1
|
Saha S, Prajapati DG, Mishra A. Amphiphilic polymer coated carbon nanotubes: A promising platform against Salmonella typhi. Microb Pathog 2025; 202:107411. [PMID: 39993548 DOI: 10.1016/j.micpath.2025.107411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/19/2025] [Accepted: 02/21/2025] [Indexed: 02/26/2025]
Abstract
Carbon nanotubes (CNTs) are an excellent example of new nanostructures that can penetrate bacterial cell walls. Its remarkable physical features and potent antibacterial activity make it a promising candidate for various applications. However, two significant barriers currently limit the antibacterial potential of CNTs in medical devices: cell toxicity and CNTs aggregation within a polymer matrix. In this study, a simple and cost-effective method was proposed to synthesize multi-walled carbon nanotubes-g-[poly(ethylene glycol)-bpoly(ε-caprolactone)] (PEG-PCL@CNTs) using biocompatible amphiphilic PEG-PCL diblock copolymer via non-covalent functionalization. Furthermore, time-killing kinetic, ROS generation experiments and SEM analysis demonstrated that PEG-PCL@CNTs exhibited antibacterial activities against S. typhi strains through cell membrane disruption with the release of cellular contents and ROS generation. Excellent hemocompatibility with decreased hemolysis ratios was demonstrated by the PEG-PCL@CNTs nanohybrid materials. Thus, PEG-PCL incorporation may successfully lessen both bacterial adhesion and the toxicity of CNT to human cells. These findings suggest a new avenue for rational design of polymer-functionalization of carbon nanomaterials as therapeutic agents for bacterial infections.
Collapse
Affiliation(s)
- Sarmistha Saha
- Materials Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, India; Department of Biotechnology, Institute of Applied Science and Humanities, GLA University, Uttar Pradesh, India.
| | - Deepak G Prajapati
- Materials Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, India
| | - Abhijit Mishra
- Materials Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, India
| |
Collapse
|
2
|
Sia CM, Pearson JS, Howden BP, Williamson DA, Ingle DJ. Salmonella pathogenicity islands in the genomic era. Trends Microbiol 2025:S0966-842X(25)00038-1. [PMID: 40210546 DOI: 10.1016/j.tim.2025.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/29/2025] [Accepted: 02/17/2025] [Indexed: 04/12/2025]
Abstract
Serovars of Salmonella are significant bacterial pathogens and are leading contributors to the global burden of diarrhoeal disease. Salmonella pathogenicity islands (SPIs) are essential for the survival and success of this genus, enabling colonisation, invasion, and survival in hostile environments. While genomics has transformed efforts to understand the evolution, dissemination, and antimicrobial resistance of members, its use to explore virulence determinants that contribute to the pathogenicity of specific organisms and severity of infection remains varied. Here, we discuss the importance of SPIs to the evolution of Salmonella, the implications in the shift of identification of SPIs from molecular microbiology to genomic-based approaches, and examine current efforts to explore the distribution and prevalence of SPIs in large-scale datasets of Salmonella genomes.
Collapse
Affiliation(s)
- Cheryll M Sia
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, 3000, Victoria, Australia; Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, 3000, Victoria, Australia
| | - Jaclyn S Pearson
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, 3168, Victoria, Australia; Department of Microbiology, Monash University, Clayton, 3168, Victoria, Australia; School of Medicine, University of St Andrews, St Andrews, KY16 9TF, Fife, UK
| | - Benjamin P Howden
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, 3000, Victoria, Australia; Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, 3000, Victoria, Australia; Centre for Pathogen Genomics, University of Melbourne, Melbourne, 3000, Victoria, Australia
| | | | - Danielle J Ingle
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, 3000, Victoria, Australia; Centre for Pathogen Genomics, University of Melbourne, Melbourne, 3000, Victoria, Australia.
| |
Collapse
|
3
|
Emerson LE, Bhimani S, Rainey AL, Maurelli AT, Ferraro MJ. Evaluating small extracellular vesicle-based vaccination across heterologous Salmonella strains isolated from wastewater. Infect Immun 2025; 93:e0048524. [PMID: 39804074 PMCID: PMC11834434 DOI: 10.1128/iai.00485-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 12/04/2024] [Indexed: 02/13/2025] Open
Abstract
Salmonella infections pose significant public health challenges worldwide. The diversity of Salmonella strains, particularly those isolated from environmental and clinical sources, necessitates innovative approaches to prevention and treatment. Previous research has shown that small extracellular vesicles (sEVs) produced by macrophages during Salmonella Typhimurium infection can induce robust immune responses when used as a vaccine, offering complete protection in systemic infection models. In this study, we isolated 120 Salmonella strains from qPCR invA-positive wastewater samples collected in Gainesville, FL. These strains underwent enrichment, selection, and biochemical confirmation, followed by serotyping and whole genome sequencing. Two isolates, Salmonella enterica subsp. diarizonae (Diarizonae) and S. enterica serovar Enteritidis, were selected for further analysis based on community prevalence and clinical severity. We also assessed the ability of sEVs produced by S. Typhimurium-infected macrophages to induce immune responses against these heterologous and circulating strains in mice. Immunization with sEVs induced robust antigen-specific SIgA and IgG responses against S. Typhimurium, Enteritidis, and Diarizonae, with high titers observed in sera and fecal samples. Proteomic analysis revealed differential expression of proteins in these strains, including antigenic proteins present in sEVs such as OmpA, FliC, or OmpD. Moreover, this study highlights the role of wastewater-based epidemiology (WBE) as a tool for environmental surveillance, offering a complementary perspective on Salmonella dynamics within a population. Integrating WBE with traditional surveillance methods, along with the promising results of sEV-based vaccination, provides a pragmatic strategy for developing effective preventative measures against Salmonella infections, addressing the diversity of non-typhoidal Salmonella strains.
Collapse
Affiliation(s)
- Lisa E. Emerson
- Microbiology and Cell Science Department, IFAS, University of Florida, Gainesville, Florida, USA
- Clinical and Translational Science Institute, University of Florida, Gainesville, Florida, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
| | - Saloni Bhimani
- Microbiology and Cell Science Department, IFAS, University of Florida, Gainesville, Florida, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
| | - Andrew L. Rainey
- Clinical and Translational Science Institute, University of Florida, Gainesville, Florida, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
- Department of Environmental and Global Health, University of Florida, Gainesville, Florida, USA
| | - Anthony T. Maurelli
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
- Department of Environmental and Global Health, University of Florida, Gainesville, Florida, USA
| | - Mariola J. Ferraro
- Microbiology and Cell Science Department, IFAS, University of Florida, Gainesville, Florida, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
4
|
Nazir J, Manzoor T, Saleem A, Gani U, Bhat SS, Khan S, Haq Z, Jha P, Ahmad SM. Combatting Salmonella: a focus on antimicrobial resistance and the need for effective vaccination. BMC Infect Dis 2025; 25:84. [PMID: 39833704 PMCID: PMC11744889 DOI: 10.1186/s12879-025-10478-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/09/2025] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Salmonella infections represent a major global public health concern due to their widespread zoonotic transmission, antimicrobial resistance, and associated morbidity and mortality. This review aimed to summarize the zoonotic nature of Salmonella, the challenges posed by antimicrobial resistance, the global burden of infections, and the need for effective vaccination strategies to mitigate the rising threat of Salmonella. METHODS A systematic review of literature was conducted using databases such as PubMed, Scopus, Web of Science, and Google Scholar. Relevant studies published in English were identified using keywords including Salmonella, vaccination, antimicrobial resistance, and public health. Articles focusing on epidemiology, vaccine development, and strategies to control Salmonella infections were included, while conference abstracts and non-peer-reviewed studies were excluded. RESULTS Salmonella infections result in approximately 95 million global cases annually, with an estimated 150,000 deaths. Regional variations were evident, with higher infection rates in low- and middle-income countries due to poor sanitation and food safety standards. Salmonella Enteritidis and S. Typhimurium were the most prevalent serovars associated with human infections. The review highlighted an alarming rise in multidrug-resistant (MDR) Salmonella strains, particularly due to the overuse of antibiotics in humans and livestock. Despite progress in vaccine development, challenges remain in achieving a universal vaccine that targets diverse Salmonella serovars. Live-attenuated, killed, recombinant, subunit, and conjugate vaccines are currently under development, but limitations such as efficacy, cost, and accessibility persist. CONCLUSIONS Salmonella infections continue to impose a significant burden on global health, exacerbated by rising antimicrobial resistance. There is an urgent need for a multifaceted approach, including improved sanitation, prudent antibiotic use, and the development of affordable, broad-spectrum vaccines. Strengthening surveillance systems and promoting collaborative global efforts are essential to effectively control and reduce the burden of Salmonella.
Collapse
Affiliation(s)
- Junaid Nazir
- Division of Animal Biotechnology, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST Kashmir, Shuhama, J&K, 190006, India
- Department of Clinical Biochemistry, Lovely Professional University, Phagwara, Punjab, India
| | - Tasaduq Manzoor
- Division of Animal Biotechnology, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST Kashmir, Shuhama, J&K, 190006, India
| | - Afnan Saleem
- Division of Animal Biotechnology, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST Kashmir, Shuhama, J&K, 190006, India
| | - Ubaid Gani
- Division of Animal Biotechnology, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST Kashmir, Shuhama, J&K, 190006, India
| | - Sahar Saleem Bhat
- Division of Animal Biotechnology, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST Kashmir, Shuhama, J&K, 190006, India
| | - Shabir Khan
- Division of Animal Biotechnology, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST Kashmir, Shuhama, J&K, 190006, India
| | - Zulfqarul Haq
- Division of Livestock Production and Management, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST Kashmir, Shuhama, J&K, India
| | - Priyanka Jha
- Department of Clinical Biochemistry, Lovely Professional University, Phagwara, Punjab, India.
| | - Syed Mudasir Ahmad
- Division of Animal Biotechnology, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST Kashmir, Shuhama, J&K, 190006, India.
| |
Collapse
|
5
|
Zizza A, Fallucca A, Guido M, Restivo V, Roveta M, Trucchi C. Foodborne Infections and Salmonella: Current Primary Prevention Tools and Future Perspectives. Vaccines (Basel) 2024; 13:29. [PMID: 39852807 PMCID: PMC11768952 DOI: 10.3390/vaccines13010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/28/2024] [Accepted: 12/30/2024] [Indexed: 01/26/2025] Open
Abstract
Salmonella is considered the major zoonotic and foodborne pathogen responsible for human infections. It includes the serovars causing typhoid fever (S. typhi and S. paratyphi) and the non-typhoidal salmonella (NTS) serovars (S. enteritidis and S. typhimurium), causing enteric infections known as "Salmonellosis". NTS represents a major public health burden worldwide. The consumption of S. enteritidis-contaminated animal foods is the main source of this disease in humans, and eradicating bacteria from animals remains a challenge. NTS causes various clinical manifestations, depending on the quantity of bacteria present in the food and the immune status of the infected individual, ranging from localized, self-limiting gastroenteritis to more serious systemic infections. Salmonellosis prevention is based on hygienic and behavioral rules related to food handling that aim to reduce the risk of infection. However, no vaccine against NTS is available for human use. This aspect, in addition to the increase in multidrug-resistant strains and the high morbidity, mortality, and socioeconomic costs of NTS-related diseases, makes the development of new prevention and control strategies urgently needed. The success of the vaccines used to protect against S. typhi encouraged the development of NTS vaccine candidates, including live attenuated, subunit-based, and recombinant-protein-based vaccines. In this review, we discuss the epidemiological burden of Salmonellosis and its primary prevention, focusing on the current status and future perspectives of the vaccines against NTS.
Collapse
Affiliation(s)
- Antonella Zizza
- Institute of Clinical Physiology, National Research Council, 73100 Lecce, Italy;
| | - Alessandra Fallucca
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialities, University of Palermo, 90127 Palermo, Italy;
| | - Marcello Guido
- Laboratory of Hygiene, Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy;
| | | | - Marco Roveta
- Food Hygiene and Nutrition Service, Local Health Unit 3, Department of Prevention, 16142 Genoa, Italy;
| | - Cecilia Trucchi
- Food Hygiene and Nutrition Service, Local Health Unit 3, Department of Prevention, 16142 Genoa, Italy;
| |
Collapse
|
6
|
Han J, Aljahdali N, Zhao S, Tang H, Harbottle H, Hoffmann M, Frye JG, Foley SL. Infection biology of Salmonella enterica. EcoSal Plus 2024; 12:eesp00012023. [PMID: 38415623 PMCID: PMC11636313 DOI: 10.1128/ecosalplus.esp-0001-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 07/31/2023] [Indexed: 02/29/2024]
Abstract
Salmonella enterica is the leading cause of bacterial foodborne illness in the USA, with an estimated 95% of salmonellosis cases due to the consumption of contaminated food products. Salmonella can cause several different disease syndromes, with the most common being gastroenteritis, followed by bacteremia and typhoid fever. Among the over 2,600 currently identified serotypes/serovars, some are mostly host-restricted and host-adapted, while the majority of serotypes can infect a broader range of host species and are associated with causing both livestock and human disease. Salmonella serotypes and strains within serovars can vary considerably in the severity of disease that may result from infection, with some serovars that are more highly associated with invasive disease in humans, while others predominantly cause mild gastroenteritis. These observed clinical differences may be caused by the genetic make-up and diversity of the serovars. Salmonella virulence systems are very complex containing several virulence-associated genes with different functions that contribute to its pathogenicity. The different clinical syndromes are associated with unique groups of virulence genes, and strains often differ in the array of virulence traits they display. On the chromosome, virulence genes are often clustered in regions known as Salmonella pathogenicity islands (SPIs), which are scattered throughout different Salmonella genomes and encode factors essential for adhesion, invasion, survival, and replication within the host. Plasmids can also carry various genes that contribute to Salmonella pathogenicity. For example, strains from several serovars associated with significant human disease, including Choleraesuis, Dublin, Enteritidis, Newport, and Typhimurium, can carry virulence plasmids with genes contributing to attachment, immune system evasion, and other roles. The goal of this comprehensive review is to provide key information on the Salmonella virulence, including the contributions of genes encoded in SPIs and plasmids during Salmonella pathogenesis.
Collapse
Affiliation(s)
- Jing Han
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Nesreen Aljahdali
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
- Biological Science Department, College of Science, King Abdul-Aziz University, Jeddah, Saudi Arabia
| | - Shaohua Zhao
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Rockville, Maryland, USA
| | - Hailin Tang
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Heather Harbottle
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Rockville, Maryland, USA
| | - Maria Hoffmann
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland, USA
| | - Jonathan G. Frye
- Agricutlutral Research Service, U.S. Department of Agriculture, Athens, Georgia, USA
| | - Steven L. Foley
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| |
Collapse
|
7
|
Amaya FA, Blondel CJ, Reyes-Méndez F, Rivera D, Moreno-Switt A, Toro M, Badilla C, Santiviago CA, Pezoa D. Genomic analysis of Salmonella isolated from surface water and animal sources in Chile reveals new T6SS effector protein candidates. Front Microbiol 2024; 15:1496223. [PMID: 39723139 PMCID: PMC11669294 DOI: 10.3389/fmicb.2024.1496223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/12/2024] [Indexed: 12/28/2024] Open
Abstract
Type VI Secretion Systems (T6SS), widely distributed in Gram-negative bacteria, contribute to interbacterial competition and pathogenesis through the translocation of effector proteins to target cells. Salmonella harbor 5 pathogenicity islands encoding T6SS (SPI-6, SPI-19, SPI-20, SPI-21 and SPI-22), in which a limited number of effector proteins have been identified. Previous analyses by our group focused on the identification of candidate T6SS effectors and cognate immunity proteins in Salmonella genomes deposited in public databases. In this study, the analysis was centered on Salmonella isolates obtained from environmental sources in Chile. To this end, bioinformatics and comparative genomics analyses were performed using 695 genomes of Salmonella isolates representing 44 serotypes obtained from surface water and animal sources in Chile to identify new T6SS effector proteins. First, T6SS gene clusters were identified using the SecreT6 server. This analysis revealed that most isolates carry the SPI-6 T6SS gene cluster, whereas the SPI-19 and SPI-21 T6SS gene clusters were detected in isolates from a limited number of serotypes. In contrast, the SPI-20 and SPI-22 T6SS gene clusters were not detected. Subsequently, each ORF in the T6SS gene clusters identified was analyzed using bioinformatics tools for effector prediction, identification of immunity proteins and functional biochemical prediction. This analysis detected 20 of the 37 T6SS effector proteins previously reported in Salmonella. In addition, 4 new effector proteins with potential antibacterial activity were identified in SPI-6: 2 Rhs effectors with potential DNase activity (PAAR-RhsA-NucA_B and PAAR-RhsA-GH-E) and 2 effectors with potential RNase activity (PAAR-RhsA-CdiA and RhsA-CdiA). Interestingly, the repertoire of SPI-6 T6SS effectors varies among isolates of the same serotype. In SPI-19, no new effector protein was detected. Of note, some Rhs effectors of SPI-19 and SPI-6 present C-terminal ends with unknown function. The presence of cognate immunity proteins carrying domains present in bona fide immunity proteins suggests that these effectors have antibacterial activity. Finally, two new effectors were identified in SPI-21: one with potential peptidoglycan hydrolase activity and another with potential membrane pore-forming activity. Altogether, our work broadens the repertoire of Salmonella T6SS effector proteins and provides evidence that SPI-6, SPI-19 and SPI-21 T6SS gene clusters harbor a vast array of antibacterial effectors.
Collapse
Affiliation(s)
- Fernando A. Amaya
- Laboratorio de Microbiología, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Carlos J. Blondel
- Facultad de Medicina y Facultad de Ciencias de la Vida, Instituto de Ciencias Biomédicas, Universidad Andrés Bello, Santiago, Chile
| | - Felipe Reyes-Méndez
- Núcleo de Investigación en One Health, Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago, Chile
| | - Dácil Rivera
- Escuela de Medicina Veterinaria, Facultad de Agronomía e Ingeniería Forestal, Facultad de Ciencias Biológicas y Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Andrea Moreno-Switt
- Escuela de Medicina Veterinaria, Facultad de Agronomía e Ingeniería Forestal, Facultad de Ciencias Biológicas y Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Magaly Toro
- Joint Institute for Food Safety and Applied Nutrition (JIFSAN), University of Maryland, College Park, MD, United States
- Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - Consuelo Badilla
- Núcleo de Investigación en One Health, Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago, Chile
| | - Carlos A. Santiviago
- Laboratorio de Microbiología, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - David Pezoa
- Núcleo de Investigación en One Health, Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago, Chile
- Departamento de Ciencias Químicas y Biológicas, Universidad Bernardo O'Higgins, Santiago, Chile
| |
Collapse
|
8
|
Dai Y, Liu R, Yue Y, Song N, Jia H, Ma Z, Gao X, Zhang M, Yuan X, Liu Q, Liu X, Li B, Wang W. A c-di-GMP binding effector STM0435 modulates flagellar motility and pathogenicity in Salmonella. Virulence 2024; 15:2331265. [PMID: 38532247 PMCID: PMC10978029 DOI: 10.1080/21505594.2024.2331265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 03/06/2024] [Indexed: 03/28/2024] Open
Abstract
Flagella play a crucial role in the invasion process of Salmonella and function as a significant antigen that triggers host pyroptosis. Regulation of flagellar biogenesis is essential for both pathogenicity and immune escape of Salmonella. We identified the conserved and unknown function protein STM0435 as a new flagellar regulator. The ∆stm0435 strain exhibited higher pathogenicity in both cellular and animal infection experiments than the wild-type Salmonella. Proteomic and transcriptomic analyses demonstrated dramatic increases in almost all flagellar genes in the ∆stm0435 strain compared to wild-type Salmonella. In a surface plasmon resonance assay, purified STM0435 protein-bound c-di-GMP had an affinity of ~8.383 µM. The crystal structures of apo-STM0435 and STM0435&c-di-GMP complex were determined. Structural analysis revealed that R33, R137, and D138 of STM0435 were essential for c-di-GMP binding. A Salmonella with STM1987 (GGDEF protein) or STM4264 (EAL protein) overexpression exhibits completely different motility behaviours, indicating that the binding of c-di-GMP to STM0435 promotes its inhibitory effect on Salmonella flagellar biogenesis.
Collapse
Affiliation(s)
- Yuanji Dai
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Ruirui Liu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yingying Yue
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Nannan Song
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Haihong Jia
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Zhongrui Ma
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xueyan Gao
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Min Zhang
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Xilu Yuan
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Qing Liu
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Xiaoyu Liu
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Bingqing Li
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- Key Lab for Biotech-Drugs of National Health Commission, Shandong First Medical University, Jinan, Shandong, China
- Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong, China
| | - Weiwei Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
9
|
Gartly SC, Barretto LAF, Côté ACMT, Kosowan ZA, Fowler CC. A novel phospholipase A2 is a core component of the typhoid toxin genetic islet. J Biol Chem 2024; 300:107758. [PMID: 39260696 PMCID: PMC11525133 DOI: 10.1016/j.jbc.2024.107758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024] Open
Abstract
Salmonella Typhi, the cause of typhoid fever, is a bacterial pathogen of substantial global importance. Typhoid toxin is a secreted AB-type toxin that is a key S. Typhi virulence factor encoded within a 5-gene genetic islet. Four genes in this islet have well-defined roles in typhoid toxin biology; however, the function of the fifth gene is unknown. Here, we investigate the function of this gene, which we name ttaP. We show that ttaP is cotranscribed with the typhoid toxin subunit cdtB, and we perform genomic analyses that indicate that TtaP is very highly conserved in typhoid toxin islets found in diverse salmonellae. We show that TtaP is a distant homolog of group XIV secreted phospholipase A2 (PLA2) enzymes, and experimentally demonstrate that TtaP is a bona fide PLA2. Sequence and structural analyses indicate that TtaP differs substantially from characterized PLA2s, and thus represents a novel class of PLA2. Secretion assays revealed that TtaP is neither cosecreted with typhoid toxin, nor is it required for toxin secretion. Although TtaP is a phospholipase that remains associated with the S. Typhi cell, assays that probed for altered cell envelope integrity failed to identify any differences between WT S. Typhi and a ttaP deletion strain. Collectively, this study identifies a biochemical activity for the lone uncharacterized typhoid toxin islet gene and lays the groundwork for exploring how this gene factors into S. Typhi pathogenesis. This study further identifies a novel class of PLA2, enzymes that have a wide range of industrial applications.
Collapse
Affiliation(s)
- Sarah C Gartly
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Luke A F Barretto
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | | - Zach A Kosowan
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Casey C Fowler
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
10
|
Krishnakant Kushwaha S, Wu Y, Leonardo Avila H, Anand A, Sicheritz-Pontén T, Millard A, Amol Marathe S, Nobrega FL. Comprehensive blueprint of Salmonella genomic plasticity identifies hotspots for pathogenicity genes. PLoS Biol 2024; 22:e3002746. [PMID: 39110680 PMCID: PMC11305592 DOI: 10.1371/journal.pbio.3002746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024] Open
Abstract
Understanding the dynamic evolution of Salmonella is vital for effective bacterial infection management. This study explores the role of the flexible genome, organised in regions of genomic plasticity (RGP), in shaping the pathogenicity of Salmonella lineages. Through comprehensive genomic analysis of 12,244 Salmonella spp. genomes covering 2 species, 6 subspecies, and 46 serovars, we uncover distinct integration patterns of pathogenicity-related gene clusters into RGP, challenging traditional views of gene distribution. These RGP exhibit distinct preferences for specific genomic spots, and the presence or absence of such spots across Salmonella lineages profoundly shapes strain pathogenicity. RGP preferences are guided by conserved flanking genes surrounding integration spots, implicating their involvement in regulatory networks and functional synergies with integrated gene clusters. Additionally, we emphasise the multifaceted contributions of plasmids and prophages to the pathogenicity of diverse Salmonella lineages. Overall, this study provides a comprehensive blueprint of the pathogenicity potential of Salmonella. This unique insight identifies genomic spots in nonpathogenic lineages that hold the potential for harbouring pathogenicity genes, providing a foundation for predicting future adaptations and developing targeted strategies against emerging human pathogenic strains.
Collapse
Affiliation(s)
- Simran Krishnakant Kushwaha
- Department of Biological Sciences, Birla Institute of Technology & Science (BITS), Pilani, Rajasthan, India
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Yi Wu
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Hugo Leonardo Avila
- Laboratory for Applied Science and Technology in Health, Instituto Carlos Chagas, FIOCRUZ Paraná, Brazil
| | - Abhirath Anand
- Department of Computer Sciences and Information Systems, Birla Institute of Technology & Science (BITS), Pilani, Rajasthan, India
| | - Thomas Sicheritz-Pontén
- Center for Evolutionary Hologenomics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Centre of Excellence for Omics-Driven Computational Biodiscovery (COMBio), AIMST University, Bedong, Kedah, Malaysia
| | - Andrew Millard
- Centre for Phage Research, Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Sandhya Amol Marathe
- Department of Biological Sciences, Birla Institute of Technology & Science (BITS), Pilani, Rajasthan, India
| | - Franklin L. Nobrega
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
11
|
Oke MT, D’Costa VM. Functional Divergence of the Paralog Salmonella Effector Proteins SopD and SopD2 and Their Contributions to Infection. Int J Mol Sci 2024; 25:4191. [PMID: 38673776 PMCID: PMC11050076 DOI: 10.3390/ijms25084191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/05/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Salmonella enterica is a leading cause of bacterial food-borne illness in humans and is responsible for millions of cases annually. A critical strategy for the survival of this pathogen is the translocation of bacterial virulence factors termed effectors into host cells, which primarily function via protein-protein interactions with host proteins. The Salmonella genome encodes several paralogous effectors believed to have arisen from duplication events throughout the course of evolution. These paralogs can share structural similarities and enzymatic activities but have also demonstrated divergence in host cell targets or interaction partners and contributions to the intracellular lifecycle of Salmonella. The paralog effectors SopD and SopD2 share 63% amino acid sequence similarity and extensive structural homology yet have demonstrated divergence in secretion kinetics, intracellular localization, host targets, and roles in infection. SopD and SopD2 target host Rab GTPases, which represent critical regulators of intracellular trafficking that mediate diverse cellular functions. While SopD and SopD2 both manipulate Rab function, these paralogs display differences in Rab specificity, and the effectors have also evolved multiple mechanisms of action for GTPase manipulation. Here, we highlight this intriguing pair of paralog effectors in the context of host-pathogen interactions and discuss how this research has presented valuable insights into effector evolution.
Collapse
Affiliation(s)
- Mosopefoluwa T. Oke
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Vanessa M. D’Costa
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
12
|
Chemello AJ, Fowler CC. Alternate typhoid toxin assembly evolved independently in the two Salmonella species. mBio 2024; 15:e0340323. [PMID: 38501873 PMCID: PMC11005416 DOI: 10.1128/mbio.03403-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/23/2024] [Indexed: 03/20/2024] Open
Abstract
AB5-type toxins are a diverse family of protein toxins composed of an enzymatic active (A) subunit and a pentameric delivery (B) subunit. Salmonella enterica serovar Typhi's typhoid toxin features two A subunits, CdtB and PltA, in complex with the B subunit PltB. Recently, it was shown that S. Typhi encodes a horizontally acquired B subunit, PltC, that also assembles with PltA/CdtB to produce a second form of typhoid toxin. S. Typhi therefore produces two AB5 toxins with the same A subunits but distinct B subunits, an evolutionary twist that is unique to typhoid toxin. Here, we show that, remarkably, the Salmonella bongori species independently evolved an analogous capacity to produce two typhoid toxins with distinct B subunits. S. bongori's alternate B subunit, PltD, is evolutionarily distant from both PltB and PltC and outcompetes PltB to form the predominant toxin. We show that, surprisingly, S. bongori elicits similar levels of CdtB-mediated intoxication as S. Typhi during infection of cultured human epithelial cells. This toxicity is exclusively due to the PltB toxin, and strains lacking pltD produce increased amounts of PltB toxin and exhibit increased toxicity compared to the wild type, suggesting that the acquisition of the PltD subunit potentially made S. bongori less virulent toward humans. Collectively, this study unveils a striking example of convergent evolution that highlights the importance of the poorly understood "two-toxin" paradigm for typhoid toxin biology and, more broadly, illustrates how the flexibility of A-B interactions has fueled the evolutionary diversification and expansion of AB5-type toxins. IMPORTANCE Typhoid toxin is an important Salmonella Typhi virulence factor and an attractive target for therapeutic interventions to combat typhoid fever. The recent discovery of a second version of this toxin has substantial implications for understanding S. Typhi pathogenesis and combating typhoid fever. In this study, we discover that a remarkably similar two-toxin paradigm evolved independently in Salmonella bongori, which strongly suggests that this is a critical aspect of typhoid toxin biology. We observe significant parallels between how the two toxins assemble and their capacity to intoxicate host cells during infection in S. Typhi and S. bongori, which provides clues to the biological significance of this unusual toxin arrangement. More broadly, AB5 toxins with diverse activities and mechanisms are essential virulence factors for numerous important bacterial pathogens. This study illustrates the capacity for novel A-B interactions to evolve and thus provides insight into how such a diverse arsenal of toxins might have emerged.
Collapse
Affiliation(s)
- Antonio J. Chemello
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Casey C. Fowler
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
13
|
Gulzar I, Khalil A, Ashfaq UA, Liaquat S, Haque A. Identification of Peptidoglycan Glycosyltransferase FtsI as a Potential Drug Target against Salmonella Enteritidis and Salmonella Typhimurium Serovars Through Subtractive Genomics, Molecular Docking and Molecular Dynamics Simulation Approaches. Curr Pharm Des 2024; 30:2882-2895. [PMID: 39219121 DOI: 10.2174/0113816128332400240827061932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/13/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION Salmonella enterica serovar Enteritidis and Salmonella enterica serovar Typhimurium are among the main causative agents of nontyphoidal Salmonella infections, imposing a significant global health burden. The emergence of antibiotic resistance in these pathogens underscores the need for innovative therapeutic strategies. OBJECTIVE To identify proteins as potential drug targets against Salmonella Enteritidis and Salmonella Typhimurium serovars using In silico approaches. METHODS In this study, a subtractive genomics approach was employed to identify potential drug targets. The whole proteome of Salmonella enteritidis PT4 and Salmonella typhimurium (D23580), containing 393 and 478 proteins, respectively, was analyzed through subtractive genomics to identify human homologous proteins of the pathogen and also the proteins linked to shared metabolic pathways of pathogen and its host. RESULTS Subsequent analysis revealed 19 common essential proteins shared by both strains. To ensure hostspecificity, we identified 10 non-homologous proteins absent in humans. Among these proteins, peptidoglycan glycosyltransferase FtsI was pivotal, participating in pathogen-specific pathways and making it a promising drug target. Molecular docking highlighted two potential compounds, Balsamenonon A and 3,3',4',7-Tetrahydroxyflavylium, with strong binding affinities with FtsI. A 100 ns molecular dynamics simulation having 10,000 frames substantiated the strong binding affinity and demonstrated the enduring stability of the predicted compounds at the docked site. CONCLUSION The findings in this study provide the foundation for drug development strategies against Salmonella infections, which can contribute to the prospective development of natural and cost-effective drugs targeting Salmonella Enteritidis and Salmonella Typhimurium.
Collapse
Affiliation(s)
- Imran Gulzar
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Asma Khalil
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Sadia Liaquat
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Asma Haque
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| |
Collapse
|
14
|
Talukder H, Roky SA, Debnath K, Sharma B, Ahmed J, Roy S. Prevalence and Antimicrobial Resistance Profile of Salmonella Isolated from Human, Animal and Environment Samples in South Asia: A 10-Year Meta-analysis. J Epidemiol Glob Health 2023; 13:637-652. [PMID: 37883006 PMCID: PMC10686918 DOI: 10.1007/s44197-023-00160-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/06/2023] [Indexed: 10/27/2023] Open
Abstract
Salmonella is a foodborne zoonotic bacterium, and the antimicrobial-resistant strains of Salmonella are a worldwide health concern. Herein, we employed a meta-analysis to determine the pooled prevalence of Salmonella and its antimicrobial resistance status in human, animal, and environmental isolates in South Asia. To this end, we followed the standard guideline of Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statements for searching literature in three databases namely PubMed, Google Scholar, and CAB abstracts, and a total of 100 eligible datasets were finally included which were published from January 2010 to June 2021. In the pooled prevalence of Salmonella in South Asia, the random model effect was 14.47% (95% CI: 10.17-20.19) with a high degree of heterogeneity (I2, 99.8%) and overall antimicrobial resistance was 70% (95% CI: 63.0-76.0) with a heterogeneity of 23.6%. The temporal distribution of the overall antimicrobial resistance (%) against Salmonella was increased from 53 to 77% within 10 years. Out of 18 distinct Salmonella serotypes, S. enterica was highly prevalent (14.22%, 95% CI: 4.02-39.64) followed by S. pullorum (13.50%, 95% CI: 5.64-29.93) with antimicrobial resistance (%) were 86.26 and 90.06, respectively. Noteworthy, nalidixic acid (74.25%) and tetracycline (37.64%) were found mostly resistant to Salmonella whereas ceftriaxone (1.07%) and cefixime (1.24%) were sensitive. This systematic review demonstrated that overall antibiotic resistance profiles of Salmonella are increasing over time in South Asia. Thus, adequate hygienic practices, proper use of antimicrobials, and implementation of antibiotic stewardship are imperative for halting the Salmonella spread and its antimicrobial resistance.
Collapse
Affiliation(s)
- Himel Talukder
- Department of Epidemiology and Public Health, Sylhet Agricultural University, Sylhet, Bangladesh
- Department of Geography and Environmental Sustainability, University of Oklahoma, Norman, OK, USA
| | - Shamsul Alam Roky
- Department of Dairy Science, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Konad Debnath
- Department of Epidemiology and Public Health, Sylhet Agricultural University, Sylhet, Bangladesh
- International Centre for Diarrheal Disease Research, Dhaka, Bangladesh
| | - Binayok Sharma
- Department of Medicine, Sylhet Agricultural University, Sylhet, Bangladesh
- Department of Animal Science, Purdue University, West Lafayette, IN, USA
| | - Juned Ahmed
- Department of Pathology, Sylhet Agricultural University, Sylhet, Bangladesh
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, 79106, USA
| | - Sawrab Roy
- Department of Microbiology and Immunology, Sylhet Agricultural University, Sylhet, Bangladesh.
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
15
|
Li W, Ren Q, Ni T, Zhao Y, Sang Z, Luo R, Li Z, Li S. Strategies adopted by Salmonella to survive in host: a review. Arch Microbiol 2023; 205:362. [PMID: 37904066 DOI: 10.1007/s00203-023-03702-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/30/2023] [Accepted: 10/05/2023] [Indexed: 11/01/2023]
Abstract
Salmonella, a Gram-negative bacterium that infects humans and animals, causes diseases ranging from gastroenteritis to severe systemic infections. Here, we discuss various strategies used by Salmonella against host cell defenses. Epithelial cell invasion largely depends on a Salmonella pathogenicity island (SPI)-1-encoded type 3 secretion system, a molecular syringe for injecting effector proteins directly into host cells. The internalization of Salmonella into macrophages is primarily driven by phagocytosis. After entering the host cell cytoplasm, Salmonella releases many effectors to achieve intracellular survival and replication using several secretion systems, primarily an SPI-2-encoded type 3 secretion system. Salmonella-containing vacuoles protect Salmonella from contacting bactericidal substances in epithelial cells and macrophages. Salmonella modulates the immunity, metabolism, cell cycle, and viability of host cells to expand its survival in the host, and the intracellular environment of Salmonella-infected cells promotes its virulence. This review provides insights into how Salmonella subverts host cell defenses for survival.
Collapse
Affiliation(s)
- Wanwu Li
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Qili Ren
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Ting Ni
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Yifei Zhao
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Zichun Sang
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Renli Luo
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Zhongjie Li
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China.
| | - Sanqiang Li
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China.
| |
Collapse
|
16
|
Soliani L, Rugna G, Prosperi A, Chiapponi C, Luppi A. Salmonella Infection in Pigs: Disease, Prevalence, and a Link between Swine and Human Health. Pathogens 2023; 12:1267. [PMID: 37887782 PMCID: PMC10610219 DOI: 10.3390/pathogens12101267] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/12/2023] [Accepted: 10/20/2023] [Indexed: 10/28/2023] Open
Abstract
Salmonella is one of the most spread foodborne pathogens worldwide, and Salmonella infections in humans still represent a global health burden. The main source of Salmonella infections in humans is represented by contaminated animal-derived foodstuffs, with pork products being one of the most important players. Salmonella infection in swine is critical not only because it is one of the main causes of economic losses in the pork industry, but also because pigs can be infected by several Salmonella serovars, potentially contaminating the pig meat production chain and thus posing a significant threat to public health globally. As of now, in Europe and in the United States, swine-related Salmonella serovars, e.g., Salmonella Typhimurium and its monophasic variant Salmonella enterica subsp. enterica 1,4,[5],12:i:-, are also frequently associated with human salmonellosis cases. Moreover, multiple outbreaks have been reported in the last few decades which were triggered by the consumption of Salmonella-contaminated pig meat. Throughout the years, changes and evolution across the pork industry may have acted as triggers for new issues and obstacles hindering Salmonella control along the food chain. Gathered evidence reinforces the importance of coordinating control measures and harmonizing monitoring programs for the efficient control of Salmonella in swine. This is necessary in order to manage outbreaks of clinical disease in pigs and also to protect pork consumers by controlling Salmonella subclinical carriage and shedding. This review provides an update on Salmonella infection in pigs, with insights on Salmonella ecology, focusing mainly on Salmonella Choleraesuis, S. Typhimurium, and S. 1,4,[5],12:i:-, and their correlation to human salmonellosis cases. An update on surveillance methods for epidemiological purposes of Salmonella infection in pigs and humans, in a "One Health" approach, will also be reported.
Collapse
Affiliation(s)
- Laura Soliani
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia-Romagna (IZSLER), 25124 Brescia, Italy; (G.R.); (A.P.); (C.C.); (A.L.)
| | | | | | | | | |
Collapse
|
17
|
Blondel CJ, Amaya FA, Bustamante P, Santiviago CA, Pezoa D. Identification and distribution of new candidate T6SS effectors encoded in Salmonella Pathogenicity Island 6. Front Microbiol 2023; 14:1252344. [PMID: 37664116 PMCID: PMC10469887 DOI: 10.3389/fmicb.2023.1252344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/03/2023] [Indexed: 09/05/2023] Open
Abstract
The type VI secretion system (T6SS) is a contact-dependent contractile multiprotein apparatus widely distributed in Gram-negative bacteria. These systems can deliver different effector proteins into target bacterial and/or eukaryotic cells, contributing to the environmental fitness and virulence of many bacterial pathogens. Salmonella harbors five different T6SSs encoded in different genomic islands. The T6SS encoded in Salmonella Pathogenicity Island 6 (SPI-6) contributes to Salmonella competition with the host microbiota and its interaction with infected host cells. Despite its relevance, information regarding the total number of effector proteins encoded within SPI-6 and its distribution among different Salmonella enterica serotypes is limited. In this work, we performed bioinformatic and comparative genomics analyses of the SPI-6 T6SS gene cluster to expand our knowledge regarding the T6SS effector repertoire and the global distribution of these effectors in Salmonella. The analysis of a curated dataset of 60 Salmonella enterica genomes from the Secret6 database revealed the presence of 23 new putative T6SS effector/immunity protein (E/I) modules. These effectors were concentrated in the variable regions 1 to 3 (VR1-3) of the SPI-6 T6SS gene cluster. VR1-2 were enriched in candidate effectors with predicted peptidoglycan hydrolase activity, while VR3 was enriched in candidate effectors of the Rhs family with C-terminal extensions with predicted DNase, RNase, deaminase, or ADP-ribosyltransferase activity. A global analysis of known and candidate effector proteins in Salmonella enterica genomes from the NCBI database revealed that T6SS effector proteins are differentially distributed among Salmonella serotypes. While some effectors are present in over 200 serotypes, others are found in less than a dozen. A hierarchical clustering analysis identified Salmonella serotypes with distinct profiles of T6SS effectors and candidate effectors, highlighting the diversity of T6SS effector repertoires in Salmonella enterica. The existence of different repertoires of effector proteins suggests that different effector protein combinations may have a differential impact on the environmental fitness and pathogenic potential of these strains.
Collapse
Affiliation(s)
- Carlos J. Blondel
- Facultad de Medicina y Facultad de Ciencias de la Vida, Instituto de Ciencias Biomédicas, Universidad Andrés Bello, Santiago, Chile
| | - Fernando A. Amaya
- Laboratorio de Microbiología, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Paloma Bustamante
- Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago, Chile
| | - Carlos A. Santiviago
- Laboratorio de Microbiología, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - David Pezoa
- Núcleo de Investigaciones Aplicadas en Ciencias Veterinarias y Agronómicas, Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago, Chile
- Departamento de Ciencias Químicas y Biológicas, Universidad Bernardo O'Higgins, Santiago, Chile
| |
Collapse
|
18
|
Chatterjee R, Chowdhury AR, Mukherjee D, Chakravortty D. From Eberthella typhi to Salmonella Typhi: The Fascinating Journey of the Virulence and Pathogenicity of Salmonella Typhi. ACS OMEGA 2023; 8:25674-25697. [PMID: 37521659 PMCID: PMC10373206 DOI: 10.1021/acsomega.3c02386] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 06/30/2023] [Indexed: 08/01/2023]
Abstract
Salmonella Typhi (S. Typhi), the invasive typhoidal serovar of Salmonella enterica that causes typhoid fever in humans, is a severe threat to global health. It is one of the major causes of high morbidity and mortality in developing countries. According to recent WHO estimates, approximately 11-21 million typhoid fever illnesses occur annually worldwide, accounting for 0.12-0.16 million deaths. Salmonella infection can spread to healthy individuals by the consumption of contaminated food and water. Typhoid fever in humans sometimes is accompanied by several other critical extraintestinal complications related to the central nervous system, cardiovascular system, pulmonary system, and hepatobiliary system. Salmonella Pathogenicity Island-1 and Salmonella Pathogenicity Island-2 are the two genomic segments containing genes encoding virulent factors that regulate its invasion and systemic pathogenesis. This Review aims to shed light on a comparative analysis of the virulence and pathogenesis of the typhoidal and nontyphoidal serovars of S. enterica.
Collapse
Affiliation(s)
- Ritika Chatterjee
- Department
of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Atish Roy Chowdhury
- Department
of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Debapriya Mukherjee
- Department
of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Dipshikha Chakravortty
- Department
of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, Karnataka 560012, India
- Centre
for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| |
Collapse
|
19
|
Pye HV, Thilliez G, Acton L, Kolenda R, Al-Khanaq H, Grove S, Kingsley RA. Strain and serovar variants of Salmonella enterica exhibit diverse tolerance to food chain-related stress. Food Microbiol 2023; 112:104237. [PMID: 36906307 DOI: 10.1016/j.fm.2023.104237] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/12/2023] [Accepted: 02/08/2023] [Indexed: 02/11/2023]
Abstract
Non-Typhoidal Salmonella (NTS) continues to be a leading cause of foodborne illness worldwide. Food manufacturers implement hurdle technology by combining more than one approach to control food safety and quality, including preservatives such as organic acids, refrigeration, and heating. We assessed the variation in survival in stresses of genotypically diverse isolates of Salmonella enterica to identify genotypes with potential elevated risk to sub-optimal processing or cooking. Sub-lethal heat treatment, survival in desiccated conditions and growth in the presence of NaCl or organic acids were investigated. S. Gallinarum strain 287/91 was most sensitive to all stress conditions. While none of the strains replicated in a food matrix at 4 °C, S. Infantis strain S1326/28 retained the greatest viability, and six strains exhibited a significantly reduced viability. A S. Kedougou strain exhibited the greatest resistance to incubation at 60 °C in a food matrix that was significantly greater than S. Typhimurium U288, S Heidelberg, S. Kentucky, S. Schwarzengrund and S. Gallinarum strains. Two isolates of monophasic S. Typhimurium, S04698-09 and B54Col9 exhibited the greatest tolerance to desiccation that was significantly more than for the S. Kentucky and S. Typhimurium U288 strains. In general, the presence of 12 mM acetic acid or 14 mM citric acid resulted in a similar pattern of decreased growth in broth, but this was not observed for S. Enteritidis, and S. Typhimurium strains ST4/74 and U288 S01960-05. Acetic acid had a moderately greater effect on growth despite the lower concentration tested. A similar pattern of decreased growth was observed in the presence of 6% NaCl, with the notable exception that S. Typhimurium strain U288 S01960-05 exhibited enhanced growth in elevated NaCl concentrations.
Collapse
Affiliation(s)
- Hannah V Pye
- Quadram Institute Bioscience, Norwich Research Park, James Watson Road, Norwich, UK; University of East Anglia, Norwich Research Park, Norwich, UK
| | - Gaёtan Thilliez
- Quadram Institute Bioscience, Norwich Research Park, James Watson Road, Norwich, UK
| | - Luke Acton
- Quadram Institute Bioscience, Norwich Research Park, James Watson Road, Norwich, UK; University of East Anglia, Norwich Research Park, Norwich, UK
| | - Rafał Kolenda
- Quadram Institute Bioscience, Norwich Research Park, James Watson Road, Norwich, UK
| | - Haider Al-Khanaq
- Quadram Institute Bioscience, Norwich Research Park, James Watson Road, Norwich, UK
| | - Stephen Grove
- Nestlé Development Centre, Cannon Road, Solon, OH, USA; McCain Foods, 1 Tower Lane, Oakbrook Terrace, Illinois, USA
| | - Robert A Kingsley
- Quadram Institute Bioscience, Norwich Research Park, James Watson Road, Norwich, UK; University of East Anglia, Norwich Research Park, Norwich, UK.
| |
Collapse
|
20
|
Brenner T, Wang S. Heightened variability observed in resistance and virulence genes across salmonella Kentucky isolates from poultry environments in British Columbia, Canada. Food Microbiol 2023; 111:104192. [PMID: 36681391 DOI: 10.1016/j.fm.2022.104192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 11/02/2022] [Accepted: 11/21/2022] [Indexed: 11/23/2022]
Abstract
Many niche-dependent barriers along the poultry production continuum favour the survival of certain Salmonella serovars over others. Historically, the presence of particular serovars has been determined by niche-specific genes which encode resistance to selective pressures such as host defenses and industrial antimicrobial practices. Over the past decade, Canada has witnessed unexplained shifts in the Salmonella landscape in the poultry sector. Several formerly minor Salmonella serovars, including S. Kentucky and S. Reading, have recently increased in prevalence in live chickens and turkeys, respectively, in British Columbia (BC). The purpose of this research was to investigate the genomic features of the top poultry-associated Salmonella spp. in BC, to probe for serovar-specific characteristics that could address the recently shifting balance of serovars along the poultry continuum. By examining the quantity and diversity of antimicrobial resistance (AMR) genes, virulence factors (VFs), Salmonella Pathogenicity Islands (SPIs), and plasmids across 50 poultry-associated S. enterica isolates using whole genome sequencing and antimicrobial resistance profiling, we have identified serovar-specific differences that likely influence niche survival. Specifically, isolates in our collection from predominantly human pathogenic serovars (S. I 4, [5], 12:i: , S. Typhimurium, and S. Enteritidis) were found to share the IncFIB(S) and IncFII(S) plasmids which carry important VFs known to aid in human host infection. Additionally, these strains held the lowest number of AMR genes, and the highest number of unique SPIs which also facilitate virulence. However, other serovars containing a greater diversity and abundance of resistance genes have been increasing across the poultry sector. S. Kentucky was found to carry unique AMR genes, VFs, SPIs, and plasmids that could bolster persistence in farm and processing environments. Overall, S. Kentucky also had comparatively high levels of intra-serovar genetic variability when compared to other prominent serovars from our collection. In addition, one of our two S. Reading isolates had high carriage of both AMR genes and VFs relative to other isolates in our collection. As the poultry-associated Salmonella landscape continues to evolve in Canada, future studies should monitor the genetic composition of prominent serovars across poultry production to maintain up-to-date risk assessments of these foodborne pathogens to consumers.
Collapse
Affiliation(s)
- Thomas Brenner
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Siyun Wang
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
21
|
Teklemariam AD, Al-Hindi RR, Albiheyri RS, Alharbi MG, Alghamdi MA, Filimban AAR, Al Mutiri AS, Al-Alyani AM, Alseghayer MS, Almaneea AM, Albar AH, Khormi MA, Bhunia AK. Human Salmonellosis: A Continuous Global Threat in the Farm-to-Fork Food Safety Continuum. Foods 2023; 12:foods12091756. [PMID: 37174295 PMCID: PMC10178548 DOI: 10.3390/foods12091756] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Salmonella is one of the most common zoonotic foodborne pathogens and a worldwide public health threat. Salmonella enterica is the most pathogenic among Salmonella species, comprising over 2500 serovars. It causes typhoid fever and gastroenteritis, and the serovars responsible for the later disease are known as non-typhoidal Salmonella (NTS). Salmonella transmission to humans happens along the farm-to-fork continuum via contaminated animal- and plant-derived foods, including poultry, eggs, fish, pork, beef, vegetables, fruits, nuts, and flour. Several virulence factors have been recognized to play a vital role in attaching, invading, and evading the host defense system. These factors include capsule, adhesion proteins, flagella, plasmids, and type III secretion systems that are encoded on the Salmonella pathogenicity islands. The increased global prevalence of NTS serovars in recent years indicates that the control approaches centered on alleviating the food animals' contamination along the food chain have been unsuccessful. Moreover, the emergence of antibiotic-resistant Salmonella variants suggests a potential food safety crisis. This review summarizes the current state of the knowledge on the nomenclature, microbiological features, virulence factors, and the mechanism of antimicrobial resistance of Salmonella. Furthermore, it provides insights into the pathogenesis and epidemiology of Salmonella infections. The recent outbreaks of salmonellosis reported in different clinical settings and geographical regions, including Africa, the Middle East and North Africa, Latin America, Europe, and the USA in the farm-to-fork continuum, are also highlighted.
Collapse
Affiliation(s)
- Addisu D Teklemariam
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Rashad R Al-Hindi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Raed S Albiheyri
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mona G Alharbi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mashail A Alghamdi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Amani A R Filimban
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abdullah S Al Mutiri
- Laboratory Department, Saudi Food and Drug Authority, Riyadh 12843, Saudi Arabia
| | - Abdullah M Al-Alyani
- Laboratory Department, Saudi Food and Drug Authority, Jeddah 22311, Saudi Arabia
| | - Mazen S Alseghayer
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Monitoring and Risk Assessment Department, Saudi Food and Drug Authority, Riyadh 13513, Saudi Arabia
| | - Abdulaziz M Almaneea
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Monitoring and Risk Assessment Department, Saudi Food and Drug Authority, Riyadh 13513, Saudi Arabia
| | - Abdulgader H Albar
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Microbiology and Medical Parasitology, Faculty of Medicine, Jeddah University, Jeddah 23218, Saudi Arabia
| | - Mohsen A Khormi
- Department of Biological Sciences, Faculty of Sciences, Jazan University, Jazan 82817, Saudi Arabia
| | - Arun K Bhunia
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA
- Purdue University Interdisciplinary Life Science Program (PULSe), West Lafayette, IN 47907, USA
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
22
|
Huynh TN, Stewart V. Purine catabolism by enterobacteria. Adv Microb Physiol 2023; 82:205-266. [PMID: 36948655 DOI: 10.1016/bs.ampbs.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Purines are abundant among organic nitrogen sources and have high nitrogen content. Accordingly, microorganisms have evolved different pathways to catabolize purines and their metabolic products such as allantoin. Enterobacteria from the genera Escherichia, Klebsiella and Salmonella have three such pathways. First, the HPX pathway, found in the genus Klebsiella and very close relatives, catabolizes purines during aerobic growth, extracting all four nitrogen atoms in the process. This pathway includes several known or predicted enzymes not previously observed in other purine catabolic pathways. Second, the ALL pathway, found in strains from all three species, catabolizes allantoin during anaerobic growth in a branched pathway that also includes glyoxylate assimilation. This allantoin fermentation pathway originally was characterized in a gram-positive bacterium, and therefore is widespread. Third, the XDH pathway, found in strains from Escherichia and Klebsiella spp., at present is ill-defined but likely includes enzymes to catabolize purines during anaerobic growth. Critically, this pathway may include an enzyme system for anaerobic urate catabolism, a phenomenon not previously described. Documenting such a pathway would overturn the long-held assumption that urate catabolism requires oxygen. Overall, this broad capability for purine catabolism during either aerobic or anaerobic growth suggests that purines and their metabolites contribute to enterobacterial fitness in a variety of environments.
Collapse
Affiliation(s)
- TuAnh Ngoc Huynh
- Department of Food Science, University of Wisconsin, Madison, WI, United States
| | - Valley Stewart
- Department of Microbiology & Molecular Genetics, University of California, Davis, CA, United States.
| |
Collapse
|
23
|
Vasquez I, Retamales J, Parra B, Machimbirike V, Robeson J, Santander J. Comparative Genomics of a Polyvalent Escherichia-Salmonella Phage fp01 and In Silico Analysis of Its Receptor Binding Protein and Conserved Enterobacteriaceae Phage Receptor. Viruses 2023; 15:v15020379. [PMID: 36851593 PMCID: PMC9961651 DOI: 10.3390/v15020379] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
The polyvalent bacteriophage fp01, isolated from wastewater in Valparaiso, Chile, was described to have lytic activity across bacterial species, including Escherichia coli and Salmonella enterica serovars. Due to its polyvalent nature, the bacteriophage fp01 has potential applications in the biomedical, food and agricultural industries. Also, fundamental aspects of polyvalent bacteriophage biology are unknown. In this study, we sequenced and described the complete genome of the polyvalent phage fp01 (MH745368.2) using long- (MinION, Nanopore) and short-reads (MiSeq, Illumina) sequencing. The bacteriophage fp01 genome has 109,515 bp, double-stranded DNA with an average G+C content of 39%, and 158 coding sequences (CDSs). Phage fp01 has genes with high similarity to Escherichia coli, Salmonella enterica, and Shigella sp. phages. Phylogenetic analyses indicated that the phage fp01 is a new Tequintavirus fp01 specie. Receptor binding protein gp108 was identified as potentially responsible for fp01 polyvalent characteristics, which binds to conserved amino acid regions of the FhuA receptor of Enterobacteriaceae.
Collapse
Affiliation(s)
- Ignacio Vasquez
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Science, Memorial University, St. John’s, NL A1C 5S7, Canada
| | - Julio Retamales
- Instituto de Ciencias Naturales, Universidad de las Américas, Viña del Mar 2520000, Chile
| | - Barbara Parra
- Subdepartment of Molecular Genetics, Public Health Institute of Chile, Santiago 9140000, Chile
| | - Vimbai Machimbirike
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Science, Memorial University, St. John’s, NL A1C 5S7, Canada
| | - James Robeson
- Laboratory of Microbiology, Institute of Biology, Pontifical Catholic University of Valparaíso, Valparaiso 2370000, Chile
- Correspondence: (J.R.); (J.S.)
| | - Javier Santander
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Science, Memorial University, St. John’s, NL A1C 5S7, Canada
- Correspondence: (J.R.); (J.S.)
| |
Collapse
|
24
|
Vargas ELG, Almeida FAD, de Freitas LL, Pinto UM, Vanetti MCD. Furanone and phytol influence metabolic phenotypes regulated by acyl-homoserine lactone in Salmonella. Braz J Microbiol 2022; 53:2133-2144. [PMID: 35947344 PMCID: PMC9679073 DOI: 10.1007/s42770-022-00809-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 07/29/2022] [Indexed: 01/13/2023] Open
Abstract
Salmonella is an important foodborne pathogen, and it is unable to produce the quorum sensing signaling molecules called acyl-homoserine lactones (AHLs). However, it synthesizes the SdiA protein, detecting AHL molecules, also known as autoinducer-1 (AI-1), in the external environment. Exogenous AHLs can regulate specific genes related to virulence and stress response in Salmonella. Thus, interfering with quorum sensing can be a strategy to reduce virulence and help elucidate the cell-to-cell communication role in the pathogens' response to extracellular signals. This study aimed to evaluate the influence of the quorum sensing inhibitors furanone and phytol on phenotypes regulated by N-dodecanoyl homoserine lactone (C12-HSL) in Salmonella enterica serovar Enteritidis. The furanone C30 at 50 nM and phytol at 2 mM canceled the alterations promoted by C12-HSL on glucose consumption and the levels of free cellular thiol in Salmonella Enteritidis PT4 578 under anaerobic conditions. In silico analysis suggests that these compounds can bind to the SdiA protein of Salmonella Enteritidis and accommodate in the AHL binding pocket. Thus, furanone C30 and phytol act as antagonists of AI-1 and are likely inhibitors of the quorum sensing mechanism mediated by AHL in Salmonella.
Collapse
Affiliation(s)
| | - Felipe Alves de Almeida
- Department of Nutrition, Universidade Federal de Juiz de Fora (UFJF), Governador Valadares, MG, Brazil
| | | | - Uelinton Manoel Pinto
- Food Research Center, Department of Food and Experimental Nutrition, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | | |
Collapse
|
25
|
Yu K, Huang Z, Xiao Y, Wang D. Shewanella infection in humans: Epidemiology, clinical features and pathogenicity. Virulence 2022; 13:1515-1532. [PMID: 36065099 PMCID: PMC9481105 DOI: 10.1080/21505594.2022.2117831] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The genus Shewanella consists of Gram-negative proteobacteria that are ubiquitously distributed in environment. As the members of this genus have rapidly increased within the past decade, several species have become emerging pathogens worldwide, attracting the attention of the medical community. These species are also associated with severe community- and hospital-acquired infections. Patients infected with Shewanella spp. had experiences of occupational or recreational exposure; meanwhile, the process of infection is complex and the pathogenicity is influenced by a variety of factors. Here, an exhaustive internet-based literature search was carried out in PUBMED using terms “Achromobacter putrefaciens,” “Pseudomonas putrefaciens,” “Alteromonas putrefaciens” and “Shewanella” to search literatures published between 1978 and June 2022. We provided a comprehensive review on the epidemiology, clinical features and pathogenicity of Shewanella, which will contribute a better understanding of its clinical aetiology, and facilitate the timely diagnosis and effective treatment of Shewanella infection for clinicians and public health professionals.
Collapse
Affiliation(s)
- Keyi Yu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China.,Center for Human Pathogenic Culture Collection, China CDC, Beijing, China
| | - Zhenzhou Huang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China.,Center for Human Pathogenic Culture Collection, China CDC, Beijing, China
| | - Yue Xiao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China.,Center for Human Pathogenic Culture Collection, China CDC, Beijing, China
| | - Duochun Wang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China.,Center for Human Pathogenic Culture Collection, China CDC, Beijing, China
| |
Collapse
|
26
|
Rodríguez-Hernández R, Herrera-Sánchez MP, Ortiz-Muñoz JD, Mora-Rivera C, Rondón-Barragán IS. Molecular Characterization of Salmonella spp. Isolates from Wild Colombian Babilla ( Caiman crocodilus fuscus) Isolated In Situ. Animals (Basel) 2022; 12:ani12233359. [PMID: 36496880 PMCID: PMC9737335 DOI: 10.3390/ani12233359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 12/05/2022] Open
Abstract
Salmonella enterica is a pathogen capable of colonizing various environments, including the intestinal tract of different animals such as mammals, birds, and reptiles, which can act as carriers. S. enterica infection induces different clinical diseases, gastroenteritis being the most common, which in some cases, can evolve to septicemia and meningitis. Reptiles and amphibians have been reported as a reservoir of Salmonella, and transmission of the pathogen to humans has been documented. This study aimed to determine the presence of virulence genes and characterize the genotypic antibiotic resistance profile in Salmonella strains isolated from Caiman crocodilus fuscus obtained in situ (natural habitat) in Prado, Tolima, Colombia in a previous study and stored in a strain bank in our laboratory. Fifteen Salmonella strains were evaluated through endpoint PCR to determine the presence of resistance genes and virulence genes. The genes blaTEM, strB, and sul1 were detected in all the strains that confer resistance to ampicillin, streptomycin, and sulfamethoxazole, as well as the virulence genes invA, pefA, prgH, spaN, tolC, sipB, sitC, pagC, msgA, spiA, sopB, sifA, lpfA, csgA, hilA, orgA, iroN, avrA, and sivH, indicating the possible role of babilla (Caiman crocodilus fuscus) as a carrier of multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Roy Rodríguez-Hernández
- Poultry Research Group, Faculty of Veterinary Medicine, University of Tolima, Altos the Santa Helena, A.A 546, Ibagué 730006299, Colombia
| | - María Paula Herrera-Sánchez
- Poultry Research Group, Faculty of Veterinary Medicine, University of Tolima, Altos the Santa Helena, A.A 546, Ibagué 730006299, Colombia
- Immunobiology and Pathogenesis Research Group, Faculty of Veterinary Medicine, University of Tolima, Altos the Santa Helena, A.A 546, Ibagué 730006299, Colombia
| | - Julián David Ortiz-Muñoz
- Immunobiology and Pathogenesis Research Group, Faculty of Veterinary Medicine, University of Tolima, Altos the Santa Helena, A.A 546, Ibagué 730006299, Colombia
| | - Cristina Mora-Rivera
- Biodiversity and Dynamics of Tropical Ecosystems Research Group, University of Tolima, Altos the Santa Helena, A.A 546, Ibagué 730006299, Colombia
| | - Iang Schroniltgen Rondón-Barragán
- Poultry Research Group, Faculty of Veterinary Medicine, University of Tolima, Altos the Santa Helena, A.A 546, Ibagué 730006299, Colombia
- Immunobiology and Pathogenesis Research Group, Faculty of Veterinary Medicine, University of Tolima, Altos the Santa Helena, A.A 546, Ibagué 730006299, Colombia
- Correspondence: ; Tel.: +57-300-498-1037
| |
Collapse
|
27
|
Hespanhol JT, Sanchez-Limache DE, Nicastro GG, Mead L, Llontop EE, Chagas-Santos G, Farah CS, de Souza RF, Galhardo RDS, Lovering AL, Bayer-Santos E. Antibacterial T6SS effectors with a VRR-Nuc domain are structure-specific nucleases. eLife 2022; 11:e82437. [PMID: 36226828 PMCID: PMC9635880 DOI: 10.7554/elife.82437] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/09/2022] [Indexed: 11/21/2022] Open
Abstract
The type VI secretion system (T6SS) secretes antibacterial effectors into target competitors. Salmonella spp. encode five phylogenetically distinct T6SSs. Here, we characterize the function of the SPI-22 T6SS of Salmonella bongori showing that it has antibacterial activity and identify a group of antibacterial T6SS effectors (TseV1-4) containing an N-terminal PAAR-like domain and a C-terminal VRR-Nuc domain encoded next to cognate immunity proteins with a DUF3396 domain (TsiV1-4). TseV2 and TseV3 are toxic when expressed in Escherichia coli and bacterial competition assays confirm that TseV2 and TseV3 are secreted by the SPI-22 T6SS. Phylogenetic analysis reveals that TseV1-4 are evolutionarily related to enzymes involved in DNA repair. TseV3 recognizes specific DNA structures and preferentially cleave splayed arms, generating DNA double-strand breaks and inducing the SOS response in target cells. The crystal structure of the TseV3:TsiV3 complex reveals that the immunity protein likely blocks the effector interaction with the DNA substrate. These results expand our knowledge on the function of Salmonella pathogenicity islands, the evolution of toxins used in biological conflicts, and the endogenous mechanisms regulating the activity of these toxins.
Collapse
Affiliation(s)
- Julia Takuno Hespanhol
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São PauloSão PauloBrazil
| | | | | | - Liam Mead
- Department of Biosciences, University of BirminghamBirminghamUnited Kingdom
| | - Edgar Enrique Llontop
- Departamento de Bioquímica, Instituto de Química, Universidade de São PauloSão PauloBrazil
| | - Gustavo Chagas-Santos
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São PauloSão PauloBrazil
| | - Chuck Shaker Farah
- Departamento de Bioquímica, Instituto de Química, Universidade de São PauloSão PauloBrazil
| | - Robson Francisco de Souza
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São PauloSão PauloBrazil
| | - Rodrigo da Silva Galhardo
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São PauloSão PauloBrazil
| | - Andrew L Lovering
- Department of Biosciences, University of BirminghamBirminghamUnited Kingdom
| | - Ethel Bayer-Santos
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São PauloSão PauloBrazil
| |
Collapse
|
28
|
Multilayered Networks of SalmoNet2 Enable Strain Comparisons of the Salmonella Genus on a Molecular Level. mSystems 2022; 7:e0149321. [PMID: 35913188 PMCID: PMC9426430 DOI: 10.1128/msystems.01493-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Serovars of the genus Salmonella primarily evolved as gastrointestinal pathogens in a wide range of hosts. Some serotypes later evolved further, adopting a more invasive lifestyle in a narrower host range associated with systemic infections. A system-level knowledge of these pathogens could identify the complex adaptations associated with the evolution of serovars with distinct pathogenicity, host range, and risk to human health. This promises to aid the design of interventions and serve as a knowledge base in the Salmonella research community. Here, we present SalmoNet2, a major update to SalmoNet1, the first multilayered interaction resource for Salmonella strains, containing protein-protein, transcriptional regulatory, and enzyme-enzyme interactions. The new version extends the number of Salmonella networks from 11 to 20. We now include a strain from the second species in the Salmonella genus, a strain from the Salmonella enterica subspecies arizonae and additional strains of importance from the subspecies enterica, including S. Typhimurium strain D23580, an epidemic multidrug-resistant strain associated with invasive nontyphoidal salmonellosis (iNTS). The database now uses strain specific metabolic models instead of a generalized model to highlight differences between strains. The update has increased the coverage of high-quality protein-protein interactions, and enhanced interoperability with other computational resources by adopting standardized formats. The resource website has been updated with tutorials to help researchers analyze their Salmonella data using molecular interaction networks from SalmoNet2. SalmoNet2 is accessible at http://salmonet.org/. IMPORTANCE Multilayered network databases collate interaction information from multiple sources, and are powerful both as a knowledge base and subject of analysis. Here, we present SalmoNet2, an integrated network resource containing protein-protein, transcriptional regulatory, and metabolic interactions for 20 Salmonella strains. Key improvements to the update include expanding the number of strains, strain-specific metabolic networks, an increase in high-quality protein-protein interactions, community standard computational formats to help interoperability, and online tutorials to help users analyze their data using SalmoNet2.
Collapse
|
29
|
Lee JI, Kim SS, Park JW, Kang DH. Detection of Salmonella enterica serovar Montevideo in food products using specific PCR primers developed by comparative genomics. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
30
|
Cheng RA, Orsi RH, Wiedmann M. The Number and Type of Chaperone-Usher Fimbriae Reflect Phylogenetic Clade Rather than Host Range in Salmonella. mSystems 2022; 7:e0011522. [PMID: 35467401 PMCID: PMC9238391 DOI: 10.1128/msystems.00115-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/03/2022] [Indexed: 01/21/2023] Open
Abstract
Salmonella is one of the most successful foodborne pathogens worldwide, owing in part to its ability to colonize or infect a wide range of hosts. Salmonella serovars are known to encode a variety of different fimbriae (hairlike organelles that facilitate binding to surfaces); however, the distribution, number, and sequence diversity of fimbriae encoded across different lineages of Salmonella were unknown. We queried whole-genome sequence (WGS) data for 242 Salmonella enterica subsp. enterica (subspecies enterica) isolates from the top 217 serovars associated with isolation from humans and agricultural animals; this effort identified 2,894 chaperone-usher (CU)-type fimbrial usher sequences, representing the most conserved component of CU fimbriae. On average, isolates encoded 12 different CU fimbrial ushers (6 to 18 per genome), although the distribution varied significantly (P = 1.328E-08) by phylogenetic clade, with isolates in section Typhi having significantly fewer fimbrial ushers than isolates in clade A2 (medians = 10 and 12 ushers, respectively). Characterization of fimbriae in additional non-enterica subspecies genomes suggested that 8 fimbrial ushers were classified as being unique to subspecies enterica isolates, suggesting that the majority of fimbriae were most likely acquired prior to the divergence of subspecies enterica. Characterization of mobile elements suggested that plasmids represent an important vehicle facilitating the acquisition of a wide range of fimbrial ushers, particularly for the acquisition of fimbriae from other Gram-negative genera. Overall, our results suggest that differences in the number and type of fimbriae encoded most likely reflect differences in phylogenetic clade rather than differences in host range. IMPORTANCE Fimbriae of the CU assembly pathway represent important organelles that mediate Salmonella's interactions with host tissues and abiotic surfaces. Our analyses provide a comprehensive overview of the diversity of CU fimbriae in Salmonella spp., highlighting that the majority of CU fimbriae are distributed broadly across multiple subspecies and suggesting that acquisition most likely occurred prior to the divergence of subspecies enterica. Our data also suggest that plasmids represent the primary vehicles facilitating the horizontal transfer of diverse CU fimbriae in Salmonella. Finally, the observed high sequence similarity between some ushers suggests that different names may have been assigned to closely related fimbrial ushers that likely should be represented by a single designation. This highlights the need to establish standard criteria for fimbria classification and nomenclature, which will also facilitate future studies seeking to associate virulence factors with adaptation to or differences in the likelihood of causing disease in a given host.
Collapse
Affiliation(s)
- Rachel A. Cheng
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Renato H. Orsi
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, New York, USA
| |
Collapse
|
31
|
Domesle KJ, Young SR, McDonald RC, Ge B. Versatility of a Salmonella Loop-Mediated Isothermal Amplification Assay Using Multiple Platforms and Master Mixes in Animal Food Matrices. J AOAC Int 2022; 105:1503-1515. [DOI: 10.1093/jaoacint/qsac059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 11/14/2022]
Abstract
Abstract
Background
Improvement in Salmonella detection methods greatly enhances the efficiency of various food testing programs. A Salmonella loop-mediated isothermal amplification (LAMP) assay has been validated in animal food through multi-laboratory validation.
Objective
The study aimed to demonstrate the versatility of this molecular assay while expanding it to multiple platforms and various reagent choices for use in animal food testing.
Methods
Following the U.S. Food and Drug Administration (FDA)’s Guidelines for the Validation of Analytical Methods for the Detection of Microbial Pathogens in Foods and Feeds, we examined the inclusivity, exclusivity, and LOD of the assay using two platforms (7500 Fast and Genie II) and three LAMP master mixes (GspSSD, GspSSD2.0, and WarmStart) in seven animal food matrixes (dry cat food, dry dog food, cattle feed, dairy feed, horse feed, poultry feed, and swine feed). The FDA’s Bacteriological Analytical Manual (BAM) Salmonella culture method was the reference method.
Results
Inclusivity and exclusivity data were consistent among all six platform and master mix combinations with a few exceptions. Comparable LODs were observed down to the single-cell level (WarmStart was 10-fold less sensitive). Performance was similar to the BAM method for detecting fractional positive results in seven animal food matrixes. Nonetheless, LAMP time to positive results and annealing/melting temperature differed among master mixes and platforms.
Conclusion
The Salmonella LAMP assay was successfully validated in two platforms and three master mixes, making it a flexible tool for use by the FDA’s field laboratories in regulatory testing of animal food and for adoption by other food testing programs.
Highlights
We demonstrated the LAMP assay’s versatility on two platforms and three master mixes for the rapid and reliable screening of Salmonella in seven animal food matrixes. GspSSD2.0 was the fastest master mix (time to positive results as early as 3.5 min) while Genie II had several attractive features from a user perspective.
Collapse
Affiliation(s)
- Kelly J Domesle
- U.S. Food and Drug Administration, Center for Veterinary Medicine, Office of Research, Division of Animal and Food Microbiology , 8401 Muirkirk Rd , Laurel, MD 20708, USA
| | - Shenia R Young
- U.S. Food and Drug Administration, Center for Veterinary Medicine, Office of Research, Division of Animal and Food Microbiology , 8401 Muirkirk Rd , Laurel, MD 20708, USA
| | - Ryan C McDonald
- U.S. Food and Drug Administration, Center for Veterinary Medicine, Office of Research, Division of Animal and Food Microbiology , 8401 Muirkirk Rd , Laurel, MD 20708, USA
| | - Beilei Ge
- U.S. Food and Drug Administration, Center for Veterinary Medicine, Office of Research, Division of Animal and Food Microbiology , 8401 Muirkirk Rd , Laurel, MD 20708, USA
| |
Collapse
|
32
|
Unni R, Pintor KL, Diepold A, Unterweger D. Presence and absence of type VI secretion systems in bacteria. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35467500 DOI: 10.1099/mic.0.001151] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The type VI secretion system (T6SS) is a molecular puncturing device that enables Gram-negative bacteria to kill competitors, manipulate host cells and take up nutrients. Who would want to miss such superpowers? Indeed, many studies show how widespread the secretion apparatus is among microbes. However, it is becoming evident that, on multiple taxonomic levels, from phyla to species and strains, some bacteria lack a T6SS. Here, we review who does and does not have a type VI secretion apparatus and speculate on the dynamic process of gaining and losing the secretion system to better understand its spread and distribution across the microbial world.
Collapse
Affiliation(s)
- Rahul Unni
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Straße 2, 24306 Plön, Germany.,Institute for Experimental Medicine, Kiel University, Michaelisstraße 5, 24105 Kiel, Germany
| | - Katherine L Pintor
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany
| | - Andreas Diepold
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany
| | - Daniel Unterweger
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Straße 2, 24306 Plön, Germany.,Institute for Experimental Medicine, Kiel University, Michaelisstraße 5, 24105 Kiel, Germany
| |
Collapse
|
33
|
Regulatory Evolution of the phoH Ancestral Gene in Salmonella enterica Serovar Typhimurium. J Bacteriol 2022; 204:e0058521. [PMID: 35404111 DOI: 10.1128/jb.00585-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
One important event for the divergence of Salmonella from Escherichia coli was the acquisition by horizontal transfer of the Salmonella pathogenicity island 1 (SPI-1), containing genes required for the invasion of host cells by Salmonella. HilD is an AraC-like transcriptional regulator in SPI-1 that induces the expression of the SPI-1 and many other acquired virulence genes located in other genomic regions of Salmonella. Additionally, HilD has been shown to positively control the expression of some ancestral genes (also present in E. coli and other bacteria), including phoH. In this study, we determined that both the gain of HilD and cis-regulatory evolution led to the integration of the phoH gene into the HilD regulon. Our results indicate that a HilD-binding sequence was generated in the regulatory region of the S. enterica serovar Typhimurium phoH gene, which mediates the activation of promoter 1 of this gene under SPI-1-inducing conditions. Furthermore, we found that repression by H-NS, a histone-like protein, was also adapted on the S. Typhimurium phoH gene and that HilD activates the expression of this gene in part by antagonizing H-NS. Additionally, our results revealed that the expression of the S. Typhmurium phoH gene is also activated in response to low phosphate but independently of the PhoB/R two-component system, known to regulate the E. coli phoH gene in response to low phosphate. Thus, our results indicate that cis-regulatory evolution has played a role in the expansion of the HilD regulon and illustrate the phenomenon of differential regulation of ortholog genes. IMPORTANCE Two mechanisms mediating differentiation of bacteria are well known: acquisition of genes by horizontal transfer events and mutations in coding DNA sequences. In this study, we found that the phoH ancestral gene is differentially regulated between Salmonella Typhimurium and Escherichia coli, two closely related bacterial species. Our results indicate that this differential regulation was generated by mutations in the regulatory sequence of the S. Typhimurium phoH gene and by the acquisition by S. Typhimurium of foreign DNA encoding the transcriptional regulator HilD. Thus, our results, together with those from an increasing number of studies, indicate that cis-regulatory evolution can lead to the rewiring and reprogramming of transcriptional regulation, which also plays an important role in the divergence of bacteria through time.
Collapse
|
34
|
Salvail H, Choi J, Groisman EA. Differential synthesis of novel small protein times Salmonella virulence program. PLoS Genet 2022; 18:e1010074. [PMID: 35245279 PMCID: PMC8896665 DOI: 10.1371/journal.pgen.1010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/03/2022] [Indexed: 11/18/2022] Open
Abstract
Gene organization in operons enables concerted transcription of functionally related genes and efficient control of cellular processes. Typically, an operon is transcribed as a polycistronic mRNA that is translated into corresponding proteins. Here, we identify a bicistronic operon transcribed as two mRNAs, yet only one allows translation of both genes. We establish that the novel gene ugtS forms an operon with virulence gene ugtL, an activator of the master virulence regulatory system PhoP/PhoQ in Salmonella enterica serovar Typhimurium. Only the longer ugtSugtL mRNA carries the ugtS ribosome binding site and therefore allows ugtS translation. Inside macrophages, the ugtSugtL mRNA species allowing translation of both genes is produced hours before that allowing translation solely of ugtL. The small protein UgtS controls the kinetics of PhoP phosphorylation by antagonizing UgtL activity, preventing premature activation of a critical virulence program. Moreover, S. enterica serovars that infect cold-blooded animals lack ugtS. Our results establish how foreign gene control of ancestral regulators enables pathogens to time their virulence programs. Pathogens must express their virulence genes at precisely the right time to cause disease. Here, we identify a novel small protein that governs a critical virulence program in the pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium). We establish that the novel small protein UgtS prevents the virulence protein UgtL from activating the master virulence regulator PhoP inside macrophages. S. Typhimurium produces two ugtSugtL mRNAs, but only one of them allows ugtS translation. The absence of ugtS from S. enterica serovars that infect cold-blooded animals raises the possibility of UgtS playing a regulatory role during infection of warm-blooded animals. Our findings establish how a horizontally acquired bicistron enables pathogens to time their virulence programs by controlling ancestral regulators.
Collapse
Affiliation(s)
- Hubert Salvail
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, United States of America
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
| | - Jeongjoon Choi
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, United States of America
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Eduardo A. Groisman
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, United States of America
- Yale Microbial Sciences Institute, West Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
35
|
Amaya FA, Blondel CJ, Barros-Infante MF, Rivera D, Moreno-Switt AI, Santiviago CA, Pezoa D. Identification of Type VI Secretion Systems Effector Proteins That Contribute to Interbacterial Competition in Salmonella Dublin. Front Microbiol 2022; 13:811932. [PMID: 35222335 PMCID: PMC8867033 DOI: 10.3389/fmicb.2022.811932] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/04/2022] [Indexed: 12/12/2022] Open
Abstract
The Type VI Secretion System (T6SS) is a multiprotein device that has emerged as an important fitness and virulence factor for many Gram-negative bacteria through the injection of effector proteins into prokaryotic or eukaryotic cells via a contractile mechanism. While some effector proteins specifically target bacterial or eukaryotic cells, others can target both types of cells (trans-kingdom effectors). In Salmonella, five T6SS gene clusters have been identified within pathogenicity islands SPI-6, SPI-19, SPI-20, SPI-21, and SPI-22, which are differentially distributed among serotypes. Salmonella enterica serotype Dublin (S. Dublin) is a cattle-adapted pathogen that harbors both T6SSSPI-6 and T6SSSPI-19. Interestingly, while both systems have been linked to virulence and host colonization in S. Dublin, an antibacterial activity has not been detected for T6SSSPI-6 in this serotype. In addition, there is limited information regarding the repertoire of effector proteins encoded within T6SSSPI-6 and T6SSSPI-19 gene clusters in S. Dublin. In the present study, we demonstrate that T6SSSPI-6 and T6SSSPI-19 of S. Dublin CT_02021853 contribute to interbacterial competition. Bioinformatic and comparative genomic analyses allowed us to identify genes encoding three candidate antibacterial effectors located within SPI-6 and two candidate effectors located within SPI-19. Each antibacterial effector gene is located upstream of a gene encoding a hypothetic immunity protein, thus conforming an effector/immunity (E/I) module. Of note, the genes encoding these effectors and immunity proteins are widely distributed in Salmonella genomes, suggesting a relevant role in interbacterial competition and virulence. Finally, we demonstrate that E/I modules SED_RS01930/SED_RS01935 (encoded in SPI-6), SED_RS06235/SED_RS06230, and SED_RS06335/SED_RS06340 (both encoded in SPI-19) contribute to interbacterial competition in S. Dublin CT_02021853.
Collapse
Affiliation(s)
- Fernando A. Amaya
- Laboratorio de Microbiología, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Carlos J. Blondel
- Instituto de Ciencias Biomédicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | | | - Dácil Rivera
- Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Andrea I. Moreno-Switt
- Escuela de Medicina Veterinaria, Facultad de Agronomía e Ingeniería Forestal, Facultad de Ciencias Biológicas y Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Initiative on Collaborative Research on Bacterial Resistance (MICROB-R), Santiago, Chile
| | - Carlos A. Santiviago
- Laboratorio de Microbiología, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
- *Correspondence: Carlos A. Santiviago, David Pezoa,
| | - David Pezoa
- Escuela de Medicina Veterinaria, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
- *Correspondence: Carlos A. Santiviago, David Pezoa,
| |
Collapse
|
36
|
Li C, Tyson GH, Hsu CH, Harrison L, Strain E, Tran TT, Tillman GE, Dessai U, McDermott PF, Zhao S. Long-Read Sequencing Reveals Evolution and Acquisition of Antimicrobial Resistance and Virulence Genes in Salmonella enterica. Front Microbiol 2021; 12:777817. [PMID: 34867920 PMCID: PMC8640207 DOI: 10.3389/fmicb.2021.777817] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/19/2021] [Indexed: 11/13/2022] Open
Abstract
Salmonella enterica is a significant and phylogenetically diverse zoonotic pathogen. To understand its genomic heterogeneity and antimicrobial resistance, we performed long-read sequencing on Salmonella isolated from retail meats and food animals. A collection of 134 multidrug-resistant isolates belonging to 33 serotypes were subjected to PacBio sequencing. One major locus of diversity among these isolates was the presence and orientation of Salmonella pathogenic islands (SPI), which varied across different serotypes but were largely conserved within individual serotypes. We also identified insertion of an IncQ resistance plasmid into the chromosome of fourteen strains of serotype I 4,[5],12:i:- and the Salmonella genomic island 1 (SGI-1) in five serotypes. The presence of various SPIs, SGI-1 and integrated plasmids contributed significantly to the genomic variability and resulted in chromosomal resistance in 55.2% (74/134) of the study isolates. A total of 93.3% (125/134) of isolates carried at least one plasmid, with isolates carrying up to seven plasmids. We closed 233 plasmid sequences of thirteen replicon types, along with twelve hybrid plasmids. Some associations between Salmonella isolate source, serotype, and plasmid type were seen. For instance, IncX plasmids were more common in serotype Kentucky from retail chicken. Plasmids IncC and IncHI had on average more than five antimicrobial resistance genes, whereas in IncX, it was less than one per plasmid. Overall, 60% of multidrug resistance (MDR) strains that carried >3 AMR genes also carried >3 heavy metal resistance genes, raising the possibility of co-selection of antimicrobial resistance in the presence of heavy metals. We also found nine isolates representing four serotypes that carried virulence plasmids with the spv operon. Together, these data demonstrate the power of long-read sequencing to reveal genomic arrangements and integrated plasmids with a high level of resolution for tracking and comparing resistant strains from different sources. Additionally, the findings from this study will help expand the reference set of closed Salmonella genomes that can be used to improve genome assembly from short-read data commonly used in One Health antimicrobial resistance surveillance.
Collapse
Affiliation(s)
- Cong Li
- Center for Veterinary Medicine, United States Food and Drug Administration, Laurel, MD, United States
| | - Gregory H Tyson
- Center for Veterinary Medicine, United States Food and Drug Administration, Laurel, MD, United States
| | - Chih-Hao Hsu
- Center for Veterinary Medicine, United States Food and Drug Administration, Laurel, MD, United States
| | - Lucas Harrison
- Center for Veterinary Medicine, United States Food and Drug Administration, Laurel, MD, United States
| | - Errol Strain
- Center for Veterinary Medicine, United States Food and Drug Administration, Laurel, MD, United States
| | - Thu-Thuy Tran
- Center for Veterinary Medicine, United States Food and Drug Administration, Laurel, MD, United States
| | - Glenn E Tillman
- Food Safety and Inspection Service, United States Department of Agriculture, Athens, GA, United States
| | - Uday Dessai
- Food Safety and Inspection Service, United States Department of Agriculture, Washington, DC, United States
| | - Patrick F McDermott
- Center for Veterinary Medicine, United States Food and Drug Administration, Laurel, MD, United States
| | - Shaohua Zhao
- Center for Veterinary Medicine, United States Food and Drug Administration, Laurel, MD, United States
| |
Collapse
|
37
|
Identification of a Family of Vibrio Type III Secretion System Effectors That Contain a Conserved Serine/Threonine Kinase Domain. mSphere 2021; 6:e0059921. [PMID: 34346702 PMCID: PMC8386410 DOI: 10.1128/msphere.00599-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Vibrio parahaemolyticus is a marine Gram-negative bacterium that is a leading cause of seafood-borne gastroenteritis. Pandemic strains of V. parahaemolyticus rely on a specialized protein secretion machinery known as the type III secretion system 2 (T3SS2) to cause disease. The T3SS2 mediates the delivery of effector proteins into the cytosol of infected cells, where they subvert multiple cellular pathways. Here, we identify a new T3SS2 effector protein encoded by VPA1328 (VP_RS21530) in V. parahaemolyticus RIMD2210633. Bioinformatic analysis revealed that VPA1328 is part of a larger family of uncharacterized T3SS effector proteins with homology to the VopG effector protein in Vibrio cholerae AM-19226. These VopG-like proteins are found in many but not all T3SS2 gene clusters and are distributed among diverse Vibrio species, including V. parahaemolyticus, V. cholerae, V. mimicus, and V. diabolicus and also in Shewanella baltica. Structure-based prediction analyses uncovered the presence of a conserved C-terminal kinase domain in VopG orthologs, similar to the serine/threonine kinase domain found in the NleH family of T3SS effector proteins. However, in contrast to NleH effector proteins, in tissue culture-based infections, VopG did not impede host cell death or suppress interleukin 8 (IL-8) secretion, suggesting a yet undefined role for VopG during V. parahaemolyticus infection. Collectively, our work reveals that VopG effector proteins, a new family of likely serine/threonine kinases, is widely distributed in the T3SS2 effector armamentarium among marine bacteria. IMPORTANCE Vibrio parahaemolyticus is the leading bacterial cause of seafood-borne gastroenteritis worldwide. The pathogen relies on a type III secretion system to deliver a variety of effector proteins into the cytosol of infected cells to subvert cellular function. In this study, we identified a novel Vibrio parahaemolyticus effector protein that is similar to the VopG effector of Vibrio cholerae. VopG-like effectors were found in diverse Vibrio species and contain a conserved serine/threonine kinase domain that bears similarity to the kinase domain in the enterohemorrhagic Escherichia coli (EHEC) and Shigella NleH effectors that manipulate host cell survival pathways and host immune responses. Together our findings identify a new family of Vibrio effector proteins and highlight the role of horizontal gene transfer events among marine bacteria in shaping T3SS gene clusters.
Collapse
|
38
|
Groisman EA, Duprey A, Choi J. How the PhoP/PhoQ System Controls Virulence and Mg 2+ Homeostasis: Lessons in Signal Transduction, Pathogenesis, Physiology, and Evolution. Microbiol Mol Biol Rev 2021; 85:e0017620. [PMID: 34191587 PMCID: PMC8483708 DOI: 10.1128/mmbr.00176-20] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The PhoP/PhoQ two-component system governs virulence, Mg2+ homeostasis, and resistance to a variety of antimicrobial agents, including acidic pH and cationic antimicrobial peptides, in several Gram-negative bacterial species. Best understood in Salmonella enterica serovar Typhimurium, the PhoP/PhoQ system consists o-regulated gene products alter PhoP-P amounts, even under constant inducing conditions. PhoP-P controls the abundance of hundreds of proteins both directly, by having transcriptional effects on the corresponding genes, and indirectly, by modifying the abundance, activity, or stability of other transcription factors, regulatory RNAs, protease regulators, and metabolites. The investigation of PhoP/PhoQ has uncovered novel forms of signal transduction and the physiological consequences of regulon evolution.
Collapse
Affiliation(s)
- Eduardo A. Groisman
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
- Yale Microbial Sciences Institute, West Haven, Connecticut, USA
| | - Alexandre Duprey
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
| | - Jeongjoon Choi
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
39
|
Pavlovikj N, Gomes-Neto JC, Deogun JS, Benson AK. ProkEvo: an automated, reproducible, and scalable framework for high-throughput bacterial population genomics analyses. PeerJ 2021; 9:e11376. [PMID: 34055480 PMCID: PMC8142932 DOI: 10.7717/peerj.11376] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 04/08/2021] [Indexed: 12/28/2022] Open
Abstract
Whole Genome Sequence (WGS) data from bacterial species is used for a variety of applications ranging from basic microbiological research, diagnostics, and epidemiological surveillance. The availability of WGS data from hundreds of thousands of individual isolates of individual microbial species poses a tremendous opportunity for discovery and hypothesis-generating research into ecology and evolution of these microorganisms. Flexibility, scalability, and user-friendliness of existing pipelines for population-scale inquiry, however, limit applications of systematic, population-scale approaches. Here, we present ProkEvo, an automated, scalable, reproducible, and open-source framework for bacterial population genomics analyses using WGS data. ProkEvo was specifically developed to achieve the following goals: (1) Automation and scaling of complex combinations of computational analyses for many thousands of bacterial genomes from inputs of raw Illumina paired-end sequence reads; (2) Use of workflow management systems (WMS) such as Pegasus WMS to ensure reproducibility, scalability, modularity, fault-tolerance, and robust file management throughout the process; (3) Use of high-performance and high-throughput computational platforms; (4) Generation of hierarchical-based population structure analysis based on combinations of multi-locus and Bayesian statistical approaches for classification for ecological and epidemiological inquiries; (5) Association of antimicrobial resistance (AMR) genes, putative virulence factors, and plasmids from curated databases with the hierarchically-related genotypic classifications; and (6) Production of pan-genome annotations and data compilation that can be utilized for downstream analysis such as identification of population-specific genomic signatures. The scalability of ProkEvo was measured with two datasets comprising significantly different numbers of input genomes (one with ~2,400 genomes, and the second with ~23,000 genomes). Depending on the dataset and the computational platform used, the running time of ProkEvo varied from ~3-26 days. ProkEvo can be used with virtually any bacterial species, and the Pegasus WMS uniquely facilitates addition or removal of programs from the workflow or modification of options within them. To demonstrate versatility of the ProkEvo platform, we performed a hierarchical-based population structure analyses from available genomes of three distinct pathogenic bacterial species as individual case studies. The specific case studies illustrate how hierarchical analyses of population structures, genotype frequencies, and distribution of specific gene functions can be integrated into an analysis. Collectively, our study shows that ProkEvo presents a practical viable option for scalable, automated analyses of bacterial populations with direct applications for basic microbiology research, clinical microbiological diagnostics, and epidemiological surveillance.
Collapse
Affiliation(s)
- Natasha Pavlovikj
- Department of Computer Science and Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Joao Carlos Gomes-Neto
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America.,Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Jitender S Deogun
- Department of Computer Science and Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Andrew K Benson
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America.,Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| |
Collapse
|
40
|
Zarkani AA, Schikora A. Mechanisms adopted by Salmonella to colonize plant hosts. Food Microbiol 2021; 99:103833. [PMID: 34119117 DOI: 10.1016/j.fm.2021.103833] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 11/16/2022]
Abstract
Fruits and vegetables consumed fresh or as minimally-processed produce, have multiple benefits for our diet. Unfortunately, they bring a risk of food-borne diseases, for example salmonellosis. Interactions between Salmonella and crop plants are indeed a raising concern for the global health. Salmonella uses multiple strategies to manipulate the host defense system, including plant's defense responses. The main focus of this review are strategies used by this bacterium during the interaction with crop plants. Emphasis was put on how Salmonella avoids the plant defense responses and successfully colonizes plants. In addition, several factors were reviewed assessing their impact on Salmonella persistence and physiological adaptation to plants and plant-related environment. The understanding of those mechanisms, their regulation and use by the pathogen, while in contact with plants, has significant implication on the growth, harvest and processing steps in plant production system. Consequently, it requires both the authorities and science to advance and definite methods aiming at prevention of crop plants contamination. Thus, minimizing and/or eliminating the potential of human diseases.
Collapse
Affiliation(s)
- Azhar A Zarkani
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11/12, 38104, Braunschweig, Germany; University of Baghdad, Department of Biotechnology, 10071, Baghdad, Iraq.
| | - Adam Schikora
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11/12, 38104, Braunschweig, Germany.
| |
Collapse
|
41
|
Yoo W, Choi J, Park B, Byndloss MX, Ryu S. A Nitrogen Metabolic Enzyme Provides Salmonella Fitness Advantage by Promoting Utilization of Microbiota-Derived Carbon Source. ACS Infect Dis 2021; 7:1208-1220. [PMID: 33853321 PMCID: PMC8603301 DOI: 10.1021/acsinfecdis.0c00836] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Microbes support their growth in vertebrate hosts by exploiting a large variety of dietary components as nutrients, which determines the composition of gut microbiota. A pathogen Salmonella expands by utilizing 1,2-propanediol, a microbiota-fermented product, during mucosal inflammation. However, it remains largely unknown how the pathogen decides which nutrient to consume from the complex mixture in the gut. Here, we show that Salmonella enterica serovar Typhimurium utilizes 1,2-propanediol by EIIANtr (a nitrogen-metabolic PTS component implicated in virulence)-mediated regulation of the pdu operon, thereby expanding in the murine intestine. Propionyl-CoA, a metabolic intermediate produced by 1,2-propanediol catabolism, elevates EIIANtr protein amounts, entailing positive feedback, thereby boosting the 1,2-propanediol-utilization process. EIIANtr promotes pdu expression by enhancing glutathione synthesis. CRP (cAMP receptor protein) induces pdu genes by increasing EIIANtr expression in response to glucose availability. Notably, EIIANtr-mediated 1,2-propanediol-utilization conferred a growth benefit even under high glucose conditions which reduces CRP activity. The EIIANtr-mediated activation is likely conserved in pathogenic enterobacteria including Escherichia coli. Collectively, our findings suggest that Salmonella promotes its fitness by precisely modulating the utilization system for microbiota-derived carbon source. They also suggest that Salmonella may integrate signals, processed via EIIANtr, into its metabolic program as well as virulence circuit.
Collapse
Affiliation(s)
- Woongjae Yoo
- Department of Food and Animal Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Jeongjoon Choi
- Department of Food and Animal Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Bookyung Park
- Department of Food and Animal Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
- Vanderbilt Institute for Infection, Immunology, and Inflammation and Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States of America
| | - Mariana X Byndloss
- Vanderbilt Institute for Infection, Immunology, and Inflammation and Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States of America
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
42
|
Cheng RA, Wiedmann M. Recent Advances in Our Understanding of the Diversity and Roles of Chaperone-Usher Fimbriae in Facilitating Salmonella Host and Tissue Tropism. Front Cell Infect Microbiol 2021; 10:628043. [PMID: 33614531 PMCID: PMC7886704 DOI: 10.3389/fcimb.2020.628043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/21/2020] [Indexed: 01/04/2023] Open
Abstract
Salmonella enterica is one of the most diverse and successful pathogens, representing a species with >2,600 serovars with a variety of adaptations that enable colonization and infection of a wide range of hosts. Fimbriae, thin hair-like projections that cover the surface of Salmonella, are thought to be the primary organelles that mediate Salmonella's interaction with, and adherence to, the host intestinal epithelium, representing an important step in the infection process. The recent expansion in genome sequencing efforts has enabled the discovery of novel fimbriae, thereby providing new perspectives on fimbrial diversity and distribution among a broad number of serovars. In this review, we provide an updated overview of the evolutionary events that shaped the Salmonella chaperone-usher fimbriome in light of recent phylogenetic studies describing the population structure of Salmonella enterica. Furthermore, we discuss the complexities of the chaperone-usher fimbriae-mediated host-pathogen interactions and the apparent redundant roles of chaperone-usher fimbriae in host and tissue tropism.
Collapse
Affiliation(s)
- Rachel A. Cheng
- Department of Food Science, Cornell University, Ithaca, NY, United States
| | | |
Collapse
|
43
|
Shariat NW, Timme RE, Walters AT. Phylogeny of Salmonella enterica subspecies arizonae by whole-genome sequencing reveals high incidence of polyphyly and low phase 1 H antigen variability. Microb Genom 2021; 7. [PMID: 33539276 PMCID: PMC8208698 DOI: 10.1099/mgen.0.000522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Salmonella enterica subspecies arizonae is frequently associated with animal reservoirs, particularly reptiles, and can cause illness in some mammals, including humans. Using whole-genome sequencing data, core genome phylogenetic analyses were performed using 112 S. enterica subsp. arizonae isolates, representing 46 of 102 described serovars. Nearly one-third of these are polyphyletic, including two serovars that appear in four and five distinct evolutionary lineages. Subspecies arizonae has a monophasic H antigen. Among the 46 serovars investigated, only 8 phase 1 H antigens were identified, demonstrating high conservation for this antigen. Prophages and plasmids were found throughout this subspecies, including five novel prophages. Polyphyly was also reflected in prophage content, although some clade-specific enrichment for some phages was observed. IncFII(S) was the most frequent plasmid replicon identified and was found in a quarter of S. enterica subsp. arizonae genomes. Salmonella pathogenicity islands (SPIs) 1 and 2 are present across all Salmonella, including this subspecies, although effectors sipA, sptP and arvA in SPI-1 and sseG and ssaI in SPI-2 appear to be lost in this lineage. SPI-20, encoding a type VI secretion system, is exclusive to this subspecies and is well maintained in all genomes sampled. A number of fimbral operons were identified, including the sas operon that appears to be a synapomorphy for this subspecies, while others exhibited more clade-specific patterns. This work reveals evolutionary patterns in S. enterica subsp. arizonae that make this subspecies a unique lineage within this very diverse species.
Collapse
Affiliation(s)
- Nikki W. Shariat
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
- *Correspondence: Nikki W. Shariat,
| | - Ruth E. Timme
- Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, Maryland, USA
| | - Abigail T. Walters
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
44
|
Hudson LK, Constantine-Renna L, Thomas L, Moore C, Qian X, Garman K, Dunn JR, Denes TG. Genomic characterization and phylogenetic analysis of Salmonella enterica serovar Javiana. PeerJ 2020; 8:e10256. [PMID: 33240617 PMCID: PMC7682435 DOI: 10.7717/peerj.10256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 10/06/2020] [Indexed: 02/01/2023] Open
Abstract
Salmonella enterica serovar Javiana is the fourth most reported serovar of laboratory-confirmed human Salmonella infections in the U.S. and in Tennessee (TN). Although Salmonella ser. Javiana is a common cause of human infection, the majority of cases are sporadic in nature rather than outbreak-associated. To better understand Salmonella ser. Javiana microbial population structure in TN, we completed a phylogenetic analysis of 111 Salmonella ser. Javiana clinical isolates from TN collected from Jan. 2017 to Oct. 2018. We identified mobile genetic elements and genes known to confer antibiotic resistance present in the isolates, and performed a pan-genome-wide association study (pan-GWAS) to compare gene content between clades identified in this study. The population structure of TN Salmonella ser. Javiana clinical isolates consisted of three genetic clades: TN clade I (n = 54), TN clade II (n = 4), and TN clade III (n = 48). Using a 5, 10, and 25 hqSNP distance threshold for cluster identification, nine, 12, and 10 potential epidemiologically-relevant clusters were identified, respectively. The majority of genes that were found to be over-represented in specific clades were located in mobile genetic element (MGE) regions, including genes encoding integrases and phage structures (91.5%). Additionally, a large portion of the over-represented genes from TN clade II (44.9%) were located on an 87.5 kb plasmid containing genes encoding a toxin/antitoxin system (ccdAB). Additionally, we completed phylogenetic analyses of global Salmonella ser. Javiana datasets to gain a broader insight into the population structure of this serovar. We found that the global phylogeny consisted of three major clades (one of which all of the TN isolates belonged to) and two cgMLST eBurstGroups (ceBGs) and that the branch length between the two Salmonella ser. Javiana ceBGs (1,423 allelic differences) was comparable to those from other serovars that have been reported as polyphyletic (929–2,850 allelic differences). This study demonstrates the population structure of TN and global Salmonella ser. Javiana isolates, a clinically important Salmonella serovar and can provide guidance for phylogenetic cluster analyses for public health surveillance and response.
Collapse
Affiliation(s)
- Lauren K Hudson
- Department of Food Science, University of Tennessee, Knoxville, TN, United States of America
| | | | - Linda Thomas
- Division of Laboratory Services, Tennessee Department of Health, Nashville, TN, United States of America
| | - Christina Moore
- Division of Laboratory Services, Tennessee Department of Health, Nashville, TN, United States of America
| | - Xiaorong Qian
- Division of Laboratory Services, Tennessee Department of Health, Nashville, TN, United States of America
| | - Katie Garman
- Tennessee Department of Health, Nashville, TN, United States of America
| | - John R Dunn
- Tennessee Department of Health, Nashville, TN, United States of America
| | - Thomas G Denes
- Department of Food Science, University of Tennessee, Knoxville, TN, United States of America
| |
Collapse
|
45
|
Choi J, Groisman EA. Horizontally acquired regulatory gene activates ancestral regulatory system to promote Salmonella virulence. Nucleic Acids Res 2020; 48:10832-10847. [PMID: 33045730 PMCID: PMC7641745 DOI: 10.1093/nar/gkaa813] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/09/2020] [Accepted: 09/17/2020] [Indexed: 01/21/2023] Open
Abstract
Horizontally acquired genes are typically regulated by ancestral regulators. This regulation enables expression of horizontally acquired genes to be coordinated with that of preexisting genes. Here, we report a singular example of the opposite regulation: a horizontally acquired gene that controls an ancestral regulator, thereby promoting bacterial virulence. We establish that the horizontally acquired regulatory gene ssrB is necessary to activate the ancestral regulatory system PhoP/PhoQ of Salmonella enterica serovar Typhimurium (S. Typhimurium) in mildly acidic pH, which S. Typhimurium experiences inside macrophages. SsrB promotes phoP transcription by binding upstream of the phoP promoter. SsrB also increases ugtL transcription by binding to the ugtL promoter region, where it overcomes gene silencing by the heat-stable nucleoid structuring protein H-NS, enhancing virulence. The largely non-pathogenic species S. bongori failed to activate PhoP/PhoQ in mildly acidic pH because it lacks both the ssrB gene and the SsrB binding site in the target promoter. Low Mg2+ activated PhoP/PhoQ in both S. bongori and ssrB-lacking S. Typhimurium, indicating that the SsrB requirement for PhoP/PhoQ activation is signal-dependent. By controlling the ancestral genome, horizontally acquired genes are responsible for more crucial abilities, including virulence, than currently thought.
Collapse
Affiliation(s)
- Jeongjoon Choi
- Department of Microbial Pathogenesis, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA
| | - Eduardo A Groisman
- Department of Microbial Pathogenesis, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA.,Yale Microbial Sciences Institute, P.O. Box 27389, West Haven, CT 06516, USA
| |
Collapse
|
46
|
A general strategy to control antibody specificity against targets showing molecular and biological similarity: Salmonella case study. Sci Rep 2020; 10:18439. [PMID: 33116156 PMCID: PMC7595100 DOI: 10.1038/s41598-020-75285-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 10/12/2020] [Indexed: 11/10/2022] Open
Abstract
The control of antibody specificity plays pivotal roles in key technological fields such as diagnostics and therapeutics. During the development of immunoassays (IAs) for the biosensing of pathogens in food matrices, we have found a way to rationalize and control the specificity of polyclonal antibodies (sera) for a complex analytical target (the Salmonella genus), in terms of number of analytes (Salmonella species) and potential cross-reactivity with similar analytes (other bacteria strains). Indeed, the biosensing of Salmonella required the development of sera and serum mixtures displaying homogeneous specificity for a large set of strains showing broad biochemical variety (54 Salmonella serovars tested in this study), which partially overlaps with the molecular features of other class of bacteria (like specific serogroups of E. coli). To achieve a trade-off between specificity harmonisation and maximization, we have developed a strategy based on the conversion of the specificity profiles of individual sera in to numerical descriptors, which allow predicting the capacity of serum mixtures to detect multiple bacteria strains. This approach does not imply laborious purification steps and results advantageous for process scaling-up, and may help in the customization of the specificity profiles of antibodies needed for diagnostic and therapeutic applications such as multi-analyte detection and recombinant antibody engineering, respectively.
Collapse
|
47
|
Antony L, Fenske G, Kaushik RS, Nagaraja TG, Thomas M, Scaria J. Population structure of Salmonella enterica serotype Mbandaka reveals similar virulence potential irrespective of source and phylogenomic stratification. F1000Res 2020; 9:1142. [PMID: 33214877 PMCID: PMC7653644 DOI: 10.12688/f1000research.25540.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/08/2020] [Indexed: 11/22/2022] Open
Abstract
Background: Salmonella enterica serotype Mbandaka ( Salmonella ser. Mbandaka) is a multi-host adapted Non-typhoidal Salmonella (NTS) that can cause foodborne illnesses in human. Outbreaks of Salmonella ser. Mbandaka contributed to the economic stress caused by NTS due to hospitalizations. Whole genome sequencing (WGS)-based phylogenomic analysis facilitates better understanding of the genomic features that may expedite the foodborne spread of Salmonella ser. Mbandaka. Methods: In the present study, we define the population structure, antimicrobial resistance (AMR), and virulence profile of Salmonella ser. Mbandaka using WGS data of more than 400 isolates collected from different parts of the world. We validated the genotypic prediction of AMR and virulence phenotypically using an available set of representative isolates. Results: Phylogenetic analysis of Salmonella ser. Mbandaka using Bayesian approaches revealed clustering of the population into two major groups; however, clustering of these groups and their subgroups showed no pattern based on the host or geographical origin. Instead, we found a uniform virulence gene repertoire in all isolates. Phenotypic analysis on a representative set of isolates showed a similar trend in cell invasion behavior and adaptation to a low pH environment. Both genotypic and phenotypic analysis revealed the carriage of multidrug resistance (MDR) genes in Salmonella ser. Mbandaka. Conclusions: Overall, our results show that the presence of multidrug resistance along with adaptation to broad range of hosts and uniformity in the virulence potential, isolates of Salmonella ser. Mbandaka from any source could have the potential to cause foodborne outbreaks as well as AMR dissemination.
Collapse
Affiliation(s)
- Linto Antony
- Department of Veterinary & Biomedical Sciences, South Dakota State University, Brookings, SD, 57007, USA
- South Dakota Center for Biologics Research and Commercialization, Brookings, SD, USA
| | - Gavin Fenske
- Department of Veterinary & Biomedical Sciences, South Dakota State University, Brookings, SD, 57007, USA
- South Dakota Center for Biologics Research and Commercialization, Brookings, SD, USA
| | - Radhey S Kaushik
- Department of Biology & Microbiology, South Dakota State University, Brookings, SD, 57007, USA
| | - Tiruvoor G Nagaraja
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506, USA
| | - Milton Thomas
- Department of Veterinary & Biomedical Sciences, South Dakota State University, Brookings, SD, 57007, USA
| | - Joy Scaria
- Department of Veterinary & Biomedical Sciences, South Dakota State University, Brookings, SD, 57007, USA
- South Dakota Center for Biologics Research and Commercialization, Brookings, SD, USA
| |
Collapse
|
48
|
Bao H, Wang S, Zhao JH, Liu SL. Salmonella secretion systems: Differential roles in pathogen-host interactions. Microbiol Res 2020; 241:126591. [PMID: 32932132 DOI: 10.1016/j.micres.2020.126591] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/24/2020] [Accepted: 08/29/2020] [Indexed: 12/26/2022]
Abstract
The bacterial genus Salmonella includes a large group of food-borne pathogens that cause a variety of gastrointestinal or systemic diseases in hosts. Salmonella use several secretion devices to inject various effectors targeting eukaryotic hosts, or bacteria. In the past few years, considerable progress has been made towards understanding the structural features and molecular mechanisms of the secretion systems of Salmonella, particularly regarding their roles in host-pathogen interactions. In this review, we summarize the current advances about the main characteristics of the Salmonella secretion systems. Clarifying the roles of the secretion systems in the process of infecting various hosts will broaden our understanding of the importance of microbial interactions in maintaining human health and will provide information for developing novel therapeutic approaches.
Collapse
Affiliation(s)
- Hongxia Bao
- Genomics Research Center, College of Pharmacy, Harbin Medical University, Harbin, China; HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China.
| | - Shuang Wang
- Department of Biopharmaceutical Sciences (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jian-Hua Zhao
- Genomics Research Center, College of Pharmacy, Harbin Medical University, Harbin, China; HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Shu-Lin Liu
- Genomics Research Center, College of Pharmacy, Harbin Medical University, Harbin, China; HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China; Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Canada.
| |
Collapse
|
49
|
Zhao S, Li C, Hsu CH, Tyson GH, Strain E, Tate H, Tran TT, Abbott J, McDermott PF. Comparative Genomic Analysis of 450 Strains of Salmonella enterica Isolated from Diseased Animals. Genes (Basel) 2020; 11:genes11091025. [PMID: 32883017 PMCID: PMC7564550 DOI: 10.3390/genes11091025] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 12/02/2022] Open
Abstract
Salmonella is a leading cause of bacterial infections in animals and humans. We sequenced a collection of 450 Salmonella strains from diseased animals to better understand the genetic makeup of their virulence and resistance features. The presence of Salmonella pathogenicity islands (SPIs) varied by serotype. S. Enteritidis carried the most SPIs (n = 15), while S. Mbandaka, S. Cerro, S. Meleagridis, and S. Havana carried the least (n = 10). S. Typhimurium, S. Choleraesuis, S. I 4,5,12:i:-, and S. Enteritidis each contained the spv operon on IncFII or IncFII-IncFIB hybrid plasmids. Two S. IIIa carried a spv operon with spvD deletion on the chromosome. Twelve plasmid types including 24 hybrid plasmids were identified. IncA/C was frequently associated with S. Newport (83%) and S. Agona (100%) from bovine, whereas IncFII (100%), IncFIB (100%), and IncQ1 (94%) were seen in S. Choleraesuis from swine. IncX (100%) was detected in all S. Kentucky from chicken. A total of 60 antimicrobial resistance genes (ARGs), four disinfectant resistances genes (DRGs) and 33 heavy metal resistance genes (HMRGs) were identified. The Salmonella strains from sick animals contained various SPIs, resistance genes and plasmid types based on the serotype and source of the isolates. Such complicated genomic structures shed light on the strain characteristics contributing to the severity of disease and treatment failures in Salmonella infections, including those causing illnesses in animals.
Collapse
|
50
|
Mansour MN, Yaghi J, El Khoury A, Felten A, Mistou MY, Atoui A, Radomski N. Prediction of Salmonella serovars isolated from clinical and food matrices in Lebanon and genomic-based investigation focusing on Enteritidis serovar. Int J Food Microbiol 2020; 333:108831. [PMID: 32854018 DOI: 10.1016/j.ijfoodmicro.2020.108831] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/09/2020] [Accepted: 08/10/2020] [Indexed: 12/17/2022]
Abstract
Salmonella enterica subsp. enterica serovars are considered major causes of food poisoning and we performed this study because Salmonella is a burden in Lebanon. The present study investigated the ability of genomic information to predict serovar using a collection of Salmonella isolates from infected humans (n = 24) and contaminated food (n = 63) in Lebanon. Further, the phylogenomic relationships of the serovar the predominated in Lebanon (i.e., S. Enteritidis; n = 25) were investigated in comparison with isolates from other countries (n = 130) based on coregenome single nucleotide polymorphisms (SNPs). Genetic elements, specifically Salmonella pathogenicity islands (SPIs), plasmid replicons, and antibiotic-resistance genes were screened in S. Enteritidis genomes (n = 155). Our results revealed that the Salmonella serovars identification by seroagglutination from the samples isolated in Lebanon (n = 87) was highly correlated with the genomic-based prediction of serovars (80.4-85.0% with SeqSero1 and 93.1-94.2% with SeqSero2). The Salmonella serovars isolated from human and food samples in Lebanon were mainly Enteritidis (28.7%) and Infantis (26%). To a rare extent, other serovars included Amager, Anatum, Bredeney, Chincol, Heidelberg, Hofit, Kentucky, Montevideo, Muenster, Newport, Schwarzengrund, Senftenberg and Typhimurium. In comparison with other countries, S. Enteritidis samples isolated in Lebanon (56 ± 27 intra-group pairwise SNP differences) presented a strong phylogenomic relativeness at the coregenome level with samples, as for example with samples isolated from Syria (65 ± 31 inter-group pairwise SNP differences). Most of the studied S. Enteritidis genomes encoded 10 SPIs involved in survival in immune cells (i.e. SPIs 1, 2, 3, 4, 5, 12, 13, 14, 16 and 17). The plasmid replicons IncFIB (S)_1 and IncFII (S)_1 encoding elements involved in virulence were identified in the majority of the S. Enteritidis genomes (94% and 96%, respectively), the majority exhibiting aminoglycosides (gene aac(6')-Iaa_1). The IncI_1_Alpha replicon responsible for ampicillin-resistance was only detected in 2 of 25 S. Enteritidis Lebanese strains. Genomic-based risk assessment of Salmonella serovars in Lebanon showed that food imported from Syria might be an origin of the S. Enteritidis human cases in Lebanon. The detection of several SPIs involved in the survival, plasmid replicons involved in virulence, and aminoglycoside-resistance genes, emphasizes that S. Enteritidis is of paramount importance for public health in Lebanon and other countries.
Collapse
Affiliation(s)
- Marie Noel Mansour
- Centre d'Analyses et de Recherche (CAR), Unité de Recherche « Technologies et Valorisation Agro-alimentaire » (UR-TVA), Faculty of Sciences, Saint-Joseph University of Beirut, Campus of Sciences and Technologies, Mar Roukos, Lebanon.
| | - Joseph Yaghi
- Centre d'Analyses et de Recherche (CAR), Unité de Recherche « Technologies et Valorisation Agro-alimentaire » (UR-TVA), Faculty of Sciences, Saint-Joseph University of Beirut, Campus of Sciences and Technologies, Mar Roukos, Lebanon.
| | - André El Khoury
- Centre d'Analyses et de Recherche (CAR), Unité de Recherche « Technologies et Valorisation Agro-alimentaire » (UR-TVA), Faculty of Sciences, Saint-Joseph University of Beirut, Campus of Sciences and Technologies, Mar Roukos, Lebanon.
| | - Arnaud Felten
- Paris-Est University, French Agency for Food, Environmental and Occupational Health and Safety (Anses), Laboratory for Food Safety (LSAL), Maisons-Alfort, France.
| | - Michel-Yves Mistou
- Applied Mathematics and Computer Science, From Genomes to the Environment (MaIAGE), National Institute for Agricultural, Food and Environmental Research (INRAE), Université Paris-Saclay, Jouy-en-Josas, France.
| | - Ali Atoui
- Laboratory of Microbiology, Department of Life and Earth Sciences, Faculty of Sciences I, Lebanese University, Hadat Campus, Beirut, Lebanon.
| | - Nicolas Radomski
- Paris-Est University, French Agency for Food, Environmental and Occupational Health and Safety (Anses), Laboratory for Food Safety (LSAL), Maisons-Alfort, France.
| |
Collapse
|