1
|
Wang TT, Hirons A, Doerflinger M, Morris KV, Ledger S, Purcell DFJ, Kelleher AD, Ahlenstiel CL. Current State of Therapeutics for HTLV-1. Viruses 2024; 16:1616. [PMID: 39459949 PMCID: PMC11512412 DOI: 10.3390/v16101616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/07/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Human T cell leukaemia virus type-1 (HTLV-1) is an oncogenic retrovirus that causes lifelong infection in ~5-10 million individuals globally. It is endemic to certain First Nations populations of Northern and Central Australia, Japan, South and Central America, Africa, and the Caribbean region. HTLV-1 preferentially infects CD4+ T cells and remains in a state of reduced transcription, often being asymptomatic in the beginning of infection, with symptoms developing later in life. HTLV-1 infection is implicated in the development of adult T cell leukaemia/lymphoma (ATL) and HTLV-1-associated myelopathies (HAM), amongst other immune-related disorders. With no preventive or curative interventions, infected individuals have limited treatment options, most of which manage symptoms. The clinical burden and lack of treatment options directs the need for alternative treatment strategies for HTLV-1 infection. Recent advances have been made in the development of RNA-based antiviral therapeutics for Human Immunodeficiency Virus Type-1 (HIV-1), an analogous retrovirus that shares modes of transmission with HTLV-1. This review highlights past and ongoing efforts in the development of HTLV-1 therapeutics and vaccines, with a focus on the potential for gene therapy as a new treatment modality in light of its successes in HIV-1, as well as animal models that may help the advancement of novel antiviral and anticancer interventions.
Collapse
Affiliation(s)
- Tiana T. Wang
- Kirby Institute, University of New South Wales, Sydney, NSW 2052, Australia; (T.T.W.); (S.L.); (A.D.K.)
| | - Ashley Hirons
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3052, Australia; (A.H.); (D.F.J.P.)
| | - Marcel Doerflinger
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia;
- Department of Medical Biology, University of Melbourne, Melbourne, VIC 3050, Australia
| | - Kevin V. Morris
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia;
| | - Scott Ledger
- Kirby Institute, University of New South Wales, Sydney, NSW 2052, Australia; (T.T.W.); (S.L.); (A.D.K.)
| | - Damian F. J. Purcell
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3052, Australia; (A.H.); (D.F.J.P.)
| | - Anthony D. Kelleher
- Kirby Institute, University of New South Wales, Sydney, NSW 2052, Australia; (T.T.W.); (S.L.); (A.D.K.)
- UNSW RNA Institute, University of New South Wales, Sydney, NSW 2052, Australia
| | - Chantelle L. Ahlenstiel
- Kirby Institute, University of New South Wales, Sydney, NSW 2052, Australia; (T.T.W.); (S.L.); (A.D.K.)
- UNSW RNA Institute, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
2
|
Joseph A, Cheng X, Harding J, Al-Saleem J, Green P, Veis D, Rauch D, Ratner L. Role of the CTCF Binding Site in Human T-Cell Leukemia Virus-1 Pathogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.28.596170. [PMID: 38853836 PMCID: PMC11160593 DOI: 10.1101/2024.05.28.596170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
During HTLV-1 infection, the virus integrates into the host cell genome as a provirus with a single CCCTC binding protein (CTCF) binding site (vCTCF-BS), which acts as an insulator between transcriptionally active and inactive regions. Previous studies have shown that the vCTCF-BS is important for maintenance of chromatin structure, regulation of viral expression, and DNA and histone methylation. Here, we show that the vCTCF-BS also regulates viral infection and pathogenesis in vivo in a humanized (Hu) mouse model of adult T-cell leukemia/lymphoma. Three cell lines were used to initiate infection of the Hu-mice, i) HTLV-1-WT which carries an intact HTLV-1 provirus genome, ii) HTLV-1-CTCF, which contains a provirus with a mutated vCTCF-BS which abolishes CTCF binding, and a stop codon immediate upstream of the mutated vCTCF-BS which deletes the last 23 amino acids of p12, and iii) HTLV-1-p12stop that contains the intact vCTCF-BS, but retains the same stop codon in p12 as in the HTLV-1-CTCF cell line. Hu-mice were infected with mitomycin treated or irradiated HTLV-1 producing cell lines. There was a delay in pathogenicity when Hu-mice were infected with the CTCF virus compared to mice infected with either p12 stop or WT virus. Proviral load (PVL), spleen weights, and CD4 T cell counts were significantly lower in HTLV-1-CTCF infected mice compared to HTLV-1-p12stop infected mice. Furthermore, we found a direct correlation between the PVL in peripheral blood and death of HTLV-1-CTCF infected mice. In cell lines, we found that the vCTCF-BS regulates Tax expression in a time-dependent manner. The scRNAseq analysis of splenocytes from infected mice suggests that the vCTCF-BS plays an important role in activation and expansion of T lymphocytes in vivo. Overall, these findings indicate that the vCTCF-BS regulates Tax expression, proviral load, and HTLV pathogenicity in vivo.
Collapse
Affiliation(s)
- Ancy Joseph
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Xiaogang Cheng
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - John Harding
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Jacob Al-Saleem
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210
| | - Patrick Green
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210
| | - Deborah Veis
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Daniel Rauch
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Lee Ratner
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
3
|
Nakajima S, Okuma K. Mouse Models for HTLV-1 Infection and Adult T Cell Leukemia. Int J Mol Sci 2023; 24:11737. [PMID: 37511495 PMCID: PMC10380921 DOI: 10.3390/ijms241411737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Adult T cell leukemia (ATL) is an aggressive hematologic disease caused by human T cell leukemia virus type 1 (HTLV-1) infection. Various animal models of HTLV-1 infection/ATL have been established to elucidate the pathogenesis of ATL and develop appropriate treatments. For analyses employing murine models, transgenic and immunodeficient mice are used because of the low infectivity of HTLV-1 in mice. Each mouse model has different characteristics that must be considered before use for different HTLV-1 research purposes. HTLV-1 Tax and HBZ transgenic mice spontaneously develop tumors, and the roles of both Tax and HBZ in cell transformation and tumor growth have been established. Severely immunodeficient mice were able to be engrafted with ATL cell lines and have been used in preclinical studies of candidate molecules for the treatment of ATL. HTLV-1-infected humanized mice with an established human immune system are a suitable model to characterize cells in the early stages of HTLV-1 infection. This review outlines the characteristics of mouse models of HTLV-1 infection/ATL and describes progress made in elucidating the pathogenesis of ATL and developing related therapies using these mice.
Collapse
Affiliation(s)
- Shinsuke Nakajima
- Department of Microbiology, Faculty of Medicine, Kansai Medical University, Hirakata 573-1010, Osaka, Japan
| | - Kazu Okuma
- Department of Microbiology, Faculty of Medicine, Kansai Medical University, Hirakata 573-1010, Osaka, Japan
| |
Collapse
|
4
|
Phelps C, Huey DD, Niewiesk S. Production of Humanized Mice through Stem Cell Transfer. Curr Protoc 2023; 3:e800. [PMID: 37310206 PMCID: PMC11163283 DOI: 10.1002/cpz1.800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The development of "humanized" mice has become a prominent tool for translational animal studies of human diseases. Immunodeficient mice can be humanized by injections of human umbilical cord stem cells. The engraftment of these cells and their development into human lymphocytes has been made possible by the development of novel severely immunodeficient mouse strains. Proven protocols for the generation and analysis of humanized mice in the NSG mouse background are presented here. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Human umbilical stem cell engraftment of neonatal immunodeficient mice Basic Protocol 2: Human umbilical stem cell engraftment of 4-week-old immunodeficient mice Support Protocol 1: Preparation of human umbilical stem cells Support Protocol 2: Submandibular blood collection from humanized mice and analysis of peripheral blood via flow cytometry.
Collapse
Affiliation(s)
- Cameron Phelps
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio
| | - Devra D Huey
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio
| | - Stefan Niewiesk
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio
| |
Collapse
|
5
|
Langlois M, Bounou S, Tremblay MJ, Barbeau B. Infection of the Ex Vivo Tonsil Model by HTLV-1 Envelope-Pseudotyped Viruses. Pathogens 2023; 12:pathogens12020182. [PMID: 36839454 PMCID: PMC9958901 DOI: 10.3390/pathogens12020182] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is the causal agent of adult T-cell leukemia/lymphoma and HTLV-1-associated myelopathy/tropical spastic paraparesis. Its tropism is known to be broad in cultured cell lines, while in vivo data support a more selective transmission toward CD4+ T cells and the limited targeting of other hematopoietic cell types. An essential condition for HTLV-1 infection is cell-to-cell contact, to which both virological synapse and viral biofilm have been suggested to strongly contribute. As cell lines and animal models each present their own limitations in studying HTLV-1 replication, we have explored the use of an ex vivo model based on the secondary lymphoid tonsillar tissue. HIV-1 luciferase-expressing pseudotyped viruses bearing the HTLV-1 envelope protein at their surface were first shown to recapitulate the wide spectrum of infectivity of HTLV-1 toward various cell lines. Tonsil fragments were next exposed to pseudotyped viruses and shown to be reproducibly infected. Infection by HTLV-1 Env-pseudotyped viruses was blocked by different anti-gp46 antibodies, unlike infection by HIV-1 virions. The dose-dependent infection revealed a gradual increase in luciferase activity, which was again sensitive to anti-gp46 antibodies. Overall, these results suggest that the ex vivo tonsil model represents a reliable alternative for studying HTLV-1 replication and potentially viral latency, as well as early clonal formation.
Collapse
Affiliation(s)
- Mélanie Langlois
- Axe des Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier, Universitaire de Québec-Université Laval, Québec, QC G1V 4G2, Canada
| | - Salim Bounou
- Axe des Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier, Universitaire de Québec-Université Laval, Québec, QC G1V 4G2, Canada
- Euromed Research Center, Faculty of Pharmacy, Université EUROMED de Fès, Fez 30000, Morocco
| | - Michel J. Tremblay
- Axe des Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier, Universitaire de Québec-Université Laval, Québec, QC G1V 4G2, Canada
- Département de Microbiologie-Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Benoit Barbeau
- Département de Sciences Biologiques, Université du Québec à Montréal, Montréal, QC H3C 3P8, Canada
- Réseau Intersectoriel de Recherche en Santé de l’Université du Québec (RISUQ), Montréal, QC H2X 1E3, Canada
- Correspondence: ; Tel.: +1-514-987-3000 (ext. 4576)
| |
Collapse
|
6
|
Zuo X, Zhou R, Yang S, Ma G. HTLV-1 persistent infection and ATLL oncogenesis. J Med Virol 2023; 95:e28424. [PMID: 36546414 DOI: 10.1002/jmv.28424] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/08/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is an oncogenic retrovirus; whereas HTLV-1 mainly persists in the infected host cell as a provirus, it also causes a malignancy called adult T-cell leukemia/lymphoma (ATLL) in about 5% of infection. HTLV-1 replication is in most cases silent in vivo and viral de novo infection rarely occurs; HTLV-1 rather relies on clonal proliferation of infected T cells for viral propagation as it multiplies the number of the provirus copies. It is mechanistically elusive how leukemic clones emerge during the course of HTLV-1 infection in vivo and eventually cause the onset of ATLL. This review summarizes our current understanding of HTLV-1 persistence and oncogenesis, with the incorporation of recent cutting-edge discoveries obtained by high-throughput sequencing.
Collapse
Affiliation(s)
- Xiaorui Zuo
- Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing, China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Ruoning Zhou
- Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing, China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Sikai Yang
- Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing, China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Guangyong Ma
- Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing, China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
7
|
Last but not least: BFL-1 as an emerging target for anti-cancer therapies. Biochem Soc Trans 2022; 50:1119-1128. [PMID: 35900226 PMCID: PMC9444066 DOI: 10.1042/bst20220153] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 11/17/2022]
Abstract
BFL-1 is an understudied pro-survival BCL-2 protein. The expression of BFL-1 is reported in many cancers, but it is yet to be clarified whether high transcript expression also always correlates with a pro-survival function. However, recent applications of BH3-mimetics for the treatment of blood cancers identified BFL-1 as a potential resistance factor in this type of cancer. Hence, understanding the role of BFL-1 in human cancers and how its up-regulation leads to therapy resistance has become an area of great clinical relevance. In addition, deletion of the murine homologue of BFL-1, called A1, in mice showed only minimal impacts on the well-being of these animals, suggesting drugs targeting BFL-1 would exhibit limited on-target toxicities. BFL-1 therefore represents a good clinical cancer target. Currently, no effective BFL-1 inhibitors exist, which is likely due to the underappreciation of BFL-1 as a potential target in the clinic and lack of understanding of the BFL-1 protein. In this review, the roles of BFL-1 in the development of different types of cancers and drug resistant mechanisms are discussed and some recent advances in the generation of BFL-1 inhibitors highlighted.
Collapse
|
8
|
Tu JJ, Maksimova V, Ratner L, Panfil AR. The Past, Present, and Future of a Human T-Cell Leukemia Virus Type 1 Vaccine. Front Microbiol 2022; 13:897346. [PMID: 35602078 PMCID: PMC9114509 DOI: 10.3389/fmicb.2022.897346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is an oncogenic human retrovirus which causes a lifelong infection. An estimated 5-10 million persons are infected with HTLV-1 worldwide - a number which is likely higher due to lack of reliable epidemiological data. Most infected individuals remain asymptomatic; however, a portion of HTLV-1-positive individuals will develop an aggressive CD4+ T-cell malignancy called adult T-cell leukemia/lymphoma (ATL), or a progressive neurodegenerative disease known as HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Few treatment options exist for HAM/TSP outside of palliative care and ATL carries an especially poor prognosis given the heterogeneity of the disease and lack of effective long-term treatments. In addition, the risk of HTLV-1 disease development increases substantially if the virus is acquired early in life. Currently, there is no realistic cure for HTLV-1 infection nor any reliable measure to prevent HTLV-1-mediated disease development. The severity of HTLV-1-associated diseases (ATL, HAM/TSP) and limited treatment options highlights the need for development of a preventative vaccine or new therapeutic interventions. This review will highlight past HTLV-1 vaccine development efforts, the current molecular tools and animal models which might be useful in vaccine development, and the future possibilities of an effective HTLV-1 vaccine.
Collapse
Affiliation(s)
- Joshua J. Tu
- Center for Retrovirus Research, Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Victoria Maksimova
- Center for Retrovirus Research, Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Lee Ratner
- Division of Molecular Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Amanda R. Panfil
- Center for Retrovirus Research, Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
9
|
Hiyoshi M, Takahashi N, Eltalkhawy YM, Noyori O, Lotfi S, Panaampon J, Okada S, Tanaka Y, Ueno T, Fujisawa JI, Sato Y, Suzuki T, Hasegawa H, Tokunaga M, Satou Y, Yasunaga JI, Matsuoka M, Utsunomiya A, Suzu S. M-Sec induced by HTLV-1 mediates an efficient viral transmission. PLoS Pathog 2021; 17:e1010126. [PMID: 34843591 PMCID: PMC8659635 DOI: 10.1371/journal.ppat.1010126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/09/2021] [Accepted: 11/17/2021] [Indexed: 11/19/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) infects target cells primarily through cell-to-cell routes. Here, we provide evidence that cellular protein M-Sec plays a critical role in this process. When purified and briefly cultured, CD4+ T cells of HTLV-1 carriers, but not of HTLV-1- individuals, expressed M-Sec. The viral protein Tax was revealed to mediate M-Sec induction. Knockdown or pharmacological inhibition of M-Sec reduced viral infection in multiple co-culture conditions. Furthermore, M-Sec knockdown reduced the number of proviral copies in the tissues of a mouse model of HTLV-1 infection. Phenotypically, M-Sec knockdown or inhibition reduced not only plasma membrane protrusions and migratory activity of cells, but also large clusters of Gag, a viral structural protein required for the formation of viral particles. Taken together, these results suggest that M-Sec induced by Tax mediates an efficient cell-to-cell viral infection, which is likely due to enhanced membrane protrusions, cell migration, and the clustering of Gag.
Collapse
Affiliation(s)
- Masateru Hiyoshi
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Tokyo, Japan
| | - Naofumi Takahashi
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Youssef M. Eltalkhawy
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Osamu Noyori
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Sameh Lotfi
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Jutatip Panaampon
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Seiji Okada
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Yuetsu Tanaka
- School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Takaharu Ueno
- Department of Microbiology, Kansai Medical University, Osaka, Japan
| | | | - Yuko Sato
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tadaki Suzuki
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hideki Hasegawa
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masahito Tokunaga
- Department of Hematology, Imamura General Hospital, Kagoshima, Japan
| | - Yorifumi Satou
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Jun-ichirou Yasunaga
- Department of Hematology, Rheumatology and Infectious Diseases, Kumamoto University School of Medicine, Kumamoto, Japan
| | - Masao Matsuoka
- Department of Hematology, Rheumatology and Infectious Diseases, Kumamoto University School of Medicine, Kumamoto, Japan
| | - Atae Utsunomiya
- Department of Hematology, Imamura General Hospital, Kagoshima, Japan
- Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Shinya Suzu
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
10
|
Espíndola ODM, Siteur-van Rijnstra E, Frankin E, Weijer K, van der Velden YU, Berkhout B, Blom B, Villaudy J. Early Effects of HTLV-1 Infection on the Activation, Exhaustion, and Differentiation of T-Cells in Humanized NSG Mice. Cells 2021; 10:2514. [PMID: 34685494 PMCID: PMC8534134 DOI: 10.3390/cells10102514] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/11/2021] [Accepted: 09/15/2021] [Indexed: 12/14/2022] Open
Abstract
Adult T-cell leukemia/lymphoma (ATLL) is an aggressive malignancy of CD4+ T-cells associated with HTLV-1 infection. In this study, we used the model of immunodeficient NSG mice reconstituted with a functional human immune system (HIS) to investigate early events in HTLV-1 pathogenesis. Upon infection, human T-cells rapidly increased in the blood and lymphoid tissues, particularly CD4+CD25+ T-cells. Proliferation of CD4+ T-cells in the spleen and mesenteric lymph nodes (MLN) correlated with HTLV-1 proviral load and CD25 expression. In addition, splenomegaly, a common feature of ATLL in humans, was also observed. CD4+ and CD8+ T-cells predominantly displayed an effector memory phenotype (CD45RA-CCR7-) and expressed CXCR3 and CCR5 chemokine receptors, suggesting the polarization into a Th1 phenotype. Activated CD8+ T-cells expressed granzyme B and perforin; however, the interferon-γ response by these cells was limited, possibly due to elevated PD-1 expression and increased frequency of CD4+FoxP3+ regulatory T-cells in MLN. Thus, HTLV-1-infected HIS-NSG mice reproduced several characteristics of infection in humans, and it may be helpful to investigate ATLL-related events and to perform preclinical studies. Moreover, aspects of chronic infection were already present at early stages in this experimental model. Collectively, we suggest that HTLV-1 infection modulates host immune responses to favor viral persistence.
Collapse
Affiliation(s)
- Otávio de Melo Espíndola
- Laboratory for Clinical Research in Neuroinfections, Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
- Department of Experimental Immunology, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (E.S.-v.R.); (E.F.); (K.W.); (B.B.)
| | - Esther Siteur-van Rijnstra
- Department of Experimental Immunology, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (E.S.-v.R.); (E.F.); (K.W.); (B.B.)
| | - Esmay Frankin
- Department of Experimental Immunology, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (E.S.-v.R.); (E.F.); (K.W.); (B.B.)
| | - Kees Weijer
- Department of Experimental Immunology, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (E.S.-v.R.); (E.F.); (K.W.); (B.B.)
| | - Yme Ubeles van der Velden
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (Y.U.v.d.V.); (B.B.); (J.V.)
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (Y.U.v.d.V.); (B.B.); (J.V.)
| | - Bianca Blom
- Department of Experimental Immunology, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (E.S.-v.R.); (E.F.); (K.W.); (B.B.)
| | - Julien Villaudy
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (Y.U.v.d.V.); (B.B.); (J.V.)
- J&S Preclinical Solutions, 5345 RR Oss, The Netherlands
| |
Collapse
|
11
|
Chang R, Duan S, Li S, Zhang P. Viral infection in thymoma and thymic tumors with autoimmune diseases. Thorac Cancer 2021; 12:2971-2980. [PMID: 34532982 PMCID: PMC8590902 DOI: 10.1111/1759-7714.14157] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 11/29/2022] Open
Abstract
A thymoma is a type of thymic tumor which is rarely malignant that is frequently reported in adult patients. A number of thymoma-related immune disorders are observed including autoimmune diseases, which suggests a strong connection between thymoma development and immunological mechanisms. Characterized by association with humoral and cellular immunodeficiency, thymoma patients are susceptible to opportunistic infections by environmental factors. Recent reports have suggested that viral infection may play a role in the etiological mechanisms of thymoma development associated with dysregulated immunity. In this review, we summarize the case reports and studies related to viral infection, such as CMV, EBV and HSV, that probably play a part in the pathogenesis of thymoma and related diseases. Furthermore, we demonstrate the underlying mechanisms by which viruses may induce the occurrence of thymoma with autoimmune diseases. Lastly, we discuss the potential application of antiviral therapy in the treatment of thymic diseases.
Collapse
Affiliation(s)
- Rui Chang
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Shuning Duan
- Deparment of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Shicong Li
- Deparment of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Peng Zhang
- Deparment of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
12
|
Forlani G, Shallak M, Accolla RS, Romanelli MG. HTLV-1 Infection and Pathogenesis: New Insights from Cellular and Animal Models. Int J Mol Sci 2021; 22:ijms22158001. [PMID: 34360767 PMCID: PMC8347336 DOI: 10.3390/ijms22158001] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/22/2021] [Accepted: 07/24/2021] [Indexed: 12/12/2022] Open
Abstract
Since the discovery of the human T-cell leukemia virus-1 (HTLV-1), cellular and animal models have provided invaluable contributions in the knowledge of viral infection, transmission and progression of HTLV-associated diseases. HTLV-1 is the causative agent of the aggressive adult T-cell leukemia/lymphoma and inflammatory diseases such as the HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP). Cell models contribute to defining the role of HTLV proteins, as well as the mechanisms of cell-to-cell transmission of the virus. Otherwise, selected and engineered animal models are currently applied to recapitulate in vivo the HTLV-1 associated pathogenesis and to verify the effectiveness of viral therapy and host immune response. Here we review the current cell models for studying virus–host interaction, cellular restriction factors and cell pathway deregulation mediated by HTLV products. We recapitulate the most effective animal models applied to investigate the pathogenesis of HTLV-1-associated diseases such as transgenic and humanized mice, rabbit and monkey models. Finally, we summarize the studies on STLV and BLV, two closely related HTLV-1 viruses in animals. The most recent anticancer and HAM/TSP therapies are also discussed in view of the most reliable experimental models that may accelerate the translation from the experimental findings to effective therapies in infected patients.
Collapse
Affiliation(s)
- Greta Forlani
- Laboratory of General Pathology and Immunology “Giovanna Tosi”, Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (G.F.); (M.S.); (R.S.A.)
| | - Mariam Shallak
- Laboratory of General Pathology and Immunology “Giovanna Tosi”, Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (G.F.); (M.S.); (R.S.A.)
| | - Roberto Sergio Accolla
- Laboratory of General Pathology and Immunology “Giovanna Tosi”, Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (G.F.); (M.S.); (R.S.A.)
| | - Maria Grazia Romanelli
- Department of Biosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy
- Correspondence:
| |
Collapse
|
13
|
Human T-cell Leukemia Virus Type 1 and Strongyloides stercoralis: Partners in Pathogenesis. Pathogens 2020; 9:pathogens9110904. [PMID: 33137906 PMCID: PMC7692131 DOI: 10.3390/pathogens9110904] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/07/2020] [Accepted: 10/27/2020] [Indexed: 12/14/2022] Open
Abstract
Infection with human T-cell leukemia/lymphoma virus type 1 (HTLV-1) has been associated with various clinical syndromes including co-infection with Strongyloides stercoralis, which is an intestinal parasitic nematode and the leading cause of strongyloidiasis in humans. Interestingly, HTLV-1 endemic areas coincide with regions citing high prevalence of S. stercoralis infection, making these communities optimal for elucidating the pathogenesis of co-infection and its clinical significance. HTLV-1 co-infection with S. stercoralis has been observed for decades in a number of published patient cases and case series; however, the implications of this co-infection remain elusive. Thus far, data suggest that S. stercoralis increases proviral load in patients co-infected with HTLV-1 compared to HTLV-1 infection alone. Furthermore, co-infection with HTLV-1 has been associated with shifting the immune response from Th2 to Th1, affecting the ability of the immune system to address the helminth infection. Thus, despite this well-known association, further research is required to fully elucidate the impact of each pathogen on disease manifestations in co-infected patients. This review provides an analytical view of studies that have evaluated the variation within HTLV-1 patients in susceptibility to S. stercoralis infection, as well as the effects of strongyloidiasis on HTLV-1 pathogenesis. Further, it provides a compilation of available clinical reports on the epidemiology and pathology of HTLV-1 with parasitic co-infection as well as data from mechanistic studies suggesting possible immunopathogenic mechanisms. Furthermore, specific areas of potential future research have been highlighted to facilitate advancing understanding of the complex interactions between these two pathogens.
Collapse
|
14
|
Kohart NA, Elshafae SM, Supsahvad W, Alasonyalilar-Demirer A, Panfil AR, Xiang J, Dirksen WP, Veis DJ, Green PL, Weilbaecher KN, Rosol TJ. Mouse model recapitulates the phenotypic heterogeneity of human adult T-cell leukemia/lymphoma in bone. J Bone Oncol 2019; 19:100257. [PMID: 31871882 PMCID: PMC6911918 DOI: 10.1016/j.jbo.2019.100257] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 08/16/2019] [Accepted: 08/19/2019] [Indexed: 11/16/2022] Open
Abstract
Adult T-cell leukemia/lymphoma has a unique relationship to bone including latency in the marrow, and development of bone invasion, osteolytic tumors and humoral hypercalcemia of malignancy. To study these conditions, we established and characterized a novel mouse model of ATL bone metastasis. Patient-derived ATL cell lines including three that do not express HTLV-1 oncoprotein Tax (ATL-ED, RV-ATL, TL-Om1), an in vitro transformed human T-cell line with high Tax expression (HT-1RV), and an HTLV-1 negative T-cell lymphoma (Jurkat) were injected intratibially into NSG mice, and were capable of proliferating and modifying the bone microenvironment. Radiography, μCT, histopathology, immunohistochemistry, plasma calcium concentrations, and qRT-PCR for several tumor-bone signaling mRNAs were performed. Luciferase-positive ATL-ED bone tumors allowed for in vivo imaging and visualization of bone tumor growth and metastasis over time. ATL-ED and HT-1RV cells caused mixed osteolytic/osteoblastic bone tumors, TL-Om1 cells exhibited minimal bone involvement and aggressive local invasion into the adjacent soft tissues, Jurkat cells proliferated within bone marrow and induced minimal bone cell response, and RV-ATL cells caused marked osteolysis. This mouse model revealed important mechanisms of human ATL bone neoplasms and will be useful to investigate biological interactions, potential therapeutic targets, and new bone-targeted agents for the prevention of ATL metastases to bone.
Collapse
Key Words
- ATL, adult T-cell leukemia/lymphoma
- Bone resorption
- HHM, humoral hypercalcemia of malignancy
- HTLV-1
- HTLV-1, Human T-cell leukemia virus type 1
- Hbz, HTLV-1 basic zipper protein
- Lymphoma
- Metastasis
- Mouse model
- NK, natural killer
- NOD, non-obese diabetic
- NSG, NOD-scid IL2Rgammanull
- SCID, CB17-Prkdcscid
- Tax, transcriptional activator from the X region
- qRT-PCR, quantitative real-time polymerase chain reaction
- μCT, micro-computed tomography
Collapse
Affiliation(s)
- Nicole A. Kohart
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Said M. Elshafae
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
- Department of Radiology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- Department of Pathology, Faculty of Veterinary Medicine, Benha University, Kalyubia 3736, Egypt
| | - Wachirapan Supsahvad
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
- Department of Pathology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Aylin Alasonyalilar-Demirer
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
- Department of Pathology, Faculty of Veterinary Medicine, Bursa Uludag University, 16059 Bursa, Turkey
| | - Amanda R. Panfil
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Jingyu Xiang
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Wessel P. Dirksen
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Deborah J. Veis
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Patrick L. Green
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Katherine N. Weilbaecher
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Thomas J. Rosol
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, 225 Irvine Hall, Athens, OH 45701, USA
| |
Collapse
|
15
|
Ratner L. Biomarkers and Preclinical Models for Adult T-Cell Leukemia-Lymphoma Treatment. Front Microbiol 2019; 10:2109. [PMID: 31620102 PMCID: PMC6759749 DOI: 10.3389/fmicb.2019.02109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/27/2019] [Indexed: 11/13/2022] Open
Abstract
Adult T-cell leukemia/lymphoma (ATL) is an aggressive lymphoproliferative malignancy with a very poor prognosis. Despite several recent advances, new therapeutic approaches are critical, and this will require successful preclinical studies, including studies in ATL cell culture systems, and mouse models. Identification of accurate, reproducible biomarkers will be a crucial component of preclinical and clinical studies. This review summarizes the current state-of-the-art in each of these fields, and provides recommendations for future approaches. This problem is an important unmet need in HTLV research.
Collapse
Affiliation(s)
- Lee Ratner
- Division of Oncology, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
16
|
Xiang J, Rauch DA, Huey DD, Panfil AR, Cheng X, Esser AK, Su X, Harding JC, Xu Y, Fox GC, Fontana F, Kobayashi T, Su J, Sundaramoorthi H, Wong WH, Jia Y, Rosol TJ, Veis DJ, Green PL, Niewiesk S, Ratner L, Weilbaecher KN. HTLV-1 viral oncogene HBZ drives bone destruction in adult T cell leukemia. JCI Insight 2019; 4:128713. [PMID: 31578308 DOI: 10.1172/jci.insight.128713] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 09/04/2019] [Indexed: 12/16/2022] Open
Abstract
Osteolytic bone lesions and hypercalcemia are common, serious complications in adult T cell leukemia/lymphoma (ATL), an aggressive T cell malignancy associated with human T cell leukemia virus type 1 (HTLV-1) infection. The HTLV-1 viral oncogene HBZ has been implicated in ATL tumorigenesis and bone loss. In this study, we evaluated the role of HBZ on ATL-associated bone destruction using HTLV-1 infection and disease progression mouse models. Humanized mice infected with HTLV-1 developed lymphoproliferative disease and continuous, progressive osteolytic bone lesions. HTLV-1 lacking HBZ displayed only modest delays to lymphoproliferative disease but significantly decreased disease-associated bone loss compared with HTLV-1-infected mice. Gene expression array of acute ATL patient samples demonstrated increased expression of RANKL, a critical regulator of osteoclasts. We found that HBZ regulated RANKL in a c-Fos-dependent manner. Treatment of HTLV-1-infected humanized mice with denosumab, a monoclonal antibody against human RANKL, alleviated bone loss. Using patient-derived xenografts from primary human ATL cells to induce lymphoproliferative disease, we also observed profound tumor-induced bone destruction and increased c-Fos and RANKL gene expression. Together, these data show the critical role of HBZ in driving ATL-associated bone loss through RANKL and identify denosumab as a potential treatment to prevent bone complications in ATL patients.
Collapse
Affiliation(s)
- Jingyu Xiang
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Daniel A Rauch
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Devra D Huey
- Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Amanda R Panfil
- Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Xiaogang Cheng
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Alison K Esser
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Xinming Su
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - John C Harding
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Yalin Xu
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Gregory C Fox
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Francesca Fontana
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Takayuki Kobayashi
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Junyi Su
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Hemalatha Sundaramoorthi
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Wing Hing Wong
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Yizhen Jia
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Thomas J Rosol
- Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA.,Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA
| | - Deborah J Veis
- Department of Medicine, Division of Bone and Mineral Diseases, St. Louis, Missouri, USA
| | - Patrick L Green
- Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Stefan Niewiesk
- Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Lee Ratner
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Katherine N Weilbaecher
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
17
|
Essential Role of Human T Cell Leukemia Virus Type 1 orf-I in Lethal Proliferation of CD4 + Cells in Humanized Mice. J Virol 2019; 93:JVI.00565-19. [PMID: 31315992 DOI: 10.1128/jvi.00565-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 06/11/2019] [Indexed: 12/29/2022] Open
Abstract
Human T cell leukemia virus type 1 (HTLV-1) is the ethological agent of adult T cell leukemia/lymphoma (ATLL) and a number of lymphocyte-mediated inflammatory conditions, including HTLV-1-associated myelopathy/tropical spastic paraparesis. HTLV-1 orf-I encodes two proteins, p8 and p12, whose functions in humans are to counteract innate and adaptive responses and to support viral transmission. However, the in vivo requirements for orf-I expression vary in different animal models. In macaques, the ablation of orf-I expression by mutation of its ATG initiation codon abolishes the infectivity of the molecular clone HTLV-1p12KO In rabbits, HTLV-1p12KO is infective and persists efficiently. We used humanized mouse models to assess the infectivity of both wild-type HTLV-1 (HTLV-1WT) and HTLV-1p12KO We found that NOD/SCID/γC -/- c-kit+ mice engrafted with human tissues 1 day after birth (designated NSG-1d mice) were highly susceptible to infection by HTLV-1WT, with a syndrome characterized by the rapid polyclonal proliferation and infiltration of CD4+ CD25+ T cells into vital organs, weight loss, and death. HTLV-1 clonality studies revealed the presence of multiple clones of low abundance, confirming the polyclonal expansion of HTLV-1-infected cells in vivo HTLV-1p12KO infection in a bone marrow-liver-thymus (BLT) mouse model prone to graft-versus-host disease occurred only following reversion of the orf-I initiation codon mutation within weeks after exposure and was associated with high levels of HTLV-1 DNA in blood and the expansion of CD4+ CD25+ T cells. Thus, the incomplete reconstitution of the human immune system in BLT mice may provide a window of opportunity for HTLV-1 replication and the selection of viral variants with greater fitness.IMPORTANCE Humanized mice constitute a useful model for studying the HTLV-1-associated polyclonal proliferation of CD4+ T cells and viral integration sites in the human genome. The rapid death of infected animals, however, appears to preclude the clonal selection typically observed in human ATLL, which normally develops in 2 to 5% of individuals infected with HTLV-1. Nevertheless, the expansion of multiple clones of low abundance in these humanized mice mirrors the early phase of HTLV-1 infection in humans, providing a useful model to investigate approaches to inhibit virus-induced CD4+ T cell proliferation.
Collapse
|
18
|
Charvet B, Reynaud JM, Gourru-Lesimple G, Perron H, Marche PN, Horvat B. Induction of Proinflammatory Multiple Sclerosis-Associated Retrovirus Envelope Protein by Human Herpesvirus-6A and CD46 Receptor Engagement. Front Immunol 2018; 9:2803. [PMID: 30574140 PMCID: PMC6291489 DOI: 10.3389/fimmu.2018.02803] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 11/13/2018] [Indexed: 12/12/2022] Open
Abstract
The aberrant expression of human endogenous retrovirus (HERV) elements of the HERV-W family has been associated with different diseases, including multiple sclerosis (MS). In particular, the expression of the envelope protein (Env) from the multiple sclerosis-associated retrovirus (MSRV), a member of HERV-W family and known for its potent proinflammatory activity, is repeatedly detected in the brain lesions and blood of MS patients. Furthermore, human herpesvirus 6 (HHV-6) infection has long been suspected to play a role in the pathogenesis of MS and neuroinflammation. We show here that both HHV-6A and stimulation of its receptor, transmembrane glycoprotein CD46, induce the expression of MSRV-Env. The engagement of extracellular domains SCR3 and SCR4 of CD46-Cyt1 isoform was required for MSRV-env transactivation, limiting thus the MSRV-Env induction to the CD46 ligands binding these domains, including C3b component of complement, specific monoclonal antibodies, and both infectious and UV-inactivated HHV-6A, but neither HHV-6B nor measles virus vaccine strain. Induction of MSRV-Env required CD46 Cyt-1 singling and was abolished by the inhibitors of protein kinase C. Finally, both membrane-expressed and secreted MSRV-Env trigger TLR4 signaling, displaying thus a proinflammatory potential, characteristic for this viral protein. These data expand the specter of HHV-6A effects in the modulation of the immune response and support the hypothesis that cross-talks between exogenous and endogenous viruses may contribute to inflammatory diseases and participate in neuroinflammation. Furthermore, they reveal a new function of CD46, known as an inhibitor of complement activation and receptor for several pathogens, in transactivation of HERV env genes, which may play an important role in the pathogenesis of inflammatory diseases.
Collapse
Affiliation(s)
- Benjamin Charvet
- International Centre for Infectiology Research, INSERM U1111, CNRS UMR5308, Ecole Normale Supérieure de Lyon, University of Lyon, Lyon, France.,GeNeuro Innovation, Lyon, France
| | - Josephine M Reynaud
- International Centre for Infectiology Research, INSERM U1111, CNRS UMR5308, Ecole Normale Supérieure de Lyon, University of Lyon, Lyon, France
| | - Geraldine Gourru-Lesimple
- International Centre for Infectiology Research, INSERM U1111, CNRS UMR5308, Ecole Normale Supérieure de Lyon, University of Lyon, Lyon, France
| | | | - Patrice N Marche
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble-Alpes, IAPC, La Tronche, France
| | - Branka Horvat
- International Centre for Infectiology Research, INSERM U1111, CNRS UMR5308, Ecole Normale Supérieure de Lyon, University of Lyon, Lyon, France
| |
Collapse
|
19
|
Vicario M, Mattiolo A, Montini B, Piano MA, Cavallari I, Amadori A, Chieco-Bianchi L, Calabrò ML. A Preclinical Model for the ATLL Lymphoma Subtype With Insights Into the Role of Microenvironment in HTLV-1-Mediated Lymphomagenesis. Front Microbiol 2018; 9:1215. [PMID: 29951044 PMCID: PMC6008390 DOI: 10.3389/fmicb.2018.01215] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 05/18/2018] [Indexed: 11/25/2022] Open
Abstract
Adult T cell Leukemia/Lymphoma (ATLL) is a mature T cell malignancy associated with Human T cell Leukemia Virus type 1 (HTLV-1) infection. Among its four main clinical subtypes, the prognosis of acute and lymphoma variants remains poor. The long latency (3–6 decades) and low incidence (3–5%) of ATLL imply the involvement of viral and host factors in full-blown malignancy. Despite multiple preclinical and clinical studies, the contribution of the stromal microenvironment in ATLL development is not yet completely unraveled. The aims of this study were to investigate the role of the host microenvironment, and specifically fibroblasts, in ATLL pathogenesis and to propose a murine model for the lymphoma subtype. Here we present evidence that the oncogenic capacity of HTLV-1-immortalized C91/PL cells is enhanced when they are xenotransplanted together with human foreskin fibroblasts (HFF) in immunocompromised BALB/c Rag2-/-γc-/- mice. Moreover, cell lines derived from a developed lymphoma and their subsequent in vivo passages acquired the stable property to induce aggressive T cell lymphomas. In particular, one of these cell lines, C91/III cells, consistently induced aggressive lymphomas also in NOD/SCID/IL2Rγc KO (NSG) mice. To dissect the mechanisms linked to this enhanced tumorigenic ability, we quantified 45 soluble factors released by these cell lines and found that 21 of them, mainly pro-inflammatory cytokines and chemokines, were significantly increased in C91/III cells compared to the parental C91/PL cells. Moreover, many of the increased factors were also released by human fibroblasts and belonged to the known secretory pattern of ATLL cells. C91/PL cells co-cultured with HFF showed features reminiscent of those observed in C91/III cells, including a similar secretory pattern and a more aggressive behavior in vivo. On the whole, our data provide evidence that fibroblasts, one of the major stromal components, might enhance tumorigenesis of HTLV-1-infected and immortalized T cells, thus throwing light on the role of microenvironment contribution in ATLL pathogenesis. We also propose that the lymphoma induced in NSG mice by injection with C91/III cells represents a new murine preclinical ATLL model that could be adopted to test novel therapeutic interventions for the aggressive lymphoma subtype.
Collapse
Affiliation(s)
- Mattia Vicario
- Immunology and Molecular Oncology, Veneto Institute of Oncology, IOV - IRCCS, Padua, Italy
| | - Adriana Mattiolo
- Immunology and Molecular Oncology, Veneto Institute of Oncology, IOV - IRCCS, Padua, Italy
| | - Barbara Montini
- Immunology and Molecular Oncology, Veneto Institute of Oncology, IOV - IRCCS, Padua, Italy
| | - Maria Assunta Piano
- Immunology and Molecular Oncology, Veneto Institute of Oncology, IOV - IRCCS, Padua, Italy
| | - Ilaria Cavallari
- Immunology and Molecular Oncology, Veneto Institute of Oncology, IOV - IRCCS, Padua, Italy
| | - Alberto Amadori
- Immunology and Molecular Oncology, Veneto Institute of Oncology, IOV - IRCCS, Padua, Italy.,Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy
| | - Luigi Chieco-Bianchi
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy
| | - Maria Luisa Calabrò
- Immunology and Molecular Oncology, Veneto Institute of Oncology, IOV - IRCCS, Padua, Italy
| |
Collapse
|
20
|
Abstract
The development of humanized mice has become a prominent tool for translational animal studies of human diseases. Here we show how immune deficient mice can be "humanized" by injections of human umbilical cord stem cells. The engraftment of these cells and development into human lymphocytes has been possible because of the development of novel severely immune deficient mouse strains. Here we present proven protocols for the generation and analysis of humanized mice on the NSG mouse background.
Collapse
Affiliation(s)
- Devra D Huey
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio
| | - Stefan Niewiesk
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio
| |
Collapse
|
21
|
Douam F, Ploss A. The use of humanized mice for studies of viral pathogenesis and immunity. Curr Opin Virol 2018; 29:62-71. [PMID: 29604551 DOI: 10.1016/j.coviro.2018.03.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 03/12/2018] [Indexed: 12/11/2022]
Abstract
Humanized mice, that is, animals engrafted with human tissues and/or expressing human genes, have been instrumental in improving our understanding of the pathogenesis and immunological processes that define some of the most challenging human-tropic viruses. In particular, mice engrafted with components of a human immune system (HIS) offer unprecedented opportunities for mechanistic studies of human immune responses to infection. Here, we provide a brief overview of the current panel of HIS mouse models available and cite recent examples of how such humanized animals have been used to study immune responses and pathogenesis elicited by human-tropic viruses. Finally, we will outline some of the challenges that lay ahead and strategies to improve and refine humanized mice with the goal of more accurately recapitulating human immune responses to viral infection.
Collapse
Affiliation(s)
- Florian Douam
- Department of Molecular Biology, Princeton University, 110 Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, United States
| | - Alexander Ploss
- Department of Molecular Biology, Princeton University, 110 Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, United States.
| |
Collapse
|
22
|
Moodad S, Akkouche A, Hleihel R, Darwiche N, El-Sabban M, Bazarbachi A, El Hajj H. Mouse Models That Enhanced Our Understanding of Adult T Cell Leukemia. Front Microbiol 2018; 9:558. [PMID: 29643841 PMCID: PMC5882783 DOI: 10.3389/fmicb.2018.00558] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/12/2018] [Indexed: 12/14/2022] Open
Abstract
Adult T cell Leukemia (ATL) is an aggressive lymphoproliferative malignancy secondary to infection by the human T-cell leukemia virus type I (HTLV-I) and is associated with a dismal prognosis. ATL leukemogenesis remains enigmatic. In the era of precision medicine in oncology, mouse models offer one of the most efficient in vivo tools for the understanding of the disease biology and developing novel targeted therapies. This review provides an up-to-date and comprehensive account of mouse models developed in the context of ATL and HTLV-I infection. Murine ATL models include transgenic animals for the viral proteins Tax and HBZ, knock-outs for key cellular regulators, xenografts and humanized immune-deficient mice. The first two groups provide a key understanding of the role of viral and host genes in the development of ATL, as well as their relationship with the immunopathogenic processes. The third group represents a valuable platform to test new targeted therapies against ATL.
Collapse
Affiliation(s)
- Sara Moodad
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Abdou Akkouche
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Rita Hleihel
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Nadine Darwiche
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Marwan El-Sabban
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Ali Bazarbachi
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Hiba El Hajj
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
23
|
Pérès E, Blin J, Ricci EP, Artesi M, Hahaut V, Van den Broeke A, Corbin A, Gazzolo L, Ratner L, Jalinot P, Duc Dodon M. PDZ domain-binding motif of Tax sustains T-cell proliferation in HTLV-1-infected humanized mice. PLoS Pathog 2018; 14:e1006933. [PMID: 29566098 PMCID: PMC5882172 DOI: 10.1371/journal.ppat.1006933] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 04/03/2018] [Accepted: 02/12/2018] [Indexed: 11/18/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is the etiological agent of adult T-cell leukemia/lymphoma (ATLL), an aggressive malignant proliferation of activated CD4+ T lymphocytes. The viral Tax oncoprotein is critically involved in both HTLV-1-replication and T-cell proliferation, a prerequisite to the development of ATLL. In this study, we investigated the in vivo contribution of the Tax PDZ domain-binding motif (PBM) to the lymphoproliferative process. To that aim, we examined T-cell proliferation in humanized mice (hu-mice) carrying a human hemato-lymphoid system infected with either a wild type (WT) or a Tax PBM-deleted (ΔPBM) provirus. We observed that the frequency of CD4+ activated T-cells in the peripheral blood and in the spleen was significantly higher in WT than in ΔPBM hu-mice. Likewise, human T-cells collected from WT hu-mice and cultivated in vitro in presence of interleukin-2 were proliferating at a higher level than those from ΔPBM animals. We next examined the association of Tax with the Scribble PDZ protein, a prominent regulator of T-cell polarity, in human T-cells analyzed either after ex vivo isolation or after in vitro culture. We confirmed the interaction of Tax with Scribble only in T-cells from the WT hu-mice. This association correlated with the presence of both proteins in aggregates at the leading edge of the cells and with the formation of long actin filopods. Finally, data from a comparative genome-wide transcriptomic analysis suggested that the PBM-PDZ association is implicated in the expression of genes regulating proliferation, apoptosis and cytoskeletal organization. Collectively, our findings suggest that the Tax PBM is an auxiliary motif that contributes to the sustained growth of HTLV-1 infected T-cells in vivo and in vitro and is essential to T-cell immortalization. The viral Tax oncoprotein is a critical contributor to the development of adult T-cell leukemia/lymphoma, an aggressive malignant proliferation of T lymphocytes. Tax contains a PDZ domain-binding motif (PBM) that favors the interaction with several cellular PDZ proteins. Here, we compare the in vivo involvement of the Tax PBM in humanized mice infected with either a full-length provirus or a Tax PBM-deleted provirus. We observe that the establishment of the sustained lymphoproliferation in the peripheral blood of infected mice is dependent on the Tax PBM. Furthermore, binding of the Tax PBM to the PDZ Scribble protein correlated with perturbations of cytoskeletal organization and cell polarity. In addition, genome-wide transcriptomic analyses strongly suggest that the association of Tax PBM with cellular PDZ proteins results in the expression of several genes involved in proliferation, apoptosis and cytoskeletal organization. Collectively, these results indicate that the Tax PBM is an auxiliary motif that contributes to the growth of HTLV-1 infected T-cells. As a consequence, targeting the PBM/PDZ nodes using small peptides may have the potential to antagonize the Tax-induced lymphoproliferation, offering a novel strategy for the treatment of this disease.
Collapse
Affiliation(s)
- Eléonore Pérès
- Laboratory of Biology and Modeling of the Cell, Ecole Normale Supérieure (ENS) de Lyon, INSERM U1210, CNRS UMR5239, 46 allée d'Italie, Lyon, France
| | - Juliana Blin
- International Center for Infectiology Research, ENS de Lyon, Université Claude Bernard Lyon 1, INSERM U1111, CNRS UMR 5308, 46 allée d'Italie, Lyon, France
| | - Emiliano P. Ricci
- International Center for Infectiology Research, ENS de Lyon, Université Claude Bernard Lyon 1, INSERM U1111, CNRS UMR 5308, 46 allée d'Italie, Lyon, France
| | - Maria Artesi
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
- Unit of Animal Genomics, Groupe Interdisciplinaire Génoprotéomique Appliquée (GIGA), Université de Liège, Liège, Belgium
| | - Vincent Hahaut
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
- Unit of Animal Genomics, Groupe Interdisciplinaire Génoprotéomique Appliquée (GIGA), Université de Liège, Liège, Belgium
| | - Anne Van den Broeke
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
- Unit of Animal Genomics, Groupe Interdisciplinaire Génoprotéomique Appliquée (GIGA), Université de Liège, Liège, Belgium
| | - Antoine Corbin
- International Center for Infectiology Research, ENS de Lyon, Université Claude Bernard Lyon 1, INSERM U1111, CNRS UMR 5308, 46 allée d'Italie, Lyon, France
| | - Louis Gazzolo
- Laboratory of Biology and Modeling of the Cell, Ecole Normale Supérieure (ENS) de Lyon, INSERM U1210, CNRS UMR5239, 46 allée d'Italie, Lyon, France
| | - Lee Ratner
- Division of Oncology, Washington University School of Medicine, St Louis, MO, United States of America
| | - Pierre Jalinot
- Laboratory of Biology and Modeling of the Cell, Ecole Normale Supérieure (ENS) de Lyon, INSERM U1210, CNRS UMR5239, 46 allée d'Italie, Lyon, France
| | - Madeleine Duc Dodon
- Laboratory of Biology and Modeling of the Cell, Ecole Normale Supérieure (ENS) de Lyon, INSERM U1210, CNRS UMR5239, 46 allée d'Italie, Lyon, France
- * E-mail:
| |
Collapse
|
24
|
Huey DD, Bolon B, La Perle KMD, Kannian P, Jacobson S, Ratner L, Green PL, Niewiesk S. Role of Wild-type and Recombinant Human T-cell Leukemia Viruses in Lymphoproliferative Disease in Humanized NSG Mice. Comp Med 2018; 68:4-14. [PMID: 29460716 PMCID: PMC5824134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 03/29/2017] [Accepted: 05/30/2017] [Indexed: 06/08/2023]
Abstract
Chronic infection with human T-cell leukemia virus type 1 (HTLV1) can lead to adult T-cell leukemia (ATL). In contrast, infection with HTLV2 does not lead to leukemia, potentially because of distinct virus-host interactions and an active immune response that controls virus replication and, therefore, leukemia development. We created a humanized mouse model by injecting human umbilical-cord stem cells into the livers of immunodeficient neonatal NSG mice, resulting in the development of human lymphocytes that cannot mount an adaptive immune response. We used these mice to compare the ability of molecular clones of HTLV1, HTLV2, and select recombinant viruses to induce leukemia-lymphoma in vivo. Infection with HTLV1 strongly stimulated the proliferation of CD4+ T cells, whereas HTLV2 preferentially stimulated the proliferation of CD8+ T cells; both HTLV1 and HTLV2 induced lymphoproliferative disease. Uninfected and HTLV-infected humanized mice both showed granulomatous inflammation as a background lesion. Similarly, recombinant viruses that expressed the HTLV1 envelope protein (Env) on an HTLV2 background (HTLV2-Env1) or Env2 on an HTLV1 background (HTLV1-Env2) induced lymphoproliferative disease. HTLV2-Env1 stimulated the proliferation of CD4+ T cells, whereas HTLV1-Env2 stimulated both CD4+ and CD8+ T-cell subsets. Our results show that T-cell transformation in vivo is guided by the Env protein of the virus. Furthermore, our humanized mouse model is useful for exploring the preferred T-cell tropisms of HTLV1 and HTLV2.
Collapse
Affiliation(s)
- Devra D Huey
- Department of Veterinary Biosciences, Center for Retrovirus Research, College of Veterinary Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Brad Bolon
- Department of Veterinary Biosciences, Comparative Pathology and Mouse Phenotyping Shared Resource, Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Krista M D La Perle
- Department of Veterinary Biosciences, Comparative Pathology and Mouse Phenotyping Shared Resource, Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Priya Kannian
- Department of Veterinary Biosciences, Center for Retrovirus Research, College of Veterinary Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Steven Jacobson
- Neuroimmunology Branch, National Institute of Neurologic Disorders and Stroke, Bethesda, Maryland
| | - Lee Ratner
- Division of Oncology, Washington University School of Medicine, St Louis, Missouri
| | - Patrick L Green
- Department of Veterinary Biosciences, Center for Retrovirus Research, College of Veterinary Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Stefan Niewiesk
- Department of Veterinary Biosciences, Center for Retrovirus Research, College of Veterinary Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, OH;,
| |
Collapse
|
25
|
Futsch N, Mahieux R, Dutartre H. HTLV-1, the Other Pathogenic Yet Neglected Human Retrovirus: From Transmission to Therapeutic Treatment. Viruses 2017; 10:v10010001. [PMID: 29267225 PMCID: PMC5795414 DOI: 10.3390/v10010001] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/16/2017] [Accepted: 12/18/2017] [Indexed: 12/12/2022] Open
Abstract
Going back to their discovery in the early 1980s, both the Human T-cell Leukemia virus type-1 (HTLV-1) and the Human Immunodeficiency Virus type-1 (HIV-1) greatly fascinated the virology scene, not only because they were the first human retroviruses discovered, but also because they were associated with fatal diseases in the human population. In almost four decades of scientific research, both viruses have had different fates, HTLV-1 being often upstaged by HIV-1. However, although being very close in terms of genome organization, cellular tropism, and viral replication, HIV-1 and HTLV-1 are not completely commutable in terms of treatment, especially because of the opposite fate of the cells they infect: death versus immortalization, respectively. Nowadays, the antiretroviral therapies developed to treat HIV-1 infected individuals and to limit HIV-1 spread among the human population have a poor or no effect on HTLV-1 infected individuals, and thus, do not prevent the development of HTLV-1-associated diseases, which still lack highly efficient treatments. The present review mainly focuses on the course of HTLV-1 infection, from the initial infection of the host to diseases development and associated treatments, but also investigates HIV-1/HTLV-1 co-infection events and their impact on diseases development.
Collapse
Affiliation(s)
- Nicolas Futsch
- International Center for Research in Infectiology, Retroviral Oncogenesis Laboratory, INSERM U1111-Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, F-69007 Lyon, France.
- Equipe labellisée "Ligue Nationale Contre le Cancer", France.
| | - Renaud Mahieux
- International Center for Research in Infectiology, Retroviral Oncogenesis Laboratory, INSERM U1111-Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, F-69007 Lyon, France.
- Equipe labellisée "Ligue Nationale Contre le Cancer", France.
| | - Hélène Dutartre
- International Center for Research in Infectiology, Retroviral Oncogenesis Laboratory, INSERM U1111-Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, F-69007 Lyon, France.
- Equipe labellisée "Ligue Nationale Contre le Cancer", France.
| |
Collapse
|
26
|
Abstract
Human T cell leukemia virus type 1 (HTLV-1), also known as human T lymphotropic virus type 1, was the first exogenous human retrovirus discovered. Unlike the distantly related lentivirus HIV-1, HTLV-1 causes disease in only 5-10% of infected people, depending on their ethnic origin. But whereas HIV-1 infection and the consequent diseases can be efficiently contained in most cases by antiretroviral drug treatment, there is no satisfactory treatment for the malignant or inflammatory diseases caused by HTLV-1. The purpose of the present article is to review recent advances in the understanding of the mechanisms by which the virus persists in vivo and causes disabling or fatal diseases.
Collapse
Affiliation(s)
- Charles R M Bangham
- Division of Infectious Diseases, Faculty of Medicine, Imperial College, London W2 1PG, United Kingdom;
| |
Collapse
|
27
|
Percher F, Curis C, Pérès E, Artesi M, Rosewick N, Jeannin P, Gessain A, Gout O, Mahieux R, Ceccaldi PE, Van den Broeke A, Duc Dodon M, Afonso PV. HTLV-1-induced leukotriene B4 secretion by T cells promotes T cell recruitment and virus propagation. Nat Commun 2017; 8:15890. [PMID: 28639618 PMCID: PMC5489682 DOI: 10.1038/ncomms15890] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 05/11/2017] [Indexed: 01/20/2023] Open
Abstract
The human T-lymphotropic virus type 1 (HTLV-1) is efficiently transmitted through cellular contacts. While the molecular mechanisms of viral cell-to-cell propagation have been extensively studied in vitro, those facilitating the encounter between infected and target cells remain unknown. In this study, we demonstrate that HTLV-1-infected CD4 T cells secrete a potent chemoattractant, leukotriene B4 (LTB4). LTB4 secretion is dependent on Tax-induced transactivation of the pla2g4c gene, which encodes the cytosolic phospholipase A2 gamma. Inhibition of LTB4 secretion or LTB4 receptor knockdown on target cells reduces T-cell recruitment, cellular contact formation and virus propagation in vitro. Finally, blocking the synthesis of LTB4 in a humanized mouse model of HTLV-1 infection significantly reduces proviral load. This results from a decrease in the number of infected clones while their expansion is not impaired. This study shows the critical role of LTB4 secretion in HTLV-1 transmission both in vitro and in vivo.
Collapse
Affiliation(s)
- Florent Percher
- Unité d'Epidémiologie et Physiopathologie des Virus Oncogènes, Département de Virologie, Institut Pasteur, Paris F-75015, France
- Centre National de la Recherche Scientifique (CNRS) UMR 3569, Paris F-75015, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris F-75013, France
| | - Céline Curis
- Unité d'Epidémiologie et Physiopathologie des Virus Oncogènes, Département de Virologie, Institut Pasteur, Paris F-75015, France
- Centre National de la Recherche Scientifique (CNRS) UMR 3569, Paris F-75015, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris F-75013, France
| | - Eléonore Pérès
- Laboratoire de Biologie et Modélisation de la Cellule, ENS de Lyon, INSERM U1210 CNRS-UCBL UMR 5239, UMS 3444 SFR Biosciences-Lyon, Lyon F-69007, France
| | - Maria Artesi
- Unit of Animal Genomics, Groupe Interdisciplinaire Génoprotéomique Appliquée (GIGA), Université de Liège, Liège B-4000, Belgium
| | - Nicolas Rosewick
- Unit of Animal Genomics, Groupe Interdisciplinaire Génoprotéomique Appliquée (GIGA), Université de Liège, Liège B-4000, Belgium
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels B-1000, Belgium
| | - Patricia Jeannin
- Unité d'Epidémiologie et Physiopathologie des Virus Oncogènes, Département de Virologie, Institut Pasteur, Paris F-75015, France
- Centre National de la Recherche Scientifique (CNRS) UMR 3569, Paris F-75015, France
| | - Antoine Gessain
- Unité d'Epidémiologie et Physiopathologie des Virus Oncogènes, Département de Virologie, Institut Pasteur, Paris F-75015, France
- Centre National de la Recherche Scientifique (CNRS) UMR 3569, Paris F-75015, France
| | - Olivier Gout
- Service de Neurologie, Fondation Ophtalmologique Adolphe de Rothschild, Paris F-75019, France
| | - Renaud Mahieux
- Equipe Oncogenèse Rétrovirale, ENS de Lyon, and Equipe Labélisée Ligue Nationale Contre le Cancer, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS UMR 5308, Lyon F-69007, France
| | - Pierre-Emmanuel Ceccaldi
- Unité d'Epidémiologie et Physiopathologie des Virus Oncogènes, Département de Virologie, Institut Pasteur, Paris F-75015, France
- Centre National de la Recherche Scientifique (CNRS) UMR 3569, Paris F-75015, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris F-75013, France
| | - Anne Van den Broeke
- Unit of Animal Genomics, Groupe Interdisciplinaire Génoprotéomique Appliquée (GIGA), Université de Liège, Liège B-4000, Belgium
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels B-1000, Belgium
| | - Madeleine Duc Dodon
- Laboratoire de Biologie et Modélisation de la Cellule, ENS de Lyon, INSERM U1210 CNRS-UCBL UMR 5239, UMS 3444 SFR Biosciences-Lyon, Lyon F-69007, France
| | - Philippe V. Afonso
- Unité d'Epidémiologie et Physiopathologie des Virus Oncogènes, Département de Virologie, Institut Pasteur, Paris F-75015, France
- Centre National de la Recherche Scientifique (CNRS) UMR 3569, Paris F-75015, France
| |
Collapse
|
28
|
Abstract
Infection with human T cell leukemia virus type I (HTLV-I) causes adult T cell leukemia (ATL) in a minority of infected individuals after long periods of viral persistence. The various stages of HTLV-I infection and leukemia development are studied by using several different animal models: (1) the rabbit (and mouse) model of persistent HTLV-I infection, (2) transgenic mice to model tumorigenesis by HTLV-I specific protein expression, (3) ATL cell transfers into immune-deficient mice, and (4) infection of humanized mice with HTLV-I. After infection, virus replicates without clinical disease in rabbits and to a lesser extent in mice. Transgenic expression of both the transactivator protein (Tax) and the HTLV-I bZIP factor (HBZ) protein have provided insight into factors important in leukemia/lymphoma development. To investigate factors relating to tumor spread and tissue invasion, a number of immune-deficient mice based on the severe combined immunodeficiency (SCID) or non-obese diabetic/SCID background have been used. Inoculation of adult T cell leukemia cell (lines) leads to lymphoma with osteolytic bone lesions and to a lesser degree to leukemia development. These mice have been used extensively for the testing of anticancer drugs and virotherapy. A recent development is the use of so-called humanized mice, which, upon transfer of CD34(+)human umbilical cord stem cells, generate human lymphocytes. Infection with HTLV-I leads to leukemia/lymphoma development, thus providing an opportunity to investigate disease development with the aid of molecularly cloned viruses. However, further improvements of this mouse model, particularly in respect to the development of adaptive immune responses, are necessary.
Collapse
Affiliation(s)
- Stefan Niewiesk
- Stefan Niewiesk, DVM, PhD, is a professor in the Department of Veterinary Biosciences in the College of Veterinary Medicine at the Ohio State University in Columbus, Ohio
| |
Collapse
|
29
|
Vahedi F, Giles EC, Ashkar AA. The Application of Humanized Mouse Models for the Study of Human Exclusive Viruses. Methods Mol Biol 2017; 1656:1-56. [PMID: 28808960 DOI: 10.1007/978-1-4939-7237-1_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025]
Abstract
The symbiosis between humans and viruses has allowed human tropic pathogens to evolve intricate means of modulating the human immune response to ensure its survival among the human population. In doing so, these viruses have developed profound mechanisms that mesh closely with our human biology. The establishment of this intimate relationship has created a species-specific barrier to infection, restricting the virus-associated pathologies to humans. This specificity diminishes the utility of traditional animal models. Humanized mice offer a model unique to all other means of study, providing an in vivo platform for the careful examination of human tropic viruses and their interaction with human cells and tissues. These types of animal models have provided a reliable medium for the study of human-virus interactions, a relationship that could otherwise not be investigated without questionable relevance to humans.
Collapse
Affiliation(s)
- Fatemeh Vahedi
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, Hamilton, ON, Canada, L8N 3Z5
- MG DeGroote Institute for Infectious Disease Research, McMaster Immunology Research Centre, Hamilton, ON, Canada, L8N 3Z5
| | - Elizabeth C Giles
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, Hamilton, ON, Canada, L8N 3Z5
- MG DeGroote Institute for Infectious Disease Research, McMaster Immunology Research Centre, Hamilton, ON, Canada, L8N 3Z5
| | - Ali A Ashkar
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, Hamilton, ON, Canada, L8N 3Z5.
- MG DeGroote Institute for Infectious Disease Research, McMaster Immunology Research Centre, Hamilton, ON, Canada, L8N 3Z5.
| |
Collapse
|
30
|
Whole body clonality analysis in an aggressive STLV-1 associated leukemia (ATLL) reveals an unexpected clonal complexity. Cancer Lett 2016; 389:78-85. [PMID: 28034804 DOI: 10.1016/j.canlet.2016.12.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 12/19/2016] [Accepted: 12/19/2016] [Indexed: 12/21/2022]
Abstract
HTLV-1 causes Adult T cell Leukemia/Lymphoma (ATLL) in humans. We describe an ATL-like disease in a 9 year-old female baboon naturally infected with STLV-1 (the simian counterpart of HTLV-1), with a lymphocyte count over 1010/L, lymphocytes with abnormal nuclear morphology, and pulmonary and skin lesions. The animal was treated with a combination of AZT and alpha interferon. Proviral load (PVL) was measured every week. Because the disease continued to progress, the animal was euthanized. Abnormal infiltrates of CD3+CD25+ lymphocytes and Tax-positive cells were found by histological analyses in both lymphoid and non-lymphoid organs. PVL was measured and clonal diversity was assessed by LM-PCR (Ligation-Mediated Polymerase Chain Reaction) and high throughput sequencing, in blood during treatment and in 14 different organs. The highest PVL was found in lymph nodes, spleen and lungs. One major clone and a number of intermediate abundance clones were present in blood throughout the course of treatment, and in organs. These results represent the first multi-organ clonality study in ATLL. We demonstrate a previously undescribed clonal complexity in ATLL. Our data reinforce the usefulness of natural STLV-1 infection as a model of ATLL.
Collapse
|
31
|
Panfil AR, Martinez MP, Ratner L, Green PL. Human T-cell leukemia virus-associated malignancy. Curr Opin Virol 2016; 20:40-46. [PMID: 27591679 PMCID: PMC5102797 DOI: 10.1016/j.coviro.2016.08.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 08/05/2016] [Accepted: 08/16/2016] [Indexed: 12/30/2022]
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is a tumorigenic delta retrovirus and the causative infectious agent of a non-Hodgkin's peripheral T-cell malignancy called adult T-cell leukemia/lymphoma (ATL). ATL develops in approximately 5% of infected individuals after a significant clinical latency period of several decades. Clinical classifications of ATL include smoldering, chronic, lymphoma, and acute subtypes, with varying median survival ranges of a few months to several years. Depending on the ATL subtype and disease symptoms, treatment options include 'watchful waiting', chemotherapy, antiviral therapy, allogeneic hematopoietic stem cell transplantation (alloHSCT), and targeted therapies. Herein we review the characteristics and development of ATL, as well as current and future treatment options and perspectives.
Collapse
Affiliation(s)
- Amanda R Panfil
- Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Michael P Martinez
- Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Lee Ratner
- Department of Medicine, Division of Molecular Oncology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Patrick L Green
- Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
32
|
Human T-Lymphotropic Virus Type 1-Induced Overexpression of Activated Leukocyte Cell Adhesion Molecule (ALCAM) Facilitates Trafficking of Infected Lymphocytes through the Blood-Brain Barrier. J Virol 2016; 90:7303-7312. [PMID: 27252538 DOI: 10.1128/jvi.00539-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 05/25/2016] [Indexed: 01/01/2023] Open
Abstract
UNLABELLED Human T-lymphotropic virus type 1 (HTLV-1) is the etiological agent of a slowly progressive neurodegenerative disease, HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). This disease develops upon infiltration of HTLV-1-infected lymphocytes into the central nervous system, mostly the thoracic spinal cord. The central nervous system is normally protected by a physiological structure called the blood-brain barrier (BBB), which consists primarily of a continuous endothelium with tight junctions. In this study, we investigated the role of activated leukocyte cell adhesion molecule (ALCAM/CD166), a member of the immunoglobulin superfamily, in the crossing of the BBB by HTLV-1-infected lymphocytes. We demonstrated that ALCAM is overexpressed on the surface of HTLV-1-infected lymphocytes, both in chronically infected cell lines and in primary infected CD4(+) T lymphocytes. ALCAM overexpression results from the activation of the canonical NF-κB pathway by the viral transactivator Tax. In contrast, staining of spinal cord sections of HAM/TSP patients showed that ALCAM expression is not altered on the BBB endothelium in the context of HTLV-1 infection. ALCAM blockade or downregulation of ALCAM levels significantly reduced the migration of HTLV-1-infected lymphocytes across a monolayer of human BBB endothelial cells. This study suggests a potential role for ALCAM in HAM/TSP pathogenesis. IMPORTANCE Human T-lymphotropic virus type 1 (HTLV-1) is the etiological agent of a slowly progressive neurodegenerative disease, HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). This disease is the consequence of the infiltration of HTLV-1-infected lymphocytes into the central nervous system (CNS), mostly the thoracic spinal cord. The CNS is normally protected by a physiological structure called the blood-brain barrier (BBB), which consists primarily of a continuous endothelium with tight junctions. The mechanism of migration of lymphocytes into the CNS is unclear. Here, we show that the viral transactivator Tax increases activated leukocyte cell adhesion molecule (ALCAM/CD166) expression. This molecule facilitates the migration of lymphocytes across the BBB endothelium. Targeting this molecule could be of interest in preventing or reducing the development of HAM/TSP.
Collapse
|
33
|
Molecular Mechanisms of HTLV-1 Cell-to-Cell Transmission. Viruses 2016; 8:74. [PMID: 27005656 PMCID: PMC4810264 DOI: 10.3390/v8030074] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 02/20/2016] [Accepted: 03/04/2016] [Indexed: 12/14/2022] Open
Abstract
The tumorvirus human T-cell lymphotropic virus type 1 (HTLV-1), a member of the delta-retrovirus family, is transmitted via cell-containing body fluids such as blood products, semen, and breast milk. In vivo, HTLV-1 preferentially infects CD4⁺ T-cells, and to a lesser extent, CD8⁺ T-cells, dendritic cells, and monocytes. Efficient infection of CD4⁺ T-cells requires cell-cell contacts while cell-free virus transmission is inefficient. Two types of cell-cell contacts have been described to be critical for HTLV-1 transmission, tight junctions and cellular conduits. Further, two non-exclusive mechanisms of virus transmission at cell-cell contacts have been proposed: (1) polarized budding of HTLV-1 into synaptic clefts; and (2) cell surface transfer of viral biofilms at virological synapses. In contrast to CD4⁺ T-cells, dendritic cells can be infected cell-free and, to a greater extent, via viral biofilms in vitro. Cell-to-cell transmission of HTLV-1 requires a coordinated action of steps in the virus infectious cycle with events in the cell-cell adhesion process; therefore, virus propagation from cell-to-cell depends on specific interactions between cellular and viral proteins. Here, we review the molecular mechanisms of HTLV-1 transmission with a focus on the HTLV-1-encoded proteins Tax and p8, their impact on host cell factors mediating cell-cell contacts, cytoskeletal remodeling, and thus, virus propagation.
Collapse
|
34
|
Mother-to-Child Transmission of HTLV-1 Epidemiological Aspects, Mechanisms and Determinants of Mother-to-Child Transmission. Viruses 2016; 8:v8020040. [PMID: 26848683 PMCID: PMC4776195 DOI: 10.3390/v8020040] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 01/22/2016] [Accepted: 01/27/2016] [Indexed: 12/20/2022] Open
Abstract
Human T-cell Lymphotropic Virus type 1 (HTLV-1) is a human retrovirus that infects at least 5-10 million people worldwide, and is the etiological agent of a lymphoproliferative malignancy; Adult T-cell Leukemia/Lymphoma (ATLL); and a chronic neuromyelopathy, HTLV-1 Associated Myelopathy/Tropical Spastic Paraparesis (HAM/TSP), as well as other inflammatory diseases such as infective dermatitis and uveitis. Besides sexual intercourse and intravenous transmission, HTLV-1 can also be transmitted from infected mother to child during prolonged breastfeeding. Some characteristics that are linked to mother-to-child transmission (MTCT) of HTLV-1, such as the role of proviral load, antibody titer of the infected mother, and duration of breastfeeding, have been elucidated; however, most of the mechanisms underlying HTLV-1 transmission during breast feeding remain largely unknown, such as the sites of infection and cellular targets as well as the role of milk factors. The present review focuses on the latest findings and current opinions and perspectives on MTCT of HTLV-1.
Collapse
|
35
|
Pérès E, Bagdassarian E, This S, Villaudy J, Rigal D, Gazzolo L, Duc Dodon M. From Immunodeficiency to Humanization: The Contribution of Mouse Models to Explore HTLV-1 Leukemogenesis. Viruses 2015; 7:6371-86. [PMID: 26690200 PMCID: PMC4690867 DOI: 10.3390/v7122944] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/16/2015] [Accepted: 11/30/2015] [Indexed: 12/12/2022] Open
Abstract
The first discovered human retrovirus, Human T-Lymphotropic Virus type 1 (HTLV-1), is responsible for an aggressive form of T cell leukemia/lymphoma. Mouse models recapitulating the leukemogenesis process have been helpful for understanding the mechanisms underlying the pathogenesis of this retroviral-induced disease. This review will focus on the recent advances in the generation of immunodeficient and human hemato-lymphoid system mice with a particular emphasis on the development of mouse models for HTLV-1-mediated pathogenesis, their present limitations and the challenges yet to be addressed.
Collapse
Affiliation(s)
- Eléonore Pérès
- Laboratoire de Biologie Moléculaire de la Cellule, Unité Mixte de Recherche 5239, Centre National de la Recherche Scientifique, Ecole Normale Supérieure de Lyon, 69364 Lyon Cedex 7, France.
- SFR UMS3444 BioSciences Lyon-Gerland-Lyon Sud (UMS3444), 69366 Lyon Cedex 7, France.
| | - Eugénie Bagdassarian
- Laboratoire de Biologie Moléculaire de la Cellule, Unité Mixte de Recherche 5239, Centre National de la Recherche Scientifique, Ecole Normale Supérieure de Lyon, 69364 Lyon Cedex 7, France.
- SFR UMS3444 BioSciences Lyon-Gerland-Lyon Sud (UMS3444), 69366 Lyon Cedex 7, France.
- Master BioSciences, Département de Biologie, ENS Lyon, 69366 Lyon Cedex 7, France.
| | - Sébastien This
- Laboratoire de Biologie Moléculaire de la Cellule, Unité Mixte de Recherche 5239, Centre National de la Recherche Scientifique, Ecole Normale Supérieure de Lyon, 69364 Lyon Cedex 7, France.
- SFR UMS3444 BioSciences Lyon-Gerland-Lyon Sud (UMS3444), 69366 Lyon Cedex 7, France.
- Master BioSciences, Département de Biologie, ENS Lyon, 69366 Lyon Cedex 7, France.
| | - Julien Villaudy
- AIMM Therapeutics, Meibergdreef 59, 1105 BA Amsterdam Zuidoost, The Netherlands.
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 BA Amsterdam Zuidoost, The Netherlands.
| | | | - Louis Gazzolo
- Laboratoire de Biologie Moléculaire de la Cellule, Unité Mixte de Recherche 5239, Centre National de la Recherche Scientifique, Ecole Normale Supérieure de Lyon, 69364 Lyon Cedex 7, France.
- SFR UMS3444 BioSciences Lyon-Gerland-Lyon Sud (UMS3444), 69366 Lyon Cedex 7, France.
| | - Madeleine Duc Dodon
- Laboratoire de Biologie Moléculaire de la Cellule, Unité Mixte de Recherche 5239, Centre National de la Recherche Scientifique, Ecole Normale Supérieure de Lyon, 69364 Lyon Cedex 7, France.
- SFR UMS3444 BioSciences Lyon-Gerland-Lyon Sud (UMS3444), 69366 Lyon Cedex 7, France.
| |
Collapse
|
36
|
Bangham CRM, Ratner L. How does HTLV-1 cause adult T-cell leukaemia/lymphoma (ATL)? Curr Opin Virol 2015; 14:93-100. [PMID: 26414684 PMCID: PMC4772697 DOI: 10.1016/j.coviro.2015.09.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 09/09/2015] [Accepted: 09/09/2015] [Indexed: 11/21/2022]
Abstract
A typical person infected with the retrovirus human T-lymphotropic virus type 1 (HTLV-1) carries tens of thousands of clones of HTLV-1-infected T lymphocytes, each clone distinguished by a unique integration site of the provirus in the host genome. However, only 5% of infected people develop the malignant disease adult T cell leukaemia/lymphoma, usually more than 50 years after becoming infected. We review the host and viral factors that cause this aggressive disease.
Collapse
Affiliation(s)
- Charles R M Bangham
- Section of Virology, Department of Medicine, Imperial College, London W2 1PG, UK.
| | - Lee Ratner
- Medical Oncology Section, Hematology-Oncology Faculty, Washington University School of Medicine, St Louis, WA, USA
| |
Collapse
|
37
|
Viral Source-Independent High Susceptibility of Dendritic Cells to Human T-Cell Leukemia Virus Type 1 Infection Compared to That of T Lymphocytes. J Virol 2015; 89:10580-90. [PMID: 26269171 DOI: 10.1128/jvi.01799-15] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 08/03/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Human T-cell leukemia virus type 1 (HTLV-1)-infected CD4(+) T cells and dendritic cells (DCs) are present in peripheral blood from HTLV-1 carriers. While T-cell infection requires cell-cell contact, DCs might be infected with cell-free virus, at least in vitro. However, a thorough comparison of the susceptibilities of the two cell types to HTLV-1 infection using cell-associated and cell-free viral sources has not been performed. We first determined that human primary monocyte-derived dendritic cells (MDDCs) were more susceptible to HTLV-1 infection than their autologous lymphocyte counterparts after contact with chronically infected cells. Next, a comparison of infection efficiency using nonconcentrated or concentrated supernatants from infected cells as well as purified viral biofilm was performed. Integrated provirus was found after exposure of MDDCs or primary lymphocytes to viral biofilm but not to a viral supernatant. Using a large series of primary cell samples (n = 21), we demonstrated a higher proviral load in MDDCs exposed to viral biofilm than in lymphocytes. This higher susceptibility is correlated to a higher expression of neuropilin-1 on MDDCs than on autologous activated T lymphocytes. Moreover, we show that MDDCs infected with viral biofilm can transmit the virus to lymphocytes. In conclusion, MDDCs are more susceptible to HTLV-1 infection than autologous lymphocytes in vitro, supporting a model in which DC infection might represent an important step during primo-infection in vivo. IMPORTANCE HTLV-1 is able to infect several cell types, but viral DNA is mainly found in T lymphocytes in vivo. This supports a model in which T lymphocytes are the main target of infection. However, during the primo-infection of new individuals, incoming viruses might first encounter dendritic cells (DCs), the specialized immune cells responsible for the antiviral response of the host. HTLV-1 cell-free purified viruses can infect dendritic cells in vitro, while T-cell infection is restricted to cell-to-cell transmission. In order to understand the sequence of HTLV-1 dissemination, we undertook a direct comparison of the susceptibilities of the two cell types using cell-associated and cell-free viral sources. We report here that MDDCs are more susceptible to HTLV-1 infection than autologous lymphocytes in vitro and are able to efficiently transmit the virus to lymphocytes. Our results suggest that DCs may represent a true viral reservoir, as the first cell type to be infected in vivo.
Collapse
|
38
|
Abstract
Many of the viral pathogens that cause infectious diseases in humans have a highly restricted species tropism, making the study of their pathogenesis and the development of clinical therapies difficult. The improvement of humanized mouse models over the past 30 years has greatly facilitated researchers' abilities to study host responses to viral infections in a cost effective and ethical manner. From HIV to hepatotropic viruses to Middle East Respiratory Syndrome coronavirus, humanized mice have led to the identification of factors crucial to the viral life cycle, served as an outlet for testing candidate therapies, and improved our abilities to analyze human immune responses to infection. In tackling both new and old viruses as they emerge, humanized mice will continue to be an indispensable tool.
Collapse
Affiliation(s)
- Jenna M Gaska
- Department of Molecular Biology, Princeton University, 110 Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544-1014, USA
| | - Alexander Ploss
- Department of Molecular Biology, Princeton University, 110 Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544-1014, USA.
| |
Collapse
|
39
|
TCF1 and LEF1 act as T-cell intrinsic HTLV-1 antagonists by targeting Tax. Proc Natl Acad Sci U S A 2015; 112:2216-21. [PMID: 25646419 DOI: 10.1073/pnas.1419198112] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is a delta-type retrovirus that induces malignant and inflammatory diseases during its long persistence in vivo. HTLV-1 can infect various kinds of cells; however, HTLV-1 provirus is predominantly found in peripheral CD4 T cells in vivo. Here we find that TCF1 and LEF1, two Wnt transcription factors that are specifically expressed in T cells, inhibit viral replication through antagonizing Tax functions. TCF1 and LEF1 can each interact with Tax and inhibit Tax-dependent viral expression and activation of NF-κB and AP-1. As a result, HTLV-1 replication is suppressed in the presence of either TCF1 or LEF1. On the other hand, T-cell activation suppresses the expression of both TCF1 and LEF1, and this suppression enables Tax to function as an activator. We analyzed the thymus of a simian T-cell leukemia virus type 1 (STLV-1) infected Japanese macaque, and found a negative correlation between proviral load and TCF1/LEF1 expression in various T-cell subsets, supporting the idea that TCF1 and LEF1 negatively regulate HTLV-1 replication and the proliferation of infected cells. Thus, this study identified TCF1 and LEF1 as Tax antagonistic factors in vivo, a fact which may critically influence the peripheral T-cell tropism of this virus.
Collapse
|
40
|
Münz C. Viral infections in mice with reconstituted human immune system components. Immunol Lett 2014; 161:118-24. [PMID: 24953718 DOI: 10.1016/j.imlet.2014.05.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 05/14/2014] [Accepted: 05/27/2014] [Indexed: 10/25/2022]
Abstract
Pathogenic viruses are often difficult to study due to their exclusive tropism for humans. The development of mice with human immune system components opens the possibility to study those human pathogens with a tropism for the human hematopoietic lineage in vivo. These include HCMV, EBV, KSHV, HIV, HTLV-1, dengue virus and JC virus. Furthermore, some human pathogens, like HSV-2, adenovirus, HCV, HBV and influenza A virus, with an additional tropism for somatic mouse tissues or for additional transplanted human tissues, mainly liver, have been explored in these models. The cellular tropism of these viruses, their associated diseases and primarily cell-mediated immune responses to these viral infections will be discussed in this review. Already some exciting information has been gained from these novel chimeric in vivo models and future avenues to gain more insights into the pathology, but also potential therapies, will be outlined. Although the respective in vivo models of human immune responses can still be significantly improved, they already provide preclinical systems for in vivo studies of important viral pathogens of humans.
Collapse
Affiliation(s)
- Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Switzerland.
| |
Collapse
|
41
|
Abstract
In this issue of Blood, Tezuka et al report the establishment of humanized mice infected by human T-cell leukemia virus type 1 (HTLV-1) that recapitulate adult T-cell leukemia (ATL)-like leukemic symptoms and display HTLV-1–specific adaptive immune responses.
Collapse
|
42
|
Barbeau B, Hiscott J, Bazarbachi A, Carvalho E, Jones K, Martin F, Matsuoka M, Murphy EL, Ratner L, Switzer WM, Watanabe T. Conference highlights of the 16th International Conference on Human Retrovirology: HTLV and related retroviruses, 26-30 June 2013, Montreal, Canada. Retrovirology 2014; 11:19. [PMID: 24558960 PMCID: PMC3939404 DOI: 10.1186/1742-4690-11-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 02/10/2014] [Indexed: 01/19/2023] Open
Abstract
The 16th International Conference on Human Retrovirology: HTLV and Related Retroviruses was held in Montreal, Québec from June 26th to June 30th, 2013 and was therefore hosted by a Canadian city for the first time. The major topic of the meeting was human T-lymphotropic viruses (HTLVs) and was covered through distinct oral and poster presentation sessions: clinical research, animal models, immunology, molecular and cellular biology, human endogenous and emerging exogenous retroviruses and virology. In this review, highlights of the meeting are provided by different experts for each of these research areas.
Collapse
Affiliation(s)
- Benoit Barbeau
- Département des sciences biologiques and BioMed Research Center, Université du Québec à Montréal, Room SB-3335, 2080 St-Urbain, Montréal, Québec, Canada
| | - John Hiscott
- VGTI Florida, Port St., Lucie, FL, USA
- Lady Davis Insitute, Montreal, Canada
| | - Ali Bazarbachi
- Department of Internal Medicine, American University of Beirut, Beirut, Lebanon
| | - Edgar Carvalho
- Immunology Department, Universidade Federal da Bahia (UFBA), Salvador, Bahia, Brazil
| | - Kathryn Jones
- Basic Research Program, Cancer and Inflammation Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Fabiola Martin
- Centre for Immunology and Infection, Department of Biology, Hull and York Medical School, University of York, York, UK
| | - Masao Matsuoka
- Laboratory of Virus Control, Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Edward L Murphy
- University of California San Francisco and Blood Systems Research Institute, San Francisco, CA, USA
| | - Lee Ratner
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - William M Switzer
- Laboratory Branch, Division of HIV/AIDS Prevention, National Center for HIV, Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Toshiki Watanabe
- Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
43
|
Abstract
Since the isolation and discovery of human T-cell leukemia virus type 1 (HTLV-1) over 30 years ago, researchers have utilized animal models to study HTLV-1 transmission, viral persistence, virus-elicited immune responses, and HTLV-1-associated disease development (ATL, HAM/TSP). Non-human primates, rabbits, rats, and mice have all been used to help understand HTLV-1 biology and disease progression. Non-human primates offer a model system that is phylogenetically similar to humans for examining viral persistence. Viral transmission, persistence, and immune responses have been widely studied using New Zealand White rabbits. The advent of molecular clones of HTLV-1 has offered the opportunity to assess the importance of various viral genes in rabbits, non-human primates, and mice. Additionally, over-expression of viral genes using transgenic mice has helped uncover the importance of Tax and Hbz in the induction of lymphoma and other lymphocyte-mediated diseases. HTLV-1 inoculation of certain strains of rats results in histopathological features and clinical symptoms similar to that of humans with HAM/TSP. Transplantation of certain types of ATL cell lines in immunocompromised mice results in lymphoma. Recently, “humanized” mice have been used to model ATL development for the first time. Not all HTLV-1 animal models develop disease and those that do vary in consistency depending on the type of monkey, strain of rat, or even type of ATL cell line used. However, the progress made using animal models cannot be understated as it has led to insights into the mechanisms regulating viral replication, viral persistence, disease development, and, most importantly, model systems to test disease treatments.
Collapse
Affiliation(s)
- Amanda R Panfil
- Center for Retrovirus Research, OH, USA. ; Department of Veterinary Biosciences, OH, USA
| | - Jacob J Al-Saleem
- Center for Retrovirus Research, OH, USA. ; Department of Veterinary Biosciences, OH, USA
| | - Patrick L Green
- Center for Retrovirus Research, OH, USA. ; Department of Veterinary Biosciences, OH, USA. ; Comprenhensive Cancer Center and Solove Research Institute, OH, USA. ; Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University Columbus, OH, USA
| |
Collapse
|
44
|
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is causally associated with adult T-cell leukemia (ATL), an aggressive T-cell malignancy with a poor prognosis. To elucidate ATL pathogenesis in vivo, a variety of animal models have been established; however, the mechanisms driving this disorder remain poorly understood due to deficiencies in each of these animal models. Here, we report a novel HTLV-1-infected humanized mouse model generated by intra-bone marrow injection of human CD133(+) stem cells into NOD/Shi-scid/IL-2Rγc null (NOG) mice (IBMI-huNOG mice). Upon infection, the number of CD4(+) human T cells in the periphery increased rapidly, and atypical lymphocytes with lobulated nuclei resembling ATL-specific flower cells were observed 4 to 5 months after infection. Proliferation was seen in both CD25(-) and CD25(+) CD4 T cells with identical proviral integration sites; however, a limited number of CD25(+)-infected T-cell clones eventually dominated, indicating an association between clonal selection of infected T cells and expression of CD25. Additionally, HTLV-1-specific adaptive immune responses were induced in infected mice and might be involved in the control of HTLV-1-infected cells. Thus, the HTLV-1-infected IBMI-huNOG mouse model successfully recapitulated the development of ATL and may serve as an important tool for investigating in vivo mechanisms of ATL leukemogenesis and evaluating anti-ATL drug and vaccine candidates.
Collapse
|
45
|
Satou Y, Matsuoka M. Virological and immunological mechanisms in the pathogenesis of human T-cell leukemia virus type 1. Rev Med Virol 2013; 23:269-80. [PMID: 23606621 DOI: 10.1002/rmv.1745] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 03/17/2013] [Accepted: 03/18/2013] [Indexed: 12/17/2022]
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) was the first retrovirus shown to cause human disease, such as adult T-cell leukemia and HTLV-1 associated myelopathy/tropic spastic paraparesis. HTLV-1 mainly infects CD4 T cells and deregulates their differentiation, function and homeostasis, which should contribute to the pathogenesis of HTLV-1, for example, inducing transformation of infected CD4 T cells and chronic inflammatory diseases. Therefore, not only virological approach but also immunological approach regarding CD4 T cells are required to understand how HTLV-1 causes related human diseases. This review focuses on recent advances in our understanding of the interaction between HTLV-1 and the main host cell, CD4 T cells, which should provide us some clue to the mechanisms of HTLV-1 mediated pathogenesis.
Collapse
Affiliation(s)
- Yorifumi Satou
- Laboratory for Virus Control, Institute for Virus Research, Kyoto University, Kyoto, Japan.
| | | |
Collapse
|
46
|
Fujiwara S, Matsuda G, Imadome KI. Humanized mouse models of epstein-barr virus infection and associated diseases. Pathogens 2013; 2:153-76. [PMID: 25436886 PMCID: PMC4235711 DOI: 10.3390/pathogens2010153] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 02/26/2013] [Accepted: 03/05/2013] [Indexed: 12/29/2022] Open
Abstract
Epstein-Barr virus (EBV) is a ubiquitous herpesvirus infecting more than 90% of the adult population of the world. EBV is associated with a variety of diseases including infectious mononucleosis, lymphoproliferative diseases, malignancies such as Burkitt lymphoma and nasopharyngeal carcinoma, and autoimmune diseases including rheumatoid arthritis (RA). EBV in nature infects only humans, but in an experimental setting, a limited species of new-world monkeys can be infected with the virus. Small animal models, suitable for evaluation of novel therapeutics and vaccines, have not been available. Humanized mice, defined here as mice harboring functioning human immune system components, are easily infected with EBV that targets cells of the hematoimmune system. Furthermore, humanized mice can mount both cellular and humoral immune responses to EBV. Thus, many aspects of human EBV infection, including associated diseases (e.g., lymphoproliferative disease, hemophagocytic lymphohistiocytosis and erosive arthritis resembling RA), latent infection, and T-cell-mediated and humoral immune responses have been successfully reproduced in humanized mice. Here we summarize recent achievements in the field of humanized mouse models of EBV infection and show how they have been utilized to analyze EBV pathogenesis and normal and aberrant human immune responses to the virus.
Collapse
Affiliation(s)
- Shigeyoshi Fujiwara
- Department of Infectious Diseases, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan.
| | - Go Matsuda
- Department of Infectious Diseases, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan.
| | - Ken-Ichi Imadome
- Department of Infectious Diseases, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan.
| |
Collapse
|
47
|
Akkina R. New generation humanized mice for virus research: comparative aspects and future prospects. Virology 2013; 435:14-28. [PMID: 23217612 DOI: 10.1016/j.virol.2012.10.007] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 10/03/2012] [Accepted: 10/03/2012] [Indexed: 12/27/2022]
Abstract
Work with human specific viruses will greatly benefit from the use of an in vivo system that provides human target cells and tissues in a physiological setting. In this regard humanized mice (hu-Mice) have played an important role in our understanding of viral pathogenesis and testing of therapeutic strategies. Limitations with earlier versions of hu-Mice that lacked a functioning human immune system are currently being overcome. The new generation hu-Mouse models are capable of multilineage human hematopoiesis and generate T cells, B cells, macrophages and dendritic cells required for an adaptive human immune response. Now any human specific pathogen that can infect humanized mice can be studied in the context of ongoing infection and immune responses. Two leading humanized mouse models are currently employed: the hu-HSC model is created by transplantation of human hematopoietic stem cells (HSC), whereas the BLT mouse model is prepared by transplantation of human fetal liver, thymus and HSC. A number of human specific viruses such as HIV-1, dengue, EBV and HCV are being studied intensively in these systems. Both models permit infection by mucosal routes with viruses such as HIV-1 thus allowing transmission prevention studies. Cellular and humoral immune responses are seen in both the models. While there is efficient antigen specific IgM production, IgG responses are suboptimal due to inefficient immunoglobulin class switching. With the maturation of T cells occurring in the autologous human thymus, BLT mice permit human HLA restricted T cell responses in contrast to hu-HSC mice. However, the strength of the immune responses needs further improvement in both models to reach the levels seen in humans. The scope of hu-Mice use is further broadened by transplantation of additional tissues like human liver thus permitting immunopathogenesis studies on hepatotropic viruses such as HCV. Numerous studies that encompass antivirals, gene therapy, viral evolution, and the generation of human monoclonal antibodies have been conducted with promising results in these mice. For further improvement of the new hu-Mouse models, ongoing work is focused on generating new strains of immunodeficient mice transgenic for human HLA molecules to strengthen immune responses and human cytokines and growth factors to improve human cell reconstitution and their homeostatic maintenance.
Collapse
Affiliation(s)
- Ramesh Akkina
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
48
|
Shultz LD, Brehm MA, Garcia-Martinez JV, Greiner DL. Humanized mice for immune system investigation: progress, promise and challenges. Nat Rev Immunol 2012; 12:786-98. [PMID: 23059428 DOI: 10.1038/nri3311] [Citation(s) in RCA: 722] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Significant advances in our understanding of the in vivo functions of human cells and tissues and the human immune system have resulted from the development of 'humanized' mouse strains that are based on severely immunodeficient mice with mutations in the interleukin-2 receptor common γ-chain locus. These mouse strains support the engraftment of a functional human immune system and permit detailed analyses of human immune biology, development and functions. In this Review, we discuss recent advances in the development and utilization of humanized mice, the lessons learnt, the remaining challenges and the promise of using humanized mice for the in vivo study of human immunology.
Collapse
Affiliation(s)
- Leonard D Shultz
- Jackson Laboratory, 600 Main Street, Bar Harbor, Maine 04609, USA.
| | | | | | | |
Collapse
|
49
|
Hajj HE, Nasr R, Kfoury Y, Dassouki Z, Nasser R, Kchour G, Hermine O, de Thé H, Bazarbachi A. Animal models on HTLV-1 and related viruses: what did we learn? Front Microbiol 2012; 3:333. [PMID: 23049525 PMCID: PMC3448133 DOI: 10.3389/fmicb.2012.00333] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Accepted: 08/28/2012] [Indexed: 12/22/2022] Open
Abstract
Retroviruses are associated with a wide variety of diseases, including immunological, neurological disorders, and different forms of cancer. Among retroviruses, Oncovirinae regroup according to their genetic structure and sequence, several related viruses such as human T-cell lymphotropic viruses types 1 and 2 (HTLV-1 and HTLV-2), simian T cell lymphotropic viruses types 1 and 2 (STLV-1 and STLV-2), and bovine leukemia virus (BLV). As in many diseases, animal models provide a useful tool for the studies of pathogenesis, treatment, and prevention. In the current review, an overview on different animal models used in the study of these viruses will be provided. A specific attention will be given to the HTLV-1 virus which is the causative agent of adult T-cell leukemia/lymphoma (ATL) but also of a number of inflammatory diseases regrouping the HTLV-associated myelopathy/tropical spastic paraparesis (HAM/TSP), infective dermatitis and some lung inflammatory diseases. Among these models, rabbits, monkeys but also rats provide an excellent in vivo tool for early HTLV-1 viral infection and transmission as well as the induced host immune response against the virus. But ideally, mice remain the most efficient method of studying human afflictions. Genetically altered mice including both transgenic and knockout mice, offer important models to test the role of specific viral and host genes in the development of HTLV-1-associated leukemia. The development of different strains of immunodeficient mice strains (SCID, NOD, and NOG SCID mice) provide a useful and rapid tool of humanized and xenografted mice models, to test new drugs and targeted therapy against HTLV-1-associated leukemia, to identify leukemia stem cells candidates but also to study the innate immunity mediated by the virus. All together, these animal models have revolutionized the biology of retroviruses, their manipulation of host genes and more importantly the potential ways to either prevent their infection or to treat their associated diseases.
Collapse
Affiliation(s)
- Hiba El Hajj
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut Beirut, Lebanon
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Dodon MD, Villaudy J, Gazzolo L, Haines R, Lairmore M. What we are learning on HTLV-1 pathogenesis from animal models. Front Microbiol 2012; 3:320. [PMID: 22969759 PMCID: PMC3431546 DOI: 10.3389/fmicb.2012.00320] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 08/16/2012] [Indexed: 11/24/2022] Open
Abstract
Isolated and identified more than 30 years ago, human T cell leukemia virus type 1 (HTLV-1) is the etiological agent of adult T cell leukemia/lymphoma, an aggressive lymphoproliferative disease of activated CD4+ T cells, and other inflammatory disorders such as HTLV-1-associated myelopathy/tropical spastic paraparesis. A variety of animal models have contributed to the fundamental knowledge of HTLV-1 transmission, pathogenesis, and to the design of novel therapies to treat HTLV-1-associated diseases. Small animal models (rabbits, rats, and mice) as well as large animal models (monkeys) have been utilized to significantly advance characterization of the viral proteins and of virus-infected cells in the early steps of infection, as well as in the development of leukemogenic and immunopathogenic processes. Over the past two decades, the creation of new immunocompromised mouse strains that are robustly reconstituted with a functional human immune system (HIS) after being transplanted with human tissues or progenitor cells has revolutionized the in vivo investigation of viral infection and pathogenesis. Recent observations obtained in HTLV-1-infected humanized HIS mice that develop lymphomas provide the opportunity to study the evolution of the proviral clonality in human T cells present in different lymphoid organs. Current progress in the improvement of those humanized models will favor the testing of drugs and the development of targeted therapies against HTLV-1-associated diseases.
Collapse
Affiliation(s)
- Madeleine Duc Dodon
- Laboratoire de Biologie Moléculaire de la Cellule, Unité Mixte de Recherche 5239, Centre National de la Recherche Scientifique, Ecole Normale Supérieure de Lyon Lyon, France
| | | | | | | | | |
Collapse
|