1
|
Zhou H, Zhang J, Wang R, Huang J, Xin C, Song Z. The unfolded protein response is a potential therapeutic target in pathogenic fungi. FEBS J 2025. [PMID: 40227882 DOI: 10.1111/febs.70100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 01/15/2025] [Accepted: 04/04/2025] [Indexed: 04/16/2025]
Abstract
Pathogenic fungal infections cause significant morbidity and mortality, particularly in immunocompromised patients. The frequent emergence of multidrug-resistant strains challenges existing antifungal therapies, driving the need to investigate novel antifungal agents that target new molecular moieties. Pathogenic fungi are subjected to various environmental stressors, including pH, temperature, and pharmacological agents, both in natural habitats and the host body. These stressors elevate the risk of misfolded or unfolded protein production within the endoplasmic reticulum (ER) which, if not promptly mitigated, can lead to the accumulation of these proteins in the ER lumen. This accumulation triggers an ER stress response, potentially jeopardizing fungal survival. The unfolded protein response (UPR) is a critical cellular defense mechanism activated by ER stress to restore the homeostasis of protein folding. In recent years, the regulatory role of the UPR in pathogenic fungi has garnered significant attention, particularly for its involvement in fungal adaptation, regulation of virulence, and drug resistance. In this review, we comparatively analyze the UPRs of fungi and mammals and examine the potential utility of the UPR as a molecular antifungal target in pathogenic fungi. By clarifying the specificity and regulatory functions of the UPR in pathogenic fungi, we highlight new avenues for identifying potential therapeutic targets for antifungal treatments.
Collapse
Affiliation(s)
- Hao Zhou
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Jinping Zhang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
- Public Center of Experimental Technology, Southwest Medical University, Luzhou, China
| | - Rong Wang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Ju Huang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Caiyan Xin
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Zhangyong Song
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
- Public Center of Experimental Technology, Southwest Medical University, Luzhou, China
- Hemodynamics and Medical Engineering Combination Key Laboratory of Luzhou, China
| |
Collapse
|
2
|
Jadhav R, Mach RL, Mach-Aigner AR. Protein secretion and associated stress in industrially employed filamentous fungi. Appl Microbiol Biotechnol 2024; 108:92. [PMID: 38204136 PMCID: PMC10781871 DOI: 10.1007/s00253-023-12985-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024]
Abstract
Application of filamentous fungi for the production of commercial enzymes such as amylase, cellulase, or xylanase is on the rise due to the increasing demand to degrade several complex carbohydrates as raw material for biotechnological processes. Also, protein production by fungi for food and feed gains importance. In any case, the protein production involves both cellular synthesis and secretion outside of the cell. Unfortunately, the secretion of proteins or enzymes can be hampered due to accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER) as a result of too high synthesis of enzymes or (heterologous) protein expression. To cope with this ER stress, the cell generates a response known as unfolded protein response (UPR). Even though this mechanism should re-establish the protein homeostasis equivalent to a cell under non-stress conditions, the enzyme expression might still suffer from repression under secretory stress (RESS). Among eukaryotes, Saccharomyces cerevisiae is the only fungus, which is studied quite extensively to unravel the UPR pathway. Several homologs of the proteins involved in this signal transduction cascade are also found in filamentous fungi. Since RESS seems to be absent in S. cerevisiae and was only reported in Trichoderma reesei in the presence of folding and glycosylation inhibitors such as dithiothreitol and tunicamycin, more in-depth study about this mechanism, specifically in filamentous fungi, is the need of the hour. Hence, this review article gives an overview on both, protein secretion and associated stress responses in fungi. KEY POINTS: • Enzymes produced by filamentous fungi are crucial in industrial processes • UPR mechanism is conserved among many fungi, but mediated by different proteins • RESS is not fully understood or studied in industrially relevant filamentous fungi.
Collapse
Affiliation(s)
- Reshma Jadhav
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Str. 1a, A-1060, Vienna, Austria
- Christian Doppler Laboratory for Optimized Expression of Carbohydrate-Active Enzymes, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Str. 1a, A-1060, Vienna, Austria
| | - Robert L Mach
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Str. 1a, A-1060, Vienna, Austria
| | - Astrid R Mach-Aigner
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Str. 1a, A-1060, Vienna, Austria.
- Christian Doppler Laboratory for Optimized Expression of Carbohydrate-Active Enzymes, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Str. 1a, A-1060, Vienna, Austria.
| |
Collapse
|
3
|
Kamath MM, Adams EM, Lightfoot JD, Wells BL, Fuller KK. The mammalian Ire1 inhibitor, 4µ8C, exhibits broad anti- Aspergillus activity in vitro and in a treatment model of fungal keratitis. Front Cell Infect Microbiol 2024; 14:1477463. [PMID: 39600871 PMCID: PMC11588707 DOI: 10.3389/fcimb.2024.1477463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024] Open
Abstract
Objective The fungal unfolded protein response consists of a two-component relay in which the ER-bound sensor, IreA, splices and activates the mRNA of the transcription factor, HacA. Previously, we demonstrated that hacA is essential for Aspergillus fumigatus virulence in a murine model of fungal keratitis (FK), suggesting the pathway could serve as a therapeutic target. Here we investigate the antifungal properties of known inhibitors of the mammalian Ire1 protein both in vitro and in a treatment model of FK. Methods The antifungal activity of Ire1 inhibitors was tested against conidia of several A. fumigatus isolates by a broth microdilution assay and against fungal biofilm by XTT reduction. The influence of 4μ8C on hacA mRNA splicing in A. fumigatus was assessed through gel electrophoresis and qRT-PCR of UPR regulatory genes. The toxicity and antifungal profile of 4μ8C in the cornea was assessed by applying drops to uninfected or A. fumigatus-infected corneas 3 times daily starting 4 hours post-inoculation. Corneas were evaluated daily through slit-lamp imaging and optical coherence tomography, or at endpoint through histology or fungal burden quantification via colony forming units. Results Among six Ire1 inhibitors screened, the endonuclease inhibitor 4μ8C displayed the strongest antifungal profile with an apparent fungicidal action. The compound both blocked conidial germination and hyphal metabolism of A. fumigatus Af293 in the same concentration range that blocked hacA splicing and UPR gene induction (60-120 µM). Topical treatment of sham-inoculated corneas with 0.5 and 2.5 mM 4μ8C did not impact corneal clarity, but did transiently inhibit epithelialization of corneal ulcers. Relative to vehicle-treated Af293-infected corneas, treatment with 0.5 and 2.5 mM drug resulted in a 50% and >90% reduction in fungal load, respectively, the latter of which corresponded to an absence of clinical signs of infection or corneal pathology. Conclusion The in vitro data suggest that 4μ8C displays antifungal activity against A. fumigatus through the specific inhibition of IreA. Topical application of the compound to the murine cornea can furthermore block the establishment of infection, suggesting this class of drugs can be developed as novel antifungals that improve visual outcomes in FK patients.
Collapse
Affiliation(s)
- Manali M. Kamath
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Emily M. Adams
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Jorge D. Lightfoot
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Becca L. Wells
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Kevin K. Fuller
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
4
|
Kamath MM, Adams EM, Lightfoot JD, Wells BL, Fuller KK. The mammalian Ire1 inhibitor, 4μ8C, exhibits broad anti- Aspergillus activity in vitro and in a treatment model of fungal keratitis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.08.607189. [PMID: 39149375 PMCID: PMC11326231 DOI: 10.1101/2024.08.08.607189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Objective The fungal unfolded protein response consists of a two-component relay in which the ER-bound sensor, IreA, splices and activates the mRNA of the transcription factor, HacA. Previously, we demonstrated that hacA is essential for Aspergillus fumigatus virulence in a murine model of fungal keratitis (FK), suggesting the pathway could serve as a therapeutic target. Here we investigate the antifungal properties of known inhibitors of the mammalian Ire1 protein both in vitro and in a treatment model of FK. Methods The antifungal activity of Ire1 inhibitors was tested against conidia of several A. fumigatus isolates by a microbroth dilution assay and against fungal biofilm by XTT reduction. The influence of 4μ8C on hacA mRNA splicing in A. fumigatus was assessed through gel electrophoresis and qRT-PCR of UPR regulatory genes. The toxicity and antifungal profile of 4μ8C in the cornea was assessed by applying drops to uninfected or A. fumigatus-infected corneas 3 times daily starting 4 hours post-inoculation. Corneas were evaluated daily through slit-lamp imaging and optical coherence tomography, or at endpoint through histology or fungal burden quantification via colony forming units. Results Among six Ire1 inhibitors screened, the endonuclease inhibitor 4μ8C displayed the strongest antifungal profile with an apparent fungicidal action. The compound both blocked conidial germination and hyphal metabolism of A. fumigatus Af293 in the same concentration range that blocked hacA splicing and UPR gene induction (60-120 μM). Topical treatment of sham-inoculated corneas with 0.5 and 2.5 mM 4μ8C did not impact corneal clarity, but did transiently inhibit epithelialization of corneal ulcers. Relative to vehicle-treated Af293-infected corneas, treatment with 0.5 and 2.5 mM drug resulted in a 50% and >90% reduction in fungal load, respectively, the latter of which corresponded to an absence of clinical signs of infection or corneal pathology. Conclusion The in vitro data suggest that 4μ8C displays antifungal activity against A. fumigatus through the specific inhibition of IreA. Topical application of the compound to the murine cornea can furthermore block the establishment of infection, suggesting this class of drugs can be developed as novel antifungals that improve visual outcomes in FK patients.
Collapse
Affiliation(s)
- Manali M. Kamath
- Department of Microbiology & Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Emily M. Adams
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Jorge D. Lightfoot
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Becca L. Wells
- Department of Microbiology & Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Kevin K. Fuller
- Department of Microbiology & Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| |
Collapse
|
5
|
Yu M, Zhou X, Chen D, Jiao Y, Han G, Tao F. HacA, a key transcription factor for the unfolded protein response, is required for fungal development, aflatoxin biosynthesis and pathogenicity of Aspergillus flavus. Int J Food Microbiol 2024; 417:110693. [PMID: 38653122 DOI: 10.1016/j.ijfoodmicro.2024.110693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/16/2024] [Accepted: 04/02/2024] [Indexed: 04/25/2024]
Abstract
Aspergillus flavus is a fungus notorious for contaminating food and feed with aflatoxins. As a saprophytic fungus, it secretes large amounts of enzymes to access nutrients, making endoplasmic reticulum (ER) homeostasis important for protein folding and secretion. The role of HacA, a key transcription factor in the unfolded protein response pathway, remains poorly understood in A. flavus. In this study, the hacA gene in A. flavus was knockout. Results showed that the absence of hacA led to a decreased pathogenicity of the strain, as it failed to colonize intact maize kernels. This may be due to retarded vegetable growth, especially the abnormal development of swollen tips and shorter hyphal septa. Deletion of hacA also hindered conidiogenesis and sclerotial development. Notably, the mutant strain failed to produce aflatoxin B1. Moreover, compared to the wild type, the mutant strain showed increased sensitivity to ER stress inducer such as Dithiothreitol (DTT), and heat stress. It also displayed heightened sensitivity to other environmental stresses, including cell wall, osmotic, and pH stresses. Further transcriptomic analysis revealed the involvement of the hacA in numerous biological processes, including filamentous growth, asexual reproduction, mycotoxin biosynthetic process, signal transduction, budding cell apical bud growth, invasive filamentous growth, response to stimulus, and so on. Taken together, HacA plays a vital role in fungal development, pathogenicity and aflatoxins biosynthesis. This highlights the potential of targeting hacA as a novel approach for early prevention of A. flavus contamination.
Collapse
Affiliation(s)
- Min Yu
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Xiaoling Zhou
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Dongyue Chen
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Yuan Jiao
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Guomin Han
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Fang Tao
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
6
|
Li T, Liu Y, Zhu H, Cao L, Zhou Y, Liu D, Shen Q. Cellular ATP redistribution achieved by deleting Tgparp improves lignocellulose utilization of Trichoderma under heat stress. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:54. [PMID: 38637859 PMCID: PMC11027231 DOI: 10.1186/s13068-024-02502-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/05/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND Thermotolerance is widely acknowledged as a pivotal factor for fungal survival across diverse habitats. Heat stress induces a cascade of disruptions in various life processes, especially in the acquisition of carbon sources, while the mechanisms by which filamentous fungi adapt to heat stress and maintain carbon sources are still not fully understood. RESULTS Using Trichoderma guizhouense, a representative beneficial microorganism for plants, we discover that heat stress severely inhibits the lignocellulases secretion, affecting carbon source utilization efficiency. Proteomic results at different temperatures suggest that proteins involved in the poly ADP-ribosylation pathway (TgPARP and TgADPRase) may play pivotal roles in thermal adaptation and lignocellulose utilization. TgPARP is induced by heat stress, while the deletion of Tgparp significantly improves the lignocellulose utilization capacity and lignocellulases secretion in T. guizhouense. Simultaneously, the absence of Tgparp prevents the excessive depletion of ATP and NAD+, enhances the protective role of mitochondrial membrane potential (MMP), and elevates the expression levels of the unfolded protein response (UPR)-related regulatory factor Tgire. Further investigations reveal that a stable MMP can establish energy homeostasis, allocating more ATP within the endoplasmic reticulum (ER) to reduce protein accumulation in the ER, thereby enhancing the lignocellulases secretion in T. guizhouense under heat stress. CONCLUSIONS Overall, these findings underscored the significance of Tgparp as pivotal regulators in lignocellulose utilization under heat stress and provided further insights into the molecular mechanism of filamentous fungi in utilizing lignocellulose.
Collapse
Affiliation(s)
- Tuo Li
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing, China
- College of Resources & Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Yang Liu
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing, China
- College of Resources & Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Han Zhu
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing, China
- College of Resources & Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Linhua Cao
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing, China
- College of Resources & Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Yihao Zhou
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing, China
- College of Resources & Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Dongyang Liu
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing, China.
- College of Resources & Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| | - Qirong Shen
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing, China
- College of Resources & Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| |
Collapse
|
7
|
Zhu Y, Xu Q, Zou R, Liu S, Tao R, Liu S, Li X, Wen L, Wu J, Wang J. Phenethyl isothiocyanate induces cytotoxicity and apoptosis of porcine kidney cells through Mitochondrial ROS-associated ERS pathway. Comp Biochem Physiol C Toxicol Pharmacol 2024; 276:109804. [PMID: 38013045 DOI: 10.1016/j.cbpc.2023.109804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023]
Abstract
Glucosinolates (GLS) in cruciferous vegetables are anti-nutritional factors. Excessive or long-term intake of GLS-containing feed is harmful to animal health and may cause kidney damage. Phenethyl isothiocyanate (PEITC) is a GLS. In this study, we investigated the inhibitory effect of PEITC on a porcine kidney (PK-15) cell line and explored the mechanism of PEITC-induced apoptosis. We found that PEITC could affect cell viability and induce cell apoptosis after incubating cells for 24 h. High concentrations of PEITC can induce intracellular ROS accumulation, resulting in impaired mitochondrial function (decreased MMP, decreased ATP) and DNA damage (increased 8-OHdG), cytochrome c in mitochondria is released into the cytoplasm and activates mitochondrial pathway apoptosis-related proteins (Bcl-2 family and caspase-9, -3). Meanwhile, PEITC could induce intracellular Ca2+ accumulation, disrupt ER homeostasis, and activate the expression levels of three ER-resident transmembrane proteins orchestrating the UPR (PERK, IRE-1α and ATF6) and ER-related proteins (GRP78 and CHOP), thereby activating ERS-pathway apoptosis-related proteins (caspase-12, -7). Our results showed that low concentration (2.5 μM) of PEITC had no damaging effect on cells. In comparison, a high concentration (10 μM) of PEITC could induce cell damage in porcine kidney cells and induce apoptosis in PK-15 cells via the Mitochondrial ROS-associated ERS pathway.
Collapse
Affiliation(s)
- Yuanyuan Zhu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China; Changsha Luye Biotechnology Co., Ltd, Changsha 410100, China
| | - Qiurong Xu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Ruili Zou
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Sha Liu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Ran Tao
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Shuiping Liu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Xiaowen Li
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Lixin Wen
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Jing Wu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Ji Wang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China; Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China.
| |
Collapse
|
8
|
Earle K, Valero C, Conn DP, Vere G, Cook PC, Bromley MJ, Bowyer P, Gago S. Pathogenicity and virulence of Aspergillus fumigatus. Virulence 2023; 14:2172264. [PMID: 36752587 PMCID: PMC10732619 DOI: 10.1080/21505594.2023.2172264] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 12/16/2022] [Indexed: 02/09/2023] Open
Abstract
Pulmonary infections caused by the mould pathogen Aspergillus fumigatus are a major cause of morbidity and mortality globally. Compromised lung defences arising from immunosuppression, chronic respiratory conditions or more recently, concomitant viral or bacterial pulmonary infections are recognised risks factors for the development of pulmonary aspergillosis. In this review, we will summarise our current knowledge of the mechanistic basis of pulmonary aspergillosis with a focus on emerging at-risk populations.
Collapse
Affiliation(s)
- Kayleigh Earle
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Clara Valero
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Daniel P. Conn
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - George Vere
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Peter C. Cook
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Michael J. Bromley
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Paul Bowyer
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Sara Gago
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| |
Collapse
|
9
|
Ishiwata-Kimata Y, Kimata Y. Fundamental and Applicative Aspects of the Unfolded Protein Response in Yeasts. J Fungi (Basel) 2023; 9:989. [PMID: 37888245 PMCID: PMC10608004 DOI: 10.3390/jof9100989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/28/2023] Open
Abstract
Upon the dysfunction or functional shortage of the endoplasmic reticulum (ER), namely, ER stress, eukaryotic cells commonly provoke a protective gene expression program called the unfolded protein response (UPR). The molecular mechanism of UPR has been uncovered through frontier genetic studies using Saccharomyces cerevisiae as a model organism. Ire1 is an ER-located transmembrane protein that directly senses ER stress and is activated as an RNase. During ER stress, Ire1 promotes the splicing of HAC1 mRNA, which is then translated into a transcription factor that induces the expression of various genes, including those encoding ER-located molecular chaperones and protein modification enzymes. While this mainstream intracellular UPR signaling pathway was elucidated in the 1990s, new intriguing insights have been gained up to now. For instance, various additional factors allow UPR evocation strictly in response to ER stress. The UPR machineries in other yeasts and fungi, including pathogenic species, are another important research topic. Moreover, industrially beneficial yeast strains carrying an enforced and enlarged ER have been produced through the artificial and constitutive induction of the UPR. In this article, we review canonical and up-to-date insights concerning the yeast UPR, mainly from the viewpoint of the functions and regulation of Ire1 and HAC1.
Collapse
Affiliation(s)
| | - Yukio Kimata
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara 630-0192, Japan
| |
Collapse
|
10
|
Kamath MM, Lightfoot JD, Adams EM, Kiser RM, Wells BL, Fuller KK. The Aspergillus fumigatus UPR is variably activated across nutrient and host environments and is critical for the establishment of corneal infection. PLoS Pathog 2023; 19:e1011435. [PMID: 37906600 PMCID: PMC10637725 DOI: 10.1371/journal.ppat.1011435] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 11/10/2023] [Accepted: 10/14/2023] [Indexed: 11/02/2023] Open
Abstract
The Aspergillus fumigatus unfolded protein response (UPR) is a two-component relay consisting of the ER-bound IreA protein, which splices and activates the mRNA of the transcription factor HacA. Spliced hacA accumulates under conditions of acute ER stress in vitro, and UPR null mutants are hypovirulent in a murine model of invasive pulmonary infection. In this report, we demonstrate that a hacA deletion mutant (ΔhacA) is furthermore avirulent in a model of fungal keratitis, a corneal infection, and an important cause of ocular morbidity and unilateral blindness worldwide. Interestingly, we demonstrate that A. fumigatus hacA is spliced in infected lung samples, but not in the cornea, suggesting the amount of ER stress experienced by the fungus varies upon the host niche. To better understand how the UPR contributes to fungal cell biology across a spectrum of ER-stress levels, we employed transcriptomics on the wild-type and ΔhacA strains in glucose minimal media (low stress), glucose minimal media with dithiothreitol (high stress), and gelatin minimal media as a proxy for the nutrient stress encountered in the cornea (mid-level stress). These data altogether reveal a unique HacA-dependent transcriptome under each condition, suggesting that HacA activity is finely-tuned and required for proper fungal adaptation in each environment. Taken together, our results indicate that the fungal UPR could serve as an important antifungal target in the setting of both invasive pulmonary and corneal infections.
Collapse
Affiliation(s)
- Manali M. Kamath
- Department of Microbiology & Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Jorge D. Lightfoot
- Department of Microbiology & Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Emily M. Adams
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Ryan M. Kiser
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Becca L. Wells
- Department of Microbiology & Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Kevin K. Fuller
- Department of Microbiology & Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| |
Collapse
|
11
|
Hokken MWJ, Coolen JPM, Steenbreker H, Zoll J, Baltussen TJH, Verweij PE, Melchers WJG. The Transcriptome Response to Azole Compounds in Aspergillus fumigatus Shows Differential Gene Expression across Pathways Essential for Azole Resistance and Cell Survival. J Fungi (Basel) 2023; 9:807. [PMID: 37623579 PMCID: PMC10455693 DOI: 10.3390/jof9080807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/19/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023] Open
Abstract
The opportunistic pathogen Aspergillus fumigatus is found on all continents and thrives in soil and agricultural environments. Its ability to readily adapt to novel environments and to produce billions of spores led to the spread of azole-resistant A. fumigatus across the globe, posing a threat to many immunocompromised patients, including critically ill patients with severe influenza or COVID-19. In our study, we sought to compare the adaptational response to azoles from A. fumigatus isolates that differ in azole susceptibility and genetic background. To gain more insight into how short-term adaptation to stressful azole compounds is managed through gene expression, we conducted an RNA-sequencing study on the response of A. fumigatus to itraconazole and the newest clinically approved azole, isavuconazole. We observed many similarities in ergosterol biosynthesis up-regulation across isolates, with the exception of the pan-azole-resistant isolate, which showed very little differential regulation in comparison to other isolates. Additionally, we found differential regulation of membrane efflux transporters, secondary metabolites, iron metabolism, and various stress response and cell signaling mechanisms.
Collapse
Affiliation(s)
- Margriet W. J. Hokken
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands (T.J.H.B.)
- Center of Expertise in Mycology Radboudumc/CWZ, 6500 HB Nijmegen, The Netherlands
| | - Jordy P. M. Coolen
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands (T.J.H.B.)
- Center of Expertise in Mycology Radboudumc/CWZ, 6500 HB Nijmegen, The Netherlands
| | - Hilbert Steenbreker
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands (T.J.H.B.)
| | - Jan Zoll
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands (T.J.H.B.)
- Center of Expertise in Mycology Radboudumc/CWZ, 6500 HB Nijmegen, The Netherlands
| | - Tim J. H. Baltussen
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands (T.J.H.B.)
- Center of Expertise in Mycology Radboudumc/CWZ, 6500 HB Nijmegen, The Netherlands
| | - Paul E. Verweij
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands (T.J.H.B.)
- Center of Expertise in Mycology Radboudumc/CWZ, 6500 HB Nijmegen, The Netherlands
| | - Willem J. G. Melchers
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands (T.J.H.B.)
- Center of Expertise in Mycology Radboudumc/CWZ, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
12
|
Neves-da-Rocha J, Santos-Saboya MJ, Lopes MER, Rossi A, Martinez-Rossi NM. Insights and Perspectives on the Role of Proteostasis and Heat Shock Proteins in Fungal Infections. Microorganisms 2023; 11:1878. [PMID: 37630438 PMCID: PMC10456932 DOI: 10.3390/microorganisms11081878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/30/2023] [Accepted: 07/06/2023] [Indexed: 08/27/2023] Open
Abstract
Fungi are a diverse group of eukaryotic organisms that infect humans, animals, and plants. To successfully colonize their hosts, pathogenic fungi must continuously adapt to the host's unique environment, e.g., changes in temperature, pH, and nutrient availability. Appropriate protein folding, assembly, and degradation are essential for maintaining cellular homeostasis and survival under stressful conditions. Therefore, the regulation of proteostasis is crucial for fungal pathogenesis. The heat shock response (HSR) is one of the most important cellular mechanisms for maintaining proteostasis. It is activated by various stresses and regulates the activity of heat shock proteins (HSPs). As molecular chaperones, HSPs participate in the proteostatic network to control cellular protein levels by affecting their conformation, location, and degradation. In recent years, a growing body of evidence has highlighted the crucial yet understudied role of stress response circuits in fungal infections. This review explores the role of protein homeostasis and HSPs in fungal pathogenicity, including their contributions to virulence and host-pathogen interactions, as well as the concerted effects between HSPs and the main proteostasis circuits in the cell. Furthermore, we discuss perspectives in the field and the potential for targeting the components of these circuits to develop novel antifungal therapies.
Collapse
Affiliation(s)
- João Neves-da-Rocha
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil; (M.J.S.-S.); (M.E.R.L.); (A.R.)
| | | | | | | | - Nilce M. Martinez-Rossi
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil; (M.J.S.-S.); (M.E.R.L.); (A.R.)
| |
Collapse
|
13
|
Fauzee YNBM, Yoshida Y, Kimata Y. Endoplasmic stress sensor Ire1 is involved in cytosolic/nuclear protein quality control in Pichia pastoris cells independent of HAC1. Front Microbiol 2023; 14:1157146. [PMID: 37415818 PMCID: PMC10321714 DOI: 10.3389/fmicb.2023.1157146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/31/2023] [Indexed: 07/08/2023] Open
Abstract
In eukaryotic species, dysfunction of the endoplasmic reticulum (ER), namely, ER stress, provokes a cytoprotective transcription program called the unfolded protein response (UPR). The UPR is triggered by transmembrane ER-stress sensors, including Ire1, which acts as an endoribonuclease to splice and mature the mRNA encoding the transcription factor Hac1 in many fungal species. Through analyses of the methylotrophic yeast Pichia pastoris (syn. Komagataella phaffii), we revealed a previously unknown function of Ire1. In P. pastoris cells, the IRE1 knockout mutation (ire1Δ) and HAC1 knockout mutation (hac1Δ) caused only partially overlapping gene expression changes. Protein aggregation and the heat shock response (HSR) were induced in ire1Δ cells but not in hac1Δ cells even under non-stress conditions. Moreover, Ire1 was further activated upon high-temperature culturing and conferred heat stress resistance to P. pastoris cells. Our findings cumulatively demonstrate an intriguing case in which the UPR machinery controls cytosolic protein folding status and the HSR, which is known to be activated upon the accumulation of unfolded proteins in the cytosol and/or nuclei.
Collapse
|
14
|
Lee Y, Hossain S, MacAlpine J, Robbins N, Cowen LE. Functional genomic analysis of Candida albicans protein kinases reveals modulators of morphogenesis in diverse environments. iScience 2023; 26:106145. [PMID: 36879823 PMCID: PMC9984565 DOI: 10.1016/j.isci.2023.106145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/21/2022] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Candida albicans is a leading cause of mycotic infection. The ability to transition between yeast and filamentous forms is critical to C. albicans virulence and complex signaling pathways regulate this process. Here, we screened a C. albicans protein kinase mutant library in six environmental conditions to identify regulators of morphogenesis. We identified the uncharacterized gene orf19.3751 as a negative regulator of filamentation and follow-up investigations implicated a role for orf19.3751 in cell cycle regulation. We also uncovered a dual role for the kinases Ire1 and protein kinase A (Tpk1 and Tpk2) in C. albicans morphogenesis, specifically as negative regulators of wrinkly colony formation on solid medium but positive regulators of filamentation in liquid medium. Further analyses suggested Ire1 modulates morphogenesis in both media states in part through the transcription factor Hac1 and in part through independent mechanisms. Overall, this work provides insights into the signaling governing morphogenesis in C. albicans.
Collapse
Affiliation(s)
- Yunjin Lee
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Saif Hossain
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jessie MacAlpine
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
15
|
Putative Core Transcription Factors Affecting Virulence in Aspergillus flavus during Infection of Maize. J Fungi (Basel) 2023; 9:jof9010118. [PMID: 36675939 PMCID: PMC9861280 DOI: 10.3390/jof9010118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 01/17/2023] Open
Abstract
Aspergillus flavus is an opportunistic pathogen responsible for millions of dollars in crop losses annually and negative health impacts on crop consumers globally. A. flavus strains have the potential to produce aflatoxin and other toxic secondary metabolites, which often increase during plant colonization. To mitigate the impacts of this international issue, we employ a range of strategies to directly impact fungal physiology, growth and development, thus requiring knowledge on the underlying molecular mechanisms driving these processes. Here we utilize RNA-sequencing data that are obtained from in situ assays, whereby Zea mays kernels are inoculated with A. flavus strains, to select transcription factors putatively driving virulence-related gene networks. We demonstrate, through growth, sporulation, oxidative stress-response and aflatoxin/CPA analysis, that three A. flavus strains with knockout mutations for the putative transcription factors AFLA_089270, AFLA_112760, and AFLA_031450 demonstrate characteristics such as reduced growth capacity and decreased aflatoxin/CPA accumulation in kernels consistent with decreased fungal pathogenicity. Furthermore, AFLA_089270, also known as HacA, eliminates CPA production and impacts the fungus's capacity to respond to highly oxidative conditions, indicating an impact on plant colonization. Taken together, these data provide a sound foundation for elucidating the downstream molecular pathways potentially contributing to fungal virulence.
Collapse
|
16
|
Yao C, Yan M, Li K, Gao W, Li X, Zhang J, Liu H, Zhong Y. The ERAD Pathway Participates in Fungal Growth and Cellulase Secretion in Trichoderma reesei. J Fungi (Basel) 2023; 9:74. [PMID: 36675895 PMCID: PMC9862206 DOI: 10.3390/jof9010074] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/24/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
Trichoderma reesei is a powerful fungal cell factory for the production of cellulolytic enzymes due to its outstanding protein secretion capacity. Endoplasmic reticulum-associated degradation (ERAD) plays an integral role in protein secretion that responds to secretion pressure and removes misfolded proteins. However, the role of ERAD in fungal growth and endogenous protein secretion, particularly cellulase secretion, remains poorly understood in T. reesei. Here, we investigated the ability of T. reesei to grow under different stresses and to secrete cellulases by disrupting three major genes (hrd1, hrd3 and der1) involved in the critical parts of the ERAD pathway. Under the ER stress induced by high concentrations of DTT, knockout of hrd1, hrd3 and der1 resulted in severely impaired growth, and the mutants Δhrd1 and Δhrd3 exhibited high sensitivity to the cell wall-disturbing agents, CFW and CR. In addition, the absence of either hrd3 or der1 led to the decreased heat tolerance of this fungus. These mutants showed significant differences in the secretion of cellulases compared to the parental strain QM9414. During fermentation, the secretion of endoglucanase in the mutants was essentially consistent with that of the parental strain, while cellobiohydrolase and β-glucosidase were declined. It was further discovered that the transcription levels of the endoglucanase-encoding genes (eg1 and eg2) and the cellobiohydrolase-encoding gene (cbh1) were not remarkedly changed. However, the β-glucosidase-encoding gene (bgl1) was significantly downregulated in the ERAD-deficient mutants, which was presumably due to the activation of a proposed feedback mechanism, repression under secretion stress (RESS). Taken together, our results indicate that a defective ERAD pathway negatively affects fungal growth and cellulase secretion, which provides a novel insight into the cellulase secretion mechanism in T. reesei.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hong Liu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yaohua Zhong
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| |
Collapse
|
17
|
Systematic Characterization of bZIP Transcription Factors Required for Development and Aflatoxin Generation by High-Throughput Gene Knockout in Aspergillus flavus. J Fungi (Basel) 2022; 8:jof8040356. [PMID: 35448587 PMCID: PMC9031554 DOI: 10.3390/jof8040356] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 12/31/2022] Open
Abstract
The basic leucine zipper (bZIP) is an important transcription factor required for fungal development, nutrient utilization, biosynthesis of secondary metabolites, and defense against various stresses. Aspergillus flavus is a major producer of aflatoxin and an opportunistic fungus on a wide range of hosts. However, little is known about the role of most bZIP genes in A. flavus. In this study, we developed a high-throughput gene knockout method based on an Agrobacterium-mediated transformation system. Gene knockout construction by yeast recombinational cloning and screening of the null mutants by double fluorescence provides an efficient way to construct gene-deleted mutants for this multinucleate fungus. We deleted 15 bZIP genes in A. flavus. Twelve of these genes were identified and characterized in this strain for the first time. The phenotypic analysis of these mutants showed that the 15 bZIP genes play a diverse role in mycelial growth (eight genes), conidiation (13 genes), aflatoxin biosynthesis (10 genes), oxidative stress response (11 genes), cell wall stress (five genes), osmotic stress (three genes), acid and alkali stress (four genes), and virulence to kernels (nine genes). Impressively, all 15 genes were involved in the development of sclerotia, and the respective deletion mutants of five of them did not produce sclerotia. Moreover, MetR was involved in this biological process. In addition, HapX and MetR play important roles in the adaptation to excessive iron and sulfur metabolism, respectively. These studies provide comprehensive insights into the role of bZIP transcription factors in this aflatoxigenic fungus of global significance.
Collapse
|
18
|
Qian B, Su X, Ye Z, Liu X, Liu M, Shen D, Chen H, Zhang H, Wang P, Zhang Z. MoErv29 promotes apoplastic effector secretion contributing to virulence of the rice blast fungus Magnaporthe oryzae. THE NEW PHYTOLOGIST 2022; 233:1289-1302. [PMID: 34761375 PMCID: PMC8738142 DOI: 10.1111/nph.17851] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/01/2021] [Indexed: 05/14/2023]
Abstract
During plant-pathogenic fungi and host plants interactions, numerous pathogen-derived proteins are secreted resulting in the activation of the unfolded protein response (UPR) pathway. For efficient trafficking of secretory proteins, including those important in disease progression, the cytoplasmic coat protein complex II (COPII) exhibits a multifunctional role whose elucidation remains limited. Here, we discovered that the COPII cargo receptor MoErv29 functions as a target of MoHac1, a previously identified transcription factor of the UPR pathway. In Magnaporthe oryzae, deletion of MoERV29 severely affected the vegetative growth, conidiation and biotrophic invasion of the fungus in susceptible rice hosts. We demonstrated that MoErv29 is required for the delivery of secreted proteins through recognition and binding of the amino-terminal tripeptide motifs following the signal peptide. By using bioinformatics analysis, we predicted a cargo spectrum of MoErv29 and found that MoErv29 is required for the secretion of many proteins, including extracellular laccases and apoplastic effectors. This secretion is mediated through the conventional endoplasmic reticulum-Golgi secretion pathway and is important for conferring host recognition and disease resistance. Taken together, our results revealed how MoErv29 operates on effector secretion, and our findings provided a critical link between COPII vesicle trafficking and the UPR pathway.
Collapse
Affiliation(s)
- Bin Qian
- Department of Plant PathologyCollege of Plant ProtectionNanjing Agricultural UniversityNanjing210095China
- Key Laboratory of Integrated Management of Crop Diseases and PestsMinistry of EducationNanjing210095China
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjing210095China
| | - Xiaotong Su
- Department of Plant PathologyCollege of Plant ProtectionNanjing Agricultural UniversityNanjing210095China
- Key Laboratory of Integrated Management of Crop Diseases and PestsMinistry of EducationNanjing210095China
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjing210095China
| | - Ziyuan Ye
- Department of Plant PathologyCollege of Plant ProtectionNanjing Agricultural UniversityNanjing210095China
- Key Laboratory of Integrated Management of Crop Diseases and PestsMinistry of EducationNanjing210095China
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjing210095China
| | - Xinyu Liu
- Department of Plant PathologyCollege of Plant ProtectionNanjing Agricultural UniversityNanjing210095China
- Key Laboratory of Integrated Management of Crop Diseases and PestsMinistry of EducationNanjing210095China
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjing210095China
| | - Muxing Liu
- Department of Plant PathologyCollege of Plant ProtectionNanjing Agricultural UniversityNanjing210095China
- Key Laboratory of Integrated Management of Crop Diseases and PestsMinistry of EducationNanjing210095China
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjing210095China
| | - Danyu Shen
- Department of Plant PathologyCollege of Plant ProtectionNanjing Agricultural UniversityNanjing210095China
- Key Laboratory of Integrated Management of Crop Diseases and PestsMinistry of EducationNanjing210095China
| | - Han Chen
- Department of Plant PathologyCollege of Plant ProtectionNanjing Agricultural UniversityNanjing210095China
- Key Laboratory of Integrated Management of Crop Diseases and PestsMinistry of EducationNanjing210095China
| | - Haifeng Zhang
- Department of Plant PathologyCollege of Plant ProtectionNanjing Agricultural UniversityNanjing210095China
- Key Laboratory of Integrated Management of Crop Diseases and PestsMinistry of EducationNanjing210095China
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjing210095China
| | - Ping Wang
- Department of Microbiology, Immunology and ParasitologyLouisiana State University Health Sciences CenterNew OrleansLA70118USA
| | - Zhengguang Zhang
- Department of Plant PathologyCollege of Plant ProtectionNanjing Agricultural UniversityNanjing210095China
- Key Laboratory of Integrated Management of Crop Diseases and PestsMinistry of EducationNanjing210095China
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjing210095China
| |
Collapse
|
19
|
Guirao-Abad JP, Weichert M, Askew DS. Cell death induction in Aspergillus fumigatus: accentuating drug toxicity through inhibition of the unfolded protein response (UPR). CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100119. [PMID: 35909601 PMCID: PMC9325865 DOI: 10.1016/j.crmicr.2022.100119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/25/2022] [Accepted: 02/17/2022] [Indexed: 01/18/2023] Open
Abstract
The UPR is an adaptive stress response network that is tightly linked to the ability of Aspergillus fumigatus, and other pathogenic fungi, to sustain viability in the presence of adverse environmental conditions, including the stress of infection. In this review, we summarize the evidence that supports the concept of targeting the A. fumigatus UPR as a strategy to reduce the ability of the fungus to withstand stress.
One of the most potent opportunistic fungal pathogens of humans is Aspergillus fumigatus, an environmental mold that causes a life-threatening pneumonia with a high rate of morbidity and mortality. Despite advances in therapy, issues of drug toxicity and antifungal resistance remain an obstacle to effective therapy. This underscores the need for more information on fungal pathways that could be pharmacologically manipulated to either reduce the viability of the fungus during infection, or to unleash the fungicidal potential of current antifungal drugs. In this review, we summarize the emerging evidence that the ability of A. fumigatus to sustain viability during stress relies heavily on an adaptive signaling pathway known as the unfolded protein response (UPR), thereby exposing a vulnerability in this fungus that has strong potential for future therapeutic intervention.
Collapse
|
20
|
Ramírez-Zavala B, Krüger I, Dunker C, Jacobsen ID, Morschhäuser J. The protein kinase Ire1 has a Hac1-independent essential role in iron uptake and virulence of Candida albicans. PLoS Pathog 2022; 18:e1010283. [PMID: 35108336 PMCID: PMC8846550 DOI: 10.1371/journal.ppat.1010283] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/14/2022] [Accepted: 01/19/2022] [Indexed: 11/25/2022] Open
Abstract
Protein kinases play central roles in virtually all signaling pathways that enable organisms to adapt to their environment. Microbial pathogens must cope with severely restricted iron availability in mammalian hosts to invade and establish themselves within infected tissues. To uncover protein kinase signaling pathways that are involved in the adaptation of the pathogenic yeast Candida albicans to iron limitation, we generated a comprehensive protein kinase deletion mutant library of a wild-type strain. Screening of this library revealed that the protein kinase Ire1, which has a conserved role in the response of eukaryotic cells to endoplasmic reticulum stress, is essential for growth of C. albicans under iron-limiting conditions. Ire1 was not necessary for the activity of the transcription factor Sef1, which regulates the response of the fungus to iron limitation, and Sef1 target genes that are induced by iron depletion were normally upregulated in ire1Δ mutants. Instead, Ire1 was required for proper localization of the high-affinity iron permease Ftr1 to the cell membrane. Intriguingly, iron limitation did not cause increased endoplasmic reticulum stress, and the transcription factor Hac1, which is activated by Ire1-mediated removal of the non-canonical intron in the HAC1 mRNA, was dispensable for Ftr1 localization to the cell membrane and growth under iron-limiting conditions. Nevertheless, expression of a pre-spliced HAC1 copy in ire1Δ mutants restored Ftr1 localization and rescued the growth defects of the mutants. Both ire1Δ and hac1Δ mutants were avirulent in a mouse model of systemic candidiasis, indicating that an appropriate response to endoplasmic reticulum stress is important for the virulence of C. albicans. However, the specific requirement of Ire1 for the functionality of the high-affinity iron permease Ftr1, a well-established virulence factor, even in the absence of endoplasmic reticulum stress uncovers a novel Hac1-independent essential role of Ire1 in iron acquisition and virulence of C. albicans.
Collapse
Affiliation(s)
| | - Ines Krüger
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Christine Dunker
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany
| | - Ilse D. Jacobsen
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany
- Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Joachim Morschhäuser
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
21
|
Pleiotropic Effects of the P5-Type ATPase SpfA on Stress Response Networks Contribute to Virulence in the Pathogenic Mold Aspergillus fumigatus. mBio 2021; 12:e0273521. [PMID: 34663092 PMCID: PMC8524344 DOI: 10.1128/mbio.02735-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aspergillus fumigatus is a human-pathogenic mold that extracts nutrients from the environment or from host tissues by secreting hydrolytic enzymes. The ability of A. fumigatus to adjust secretion levels in proportion to demand relies on the assistance of the unfolded protein response (UPR), an adaptive stress response pathway that regulates the unique protein-folding environment of the endoplasmic reticulum (ER). The P5-type ATPase Spf1 has recently been implicated in a novel mechanism of ER homeostasis that involves correcting errors in ER-membrane protein targeting. However, the contribution of this protein to the biology of A. fumigatus is unknown. Here, we employed a gene knockout and RNA sequencing strategy to determine the functional role of the A. fumigatus gene coding for the orthologous P5 ATPase SpfA. The data reveal that the spfA gene is induced by ER stress in a UPR-dependent manner. In the absence of spfA, the A. fumigatus transcriptome shifts toward a profile of altered redox and lipid balance, in addition to a signature of ER stress that includes srcA, encoding a second P-type ATPase in the ER. A ΔspfA deletion mutant showed increased sensitivity to ER stress, oxidative stress, and antifungal drugs that target the cell wall or plasma membrane. The combined loss of spfA and srcA exacerbated these phenotypes and attenuated virulence in two animal infection models. These findings demonstrate that the ER-resident ATPases SpfA and SrcA act jointly to support diverse adaptive functions of the ER that are necessary for fitness in the host environment. IMPORTANCE The fungal UPR is an adaptive signaling pathway in the ER that buffers fluctuations in ER stress but also serves as a virulence regulatory hub in species of pathogenic fungi that rely on secretory pathway homeostasis for pathogenicity. This study demonstrates that the gene encoding the ER-localized P5-type ATPase SpfA is a downstream target of the UPR in the pathogenic mold A. fumigatus and that it works together with a second ER-localized P-type ATPase, SrcA, to support ER homeostasis, oxidative stress resistance, susceptibility to antifungal drugs, and virulence of A. fumigatus.
Collapse
|
22
|
Candida albicans Sfp1 Is Involved in the Cell Wall and Endoplasmic Reticulum Stress Responses Induced by Human Antimicrobial Peptide LL-37. Int J Mol Sci 2021; 22:ijms221910633. [PMID: 34638975 PMCID: PMC8508991 DOI: 10.3390/ijms221910633] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/26/2021] [Accepted: 09/28/2021] [Indexed: 12/21/2022] Open
Abstract
Candida albicans is a commensal fungus of humans but can cause infections, particularly in immunocompromised individuals, ranging from superficial to life-threatening systemic infections. The cell wall is the outermost layer of C. albicans that interacts with the host environment. Moreover, antimicrobial peptides (AMPs) are important components in innate immunity and play crucial roles in host defense. Our previous studies showed that the human AMP LL-37 binds to the cell wall of C. albicans, alters the cell wall integrity (CWI) and affects cell adhesion of this pathogen. In this study, we aimed to further investigate the molecular mechanisms underlying the C. albicans response to LL-37. We found that LL-37 causes cell wall stress, activates unfolded protein response (UPR) signaling related to the endoplasmic reticulum (ER), induces ER-derived reactive oxygen species and affects protein secretion. Interestingly, the deletion of the SFP1 gene encoding a transcription factor reduced C. albicans susceptibility to LL-37, which is cell wall-associated. Moreover, in the presence of LL-37, deletion of SFP1 attenuated the UPR pathway, upregulated oxidative stress responsive (OSR) genes and affected bovine serum albumin (BSA) degradation by secreted proteases. Therefore, these findings suggested that Sfp1 positively regulates cell wall integrity and ER homeostasis upon treatment with LL-37 and shed light on pathogen-host interactions.
Collapse
|
23
|
Carbon Catabolite Repression Governs Diverse Physiological Processes and Development in Aspergillus nidulans. mBio 2021; 13:e0373421. [PMID: 35164551 PMCID: PMC8844935 DOI: 10.1128/mbio.03734-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Carbon catabolite repression (CCR) is a common phenomenon of microorganisms that enable efficient utilization of carbon nutrients, critical for the fitness of microorganisms in the wild and for pathogenic species to cause infection. In most filamentous fungal species, the conserved transcription factor CreA/Cre1 mediates CCR. Previous studies demonstrated a primary function for CreA/Cre1 in carbon metabolism; however, the phenotype of creA/cre1 mutants indicated broader roles. The global function and regulatory mechanism of this wide-domain transcription factor has remained elusive. Here, we applied two powerful genomics methods (transcriptome sequencing and chromatin immunoprecipitation sequencing) to delineate the direct and indirect roles of Aspergillus nidulans CreA across diverse physiological processes, including secondary metabolism, iron homeostasis, oxidative stress response, development, N-glycan biosynthesis, unfolded protein response, and nutrient and ion transport. The results indicate intricate connections between the regulation of carbon metabolism and diverse cellular functions. Moreover, our work also provides key mechanistic insights into CreA regulation and identifies CreA as a master regulator controlling many transcription factors of different regulatory networks. The discoveries for this highly conserved transcriptional regulator in a model fungus have important implications for CCR in related pathogenic and industrial species. IMPORTANCE The ability to scavenge and use a wide range of nutrients for growth is crucial for microorganisms' survival in the wild. Carbon catabolite repression (CCR) is a transcriptional regulatory phenomenon of both bacteria and fungi to coordinate the expression of genes required for preferential utilization of carbon sources. Since carbon metabolism is essential for growth, CCR is central to the fitness of microorganisms. In filamentous fungi, CCR is mediated by the conserved transcription factor CreA/Cre1, whose function in carbon metabolism has been well established. However, the global roles and regulatory mechanism of CreA/Cre1 are poorly defined. This study uncovers the direct and indirect functions of CreA in the model organism Aspergillus nidulans over diverse physiological processes and development and provides mechanistic insights into how CreA controls different regulatory networks. The work also reveals an interesting functional divergence between filamentous fungal and yeast CreA/Cre1 orthologues.
Collapse
|
24
|
Sircaik S, Román E, Bapat P, Lee KK, Andes DR, Gow NAR, Nobile CJ, Pla J, Panwar SL. The protein kinase Ire1 impacts pathogenicity of Candida albicans by regulating homeostatic adaptation to endoplasmic reticulum stress. Cell Microbiol 2021; 23:e13307. [PMID: 33403715 PMCID: PMC8044019 DOI: 10.1111/cmi.13307] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 12/19/2020] [Accepted: 12/21/2020] [Indexed: 12/20/2022]
Abstract
The unfolded protein response (UPR), crucial for the maintenance of endoplasmic reticulum (ER) homeostasis, is tied to the regulation of multiple cellular processes in pathogenic fungi. Here, we show that Candida albicans relies on an ER‐resident protein, inositol‐requiring enzyme 1 (Ire1) for sensing ER stress and activating the UPR. Compromised Ire1 function impacts cellular processes that are dependent on functional secretory homeostasis, as inferred from transcriptional profiling. Concordantly, an Ire1‐mutant strain exhibits pleiotropic roles in ER stress response, antifungal tolerance, cell wall regulation and virulence‐related traits. Hac1 is the downstream target of C. albicans Ire1 as it initiates the unconventional splicing of the 19 bp intron from HAC1 mRNA during tunicamycin‐induced ER stress. Ire1 also activates the UPR in response to perturbations in cell wall integrity and cell membrane homeostasis in a manner that does not necessitate the splicing of HAC1 mRNA. Furthermore, the Ire1‐mutant strain is severely defective in hyphal morphogenesis and biofilm formation as well as in establishing a successful infection in vivo. Together, these findings demonstrate that C. albicans Ire1 functions to regulate traits that are essential for virulence and suggest its importance in responding to multiple stresses, thus integrating various stress signals to maintain ER homeostasis.
Collapse
Affiliation(s)
- Shabnam Sircaik
- Yeast Molecular Genetics Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Elvira Román
- Departamento de Microbiología y Parasitología-IRYCIS, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Priyanka Bapat
- Department of Molecular and Cell Biology, University of California, Merced, California, USA.,Quantitative and System Biology Graduate Program, University of California, Merced, California, USA
| | - Keunsook K Lee
- The Aberdeen Fungal Group, MRC Centre for Medical Mycology, School of Medicine, Medical Sciences & Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - David R Andes
- Department of Medicine, Section of Infectious Diseases, University of Wisconsin, Madison, Wisconsin, USA
| | - Neil A R Gow
- The Aberdeen Fungal Group, MRC Centre for Medical Mycology, School of Medicine, Medical Sciences & Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK.,Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Clarissa J Nobile
- Department of Molecular and Cell Biology, University of California, Merced, California, USA.,Health Sciences Research Institute, University of California, Merced, California, USA
| | - Jesús Pla
- Departamento de Microbiología y Parasitología-IRYCIS, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Sneh Lata Panwar
- Yeast Molecular Genetics Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
25
|
N’Guyen GQ, Raulo R, Porquier A, Iacomi B, Pelletier S, Renou JP, Bataillé-Simoneau N, Campion C, Hamon B, Kwasiborski A, Colou J, Benamar A, Hudhomme P, Macherel D, Simoneau P, Guillemette T. Responses of the Necrotrophic Fungus Alternaria brassisicola to the Indolic Phytoalexin Brassinin. FRONTIERS IN PLANT SCIENCE 2021; 11:611643. [PMID: 33552104 PMCID: PMC7860980 DOI: 10.3389/fpls.2020.611643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023]
Abstract
Alternaria brassicicola causes black spot disease in Brassicaceae. During host infection, this necrotrophic fungus is exposed to various antimicrobial compounds, such as the phytoalexin brassinin which is produced by many cultivated Brassica species. To investigate the cellular mechanisms by which this compound causes toxicity and the corresponding fungal adaptive strategies, we first analyzed fungal transcriptional responses to short-term exposure to brassinin and then used additional functional approaches. This study supports the hypothesis that indolic phytoalexin primarily targets mitochondrial functions in fungal cells. Indeed, we notably observed that phytoalexin treatment of A. brassicicola disrupted the mitochondrial membrane potential and resulted in a significant and rapid decrease in the oxygen consumption rates. Secondary effects, such as Reactive oxygen species production, changes in lipid and endoplasmic reticulum homeostasis were then found to be induced. Consequently, the fungus has to adapt its metabolism to protect itself against the toxic effects of these molecules, especially via the activation of high osmolarity glycerol and cell wall integrity signaling pathways and by induction of the unfolded protein response.
Collapse
Affiliation(s)
| | - Roxane Raulo
- Institut Charles Viollette – EA 7394, Université de Lille, INRA, ISA, Université d’Artois, Université du Littoral Côte d’Opale, Lille, France
| | | | | | - Sandra Pelletier
- UNIV Angers, Institut Agro, INRAE, IRHS, SFR 4207 QuaSaV, Angers, France
| | - Jean-Pierre Renou
- UNIV Angers, Institut Agro, INRAE, IRHS, SFR 4207 QuaSaV, Angers, France
| | | | - Claire Campion
- UNIV Angers, Institut Agro, INRAE, IRHS, SFR 4207 QuaSaV, Angers, France
| | - Bruno Hamon
- UNIV Angers, Institut Agro, INRAE, IRHS, SFR 4207 QuaSaV, Angers, France
| | | | - Justine Colou
- UNIV Angers, Institut Agro, INRAE, IRHS, SFR 4207 QuaSaV, Angers, France
| | - Abdelilah Benamar
- UNIV Angers, Institut Agro, INRAE, IRHS, SFR 4207 QuaSaV, Angers, France
| | | | - David Macherel
- UNIV Angers, Institut Agro, INRAE, IRHS, SFR 4207 QuaSaV, Angers, France
| | - Philippe Simoneau
- UNIV Angers, Institut Agro, INRAE, IRHS, SFR 4207 QuaSaV, Angers, France
| | - Thomas Guillemette
- UNIV Angers, Institut Agro, INRAE, IRHS, SFR 4207 QuaSaV, Angers, France
| |
Collapse
|
26
|
F-box only and CUE proteins are crucial ubiquitination-associated components for conidiation and pathogenicity in the rice blast fungus, Magnaporthe oryzae. Fungal Genet Biol 2020; 144:103473. [DOI: 10.1016/j.fgb.2020.103473] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 08/11/2020] [Accepted: 09/19/2020] [Indexed: 11/21/2022]
|
27
|
A Human IRE1 Inhibitor Blocks the Unfolded Protein Response in the Pathogenic Fungus Aspergillus fumigatus and Suggests Noncanonical Functions within the Pathway. mSphere 2020; 5:5/5/e00879-20. [PMID: 33087521 PMCID: PMC7580959 DOI: 10.1128/msphere.00879-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The unfolded protein response (UPR) is a signaling pathway that maintains endoplasmic reticulum (ER) homeostasis, with functions that overlap virulence mechanisms in the human-pathogenic mold Aspergillus fumigatus. The canonical pathway centers on HacA, its master transcriptional regulator. Translation of this protein requires the removal of an unconventional intron from the cytoplasmic mRNA of the hacA gene, which is achieved by an RNase domain located in the ER-transmembrane stress sensor IreA. Here, we show that targeting this RNase activity with a small-molecule inhibitor effectively blocked UPR activation, resulting in effects that mirror the consequences of genetic deletion of the RNase domain. However, these phenotypes were surprisingly narrow in scope relative to those associated with a complete deletion of the hacA gene. These findings expand the understanding of UPR signaling in this species by supporting the existence of noncanonical functions for the unspliced hacA mRNA in ER stress response. The unfolded protein response (UPR) is a signaling network that maintains homeostasis of the endoplasmic reticulum (ER). In the human-pathogenic fungus Aspergillus fumigatus, the UPR is initiated by activation of an endoribonuclease (RNase) domain in the ER transmembrane stress sensor IreA, which splices the downstream mRNA hacAu into its active form, hacAi, encoding the master transcriptional regulator of the pathway. Small-molecule inhibitors against IRE1, the human ortholog of IreA, have been developed for anticancer therapy, but their effects on the fungal UPR are unexplored. Here, we demonstrate that the IRE1 RNase inhibitor 4μ8C prevented A. fumigatus from increasing the levels of hacAi mRNA, thereby blocking induction of downstream UPR target gene expression. Treatment with 4μ8C had minimal effects on growth in minimal medium but severely impaired growth on a collagen substrate that requires high levels of hydrolytic enzyme secretion, mirroring the phenotype of other fungal UPR mutants. 4μ8C also increased sensitivity to carvacrol, a natural compound that disrupts ER integrity in fungi, and hygromycin B, which correlated with reduced expression of glycosylation-related genes. Interestingly, treatment with 4μ8C was unable to induce all of the phenotypes attributed to the loss of the canonical UPR in a ΔhacA mutant but showed remarkable similarity to the phenotype of an RNase-deficient IreA mutant that is also unable to generate the hacAi mRNA. These results establish proof of principle that pharmacological inhibition of the canonical UPR pathway is feasible in A. fumigatus and support a noncanonical role for the hacAu mRNA in ER stress response. IMPORTANCE The unfolded protein response (UPR) is a signaling pathway that maintains endoplasmic reticulum (ER) homeostasis, with functions that overlap virulence mechanisms in the human-pathogenic mold Aspergillus fumigatus. The canonical pathway centers on HacA, its master transcriptional regulator. Translation of this protein requires the removal of an unconventional intron from the cytoplasmic mRNA of the hacA gene, which is achieved by an RNase domain located in the ER-transmembrane stress sensor IreA. Here, we show that targeting this RNase activity with a small-molecule inhibitor effectively blocked UPR activation, resulting in effects that mirror the consequences of genetic deletion of the RNase domain. However, these phenotypes were surprisingly narrow in scope relative to those associated with a complete deletion of the hacA gene. These findings expand the understanding of UPR signaling in this species by supporting the existence of noncanonical functions for the unspliced hacA mRNA in ER stress response.
Collapse
|
28
|
Misslinger M, Hortschansky P, Brakhage AA, Haas H. Fungal iron homeostasis with a focus on Aspergillus fumigatus. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118885. [PMID: 33045305 DOI: 10.1016/j.bbamcr.2020.118885] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/15/2020] [Accepted: 10/01/2020] [Indexed: 02/08/2023]
Abstract
To maintain iron homeostasis, fungi have to balance iron acquisition, storage, and utilization to ensure sufficient supply and to avoid toxic excess of this essential trace element. As pathogens usually encounter iron limitation in the host niche, this metal plays a particular role during virulence. Siderophores are iron-chelators synthesized by most, but not all fungal species to sequester iron extra- and intracellularly. In recent years, the facultative human pathogen Aspergillus fumigatus has become a model for fungal iron homeostasis of siderophore-producing fungal species. This article summarizes the knowledge on fungal iron homeostasis and its links to virulence with a focus on A. fumigatus. It covers mechanisms for iron acquisition, storage, and detoxification, as well as the modes of transcriptional iron regulation and iron sensing in A. fumigatus in comparison to other fungal species. Moreover, potential translational applications of the peculiarities of fungal iron metabolism for treatment and diagnosis of fungal infections is addressed.
Collapse
Affiliation(s)
- Matthias Misslinger
- Institute of Molecular Biology - Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Peter Hortschansky
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Jena, Germany
| | - Axel A Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Jena, Germany; Department Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Hubertus Haas
- Institute of Molecular Biology - Biocenter, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
29
|
Expression and function of an Hac1-regulated multi-copy xylanase gene in Saccharomyces cerevisiae. Sci Rep 2020; 10:11686. [PMID: 32669586 PMCID: PMC7363925 DOI: 10.1038/s41598-020-68570-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 06/25/2020] [Indexed: 11/28/2022] Open
Abstract
Saccharomyces cerevisiae-based expression systems, which rely on safe, food-grade strains, are low cost, simple to operate, and can be used for large-scale fermentation. However, low levels of foreign protein expression by S. cerevisiae have limited their widespread application. The ability of the endoplasmic reticulum (ER) to fold and process foreign proteins is an important factor restricting the expression of foreign proteins. In the current study, the effects of transcription factor Hac1p, which is involved in the unfolded protein response pathway, on S. cerevisiae-based expression of xylanase gene xynB from Aspergillus niger were examined. Overlap extension polymerase chain reaction (PCR), rDNA integration and droplet digital PCR technology were used to generate a S. cerevisiae strain (S8) containing eight copies of xynB, allowing high-yield secretory expression of xylanase. The effects of subsequent overexpression of HAC1 in strain S8 on the expression of genes associated with protein folding in the ER were then examined using the GeXP system. Results confirmed the constitutive secretory expression of the multiple copies of xynB following rDNA-based integration of the expression cassette, with a maximum xylanase yield of 325 U/mL. However, overexpression of HAC1 further improved xylanase production by strain S8, resulting in a yield of 381 U/mL.
Collapse
|
30
|
Functional Coupling between the Unfolded Protein Response and Endoplasmic Reticulum/Golgi Ca 2+-ATPases Promotes Stress Tolerance, Cell Wall Biosynthesis, and Virulence of Aspergillus fumigatus. mBio 2020; 11:mBio.01060-20. [PMID: 32487759 PMCID: PMC7267887 DOI: 10.1128/mbio.01060-20] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Many species of pathogenic fungi deploy the unfolded protein response (UPR) to expand the folding capacity of the endoplasmic reticulum (ER) in proportion to the demand for virulence-related proteins that traffic through the secretory pathway. Although Ca2+ plays a pivotal role in ER function, the mechanism by which transcriptional upregulation of the protein folding machinery is coordinated with Ca2+ homeostasis is incompletely understood. In this study, we investigated the link between the UPR and genes encoding P-type Ca2+-ATPases in the human-pathogenic mold Aspergillus fumigatus We demonstrate that acute ER stress increases transcription of the srcA gene, encoding a member of the sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) family, as well as that of pmrA, encoding a secretory pathway Ca2+-ATPase (SPCA) in the Golgi membrane. Loss of the UPR transcription factor HacA prevented the induction of srcA and pmrA transcription during ER stress, defining these ER/Golgi Ca2+ pumps as novel downstream targets of this pathway. While deletion of srcA alone caused no major deficiencies, a ΔsrcA/ΔpmrA mutant displayed a severe polarity defect, was hypersensitive to ER stress, and showed attenuated virulence. In addition, cell wall analyses revealed a striking reduction in mannose levels in the absence of both Ca2+ pumps. The ΔhacA mutant was hypersensitive to agents that block calcineurin-dependent signaling, consistent with a functional coupling between the UPR and Ca2+ homeostasis. Together, these findings demonstrate that the UPR integrates the need for increased levels of chaperone and folding enzymes with an influx of Ca2+ into the secretory pathway to support fungal growth, stress adaptation, and pathogenicity.IMPORTANCE The UPR is an intracellular signal transduction pathway that maintains homeostasis of the ER. The pathway is also tightly linked to the expression of virulence-related traits in diverse species of human-pathogenic and plant-pathogenic fungal species, including the predominant mold pathogen infecting humans, Aspergillus fumigatus Despite advances in the understanding of UPR signaling, the linkages and networks that are governed by this pathway are not well defined. In this study, we revealed that the UPR is a major driving force for stimulating Ca2+ influx at the ER and Golgi membranes and that the coupling between the UPR and Ca2+ import is important for virulence, cell wall biosynthesis, and resistance to antifungal compounds that inhibit Ca2+ signaling.
Collapse
|
31
|
Bitencourt TA, Lang EAS, Sanches PR, Peres NTA, Oliveira VM, Fachin AL, Rossi A, Martinez-Rossi NM. HacA Governs Virulence Traits and Adaptive Stress Responses in Trichophyton rubrum. Front Microbiol 2020; 11:193. [PMID: 32153523 PMCID: PMC7044415 DOI: 10.3389/fmicb.2020.00193] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/27/2020] [Indexed: 12/16/2022] Open
Abstract
The ability of fungi to sense environmental stressors and appropriately respond is linked to secretory system functions. The dermatophyte infection process depends on an orchestrated signaling regulation that triggers the transcription of genes responsible for adherence and penetration of the pathogen into host-tissue. A high secretion system is activated to support the host-pathogen interaction and assures maintenance of the dermatophyte infection. The gateway of secretion machinery is the endoplasmic reticulum (ER), which is the primary site for protein folding and transport. Current studies have shown that ER stress that affects adaptive responses is primarily regulated by UPR and supports fungal pathogenicity; this has been assessed for yeasts and Aspergillus fumigatus, in regard to how these fungi cope with host environmental stressors. Fungal UPR consists of a transmembrane kinase sensor (Ire1/IreA) and a downstream target Hac1/HacA. The active form of Hac is achieved via non-spliceosomal intron removal promoted by endonuclease activity of Ire1/IreA. Here, we assessed features of HacA and its involvement in virulence and susceptibility in Trichophyton rubrum. Our results showed that exposure to antifungals and ER-stressing agents initiated the activation of HacA from T. rubrum. Interestingly, the activation occurs when a 20 nt fragment is removed from part of the exon-2 and part of intron-2, which in turn promotes the arisen of the DNA binding site motif and a dimer interface domain. Further, we found changes in the cell wall and cellular membrane composition in the ΔhacA mutant as well as an increase in susceptibility toward azole and cell wall disturbing agents. Moreover, the ΔhacA mutant presented significant defects in important virulence traits like thermotolerance and growth on keratin substrates. For instance, the development of the ΔhacA mutant was impaired in co-culture with keratinocytes or human nail fragments. Changes in the pro-inflammatory cytokine release were verified for the ΔhacA mutant during the co-culture assay, which might be related to differences in pathogen-associated molecular patterns (PAMPs) in the cell wall. Together, these results suggested that HacA is an integral part of T. rubrum physiology and virulence, implying that it is an important molecular target for antidermatophytic therapy.
Collapse
Affiliation(s)
- Tamires A. Bitencourt
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Elza A. S. Lang
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Pablo R. Sanches
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Nalu T. A. Peres
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
- Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Vanderci M. Oliveira
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Ana Lúcia Fachin
- Department of Biotechnology, University of Ribeirão Preto, Ribeirão Preto, Brazil
| | - Antonio Rossi
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Nilce M. Martinez-Rossi
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
32
|
Abstract
Aspergillus fumigatus is a saprotrophic fungus; its primary habitat is the soil. In its ecological niche, the fungus has learned how to adapt and proliferate in hostile environments. This capacity has helped the fungus to resist and survive against human host defenses and, further, to be responsible for one of the most devastating lung infections in terms of morbidity and mortality. In this review, we will provide (i) a description of the biological cycle of A. fumigatus; (ii) a historical perspective of the spectrum of aspergillus disease and the current epidemiological status of these infections; (iii) an analysis of the modes of immune response against Aspergillus in immunocompetent and immunocompromised patients; (iv) an understanding of the pathways responsible for fungal virulence and their host molecular targets, with a specific focus on the cell wall; (v) the current status of the diagnosis of different clinical syndromes; and (vi) an overview of the available antifungal armamentarium and the therapeutic strategies in the clinical context. In addition, the emergence of new concepts, such as nutritional immunity and the integration and rewiring of multiple fungal metabolic activities occurring during lung invasion, has helped us to redefine the opportunistic pathogenesis of A. fumigatus.
Collapse
Affiliation(s)
- Jean-Paul Latgé
- School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Georgios Chamilos
- School of Medicine, University of Crete, Heraklion, Crete, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Crete, Greece
| |
Collapse
|
33
|
The Unfolded Protein Response Regulates Pathogenic Development of Ustilago maydis by Rok1-Dependent Inhibition of Mating-Type Signaling. mBio 2019; 10:mBio.02756-19. [PMID: 31848283 PMCID: PMC6918084 DOI: 10.1128/mbio.02756-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The unfolded protein response (UPR) is crucial for endoplasmic reticulum (ER) homeostasis and disease development in fungal pathogens. In the plant-pathogenic fungus Ustilago maydis, the UPR supports fungal proliferation in planta and effector secretion for plant defense suppression. In this study, we uncovered that UPR activity, which is normally restricted to the biotrophic stage in planta, inhibits mating and the formation of infectious filaments by Rok1-dependent dephosphorylation of the pheromone responsive mitogen-activated protein kinase (MAPK) Kpp2. This observation is relevant for understanding how the fungal virulence program is regulated by cellular physiology. UPR-mediated control of mating-type signaling pathways predicts that effector gene expression and the virulence potential are controlled by ER stress levels. Fungal pathogens require the unfolded protein response (UPR) to maintain protein homeostasis of the endoplasmic reticulum (ER) during pathogenic development. In the corn smut fungus Ustilago maydis, pathogenic development is controlled by the a and b mating-type loci. The UPR is specifically activated after plant penetration and required for efficient secretion of effectors and suppression of the plant defense response. The interaction between the UPR regulator Cib1 and the central developmental regulator Clp1 modulates the pathogenic program and triggers fungal colonization of the host plant. By contrast, when activated before plant penetration, the UPR interferes with fungal virulence by reducing expression of bE and bW, the central regulators of pathogenic development encoded by the b mating-type locus. Here, we show that this inhibitory effect results from UPR-mediated suppression of the pheromone response pathway upstream of the b regulatory network. UPR activity prompts dephosphorylation of the pheromone-responsive mitogen-activated protein kinase (MAPK) Kpp2, reducing activity of the pheromone response factor Prf1 that regulates expression of bE and bW. Deletion of the dual specificity phosphatase rok1 fully suppressed UPR-dependent inhibition of Kpp2 phosphorylation, formation of infectious filaments, and fungal virulence. Rok1 determines the activity of mating-type signaling pathways and thus the degree of fungal virulence. We propose that UPR-dependent regulation of Rok1 aligns ER physiology with fungal aggressiveness and effector gene expression during biotrophic growth of U. maydis in the host plant.
Collapse
|
34
|
Fabri JHTM, Rocha MC, Malavazi I. Overview of the Interplay Between Cell Wall Integrity Signaling Pathways and Membrane Lipid Biosynthesis in Fungi: Perspectives for Aspergillus fumigatus. Curr Protein Pept Sci 2019; 21:265-283. [PMID: 31284857 DOI: 10.2174/1389203720666190705164203] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/10/2019] [Accepted: 06/13/2019] [Indexed: 11/22/2022]
Abstract
The cell wall (CW) and plasma membrane are fundamental structures that define cell shape and support different cellular functions. In pathogenic fungi, such as Aspegillus fumigatus, they not only play structural roles but are also important for virulence and immune recognition. Both the CW and the plasma membrane remain as attractive drug targets to treat fungal infections, such as the Invasive Pulmonary Aspergillosis (IPA), a disease associated with high morbimortality in immunocompromised individuals. The low efficiency of echinocandins that target the fungal CW biosynthesis, the occurrence of environmental isolates resistant to azoles such as voriconazole and the known drawbacks associated with amphotericin toxicity foster the urgent need for fungal-specific drugable targets and/or more efficient combinatorial therapeutic strategies. Reverse genetic approaches in fungi unveil that perturbations of the CW also render cells with increased susceptibility to membrane disrupting agents and vice-versa. However, how the fungal cells simultaneously cope with perturbation in CW polysaccharides and cell membrane proteins to allow morphogenesis is scarcely known. Here, we focus on current information on how the main signaling pathways that maintain fungal cell wall integrity, such as the Cell Wall Integrity and the High Osmolarity Glycerol pathways, in different species often cross-talk to regulate the synthesis of molecules that comprise the plasma membrane, especially sphingolipids, ergosterol and phospholipids to promote functioning of both structures concomitantly and thus, cell viability. We propose that the conclusions drawn from other organisms are the foundations to point out experimental lines that can be endeavored in A. fumigatus.
Collapse
Affiliation(s)
| | - Marina C Rocha
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Iran Malavazi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| |
Collapse
|
35
|
Ahmed K, Carter DE, Lajoie P. Hyperactive
TORC
1 sensitizes yeast cells to endoplasmic reticulum stress by compromising cell wall integrity. FEBS Lett 2019; 593:1957-1973. [DOI: 10.1002/1873-3468.13463] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 05/17/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Khadija Ahmed
- Department of Anatomy and Cell Biology The University of Western Ontario London Canada
| | - David E. Carter
- Robarts Research Institute The University of Western Ontario London Canada
| | - Patrick Lajoie
- Department of Anatomy and Cell Biology The University of Western Ontario London Canada
| |
Collapse
|
36
|
Pinter N, Hach CA, Hampel M, Rekhter D, Zienkiewicz K, Feussner I, Poehlein A, Daniel R, Finkernagel F, Heimel K. Signal peptide peptidase activity connects the unfolded protein response to plant defense suppression by Ustilago maydis. PLoS Pathog 2019; 15:e1007734. [PMID: 30998787 PMCID: PMC6490947 DOI: 10.1371/journal.ppat.1007734] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 04/30/2019] [Accepted: 03/27/2019] [Indexed: 11/18/2022] Open
Abstract
The corn smut fungus Ustilago maydis requires the unfolded protein response (UPR) to maintain homeostasis of the endoplasmic reticulum (ER) during the biotrophic interaction with its host plant Zea mays (maize). Crosstalk between the UPR and pathways controlling pathogenic development is mediated by protein-protein interactions between the UPR regulator Cib1 and the developmental regulator Clp1. Cib1/Clp1 complex formation results in mutual modification of the connected regulatory networks thereby aligning fungal proliferation in planta, efficient effector secretion with increased ER stress tolerance and long-term UPR activation in planta. Here we address UPR-dependent gene expression and its modulation by Clp1 using combinatorial RNAseq/ChIPseq analyses. We show that increased ER stress resistance is connected to Clp1-dependent alterations of Cib1 phosphorylation, protein stability and UPR gene expression. Importantly, we identify by deletion screening of UPR core genes the signal peptide peptidase Spp1 as a novel key factor that is required for establishing a compatible biotrophic interaction between U. maydis and its host plant maize. Spp1 is dispensable for ER stress resistance and vegetative growth but requires catalytic activity to interfere with the plant defense, revealing a novel virulence specific function for signal peptide peptidases in a biotrophic fungal/plant interaction. Biotrophic pathogens establish compatible interactions with their host to cause disease. A critical step in this process is the suppression of plant defense responses by secreted effector proteins. In the maize infecting fungus Ustilago maydis expression of effector encoding genes is coordinately upregulated at defined stages of pathogenic development in so-called effector waves. Efficient secretion of the multitude of effectors relies on the unfolded protein response (UPR) to maintain homeostasis of the endoplasmic reticulum. Activation of the UPR is connected to the control of fungal proliferation through direct protein-protein interactions between the UPR regulator Cib1 and the developmental regulator Clp1. Here, we show that this interaction leads to functional modification of Cib1 and modulation of UPR gene expression to adapt the UPR for long-term activity in the plant. Within a core set of UPR regulated genes we identify the signal peptide peptidase Spp1 as a key factor for fungal virulence. We show that Spp1 requires its conserved catalytic activity to suppress the plant defense and cause disease. The virulence specific function of Spp1 does not involve pathways previously known to be associated with Spp1-like proteins or plant defense suppression, suggesting a novel role for Spp1 substrates in biotrophic interactions.
Collapse
Affiliation(s)
- Niko Pinter
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
| | - Christina Andrea Hach
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
| | - Martin Hampel
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
| | - Dmitrij Rekhter
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
| | - Krzysztof Zienkiewicz
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
- Service Unit for Metabolomics and Lipidomics, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
| | - Ivo Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
- Service Unit for Metabolomics and Lipidomics, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
| | - Anja Poehlein
- Department of Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Rolf Daniel
- Department of Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Florian Finkernagel
- Center for Tumor Biology and Immunology (ZTI), Institute of Molecular Biology and Tumor Research (IMT), Marburg, Germany
| | - Kai Heimel
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
- * E-mail:
| |
Collapse
|
37
|
Zhang H, Li Y, Dickman MB, Wang Z. Cytoprotective Co-chaperone BcBAG1 Is a Component for Fungal Development, Virulence, and Unfolded Protein Response (UPR) of Botrytis cinerea. Front Microbiol 2019; 10:685. [PMID: 31024482 PMCID: PMC6467101 DOI: 10.3389/fmicb.2019.00685] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 03/19/2019] [Indexed: 11/25/2022] Open
Abstract
The Bcl-2 associated athanogene (BAG) family is an evolutionarily conserved group of co-chaperones that confers stress protection against a variety of cellular insults extending from yeasts, plants to humans. Little is known, however, regarding the biological role of BAG proteins in phytopathogenic fungi. Here, we identified the unique BAG gene (BcBAG1) from the necrotrophic fungal pathogen, Botrytis cinerea. BcBAG1 is the homolog of Arabidopsis thaliana AtBAG4, and ectopic expression of BcBAG1 in atbag4 knock-out mutants restores salt tolerance. BcBAG1 deletion mutants (ΔBcbag1) exhibited decreased conidiation, enhanced melanin accumulation and lost the ability to develop sclerotia. Also, BcBAG1 disruption blocked fungal conidial germination and successful penetration, leading to a reduced virulence in host plants. BcBAG1 contains BAG (BD) domain at C-terminus and ubiquitin-like (UBL) domain at N-terminus. Complementation assays indicated that BD can largely restored pathogenicity of ΔBcbag1. Abiotic stress assays showed ΔBcbag1 was more sensitive than the wild-type strain to NaCl, calcofluor white, SDS, tunicamycin, dithiothreitol (DTT), heat and cold stress, suggesting BcBAG1 plays a cytoprotective role during salt stress, cell wall stress, and ER stress. BcBAG1 negatively regulated the expression of BcBIP1, BcIRE1 and the splicing of BcHAC1 mRNA, which are core regulators of unfolded protein response (UPR) during ER stress. Moreover, BcBAG1 interacted with HSP70-type chaperones, BcBIP1 and BcSKS2. In summary, this work demonstrates that BcBAG1 is pleiotropic and not only essential for fungal development, hyphal melanization, and virulence, but also required for response to multiple abiotic stresses and UPR pathway of B. cinerea.
Collapse
Affiliation(s)
- Honghong Zhang
- Fujian University Key Laboratory for Plant-Microbe Interaction, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China.,Institute for Plant Genomics and Biotechnology, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX, United States.,Department of Plant Pathology and Microbiology, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX, United States
| | - Yurong Li
- Institute for Plant Genomics and Biotechnology, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX, United States.,Department of Plant Pathology and Microbiology, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX, United States
| | - Martin B Dickman
- Institute for Plant Genomics and Biotechnology, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX, United States.,Department of Plant Pathology and Microbiology, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX, United States
| | - Zonghua Wang
- Fujian University Key Laboratory for Plant-Microbe Interaction, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China.,Institute of Oceanography, Minjiang University, Fuzhou, China
| |
Collapse
|
38
|
Rocha MC, Santos CA, Malavazi I. The Regulatory Function of the Molecular Chaperone Hsp90 in the Cell Wall Integrity of Pathogenic Fungi. CURR PROTEOMICS 2018. [DOI: 10.2174/1570164615666180820155807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Different signaling cascades including the Cell Wall Integrity (CWI), the High Osmolarity Glycerol (HOG) and the Ca2+/calcineurin pathways control the cell wall biosynthesis and remodeling in fungi. Pathogenic fungi, such as Aspergillus fumigatus and Candida albicans, greatly rely on these signaling circuits to cope with different sources of stress, including the cell wall stress evoked by antifungal drugs and the host’s response during infection. Hsp90 has been proposed as an important regulatory protein and an attractive target for antifungal therapy since it stabilizes major effector proteins that act in the CWI, HOG and Ca2+/calcineurin pathways. Data from the human pathogen C. albicans have provided solid evidence that loss-of-function of Hsp90 impairs the evolution of resistance to azoles and echinocandin drugs. In A. fumigatus, Hsp90 is also required for cell wall integrity maintenance, reinforcing a coordinated function of the CWI pathway and this essential molecular chaperone. In this review, we focus on the current information about how Hsp90 impacts the aforementioned signaling pathways and consequently the homeostasis and maintenance of the cell wall, highlighting this cellular event as a key mechanism underlying antifungal therapy based on Hsp90 inhibition.
Collapse
Affiliation(s)
- Marina Campos Rocha
- Departmento de Genetica e Evolucao, Centro de Ciencias Biologicas e da Saude, Universidade Federal de Sao Carlos, Sao Carlos, Brazil
| | - Camilla Alves Santos
- Departmento de Genetica e Evolucao, Centro de Ciencias Biologicas e da Saude, Universidade Federal de Sao Carlos, Sao Carlos, Brazil
| | - Iran Malavazi
- Departmento de Genetica e Evolucao, Centro de Ciencias Biologicas e da Saude, Universidade Federal de Sao Carlos, Sao Carlos, Brazil
| |
Collapse
|
39
|
Abstract
Microbial secondary metabolites, including isocyanide moieties, have been extensively mined for their repertoire of bioactive properties. Although the first naturally occurring isocyanide (xanthocillin) was isolated from the fungus Penicillium notatum over half a century ago, the biosynthetic origins of fungal isocyanides remain unknown. Here we report the identification of a family of isocyanide synthases (ICSs) from the opportunistic human pathogen Aspergillus fumigatus Comparative metabolomics of overexpression or knockout mutants of ICS candidate genes led to the discovery of a fungal biosynthetic gene cluster (BGC) that produces xanthocillin (xan). Detailed analysis of xanthocillin biosynthesis in A. fumigatus revealed several previously undescribed compounds produced by the xan BGC, including two novel members of the melanocin family of compounds. We found both the xan BGC and a second ICS-containing cluster, named the copper-responsive metabolite (crm) BGC, to be transcriptionally responsive to external copper levels and further demonstrated that production of metabolites from the xan BGC is increased during copper starvation. The crm BGC includes a novel type of fungus-specific ICS-nonribosomal peptide synthase (NRPS) hybrid enzyme, CrmA. This family of ICS-NRPS hybrid enzymes is highly enriched in fungal pathogens of humans, insects, and plants. Phylogenetic assessment of all ICSs spanning the tree of life shows not only high prevalence throughout the fungal kingdom but also distribution in species not previously known to harbor BGCs, indicating an untapped resource of fungal secondary metabolism.IMPORTANCE Fungal ICSs are an untapped resource in fungal natural product research. Their isocyanide products have been implicated in plant and insect pathogenesis due to their ability to coordinate transition metals and disable host metalloenzymes. The discovery of a novel isocyanide-producing family of hybrid ICS-NRPS enzymes enriched in medically and agriculturally important fungal pathogens may reveal mechanisms underlying pathogenicity and afford opportunities to discover additional families of isocyanides. Furthermore, the identification of noncanonical ICS BGCs will enable refinement of BGC prediction algorithms to expand on the secondary metabolic potential of fungal and bacterial species. The identification of genes related to ICS BGCs in fungal species not previously known for secondary metabolite-producing capabilities (e.g., Saccharomyces spp.) contributes to our understanding of the evolution of BGC in fungi.
Collapse
|
40
|
Evolutionarily Conserved and Divergent Roles of Unfolded Protein Response (UPR) in the Pathogenic Cryptococcus Species Complex. Sci Rep 2018; 8:8132. [PMID: 29802329 PMCID: PMC5970146 DOI: 10.1038/s41598-018-26405-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 05/10/2018] [Indexed: 01/01/2023] Open
Abstract
The unfolded protein response (UPR) pathway, consisting of the evolutionarily conserved Ire1 kinase/endonuclease and the bZIP transcription factor Hxl1, is critical for the pathogenicity of Cryptococcus neoformans; however, its role remains unknown in other pathogenic Cryptococcus species. Here, we investigated the role of the UPR pathway in C. deuterogattii, which causes pneumonia and systemic cryptococcosis, even in immunocompetent individuals. In response to ER stress, C. deuterogattii Ire1 triggers unconventional splicing of HXL1 to induce the expression of UPR target genes such as KAR2, DER1, ALG7, and ERG29. Furthermore, C. deuterogattii Ire1 is required for growth at mammalian body temperature, similar to C. neoformans Ire1. However, deletion of HXL1 does not significantly affect the growth of C. deuterogattii at 37 °C, which is in contrast to the indispensable role of HXL1 in the growth of C. neoformans at 37 °C. Nevertheless, both C. deuterogattii ire1Δ and hxl1Δ mutants are avirulent in a murine model of systemic cryptococcosis, suggesting that a non-thermotolerance phenotypic trait also contributes to the role of the UPR pathway in the virulence of pathogenic Cryptococcus species. In conclusion, the UPR pathway plays redundant and distinct roles in the virulence of members of the pathogenic Cryptococcus species complex.
Collapse
|
41
|
Blatzer M, Latgé JP. Metal-homeostasis in the pathobiology of the opportunistic human fungal pathogen Aspergillus fumigatus. Curr Opin Microbiol 2017; 40:152-159. [PMID: 29179120 DOI: 10.1016/j.mib.2017.11.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 11/15/2017] [Accepted: 11/16/2017] [Indexed: 12/13/2022]
Abstract
In contrast to obligate pathogens opportunistic pathogens such as Aspergillus fumigatus do not need a specific host to propagate or survive. However several characteristics of the saprophytic life-style and the selective pressure encountered in the primary ecological niche contribute to the virulence of A. fumigatus. All fungi depend on metals for growth and proliferation, like iron, copper, zinc, manganese or calcium. In the recent past several studies explored the manifold impact of metals modulating virulence of pathogens. Components which might be scarce in the natural environment but also in the host due to nutritional immunity. This review recapitulates molecular constituents of metal ion uptake systems in A. fumigatus, their regulation and their significance at the host-pathogen battlefield.
Collapse
|
42
|
Tanaka Y, Sasaki M, Ito F, Aoyama T, Sato-Okamoto M, Takahashi-Nakaguchi A, Chibana H, Shibata N. Cooperation between ER stress and calcineurin signaling contributes to the maintenance of cell wall integrity in Candida glabrata. Fungal Biol 2017; 122:19-33. [PMID: 29248112 DOI: 10.1016/j.funbio.2017.09.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 09/04/2017] [Accepted: 09/30/2017] [Indexed: 10/18/2022]
Abstract
Candida glabrata is the second most common source of Candida infections in humans. In this pathogen, the maintenance of cell wall integrity (CWI) frequently precludes effective pharmacological treatment by antifungal agents. In numerous fungi, cell wall modulation is reported to be controlled by endoplasmic reticulum (ER) stress, but how the latter affects CWI maintenance in C. glabrata is not clearly understood. Here, we characterized a C. glabrata strain harboring a mutation in the CNE1 gene, which encodes a molecular chaperone associated with nascent glycoprotein maturation in the ER. Disruption of cne1 induced ER stress and caused changes in the normal cell wall structure, specifically a reduction in the β-1,6-glucan content and accumulation of chitin. Conversely, a treatment with the typical ER stress inducer tunicamycin up-regulated the production of cell wall chitin but did not affect β-1,6-glucan content. Our results also indicated that C. glabrata features a uniquely evolved ER stress-mediated CWI pathway, which differs from that in the closely related species Saccharomyces cerevisiae. Furthermore, we demonstrated that ER stress-mediated CWI pathway in C. glabrata is also induced by the disruption of other genes encoding proteins that function in a correlated manner in the quality control of N-linked glycoproteins in the ER. These results suggest that calcineurin and ER quality control system act as a platform for maintaining CWI in C. glabrata.
Collapse
Affiliation(s)
- Yutaka Tanaka
- Department of Infection and Host Defense, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| | - Masato Sasaki
- Department of Infection and Host Defense, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| | - Fumie Ito
- Department of Infection and Host Defense, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| | - Toshio Aoyama
- Department of Electronic and Information Engineering, Suzuka National College of Technology, Shirako-tyo, Suzuka, Mie 510-0294, Japan
| | - Michiyo Sato-Okamoto
- Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8673, Japan
| | | | - Hiroji Chibana
- Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8673, Japan
| | - Nobuyuki Shibata
- Department of Infection and Host Defense, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan.
| |
Collapse
|
43
|
Lung eosinophil recruitment in response to Aspergillus fumigatus is correlated with fungal cell wall composition and requires γδ T cells. Microbes Infect 2017; 19:422-431. [PMID: 28552410 DOI: 10.1016/j.micinf.2017.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 05/17/2017] [Accepted: 05/18/2017] [Indexed: 11/21/2022]
Abstract
The differential recognition of fungal cell wall polysaccharides that program innate and adaptive immunity to the human opportunistic fungal pathogen Aspergillus fumigatus has been a focus of considerable interest. In a mouse model of fungal conidia aspiration, decreased relative levels of cell wall core carbohydrates β-1,3-glucan to chitin in A. fumigatus isolates and mutant strains were correlated with increased airway eosinophil recruitment. In addition, an increase in fungal surface chitin exposure induced by the β-1,3-glucan synthesis-targeting drug caspofungin was associated with increased murine airway eosinophil recruitment after a single challenge of conidia. The response to increased A. fumigatus chitin was associated with increased transcription of IL-17A after a single aspiration, although this cytokine was not required for eosinophil recruitment. Rather, both RAG1 and γδ T cells were required, suggesting that this subset of innate-like lymphocytes may be an important regulator of potentially detrimental type 2 immune responses to fungal inhalation and infection.
Collapse
|
44
|
Dhingra S, Cramer RA. Regulation of Sterol Biosynthesis in the Human Fungal Pathogen Aspergillus fumigatus: Opportunities for Therapeutic Development. Front Microbiol 2017; 8:92. [PMID: 28203225 PMCID: PMC5285346 DOI: 10.3389/fmicb.2017.00092] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 01/13/2017] [Indexed: 12/29/2022] Open
Abstract
Sterols are a major component of eukaryotic cell membranes. For human fungal infections caused by the filamentous fungus Aspergillus fumigatus, antifungal drugs that target sterol biosynthesis and/or function remain the standard of care. Yet, an understanding of A. fumigatus sterol biosynthesis regulatory mechanisms remains an under developed therapeutic target. The critical role of sterol biosynthesis regulation and its interactions with clinically relevant azole drugs is highlighted by the basic helix loop helix (bHLH) class of transcription factors known as Sterol Regulatory Element Binding Proteins (SREBPs). SREBPs regulate transcription of key ergosterol biosynthesis genes in fungi including A. fumigatus. In addition, other emerging regulatory pathways and target genes involved in sterol biosynthesis and drug interactions provide additional opportunities including the unfolded protein response, iron responsive transcriptional networks, and chaperone proteins such as Hsp90. Thus, targeting molecular pathways critical for sterol biosynthesis regulation presents an opportunity to improve therapeutic options for the collection of diseases termed aspergillosis. This mini-review summarizes our current understanding of sterol biosynthesis regulation with a focus on mechanisms of transcriptional regulation by the SREBP family of transcription factors.
Collapse
Affiliation(s)
- Sourabh Dhingra
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover NH, USA
| | - Robert A Cramer
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover NH, USA
| |
Collapse
|
45
|
Yokota JI, Shiro D, Tanaka M, Onozaki Y, Mizutani O, Kakizono D, Ichinose S, Shintani T, Gomi K, Shintani T. Cellular responses to the expression of unstable secretory proteins in the filamentous fungus Aspergillus oryzae. Appl Microbiol Biotechnol 2017; 101:2437-2446. [PMID: 28064367 DOI: 10.1007/s00253-016-8086-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 12/15/2016] [Accepted: 12/21/2016] [Indexed: 12/20/2022]
Abstract
Filamentous fungi are often used as cell factories for recombinant protein production because of their ability to secrete large quantities of hydrolytic enzymes. However, even using strong transcriptional promoters, yields of nonfungal proteins are generally much lower than those of fungal proteins. Recent analyses revealed that expression of certain nonfungal secretory proteins induced the unfolded protein response (UPR), suggesting that they are recognized as proteins with folding defects in filamentous fungi. More recently, however, even highly expressed endogenous secretory proteins were found to evoke the UPR. These findings raise the question of whether the unfolded or misfolded state of proteins is selectively recognized by quality control mechanisms in filamentous fungi. In this study, a fungal secretory protein (1,2-α-D-mannosidase; MsdS) with a mutation that decreases its thermostability was expressed at different levels in Aspergillus oryzae. We found that, at moderate expression levels, wild-type MsdS was secreted to the medium, while the mutant was not. In the strain with a deletion for the hrdA gene, which is involved in the endoplasmic reticulum-associated degradation pathway, mutant MsdS had specifically increased levels in the intracellular fraction but was not secreted. When overexpressed, the mutant protein was secreted to the medium to a similar extent as the wild-type protein; however, the mutant underwent hyperglycosylation and induced the UPR. Deletion of α-amylase (the most abundant secretory protein in A. oryzae) alleviated the UPR induction by mutant MsdS overexpression. These findings suggest that misfolded MsdS and unfolded species of α-amylase might act synergistically for UPR induction.
Collapse
Affiliation(s)
- Jun-Ichi Yokota
- Department of Bioindustrial Informatics and Genomics, Graduate School of Agricultural Science, Tohoku University, Sendai, 981-8555, Japan
| | - Daisuke Shiro
- Department of Bioindustrial Informatics and Genomics, Graduate School of Agricultural Science, Tohoku University, Sendai, 981-8555, Japan
| | - Mizuki Tanaka
- Department of Bioindustrial Informatics and Genomics, Graduate School of Agricultural Science, Tohoku University, Sendai, 981-8555, Japan
| | - Yasumichi Onozaki
- Department of Bioindustrial Informatics and Genomics, Graduate School of Agricultural Science, Tohoku University, Sendai, 981-8555, Japan
| | - Osamu Mizutani
- National Research Institute of Brewing, Higashi-Hiroshima, 739-0046, Japan
| | - Dararat Kakizono
- National Research Institute of Brewing, Higashi-Hiroshima, 739-0046, Japan
| | - Sakurako Ichinose
- Department of Bioindustrial Informatics and Genomics, Graduate School of Agricultural Science, Tohoku University, Sendai, 981-8555, Japan
| | - Tomoko Shintani
- Department of Bioindustrial Informatics and Genomics, Graduate School of Agricultural Science, Tohoku University, Sendai, 981-8555, Japan
| | - Katsuya Gomi
- Department of Bioindustrial Informatics and Genomics, Graduate School of Agricultural Science, Tohoku University, Sendai, 981-8555, Japan
| | - Takahiro Shintani
- Department of Bioindustrial Informatics and Genomics, Graduate School of Agricultural Science, Tohoku University, Sendai, 981-8555, Japan.
| |
Collapse
|
46
|
Functional and transcriptomic analysis of the key unfolded protein response transcription factor HacA in Aspergillus oryzae. Gene 2016; 593:143-153. [DOI: 10.1016/j.gene.2016.08.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 08/04/2016] [Accepted: 08/08/2016] [Indexed: 12/31/2022]
|
47
|
Heterogeneity among Isolates Reveals that Fitness in Low Oxygen Correlates with Aspergillus fumigatus Virulence. mBio 2016; 7:mBio.01515-16. [PMID: 27651366 PMCID: PMC5040115 DOI: 10.1128/mbio.01515-16] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED Previous work has shown that environmental and clinical isolates of Aspergillus fumigatus represent a diverse population that occupies a variety of niches, has extensive genetic diversity, and exhibits virulence heterogeneity in a number of animal models of invasive pulmonary aspergillosis (IPA). However, mechanisms explaining differences in virulence among A. fumigatus isolates remain enigmatic. Here, we report a significant difference in virulence of two common lab strains, CEA10 and AF293, in the murine triamcinolone immunosuppression model of IPA, in which we previously identified severe low oxygen microenvironments surrounding fungal lesions. Therefore, we hypothesize that the ability to thrive within these lesions of low oxygen promotes virulence of A. fumigatus in this model. To test this hypothesis, we performed in vitro fitness and in vivo virulence analyses in the triamcinolone murine model of IPA with 14 environmental and clinical isolates of A. fumigatus Among these isolates, we observed a strong correlation between fitness in low oxygen in vitro and virulence. In further support of our hypothesis, experimental evolution of AF293, a strain that exhibits reduced fitness in low oxygen and reduced virulence in the triamcinolone model of IPA, results in a strain (EVOL20) that has increased hypoxia fitness and a corresponding increase in virulence. Thus, the ability to thrive in low oxygen correlates with virulence of A. fumigatus isolates in the context of steroid-mediated murine immunosuppression. IMPORTANCE Aspergillus fumigatus occupies multiple environmental niches, likely contributing to the genotypic and phenotypic heterogeneity among isolates. Despite reports of virulence heterogeneity, pathogenesis studies often utilize a single strain for the identification and characterization of virulence and immunity factors. Here, we describe significant variation between A. fumigatus isolates in hypoxia fitness and virulence, highlighting the advantage of including multiple strains in future studies. We also illustrate that hypoxia fitness correlates strongly with increased virulence exclusively in the nonleukopenic murine triamcinolone immunosuppression model of IPA. Through an experimental evolution experiment, we observe that chronic hypoxia exposure results in increased virulence of A. fumigatus We describe here the first observation of a model-specific virulence phenotype correlative with in vitro fitness in hypoxia and pave the way for identification of hypoxia-mediated mechanisms of virulence in the fungal pathogen A. fumigatus.
Collapse
|
48
|
Unique roles of the unfolded protein response pathway in fungal development and differentiation. Sci Rep 2016; 6:33413. [PMID: 27629591 PMCID: PMC5024300 DOI: 10.1038/srep33413] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 07/11/2016] [Indexed: 01/05/2023] Open
Abstract
Cryptococcus neoformans, a global fungal meningitis pathogen, employs the unfolded protein response pathway. This pathway, which consists of an evolutionarily conserved Ire1 kinase/endoribonuclease and a unique transcription factor (Hxl1), modulates the endoplasmic reticulum stress response and pathogenicity. Here, we report that the unfolded protein response pathway governs sexual and unisexual differentiation of C. neoformans in an Ire1-dependent but Hxl1-independent manner. The ire1∆ mutants showed defects in sexual mating, with reduced cell fusion and pheromone-mediated formation of the conjugation tube. Unexpectedly, these mating defects did not result from defective pheromone production because expression of the mating pheromone gene (MFα1) was strongly induced in the ire1∆ mutant. Ire1 controls sexual differentiation by modulating the function of the molecular chaperone Kar2 and by regulating mating-induced localisation of mating pheromone transporter (Ste6) and receptor (Ste3/Cprα). Deletion of IRE1, but not HXL1, also caused significant defects in unisexual differentiation in a Kar2-independent manner. Moreover, we showed that Rim101 is a novel downstream factor of Ire1 for production of the capsule, which is a unique structural determinant of C. neoformans virulence. Therefore, Ire1 uniquely regulates fungal development and differentiation in an Hxl1-independent manner.
Collapse
|
49
|
Tanaka Y, Sasaki M, Ito F, Aoyama T, Sato-Okamoto M, Takahashi-Nakaguchi A, Chibana H, Shibata N. KRE5 Suppression Induces Cell Wall Stress and Alternative ER Stress Response Required for Maintaining Cell Wall Integrity in Candida glabrata. PLoS One 2016; 11:e0161371. [PMID: 27548283 PMCID: PMC4993462 DOI: 10.1371/journal.pone.0161371] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 08/04/2016] [Indexed: 01/10/2023] Open
Abstract
The maintenance of cell wall integrity in fungi is required for normal cell growth, division, hyphae formation, and antifungal tolerance. We observed that endoplasmic reticulum stress regulated cell wall integrity in Candida glabrata, which possesses uniquely evolved mechanisms for unfolded protein response mechanisms. Tetracycline-mediated suppression of KRE5, which encodes a predicted UDP-glucose:glycoprotein glucosyltransferase localized in the endoplasmic reticulum, significantly increased cell wall chitin content and decreased cell wall β-1,6-glucan content. KRE5 repression induced endoplasmic reticulum stress-related gene expression and MAP kinase pathway activation, including Slt2p and Hog1p phosphorylation, through the cell wall integrity signaling pathway. Moreover, the calcineurin pathway negatively regulated cell wall integrity, but not the reduction of β-1,6-glucan content. These results indicate that KRE5 is required for maintaining both endoplasmic reticulum homeostasis and cell wall integrity, and that the calcineurin pathway acts as a regulator of chitin-glucan balance in the cell wall and as an alternative mediator of endoplasmic reticulum stress in C. glabrata.
Collapse
Affiliation(s)
- Yutaka Tanaka
- Department of Infection and Host Defense, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Masato Sasaki
- Department of Infection and Host Defense, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Fumie Ito
- Department of Infection and Host Defense, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Toshio Aoyama
- Department of Electronic and Information Engineering, Suzuka National College of Technology, Suzuka, Japan
| | | | | | - Hiroji Chibana
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Nobuyuki Shibata
- Department of Infection and Host Defense, Tohoku Medical and Pharmaceutical University, Sendai, Japan
- * E-mail:
| |
Collapse
|
50
|
The contribution of Aspergillus fumigatus stress responses to virulence and antifungal resistance. J Microbiol 2016; 54:243-53. [PMID: 26920884 DOI: 10.1007/s12275-016-5510-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 10/21/2015] [Accepted: 10/22/2015] [Indexed: 10/22/2022]
Abstract
Invasive aspergillosis has emerged as one of the most common life-threatening fungal disease of humans. The emergence of antifungal resistant pathogens represents a current and increasing threat to society. In turn, new strategies to combat fungal infection are urgently required. Fungal adaptations to stresses experienced within the human host are a prerequisite for the survival and virulence strategies of the pathogen. Here, we review the latest information on the signalling pathways in Aspergillus fumigatus that contribute to stress adaptations and virulence, while highlighting their potential as targets for the development of novel combinational antifungal therapies.
Collapse
|