymatic activity of LSD1 by small molecule leads to more severe disease outcomes in IAV-infected mice. Our data suggest that although LSD1 inhibitor is beneficial for treating DNA virus infection, it could be harmful to the host suffering from RNA virus infection. On the contrary, developing strategies to stimulate LSD1 activity to demethylate of IFITM3 is essential to fight RNA viruses.
Collapse
Affiliation(s)
- Jiaoyu Shan
- CAS Center for Excellence in Molecular Cell Science, CAS Key Laboratory of Molecular Virology and Immunology, Unit of Molecular Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Human Parasitology Department of Basic Medicine College, Xinjiang Medical University, Urumqi, China
| | - Binbin Zhao
- CAS Center for Excellence in Molecular Cell Science, CAS Key Laboratory of Molecular Virology and Immunology, Unit of Molecular Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Department of Immunology and Microbiology, Shanghai JiaoTong University School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Zhao Shan
- CAS Center for Excellence in Molecular Cell Science, CAS Key Laboratory of Molecular Virology and Immunology, Unit of Molecular Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jia Nie
- CAS Center for Excellence in Molecular Cell Science, CAS Key Laboratory of Molecular Virology and Immunology, Unit of Molecular Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Rong Deng
- CAS Center for Excellence in Molecular Cell Science, CAS Key Laboratory of Molecular Virology and Immunology, Unit of Molecular Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Rui Xiong
- CAS Key Laboratory of Molecular Virology and Immunology, Unit of interspecies transmission of arboviruses and therapeutics research, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Andy Tsun
- CAS Center for Excellence in Molecular Cell Science, CAS Key Laboratory of Molecular Virology and Immunology, Unit of Molecular Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Weiqi Pan
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Hanzhi Zhao
- CAS Center for Excellence in Molecular Cell Science, Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Ling Chen
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Ying Jin
- CAS Center for Excellence in Molecular Cell Science, Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Zhikang Qian
- CAS Key Laboratory of Molecular Virology and Immunology, Unit of Herpesvirus and Molecular Virology Research, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Kawing Lui
- CAS Center for Excellence in Molecular Cell Science, CAS Key Laboratory of Molecular Virology and Immunology, Unit of Molecular Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Rui Liang
- CAS Center for Excellence in Molecular Cell Science, CAS Key Laboratory of Molecular Virology and Immunology, Unit of Molecular Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Department of Immunology and Microbiology, Shanghai JiaoTong University School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Dan Li
- Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Department of Immunology and Microbiology, Shanghai JiaoTong University School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Bing Sun
- CAS Center for Excellence in Molecular Cell Science, CAS Key Laboratory of Molecular Virology and Immunology, Unit of Molecular Virology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Dimitri Lavillette
- CAS Key Laboratory of Molecular Virology and Immunology, Unit of interspecies transmission of arboviruses and therapeutics research, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ke Xu
- CAS Center for Excellence in Molecular Cell Science, CAS Key Laboratory of Molecular Virology and Immunology, Unit of Molecular Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- CAS Key Laboratory of Molecular Virology and Immunology, Unit of interspecies transmission of arboviruses and therapeutics research, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- * E-mail: (BL); (KX)
| | - Bin Li
- Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Department of Immunology and Microbiology, Shanghai JiaoTong University School of Medicine, Shanghai JiaoTong University, Shanghai, China
- * E-mail: (BL); (KX)
| |
Collapse
|
31
|
Llewellyn GN, Alvarez-Carbonell D, Chateau M, Karn J, Cannon PM. HIV-1 infection of microglial cells in a reconstituted humanized mouse model and identification of compounds that selectively reverse HIV latency. J Neurovirol 2017; 24:192-203. [PMID: 29256041 PMCID: PMC5910454 DOI: 10.1007/s13365-017-0604-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 11/03/2017] [Accepted: 11/09/2017] [Indexed: 11/24/2022]
Abstract
Most studies of HIV latency focus on the peripheral population of resting memory T cells, but the brain also contains a distinct reservoir of HIV-infected cells in microglia, perivascular macrophages, and astrocytes. Studying HIV in the brain has been challenging, since live cells are difficult to recover from autopsy samples and primate models of SIV infection utilize viruses that are more myeloid-tropic than HIV due to the expression of Vpx. Development of a realistic small animal model would greatly advance studies of this important reservoir and permit definitive studies of HIV latency. When radiation or busulfan-conditioned, immune-deficient NSG mice are transplanted with human hematopoietic stem cells, human cells from the bone marrow enter the brain and differentiate to express microglia-specific markers. After infection with replication competent HIV, virus was detected in these bone marrow-derived human microglia. Studies of HIV latency in this model would be greatly enhanced by the development of compounds that can selectively reverse HIV latency in microglial cells. Our studies have identified members of the CoREST repression complex as key regulators of HIV latency in microglia in both rat and human microglial cell lines. The monoamine oxidase (MAO) and potential CoREST inhibitor, phenelzine, which is brain penetrant, was able to stimulate HIV production in human microglial cell lines and human glial cells recovered from the brains of HIV-infected humanized mice. The humanized mice we have developed therefore show great promise as a model system for the development of strategies aimed at defining and reducing the CNS reservoir.
Collapse
Affiliation(s)
- George N Llewellyn
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - David Alvarez-Carbonell
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Morgan Chateau
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jonathan Karn
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| | - Paula M Cannon
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
32
|
Boehm D, Ott M. Host Methyltransferases and Demethylases: Potential New Epigenetic Targets for HIV Cure Strategies and Beyond. AIDS Res Hum Retroviruses 2017; 33:S8-S22. [PMID: 29140109 DOI: 10.1089/aid.2017.0180] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A successful HIV cure strategy may require reversing HIV latency to purge hidden viral reservoirs or enhancing HIV latency to permanently silence HIV transcription. Epigenetic modifying agents show promise as antilatency therapeutics in vitro and ex vivo, but also affect other steps in the viral life cycle. In this review, we summarize what we know about cellular DNA and protein methyltransferases (PMTs) as well as demethylases involved in HIV infection. We describe the biology and function of DNA methyltransferases, and their controversial role in HIV infection. We further explain the biology of PMTs and their effects on lysine and arginine methylation of histone and nonhistone proteins. We end with a focus on protein demethylases, their unique modes of action and their emerging influence on HIV infection. An outlook on the use of methylation-modifying agents in investigational HIV cure strategies is provided.
Collapse
Affiliation(s)
- Daniela Boehm
- Gladstone Institute of Virology and Immunology, San Francisco, California
- Department of Medicine, University of California, San Francisco, California
| | - Melanie Ott
- Gladstone Institute of Virology and Immunology, San Francisco, California
- Department of Medicine, University of California, San Francisco, California
| |
Collapse
|
33
|
Wang L, Liu P, Huang S, Ye B, Chua E, Wan ZY, Yue GH. Genome-Wide Association Study Identifies Loci Associated with Resistance to Viral Nervous Necrosis Disease in Asian Seabass. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2017; 19:255-265. [PMID: 28484864 DOI: 10.1007/s10126-017-9747-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 04/19/2017] [Indexed: 05/22/2023]
Abstract
Viral nervous necrosis disease (VNN), caused by nervous necrosis virus (NNV), is one major threat to mariculture. Identifying loci and understanding the mechanisms associated with resistance to VNN are important in selective breeding programs. We performed a genome-wide association study (GWAS) using genotyping-by-sequencing (GBS) to study the genomic architecture of resistance to NNV infection in Asian seabass. We genotyped 986 individuals from 43 families produced by 15 founders with 44498 bi-allelic genetic variants using GBS. The GWAS identified three genome-wide significant loci on chromosomes 16, 19, and 20, respectively, and six suggestive loci on chromosomes 1, 8, 14, 15, 21, and 24, respectively, associated with resistance to NNV infection measured as binary and quantitative traits. Using the 500 most significant markers in combination with a training population of 800 samples could reach a genomic prediction accuracy of 0.7. Candidate genes significantly associated with resistance to NNV, including lysine-specific demethylase 2A, beta-defensin 1, and cystatin-B, which play important roles in immune responses against virus infection, were identified. Almost all the candidate genes were differentially expressed in different tissues against NNV infection. The significant genetic variants can be used in genomic selection and help understand the mechanism of resistance to VNN. Future studies should use populations of large effective size and whole genome resequencing to identify more useful genetic variants.
Collapse
Affiliation(s)
- Le Wang
- Molecular Population Genetics and Breeding Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Peng Liu
- Molecular Population Genetics and Breeding Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore
| | - Shuqing Huang
- Molecular Population Genetics and Breeding Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Baoqing Ye
- Molecular Population Genetics and Breeding Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Elaine Chua
- Molecular Population Genetics and Breeding Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Zi Yi Wan
- Molecular Population Genetics and Breeding Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Gen Hua Yue
- Molecular Population Genetics and Breeding Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore.
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore.
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.
| |
Collapse
|
34
|
Liu MC, Chen CY, Chiang CH, Wang WM, Cheng RP. Effect of lysine methylation and acetylation on the RNA recognition and cellular uptake of Tat-derived peptides. Bioorg Med Chem 2016; 24:5047-5051. [DOI: 10.1016/j.bmc.2016.08.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 08/09/2016] [Accepted: 08/11/2016] [Indexed: 11/25/2022]
|
35
|
Marban C, Forouzanfar F, Ait-Ammar A, Fahmi F, El Mekdad H, Daouad F, Rohr O, Schwartz C. Targeting the Brain Reservoirs: Toward an HIV Cure. Front Immunol 2016; 7:397. [PMID: 27746784 PMCID: PMC5044677 DOI: 10.3389/fimmu.2016.00397] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 09/20/2016] [Indexed: 12/23/2022] Open
Abstract
One of the top research priorities of the international AIDS society by the action “Towards an HIV Cure” is the purge or the decrease of the pool of all latently infected cells. This strategy is based on reactivation of latently reservoirs (the shock) followed by an intensifying combination antiretroviral therapy (cART) to kill them (the kill). The central nervous system (CNS) has potential latently infected cells, i.e., perivascular macrophages, microglial cells, and astrocytes that will need to be eliminated. However, the CNS has several characteristics that may preclude the achievement of a cure. In this review, we discuss several limitations to the eradication of brain reservoirs and how we could circumvent these limitations by making it efforts in four directions: (i) designing efficient latency-reversal agents for CNS-cell types, (ii) improving cART by targeting HIV transcription, (iii) improving delivery of HIV drugs in the CNS and in the CNS-cell types, and (iv) developing therapeutic immunization. As a prerequisite to these efforts, we also believe that a better comprehension of molecular mechanisms involved in establishment and persistence of HIV latency in brain reservoirs are essential to design new molecules for strategies aiming to achieve a cure for instance the “shock and kill” strategy.
Collapse
Affiliation(s)
- Céline Marban
- INSERM UMR 1121 Faculté de Chirurgie Dentaire, Université de Strasbourg , Strasbourg , France
| | | | - Amina Ait-Ammar
- EA7292, DHPI, Université de Strasbourg , Strasbourg , France
| | - Faiza Fahmi
- EA7292, DHPI, Université de Strasbourg , Strasbourg , France
| | - Hala El Mekdad
- EA7292, DHPI, Université de Strasbourg, Strasbourg, France; IUT Louis Pasteur de Schiltigheim, Université de Strasbourg, Schiltigheim, France
| | - Fadoua Daouad
- EA7292, DHPI, Université de Strasbourg , Strasbourg , France
| | - Olivier Rohr
- EA7292, DHPI, Université de Strasbourg, Strasbourg, France; IUT Louis Pasteur de Schiltigheim, Université de Strasbourg, Schiltigheim, France; Institut Universitaire de France, Paris, France
| | - Christian Schwartz
- EA7292, DHPI, Université de Strasbourg, Strasbourg, France; IUT Louis Pasteur de Schiltigheim, Université de Strasbourg, Schiltigheim, France
| |
Collapse
|
36
|
BIRC2/cIAP1 Is a Negative Regulator of HIV-1 Transcription and Can Be Targeted by Smac Mimetics to Promote Reversal of Viral Latency. Cell Host Microbe 2016; 18:345-53. [PMID: 26355217 DOI: 10.1016/j.chom.2015.08.009] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 07/22/2015] [Accepted: 08/25/2015] [Indexed: 11/23/2022]
Abstract
Combination antiretroviral therapy (ART) is able to suppress HIV-1 replication to undetectable levels. However, the persistence of latent viral reservoirs allows for a rebound of viral load upon cessation of therapy. Thus, therapeutic strategies to eradicate the viral latent reservoir are critically needed. Employing a targeted RNAi screen, we identified the ubiquitin ligase BIRC2 (cIAP1), a repressor of the noncanonical NF-κB pathway, as a potent negative regulator of LTR-dependent HIV-1 transcription. Depletion of BIRC2 through treatment with small molecule antagonists known as Smac mimetics enhanced HIV-1 transcription, leading to a reversal of latency in a JLat latency model system. Critically, treatment of resting CD4+ T cells isolated from ART-suppressed patients with the histone deacetylase inhibitor (HDACi) panobinostat together with Smac mimetics resulted in synergistic activation of the latent reservoir. These data implicate Smac mimetics as useful agents for shock-and-kill strategies to eliminate the latent HIV reservoir.
Collapse
|
37
|
Ali I, Ramage H, Boehm D, Dirk LMA, Sakane N, Hanada K, Pagans S, Kaehlcke K, Aull K, Weinberger L, Trievel R, Schnoelzer M, Kamada M, Houtz R, Ott M. The HIV-1 Tat Protein Is Monomethylated at Lysine 71 by the Lysine Methyltransferase KMT7. J Biol Chem 2016; 291:16240-8. [PMID: 27235396 DOI: 10.1074/jbc.m116.735415] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Indexed: 11/06/2022] Open
Abstract
The HIV-1 transactivator protein Tat is a critical regulator of HIV transcription primarily enabling efficient elongation of viral transcripts. Its interactions with RNA and various host factors are regulated by ordered, transient post-translational modifications. Here, we report a novel Tat modification, monomethylation at lysine 71 (K71). We found that Lys-71 monomethylation (K71me) is catalyzed by KMT7, a methyltransferase that also targets lysine 51 (K51) in Tat. Using mass spectrometry, in vitro enzymology, and modification-specific antibodies, we found that KMT7 monomethylates both Lys-71 and Lys-51 in Tat. K71me is important for full Tat transactivation, as KMT7 knockdown impaired the transcriptional activity of wild type (WT) Tat but not a Tat K71R mutant. These findings underscore the role of KMT7 as an important monomethyltransferase regulating HIV transcription through Tat.
Collapse
Affiliation(s)
- Ibraheem Ali
- From the Gladstone Institute of Virology and Immunology, San Francisco, California 94158, Departments of Medicine and
| | - Holly Ramage
- From the Gladstone Institute of Virology and Immunology, San Francisco, California 94158
| | - Daniela Boehm
- From the Gladstone Institute of Virology and Immunology, San Francisco, California 94158
| | - Lynnette M A Dirk
- Department of Horticulture, University of Kentucky, Lexington, Kentucky 40508
| | - Naoki Sakane
- From the Gladstone Institute of Virology and Immunology, San Francisco, California 94158, Pharmaceutical Frontier Research Laboratory, JT Inc., Yokohama 236-0004, Japan
| | - Kazuki Hanada
- Pharmaceutical Frontier Research Laboratory, JT Inc., Yokohama 236-0004, Japan
| | - Sara Pagans
- From the Gladstone Institute of Virology and Immunology, San Francisco, California 94158
| | - Katrin Kaehlcke
- From the Gladstone Institute of Virology and Immunology, San Francisco, California 94158
| | - Katherine Aull
- From the Gladstone Institute of Virology and Immunology, San Francisco, California 94158, Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California 94158
| | - Leor Weinberger
- From the Gladstone Institute of Virology and Immunology, San Francisco, California 94158, Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California 94158
| | - Raymond Trievel
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, and
| | | | - Masafumi Kamada
- Pharmaceutical Frontier Research Laboratory, JT Inc., Yokohama 236-0004, Japan
| | - Robert Houtz
- Department of Horticulture, University of Kentucky, Lexington, Kentucky 40508
| | - Melanie Ott
- From the Gladstone Institute of Virology and Immunology, San Francisco, California 94158, Departments of Medicine and
| |
Collapse
|
38
|
White CH, Moesker B, Ciuffi A, Beliakova-Bethell N. Systems biology applications to study mechanisms of human immunodeficiency virus latency and reactivation. World J Clin Infect Dis 2016; 6:6-21. [DOI: 10.5495/wjcid.v6.i2.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 01/15/2016] [Accepted: 03/09/2016] [Indexed: 02/06/2023] Open
Abstract
Eradication of human immunodeficiency virus (HIV) in infected individuals is currently not possible because of the presence of the persistent cellular reservoir of latent infection. The identification of HIV latency biomarkers and a better understanding of the molecular mechanisms contributing to regulation of HIV expression might provide essential tools to eliminate these latently infected cells. This review aims at summarizing gene expression profiling and systems biology applications to studies of HIV latency and eradication. Studies comparing gene expression in latently infected and uninfected cells identify candidate latency biomarkers and novel mechanisms of latency control. Studies that profiled gene expression changes induced by existing latency reversing agents (LRAs) highlight uniting themes driving HIV reactivation and novel mechanisms that contribute to regulation of HIV expression by different LRAs. Among the reviewed gene expression studies, the common approaches included identification of differentially expressed genes and gene functional category assessment. Integration of transcriptomic data with other biological data types is presently scarce, and the field would benefit from increased adoption of these methods in future studies. In addition, designing prospective studies that use the same methods of data acquisition and statistical analyses will facilitate a more reliable identification of latency biomarkers using different model systems and the comparison of the effects of different LRAs on host factors with a role in HIV reactivation. The results from such studies would have the potential to significantly impact the process by which candidate drugs are selected and combined for future evaluations and advancement to clinical trials.
Collapse
|
39
|
Stazi G, Zwergel C, Valente S, Mai A. LSD1 inhibitors: a patent review (2010-2015). Expert Opin Ther Pat 2016; 26:565-80. [DOI: 10.1517/13543776.2016.1165209] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
40
|
Abstract
The lysine-specific demethylase (LSD1) is a flavin-dependent amine oxidase that selectively removes one or two methyl groups from histone H3 at the Lys4 position. Along with histone deacetylases 1 and 2, LSD1 is involved in epigenetically silencing gene expression. LSD1 has been implicated as a potential therapeutic target in cancer and other diseases. In this chapter, we discuss several approaches to measure LSD1 demethylase activity and their relative strengths and limitations for inhibitor discovery and mechanistic characterization. In addition, we review the principal established chemical functional groups derived from monoamine oxidase inhibitors that have been investigated in the context of LSD1 as demethylase inhibitors. Finally, we highlight a few examples of recently developed LSD1 mechanism-based inactivators and their biomedical applications.
Collapse
Affiliation(s)
- D Hayward
- Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - P A Cole
- Johns Hopkins School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
41
|
Iordanskiy S, Kashanchi F. Potential of Radiation-Induced Cellular Stress for Reactivation of Latent HIV-1 and Killing of Infected Cells. AIDS Res Hum Retroviruses 2016; 32:120-4. [PMID: 26765533 DOI: 10.1089/aid.2016.0006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The use of highly active antiretroviral therapy against HIV-1 for last two decades has reduced mortality of patients through extension of nonsymptomatic phase of infection. However, HIV-1 can be preserved in long-lived resting CD4(+) T cells, which form a viral reservoir in infected individuals, and potentially in macrophages and astrocytes. Reactivation of viral replication is critical since the host immune response in combination with antiretroviral therapy may eradicate the virus (shock and kill strategy). In this opinion piece, we consider potential application of therapeutic doses of irradiation, the well-known and effective stress signal that induces DNA damage and activates cellular stress response, to resolve two problems: activate HIV-1 replication and virion production in persistent reservoirs under cART and deplete infected cells through selective cell killing using DNA damage responses.
Collapse
Affiliation(s)
- Sergey Iordanskiy
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, Virginia
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, Virginia
| | - Fatah Kashanchi
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, Virginia
| |
Collapse
|
42
|
Reddy DN, Ballante F, Chuang T, Pirolli A, Marrocco B, Marshall GR. Design and Synthesis of Simplified Largazole Analogues as Isoform-Selective Human Lysine Deacetylase Inhibitors. J Med Chem 2016; 59:1613-33. [PMID: 26681404 DOI: 10.1021/acs.jmedchem.5b01632] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Selective inhibition of KDAC isoforms while maintaining potency remains a challenge. Using the largazole macrocyclic depsipeptide structure as a starting point for developing new KDACIs with increased selectivity, a combination of four different simplified largazole analogue (SLA) scaffolds with diverse zinc-binding groups (for a total of 60 compounds) were designed, synthesized, and evaluated against class I KDACs 1, 3, and 8, and class II KDAC6. Experimental evidence as well as molecular docking poses converged to establish the cyclic tetrapeptides (CTPs) as the primary determinant of both potency and selectivity by influencing the correct alignment of the zinc-binding group in the KDAC active site, providing a further basis for developing new KDACIs of higher isoform selectivity and potency.
Collapse
Affiliation(s)
- Damodara N Reddy
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine , 700 South Euclid Avenue, St. Louis, Missouri 63110, United States
| | - Flavio Ballante
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine , 700 South Euclid Avenue, St. Louis, Missouri 63110, United States
| | - Timothy Chuang
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine , 700 South Euclid Avenue, St. Louis, Missouri 63110, United States
| | - Adele Pirolli
- Rome Center for Molecular Design, Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma , P. le A. Moro 5, 00185 Roma, Italy
| | - Biagina Marrocco
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma , P. le A. Moro 5, 00185 Roma, Italy
| | - Garland R Marshall
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine , 700 South Euclid Avenue, St. Louis, Missouri 63110, United States
| |
Collapse
|
43
|
Liu C, Ma X, Liu B, Chen C, Zhang H. HIV-1 functional cure: will the dream come true? BMC Med 2015; 13:284. [PMID: 26588898 PMCID: PMC4654816 DOI: 10.1186/s12916-015-0517-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 11/03/2015] [Indexed: 02/07/2023] Open
Abstract
The reservoir of human immunodeficiency virus type 1 (HIV-1), a long-lived pool of latently infected cells harboring replication-competent viruses, is the major obstacle to curing acquired immune deficiency syndrome (AIDS). Although the combination antiretroviral therapy (cART) can successfully suppress HIV-1 viremia and significantly delay the progression of the disease, it cannot eliminate the viral reservoir and the patient must continue to take anti-viral medicines for life. Currently, the appearance of the 'Berlin patient', the 'Boston patients', and the 'Mississippi baby' have inspired many therapeutic strategies for HIV-1 aimed at curing efforts. However, the specific eradication of viral latency and the recovery and optimization of the HIV-1-specific immune surveillance are major challenges to achieving such a cure. Here, we summarize recent studies addressing the mechanisms underlying the viral latency and define two categories of viral reservoir: 'shallow' and 'deep'. We also present the current strategies and recent advances in the development of a functional cure for HIV-1, focusing on full/partial replacement of the immune system, 'shock and kill', and 'permanent silencing' approaches.
Collapse
Affiliation(s)
- Chao Liu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China. .,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Xiancai Ma
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China. .,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Bingfeng Liu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China. .,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Cancan Chen
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China. .,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Hui Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China. .,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
44
|
Zhan P, Pannecouque C, De Clercq E, Liu X. Anti-HIV Drug Discovery and Development: Current Innovations and Future Trends. J Med Chem 2015; 59:2849-78. [PMID: 26509831 DOI: 10.1021/acs.jmedchem.5b00497] [Citation(s) in RCA: 240] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The early effectiveness of combinatorial antiretroviral therapy (cART) in the treatment of HIV infection has been compromised to some extent by rapid development of multidrug-resistant HIV strains, poor bioavailability, and cumulative toxicities, and so there is a need for alternative strategies of antiretroviral drug discovery and additional therapeutic agents with novel action modes or targets. From this perspective, we first review current strategies of antiretroviral drug discovery and optimization, with the aid of selected examples from the recent literature. We highlight the development of phosphate ester-based prodrugs as a means to improve the aqueous solubility of HIV inhibitors, and the introduction of the substrate envelope hypothesis as a new approach for overcoming HIV drug resistance. Finally, we discuss future directions for research, including opportunities for exploitation of novel antiretroviral targets, and the strategy of activation of latent HIV reservoirs as a means to eradicate the virus.
Collapse
Affiliation(s)
- Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44, West Culture Road, 250012, Jinan, Shandong, P. R. China
| | - Christophe Pannecouque
- Rega Institute for Medical Research, Katholieke Universiteit Leuven , Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Erik De Clercq
- Rega Institute for Medical Research, Katholieke Universiteit Leuven , Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44, West Culture Road, 250012, Jinan, Shandong, P. R. China
| |
Collapse
|
45
|
White CH, Johnston HE, Moesker B, Manousopoulou A, Margolis DM, Richman DD, Spina CA, Garbis SD, Woelk CH, Beliakova-Bethell N. Mixed effects of suberoylanilide hydroxamic acid (SAHA) on the host transcriptome and proteome and their implications for HIV reactivation from latency. Antiviral Res 2015; 123:78-85. [PMID: 26343910 PMCID: PMC5606336 DOI: 10.1016/j.antiviral.2015.09.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 08/22/2015] [Accepted: 09/03/2015] [Indexed: 02/06/2023]
Abstract
Suberoylanilide hydroxamic acid (SAHA) has been assessed in clinical trials as part of a "shock and kill" strategy to cure HIV-infected patients. While it was effective at inducing expression of HIV RNA ("shock"), treatment with SAHA did not result in a reduction of reservoir size ("kill"). We therefore utilized a combined analysis of effects of SAHA on the host transcriptome and proteome to dissect its mechanisms of action that may explain its limited success in "shock and kill" strategies. CD4+ T cells from HIV seronegative donors were treated with 1μM SAHA or its solvent dimethyl sulfoxide (DMSO) for 24h. Protein expression and post-translational modifications were measured with iTRAQ proteomics using ultra high-precision two-dimensional liquid chromatography-tandem mass spectrometry. Gene expression was assessed by Illumina microarrays. Using limma package in the R computing environment, we identified 185 proteins, 18 phosphorylated forms, 4 acetylated forms and 2982 genes, whose expression was modulated by SAHA. A protein interaction network integrating these 4 data types identified the HIV transcriptional repressor HMGA1 to be upregulated by SAHA at the transcript, protein and acetylated protein levels. Further functional category assessment of proteins and genes modulated by SAHA identified gene ontology terms related to NFκB signaling, protein folding and autophagy, which are all relevant to HIV reactivation. In summary, SAHA modulated numerous host cell transcripts, proteins and post-translational modifications of proteins, which would be expected to have very mixed effects on the induction of HIV-specific transcription and protein function. Proteome profiling highlighted a number of potential counter-regulatory effects of SAHA with respect to viral induction, which transcriptome profiling alone would not have identified. These observations could lead to a more informed selection and design of other HDACi with a more refined targeting profile, and prioritization of latency reversing agents of other classes to be used in combination with SAHA to achieve more potent induction of HIV expression.
Collapse
Affiliation(s)
- Cory H White
- Graduate Program in Bioinformatics and Systems Biology, University of California San Diego, La Jolla, CA 92093, USA; San Diego VA Medical Center and Veterans Medical Research Foundation, San Diego, CA 92161, USA
| | - Harvey E Johnston
- Cancer Sciences Faculty of Medicine, University of Southampton, Southampton, Hants SO16 6YD, UK; Centre for Proteomic Research, Institute for Life Sciences, University of Southampton, Highfield Campus, Southampton, UK
| | - Bastiaan Moesker
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, Hants SO16 6YD, UK
| | - Antigoni Manousopoulou
- Centre for Proteomic Research, Institute for Life Sciences, University of Southampton, Highfield Campus, Southampton, UK; Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, Hants SO16 6YD, UK
| | - David M Margolis
- Departments of Medicine, Microbiology and Immunology, Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Douglas D Richman
- San Diego VA Medical Center and Veterans Medical Research Foundation, San Diego, CA 92161, USA; Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA; Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Celsa A Spina
- San Diego VA Medical Center and Veterans Medical Research Foundation, San Diego, CA 92161, USA; Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA
| | - Spiros D Garbis
- Cancer Sciences Faculty of Medicine, University of Southampton, Southampton, Hants SO16 6YD, UK; Centre for Proteomic Research, Institute for Life Sciences, University of Southampton, Highfield Campus, Southampton, UK; Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, Hants SO16 6YD, UK.
| | - Christopher H Woelk
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, Hants SO16 6YD, UK.
| | | |
Collapse
|
46
|
Zhang X, Huang Y, Shi X. Emerging roles of lysine methylation on non-histone proteins. Cell Mol Life Sci 2015; 72:4257-72. [PMID: 26227335 PMCID: PMC11114002 DOI: 10.1007/s00018-015-2001-4] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 06/27/2015] [Accepted: 07/24/2015] [Indexed: 10/23/2022]
Abstract
Lysine methylation is a common posttranslational modification (PTM) of histones that is important for the epigenetic regulation of transcription and chromatin in eukaryotes. Increasing evidence demonstrates that in addition to histones, lysine methylation also occurs on various non-histone proteins, especially transcription- and chromatin-regulating proteins. In this review, we will briefly describe the histone lysine methyltransferases (KMTs) that have a broad spectrum of non-histone substrates. We will use p53 and nuclear receptors, especially estrogen receptor alpha, as examples to discuss the dynamic nature of non-histone protein lysine methylation, the writers, erasers, and readers of these modifications, and the crosstalk between lysine methylation and other PTMs in regulating the functions of the modified proteins. Understanding the roles of lysine methylation in normal cells and during development will shed light on the complex biology of diseases associated with the dysregulation of lysine methylation on both histones and non-histone proteins.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yaling Huang
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xiaobing Shi
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- The Genes and Development and the Epigenetics and Molecular Carcinogenesis Graduate Programs, The University of Texas Graduate School of Biomedical Sciences, Houston, TX, 77030, USA.
| |
Collapse
|
47
|
Impact of Chromatin on HIV Replication. Genes (Basel) 2015; 6:957-76. [PMID: 26437430 PMCID: PMC4690024 DOI: 10.3390/genes6040957] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 09/14/2015] [Accepted: 09/22/2015] [Indexed: 12/22/2022] Open
Abstract
Chromatin influences Human Immunodeficiency Virus (HIV) integration and replication. This review highlights critical host factors that influence chromatin structure and organization and that also impact HIV integration, transcriptional regulation and latency. Furthermore, recent attempts to target chromatin associated factors to reduce the HIV proviral load are discussed.
Collapse
|
48
|
Bose D, Gagnon J, Chebloune Y. Comparative Analysis of Tat-Dependent and Tat-Deficient Natural Lentiviruses. Vet Sci 2015; 2:293-348. [PMID: 29061947 PMCID: PMC5644649 DOI: 10.3390/vetsci2040293] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/24/2015] [Accepted: 08/24/2015] [Indexed: 01/10/2023] Open
Abstract
The emergence of human immunodeficiency virus (HIV) causing acquired immunodeficiency syndrome (AIDS) in infected humans has resulted in a global pandemic that has killed millions. HIV-1 and HIV-2 belong to the lentivirus genus of the Retroviridae family. This genus also includes viruses that infect other vertebrate animals, among them caprine arthritis-encephalitis virus (CAEV) and Maedi-Visna virus (MVV), the prototypes of a heterogeneous group of viruses known as small ruminant lentiviruses (SRLVs), affecting both goat and sheep worldwide. Despite their long host-SRLV natural history, SRLVs were never found to be responsible for immunodeficiency in contrast to primate lentiviruses. SRLVs only replicate productively in monocytes/macrophages in infected animals but not in CD4+ T cells. The focus of this review is to examine and compare the biological and pathological properties of SRLVs as prototypic Tat-independent lentiviruses with HIV-1 as prototypic Tat-dependent lentiviruses. Results from this analysis will help to improve the understanding of why and how these two prototypic lentiviruses evolved in opposite directions in term of virulence and pathogenicity. Results may also help develop new strategies based on the attenuation of SRLVs to control the highly pathogenic HIV-1 in humans.
Collapse
Affiliation(s)
- Deepanwita Bose
- Pathogénèse et Vaccination Lentivirales, PAVAL Lab., Université Joseph Fourier Grenoble 1, Bat. NanoBio2, 570 rue de la Chimie, BP 53, 38041, Grenoble Cedex 9, France.
| | - Jean Gagnon
- Pathogénèse et Vaccination Lentivirales, PAVAL Lab., Université Joseph Fourier Grenoble 1, Bat. NanoBio2, 570 rue de la Chimie, BP 53, 38041, Grenoble Cedex 9, France.
| | - Yahia Chebloune
- Pathogénèse et Vaccination Lentivirales, PAVAL Lab., Université Joseph Fourier Grenoble 1, Bat. NanoBio2, 570 rue de la Chimie, BP 53, 38041, Grenoble Cedex 9, France.
| |
Collapse
|
49
|
Finley J. Reactivation of latently infected HIV-1 viral reservoirs and correction of aberrant alternative splicing in the LMNA gene via AMPK activation: Common mechanism of action linking HIV-1 latency and Hutchinson–Gilford progeria syndrome. Med Hypotheses 2015; 85:320-32. [DOI: 10.1016/j.mehy.2015.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 05/25/2015] [Accepted: 06/08/2015] [Indexed: 12/30/2022]
|
50
|
Zheng YC, Ma J, Wang Z, Li J, Jiang B, Zhou W, Shi X, Wang X, Zhao W, Liu HM. A Systematic Review of Histone Lysine-Specific Demethylase 1 and Its Inhibitors. Med Res Rev 2015; 35:1032-71. [PMID: 25990136 DOI: 10.1002/med.21350] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 04/02/2015] [Accepted: 04/19/2015] [Indexed: 12/11/2022]
Abstract
Histone lysine-specific demethylase 1 (LSD1) is the first discovered and reported histone demethylase by Dr. Shi Yang's group in 2004. It is classified as a member of amine oxidase superfamily, the common feature of which is using the flavin adenine dinucleotide (FAD) as its cofactor. Since it is located in cell nucleus and acts as a histone methylation eraser, LSD1 specifically removes mono- or dimethylated histone H3 lysine 4 (H3K4) and H3 lysine 9 (H3K9) through formaldehyde-generating oxidation. It has been indicated that LSD1 and its downstream targets are involved in a wide range of biological courses, including embryonic development and tumor-cell growth and metastasis. LSD1 has been reported to be overexpressed in variety of tumors. Inactivating LSD1 or downregulating its expression inhibits cancer-cell development. LSD1 targeting inhibitors may represent a new insight in anticancer drug discovery. This review summarizes recent studies about LSD1 and mainly focuses on the basic physiological function of LSD1 and its involved mechanisms in pathophysiologic conditions, as well as the development of LSD1 inhibitors as potential anticancer therapeutic agents.
Collapse
Affiliation(s)
- Yi-Chao Zheng
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New drug R & D and Preclinical Safety, Zhengzhou University School of Pharmaceutical Sciences, 100 Kexue Avenue, Zhengzhou, Henan, 450001, P. R. China
| | - Jinlian Ma
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New drug R & D and Preclinical Safety, Zhengzhou University School of Pharmaceutical Sciences, 100 Kexue Avenue, Zhengzhou, Henan, 450001, P. R. China
| | - Zhiru Wang
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New drug R & D and Preclinical Safety, Zhengzhou University School of Pharmaceutical Sciences, 100 Kexue Avenue, Zhengzhou, Henan, 450001, P. R. China
| | - Jinfeng Li
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New drug R & D and Preclinical Safety, Zhengzhou University School of Pharmaceutical Sciences, 100 Kexue Avenue, Zhengzhou, Henan, 450001, P. R. China
| | - Bailing Jiang
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New drug R & D and Preclinical Safety, Zhengzhou University School of Pharmaceutical Sciences, 100 Kexue Avenue, Zhengzhou, Henan, 450001, P. R. China
| | - Wenjuan Zhou
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New drug R & D and Preclinical Safety, Zhengzhou University School of Pharmaceutical Sciences, 100 Kexue Avenue, Zhengzhou, Henan, 450001, P. R. China
| | - Xiaojing Shi
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New drug R & D and Preclinical Safety, Zhengzhou University School of Pharmaceutical Sciences, 100 Kexue Avenue, Zhengzhou, Henan, 450001, P. R. China
| | - Xixin Wang
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New drug R & D and Preclinical Safety, Zhengzhou University School of Pharmaceutical Sciences, 100 Kexue Avenue, Zhengzhou, Henan, 450001, P. R. China
| | - Wen Zhao
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New drug R & D and Preclinical Safety, Zhengzhou University School of Pharmaceutical Sciences, 100 Kexue Avenue, Zhengzhou, Henan, 450001, P. R. China
| | - Hong-Min Liu
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New drug R & D and Preclinical Safety, Zhengzhou University School of Pharmaceutical Sciences, 100 Kexue Avenue, Zhengzhou, Henan, 450001, P. R. China
| |
Collapse
|