1
|
Croucher NJ, Campo JJ, Le TQ, Pablo JV, Hung C, Teng AA, Turner C, Nosten F, Bentley SD, Liang X, Turner P, Goldblatt D. Genomic and panproteomic analysis of the development of infant immune responses to antigenically-diverse pneumococci. Nat Commun 2024; 15:355. [PMID: 38191887 PMCID: PMC10774285 DOI: 10.1038/s41467-023-44584-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/19/2023] [Indexed: 01/10/2024] Open
Abstract
Streptococcus pneumoniae (pneumococcus) is a nasopharyngeal commensal and respiratory pathogen. This study characterises the immunoglobulin G (IgG) repertoire recognising pneumococci from birth to 24 months old (mo) in a prospectively-sampled cohort of 63 children using a panproteome array. IgG levels are highest at birth, due to transplacental transmission of maternal antibodies. The subsequent emergence of responses to individual antigens exhibit distinct kinetics across the cohort. Stable differences in the strength of individuals' responses, correlating with maternal IgG concentrations, are established by 6 mo. By 12 mo, children develop unique antibody profiles that are boosted by re-exposure. However, some proteins only stimulate substantial responses in adults. Integrating genomic data on nasopharyngeal colonisation demonstrates rare pneumococcal antigens can elicit strong IgG levels post-exposure. Quantifying such responses to the diverse core loci (DCL) proteins is complicated by cross-immunity between variants. In particular, the conserved N terminus of DCL protein zinc metalloprotease B provokes the strongest early IgG responses. DCL proteins' ability to inhibit mucosal immunity likely explains continued pneumococcal carriage despite hosts' polyvalent antibody repertoire. Yet higher IgG levels are associated with reduced incidence, and severity, of pneumonia, demonstrating the importance of the heterogeneity in response strength and kinetics across antigens and individuals.
Collapse
Affiliation(s)
- Nicholas J Croucher
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, W12 0BZ, UK.
| | - Joseph J Campo
- Antigen Discovery Inc, 1 Technology Drive, Irvine, CA, 92618, USA
| | - Timothy Q Le
- Antigen Discovery Inc, 1 Technology Drive, Irvine, CA, 92618, USA
| | - Jozelyn V Pablo
- Antigen Discovery Inc, 1 Technology Drive, Irvine, CA, 92618, USA
| | - Christopher Hung
- Antigen Discovery Inc, 1 Technology Drive, Irvine, CA, 92618, USA
| | - Andy A Teng
- Antigen Discovery Inc, 1 Technology Drive, Irvine, CA, 92618, USA
| | - Claudia Turner
- Cambodia Oxford Medical Research Unit, Angkor Hospital for Children, Siem Reap, 9V54+8FQ, Cambodia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - François Nosten
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, 63110, Thailand
| | - Stephen D Bentley
- Parasites & Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Xiaowu Liang
- Antigen Discovery Inc, 1 Technology Drive, Irvine, CA, 92618, USA
| | - Paul Turner
- Cambodia Oxford Medical Research Unit, Angkor Hospital for Children, Siem Reap, 9V54+8FQ, Cambodia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - David Goldblatt
- Great Ormond Street Institute of Child Health, University College London, London, WC1N 1EH, UK
| |
Collapse
|
2
|
Chiu FF, Tu LL, Chen W, Zhou H, Liu BS, Liu SJ, Leng CH. A broad-spectrum pneumococcal vaccine induces mucosal immunity and protects against lethal Streptococcus pneumoniae challenge. Emerg Microbes Infect 2023; 12:2272656. [PMID: 37855122 PMCID: PMC10606790 DOI: 10.1080/22221751.2023.2272656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/15/2023] [Indexed: 10/20/2023]
Abstract
Pneumococcal disease is a major threat to public health globally, impacting individuals across all age groups, particularly infants and elderly individuals. The use of current vaccines has led to unintended consequences, including serotype replacement, leading to a need for a new approach to combat pneumococcal disease. A promising solution is the development of a broad-spectrum pneumococcal vaccine. In this study, we present the development of a broad-spectrum protein-based pneumococcal vaccine that contains three pneumococcal virulence factors: rlipo-PsaA (lipidated form), rPspAΔC (truncated form), and rPspCΔC (truncated form). Intranasal immunization with rlipo-PsaA, rPspAΔC, and rPspCΔC (LAAC) resulted in significantly higher IgG titres than those induced by administration of nonlipidated rPsaA, rPspAΔC, and rPspCΔC (AAC). Furthermore, LAAC immunization induced the production of higher IgA titres in vaginal washes, feces, and sera in mice, indicating that LAAC can induce systemic mucosal immunity. In addition, administration of LAAC also induced Th1/Th17-biased immune responses and promoted opsonic phagocytosis of Streptococcus pneumoniae strains of various serotypes, implying that the immunogenicity of LAAC immunization provides a protective effect against pneumococcal infection. Importantly, challenge data showed that the LAAC-immunized mice had a reduced bacterial load not only for several serotypes of the 13-valent conjugate pneumococcal vaccine (PCV13) but also for selected non-PCV13 serotypes. Consistently, LAAC immunization increased the survival rate of mice after bacterial challenge with both PCV13 and non-PCV13 serotypes. In conclusion, our protein-based pneumococcal vaccine provides protective effects against a broad spectrum of Streptococcus pneumoniae serotypes.
Collapse
Affiliation(s)
- Fang-Feng Chiu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Ling-Ling Tu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Wangxue Chen
- Human Health Therapeutics Research Center (HHT), National Research Council Canada, Ottawa, Canada
| | - Hongyan Zhou
- Human Health Therapeutics Research Center (HHT), National Research Council Canada, Ottawa, Canada
| | - Bing-Sin Liu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Shih-Jen Liu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
- Graduate of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Hsiang Leng
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| |
Collapse
|
3
|
Hill H, Mitsi E, Nikolaou E, Blizard A, Pojar S, Howard A, Hyder-Wright A, Devin J, Reiné J, Robinson R, Solórzano C, Jochems SP, Kenny-Nyazika T, Ramos-Sevillano E, Weight CM, Myerscough C, McLenaghan D, Morton B, Gibbons E, Farrar M, Randles V, Burhan H, Chen T, Shandling AD, Campo JJ, Heyderman RS, Gordon SB, Brown JS, Collins AM, Ferreira DM. A Randomized Controlled Clinical Trial of Nasal Immunization with Live Virulence Attenuated Streptococcus pneumoniae Strains Using Human Infection Challenge. Am J Respir Crit Care Med 2023; 208:868-878. [PMID: 37556679 DOI: 10.1164/rccm.202302-0222oc] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 08/09/2023] [Indexed: 08/11/2023] Open
Abstract
Rationale: Pneumococcal pneumonia remains a global health problem. Pneumococcal colonization increases local and systemic protective immunity, suggesting that nasal administration of live attenuated Streptococcus pneumoniae (Spn) strains could help prevent infections. Objectives: We used a controlled human infection model to investigate whether nasopharyngeal colonization with attenuated S. pneumoniae strains protected against recolonization with wild-type (WT) Spn (SpnWT). Methods: Healthy adults aged 18-50 years were randomized (1:1:1:1) for nasal administration twice (at a 2-wk interval) with saline solution, WT Spn6B (BHN418), or one of two genetically modified Spn6B strains, SpnA1 (Δfhs/piaA) or SpnA3 (ΔproABC/piaA) (Stage I). After 6 months, participants were challenged with SpnWT to assess protection against the homologous serotype (Stage II). Measurements and Main Results: 125 participants completed both study stages per intention to treat. No serious adverse events were reported. In Stage I, colonization rates were similar among groups: SpnWT, 58.1% (18 of 31); SpnA1, 60% (18 of 30); and SpnA3, 59.4% (19 of 32). Anti-Spn nasal IgG levels after colonization were similar in all groups, whereas serum IgG responses were higher in the SpnWT and SpnA1 groups than in the SpnA3 group. In colonized individuals, increases in IgG responses were identified against 197 Spn protein antigens and serotype 6 capsular polysaccharide using a pangenome array. Participants given SpnWT or SpnA1 in Stage I were partially protected against homologous challenge with SpnWT (29% and 30% recolonization rates, respectively) at stage II, whereas those exposed to SpnA3 achieved a recolonization rate similar to that in the control group (50% vs. 47%, respectively). Conclusions: Nasal colonization with genetically modified live attenuated Spn was safe and induced protection against recolonization, suggesting that nasal administration of live attenuated Spn could be an effective strategy for preventing pneumococcal infections. Clinical trial registered with the ISRCTN registry (ISRCTN22467293).
Collapse
Affiliation(s)
- Helen Hill
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Elena Mitsi
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Elissavet Nikolaou
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Annie Blizard
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Sherin Pojar
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Ashleigh Howard
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Angela Hyder-Wright
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Liverpool University Hospitals National Health Service Foundation Trust, Liverpool, United Kingdom
| | - Jack Devin
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Jesus Reiné
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Ryan Robinson
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Liverpool University Hospitals National Health Service Foundation Trust, Liverpool, United Kingdom
| | - Carla Solórzano
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Simon P Jochems
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Tinashe Kenny-Nyazika
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Elisa Ramos-Sevillano
- UCL Respiratory, Division of Medicine, University College London, London, United Kingdom
| | - Caroline M Weight
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Chris Myerscough
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Daniella McLenaghan
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Ben Morton
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Emily Gibbons
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Madlen Farrar
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Victoria Randles
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Liverpool University Hospitals National Health Service Foundation Trust, Liverpool, United Kingdom
| | - Hassan Burhan
- Liverpool University Hospitals National Health Service Foundation Trust, Liverpool, United Kingdom
| | - Tao Chen
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | | | - Joe J Campo
- Antigen Discovery Inc, Irvine, California; and
| | - Robert S Heyderman
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Stephen B Gordon
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Malawi Liverpool Wellcome-Trust Programme, Blantyre, Malawi
| | - Jeremy S Brown
- UCL Respiratory, Division of Medicine, University College London, London, United Kingdom
| | - Andrea M Collins
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Liverpool University Hospitals National Health Service Foundation Trust, Liverpool, United Kingdom
| | - Daniela M Ferreira
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
4
|
Ramkumar SP, Brar T, Marks L, Marino MJ, Lal D. Biological sex as a modulator in rhinologic anatomy, physiology, and pathology: A scoping review. Int Forum Allergy Rhinol 2023; 13:1783-1800. [PMID: 36688669 DOI: 10.1002/alr.23135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/06/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023]
Abstract
BACKGROUND Biological sex is increasingly recognized as a critical variable in health care. The authors reviewed the current literature regarding sex-based differences in rhinology to summarize the data and identify critical knowledge gaps. METHODS A scoping review was conducted. Publications reporting sex-based differences in anatomy, physiology, and pathology focusing on disease prevalence, disease burden, and outcomes in rhinology were identified. RESULTS Seventy-five relevant manuscripts were identified. While paranasal sinuses are of similar size at birth, they become larger in males leading to differences in ostium location. Females outperform males in olfactory identification but only in the 18- to 50-year age group. Estrogen and progesterone administration can impact muscarinic and α1 -adrenergic nasal mucosa receptor density. Chronic rhinosinusitis (CRS) and CRS without nasal polyps are more prevalent in females while CRS with nasal polyps is more prevalent in males. CRS symptom burden is higher in females before and after endoscopic sinus surgery; however, no difference in endoscopic sinus surgery utilization was found based on sex. Allergic rhinitis is more common in males before puberty and in females after puberty. Epistaxis is more prevalent in males and postmenopausal females compared with premenopausal females, perhaps from differences in sex-hormonal and hypertension status. In nasopharyngeal carcinoma, the incidence of sinus abnormalities was higher in males than females. CONCLUSIONS Although many sex-based differences exist in rhinology, further research is necessary to offer evidence-based treatment guidelines. Gonadal hormones should be studied as a therapeutic in rhinologic pathology as baseline physiologic differences exist such as those found in nasal mucosa receptor density.
Collapse
Affiliation(s)
- Shreya P Ramkumar
- Department of Otolaryngology Head and Neck Surgery, Mayo Clinic, Phoenix, Arizona, USA
- Saint Louis University School of Medicine, Saint Louis, Missouri, USA
| | - Tripti Brar
- Department of Otolaryngology Head and Neck Surgery, Mayo Clinic, Phoenix, Arizona, USA
| | - Lisa Marks
- Division of Education, Department of Library Services, Mayo Clinic, Phoenix, Arizona, USA
| | - Michael J Marino
- Department of Otolaryngology Head and Neck Surgery, Mayo Clinic, Phoenix, Arizona, USA
| | - Devyani Lal
- Department of Otolaryngology Head and Neck Surgery, Mayo Clinic, Phoenix, Arizona, USA
| |
Collapse
|
5
|
Dula D, Morton B, Chikaonda T, Chirwa AE, Nsomba E, Nkhoma V, Ngoliwa C, Sichone S, Galafa B, Tembo G, Chaponda M, Toto N, Kamng'ona R, Makhaza L, Muyaya A, Thole F, Kudowa E, Howard A, Kenny-Nyazika T, Ndaferankhande J, Mkandawire C, Chiwala G, Chimgoneko L, Banda NPK, Rylance J, Ferreira D, Jambo K, Henrion MYR, Gordon SB. Effect of 13-valent pneumococcal conjugate vaccine on experimental carriage of Streptococcus pneumoniae serotype 6B in Blantyre, Malawi: a randomised controlled trial and controlled human infection study. THE LANCET. MICROBE 2023; 4:e683-e691. [PMID: 37659418 PMCID: PMC10469263 DOI: 10.1016/s2666-5247(23)00178-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 09/04/2023]
Abstract
BACKGROUND The effect of childhood pneumococcal conjugate vaccine implementation in Malawi is threatened by absence of herd effect. There is persistent vaccine-type pneumococcal carriage in both vaccinated children and the wider community. We aimed to use a human infection study to measure 13-valent pneumococcal conjugate vaccine (PCV13) efficacy against pneumococcal carriage. METHODS We did a double-blind, parallel-arm, randomised controlled trial investigating the efficacy of PCV13 or placebo against experimental pneumococcal carriage of Streptococcus pneumoniae serotype 6B (strain BHN418) among healthy adults (aged 18-40 years) from Blantyre, Malawi. We randomly assigned participants (1:1) to receive PCV13 or placebo. PCV13 and placebo doses were prepared by an unmasked pharmacist to maintain research team and participant masking with identification only by a randomisation identification number and barcode. 4 weeks after receiving either PCV13 or placebo, participants were challenged with 20 000 colony forming units (CFUs) per naris, 80 000 CFUs per naris, or 160 000 CFUs per naris by intranasal inoculation. The primary endpoint was experimental pneumococcal carriage, established by culture of nasal wash at 2, 7, and 14 days. Vaccine efficacy was estimated per protocol by means of a log-binomial model adjusting for inoculation dose. The trial is registered with the Pan African Clinical Trials Registry, PACTR202008503507113, and is now closed. FINDINGS Recruitment commenced on April 27, 2021 and the final visit was completed on Sept 12, 2022. 204 participants completed the study protocol (98 PCV13, 106 placebo). There were lower carriage rates in the vaccine group at all three inoculation doses (0 of 21 vs two [11%] of 19 at 20 000 CFUs per naris; six [18%] of 33 vs 12 [29%] of 41 at 80 000 CFUs per naris, and four [9%] of 44 vs 16 [35%] of 46 at 160 000 CFUs per naris). The overall carriage rate was lower in the vaccine group compared with the placebo group (ten [10%] of 98 vs 30 [28%] of 106; Fisher's p value=0·0013) and the vaccine efficacy against carriage was estimated at 62·4% (95% CI 27·7-80·4). There were no severe adverse events related to vaccination or inoculation of pneumococci. INTERPRETATION This is, to our knowledge, the first human challenge study to test the efficacy of a pneumococcal vaccine against pneumococcal carriage in Africa, which can now be used to establish vaccine-induced correlates of protection and compare alternative strategies to prevent pneumococcal carriage. This powerful tool could lead to new means to enhance reduction in pneumococcal carriage after vaccination. FUNDING Wellcome Trust.
Collapse
Affiliation(s)
- Dingase Dula
- Malawi Liverpool Wellcome Research Programme, Blantyre, Malawi
| | - Ben Morton
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK; Critical Care Department, Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK.
| | | | | | - Edna Nsomba
- Malawi Liverpool Wellcome Research Programme, Blantyre, Malawi
| | | | - Clara Ngoliwa
- Malawi Liverpool Wellcome Research Programme, Blantyre, Malawi; Department of Medicine, Queen Elizabeth Central Hospital, Blantyre, Malawi
| | - Simon Sichone
- Malawi Liverpool Wellcome Research Programme, Blantyre, Malawi
| | | | - Godwin Tembo
- Malawi Liverpool Wellcome Research Programme, Blantyre, Malawi
| | | | - Neema Toto
- Malawi Liverpool Wellcome Research Programme, Blantyre, Malawi
| | | | - Lumbani Makhaza
- Malawi Liverpool Wellcome Research Programme, Blantyre, Malawi
| | - Alfred Muyaya
- Malawi Liverpool Wellcome Research Programme, Blantyre, Malawi
| | - Faith Thole
- Malawi Liverpool Wellcome Research Programme, Blantyre, Malawi
| | | | - Ashleigh Howard
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Tinashe Kenny-Nyazika
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | | | | | - Gift Chiwala
- Malawi Liverpool Wellcome Research Programme, Blantyre, Malawi
| | | | - Ndaziona P K Banda
- Department of Medicine, Queen Elizabeth Central Hospital, Blantyre, Malawi; School of Medicine, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Jamie Rylance
- Malawi Liverpool Wellcome Research Programme, Blantyre, Malawi
| | - Daniela Ferreira
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK; Department of Paediatrics, University of Oxford, Oxford, UK
| | - Kondwani Jambo
- Malawi Liverpool Wellcome Research Programme, Blantyre, Malawi; Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Marc Y R Henrion
- Malawi Liverpool Wellcome Research Programme, Blantyre, Malawi; Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Stephen B Gordon
- Malawi Liverpool Wellcome Research Programme, Blantyre, Malawi; Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| |
Collapse
|
6
|
Szylar G, Wysoczanski R, Marshall H, Marks DJB, José R, Ehrenstein MR, Brown JS. A novel Streptococcus pneumoniae human challenge model demonstrates Treg lymphocyte recruitment to the infection site. Sci Rep 2022; 12:3990. [PMID: 35256717 PMCID: PMC8901783 DOI: 10.1038/s41598-022-07914-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/14/2022] [Indexed: 12/04/2022] Open
Abstract
To investigate local tissue responses to infection we have developed a human model of killed Streptococcus pneumoniae challenge by intradermal injection into the forearm. S. pneumoniae intradermal challenge caused an initial local influx of granulocytes and increases in TNF, IL6 and CXCL8. However, by 48 h lymphocytes were the dominant cell population, mainly consisting of CD4 and CD8 T cells. Increases in local levels of IL17 and IL22 and the high proportion of CD4 cells that were CCR6+ suggested a significant Th17 response. Furthermore, at 48 h the CD4 population contained a surprisingly high proportion of likely memory Treg cells (CCR6 positive and CD45RA negative CD4+CD25highCD127low cells) at 39%. These results demonstrate that the intradermal challenge model can provide novel insights into the human response to S. pneumoniae and that Tregs form a substantial contribution of the normal human lymphocyte response to infection with this important pathogen.
Collapse
Affiliation(s)
- Gabriella Szylar
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Division of Medicine, Rayne Building, 5 University Street, London, WC1E 6JF, UK
| | - Riccardo Wysoczanski
- Centre for Molecular Medicine, UCL Division of Medicine, Rayne Institute, 5 University Street, London, WC1E 6JF, UK
| | - Helina Marshall
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Division of Medicine, Rayne Building, 5 University Street, London, WC1E 6JF, UK
| | - Daniel J B Marks
- Centre for Molecular Medicine, UCL Division of Medicine, Rayne Institute, 5 University Street, London, WC1E 6JF, UK
| | - Ricardo José
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Division of Medicine, Rayne Building, 5 University Street, London, WC1E 6JF, UK
| | - Michael R Ehrenstein
- Centre for Rheumatology, UCL Division of Medicine, Rayne Building, 5 University Street, London, WC1E 6JF, UK
| | - Jeremy S Brown
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Division of Medicine, Rayne Building, 5 University Street, London, WC1E 6JF, UK.
| |
Collapse
|
7
|
He SWJ, van de Garde MDB, Pieren DKJ, Poelen MCM, Voß F, Abdullah MR, Hammerschmidt S, van Els CACM. Diminished Pneumococcal-Specific CD4+ T-Cell Response is Associated With Increased Regulatory T Cells at Older Age. FRONTIERS IN AGING 2021; 2:746295. [PMID: 35822055 PMCID: PMC9261371 DOI: 10.3389/fragi.2021.746295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/18/2021] [Indexed: 11/13/2022]
Abstract
Respiratory infection caused by Streptococcus pneumoniae is a leading cause of morbidity and mortality in older adults. Acquired CD4+ T cell mechanism are essential for the protection against colonization and subsequent development of infections by S. pneumoniae. In this study, we hypothesized that age-related changes within the CD4+ T-cell population compromise CD4+ T-cell specific responses to S. pneumoniae, thereby contributing to increased susceptibility at older age. To this end, we interrogated the CD4+ T-cell response against the immunogenic pneumococcal protein AliB, part of the unique oligopeptide ABC transporter system responsible for the uptake of nutrients for the bacterium and crucial for the development of pneumococcal meningitis, in healthy young and older adults. Specifically, proliferation of CD4+ T cells as well as concomitant cytokine profiles and phenotypic markers implied in immunosenescence were studied. Older adults showed decreased AliB-induced CD4+ T-cell proliferation that is associated with an increased frequency of regulatory T cells and lower levels of active CD25+CD127+CTLA-4−TIGIT-CD4+T cells. Additionally, levels of pro-inflammatory cytokines IFNy and IL-17F were decreased at older age. Our findings indicate that key features of a pneumococcal-specific CD4+ T-cell immune response are altered at older age, which may contribute to enhanced susceptibility for pneumococcal infections.
Collapse
Affiliation(s)
- Samantha W J He
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Martijn D B van de Garde
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Daan K J Pieren
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Martien C M Poelen
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Franziska Voß
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute of Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Mohammed R Abdullah
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute of Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Sven Hammerschmidt
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute of Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Cécile A C M van Els
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| |
Collapse
|
8
|
Weight CM, Jochems SP, Adler H, Ferreira DM, Brown JS, Heyderman RS. Insights Into the Effects of Mucosal Epithelial and Innate Immune Dysfunction in Older People on Host Interactions With Streptococcus pneumoniae. Front Cell Infect Microbiol 2021; 11:651474. [PMID: 34113578 PMCID: PMC8185287 DOI: 10.3389/fcimb.2021.651474] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 05/10/2021] [Indexed: 12/21/2022] Open
Abstract
In humans, nasopharyngeal carriage of Streptococcus pneumoniae is common and although primarily asymptomatic, is a pre-requisite for pneumonia and invasive pneumococcal disease (IPD). Together, these kill over 500,000 people over the age of 70 years worldwide every year. Pneumococcal conjugate vaccines have been largely successful in reducing IPD in young children and have had considerable indirect impact in protection of older people in industrialized country settings (herd immunity). However, serotype replacement continues to threaten vulnerable populations, particularly older people in whom direct vaccine efficacy is reduced. The early control of pneumococcal colonization at the mucosal surface is mediated through a complex array of epithelial and innate immune cell interactions. Older people often display a state of chronic inflammation, which is associated with an increased mortality risk and has been termed 'Inflammageing'. In this review, we discuss the contribution of an altered microbiome, the impact of inflammageing on human epithelial and innate immunity to S. pneumoniae, and how the resulting dysregulation may affect the outcome of pneumococcal infection in older individuals. We describe the impact of the pneumococcal vaccine and highlight potential research approaches which may improve our understanding of respiratory mucosal immunity during pneumococcal colonization in older individuals.
Collapse
Affiliation(s)
- Caroline M. Weight
- Research Department of Infection, Division of Infection and Immunity, University College London, London, United Kingdom
| | - Simon P. Jochems
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Hugh Adler
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Tropical and Infectious Diseases Unit, Liverpool University Hospitals National Health Service (NHS) Foundation Trust, Liverpool, United Kingdom
| | - Daniela M. Ferreira
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Jeremy S. Brown
- Respiratory Medicine, University College London, London, United Kingdom
| | - Robert S. Heyderman
- Research Department of Infection, Division of Infection and Immunity, University College London, London, United Kingdom
| |
Collapse
|
9
|
Shekhar S, Åmdal HA, Petersen FC. Vaccination With the Commensal Streptococcus mitis Expressing Pneumococcal Serotype 5 Capsule Elicits IgG/IgA and Th17 Responses Against Streptococcus pneumoniae. Front Immunol 2021; 12:676488. [PMID: 33953733 PMCID: PMC8089380 DOI: 10.3389/fimmu.2021.676488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 03/30/2021] [Indexed: 01/20/2023] Open
Abstract
Recent studies have identified a clinical isolate of the commensal Streptococcus mitis that expresses Streptococcus pneumoniae serotype 5 capsule (S. mitis serotype 5) and shows serospecificity toward pneumococcal serotype 5. However, it remains unknown whether S. mitis serotype 5 induces protective immunity against pneumococcal serotype 5. In this study, we evaluated the ability of S. mitis serotype 5 to generate protective immunity in a mouse model of lung infection with pneumococcal serotype 5. Upon challenge infection with S. pneumoniae serotype 5, mice intranasally immunized with S. mitis serotype 5 exhibited reduced pneumococcal loads in the lungs, nasal wash, and bronchoalveolar lavage fluid compared with those receiving PBS (control). The immunized mice displayed significantly higher levels of IgG and IgA antibodies reactive to S. mitis serotype 5, S. pneumoniae serotype 5 or S. pneumoniae serotype 4 than the antibody levels in control mice. In vaccinated mice, the IgG/IgA antibody levels reactive to S. mitis serotype 5 or S. pneumoniae serotype 5 were higher than the levels reactive to S. pneumoniae serotype 4. Furthermore, in-vitro restimulation of the lung-draining mediastinal lymph node cells and splenocytes from immunized mice with killed S. mitis serotype 5, S. pneumoniae serotype 5 or S. pneumoniae serotype 4 showed enhanced Th17, but not Th1 and Th2, responses. Overall, our findings show that mucosal immunization with S. mitis serotype 5 protects against S. pneumoniae serotype 5 infection and induces Th17 and predominant serotype-specific IgG/IgA antibody responses against pneumococcal infection.
Collapse
Affiliation(s)
| | - Heidi A Åmdal
- Institute of Oral Biology, University of Oslo, Oslo, Norway
| | | |
Collapse
|
10
|
Lagousi T, Basdeki P, De Jonge MI, Spoulou V. Understanding host immune responses to pneumococcal proteins in the upper respiratory tract to develop serotype-independent pneumococcal vaccines. Expert Rev Vaccines 2020; 19:959-972. [PMID: 33107359 DOI: 10.1080/14760584.2020.1843433] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Introduction: Nasopharyngeal colonization is a precondition for mucosal and invasive pneumococcal disease. Prevention of colonization may reduce pneumococcal transmission and disease incidence. Therefore, several protein-based pneumococcal vaccines are currently under investigation. Areas covered: We aimed to better understand the host immune responses to pneumococcal proteins in the upper respiratory tract (URT) that could facilitate the development of serotype-independent pneumococcal vaccines. English peer-reviewed papers reporting immunological mechanisms involved in host immune response to pneumococcal proteins in the URT were retrieved through a PubMed search using the terms 'pneumococcal proteins,' 'nasopharyngeal colonization' and/or 'cellular/humoral host immune response.' Expert opinion: Although pneumococcal protein antigens induce humoral immune responses, as well as IL-17A-mediated immunity, none of them, when used as single antigen, is sufficient to control and broadly protect against pneumococcal colonization. Novel vaccines should contain multiple conserved protein antigens to activate both arms of the immune system and evoke protection against the whole spectrum of pneumococcal variants by reducing, rather than eradicating, pneumococcal carriage. The highest efficacy would likely be achieved when the vaccine is intranasally applied, inducing mucosal immunity and enhancing the first line of defense by restricting pneumococcal density in the URT, which in turn will lead to reduced transmission and protection against disease.
Collapse
Affiliation(s)
- Theano Lagousi
- First Department of Paediatrics, "Aghia Sophia" Children's Hospital, Immunobiology Research Laboratory and Infectious Diseases Department "MAKKA", Athens Medical School , Athens, Greece
| | - Paraskevi Basdeki
- First Department of Paediatrics, "Aghia Sophia" Children's Hospital, Immunobiology Research Laboratory and Infectious Diseases Department "MAKKA", Athens Medical School , Athens, Greece
| | - Marien I De Jonge
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Center for Infectious Diseases, Radboud Institute for Molecular Life Sciences , Nijmegen, The Netherlands
| | - Vana Spoulou
- First Department of Paediatrics, "Aghia Sophia" Children's Hospital, Immunobiology Research Laboratory and Infectious Diseases Department "MAKKA", Athens Medical School , Athens, Greece
| |
Collapse
|
11
|
Voß F, van Beek LF, Schwudke D, Ederveen THA, van Opzeeland FJ, Thalheim D, Werner S, de Jonge MI, Hammerschmidt S. Lipidation of Pneumococcal Antigens Leads to Improved Immunogenicity and Protection. Vaccines (Basel) 2020; 8:vaccines8020310. [PMID: 32560374 PMCID: PMC7350230 DOI: 10.3390/vaccines8020310] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/04/2020] [Accepted: 06/11/2020] [Indexed: 12/20/2022] Open
Abstract
Streptococcus pneumoniae infections lead to high morbidity and mortality rates worldwide. Pneumococcal polysaccharide conjugate vaccines significantly reduce the burden of disease but have a limited range of protection, which encourages the development of a broadly protective protein-based alternative. We and others have shown that immunization with pneumococcal lipoproteins that lack the lipid anchor protects against colonization. Since immunity against S. pneumoniae is mediated through Toll-like receptor 2 signaling induced by lipidated proteins, we investigated the effects of a lipid modification on the induced immune responses in either intranasally or subcutaneously vaccinated mice. Here, we demonstrate that lipidation of recombinant lipoproteins DacB and PnrA strongly improves their immunogenicity. Mice immunized with lipidated proteins showed enhanced antibody concentrations and different induction kinetics. The induced humoral immune response was modulated by lipidation, indicated by increased IgG2/IgG1 subclass ratios related to Th1-type immunity. In a mouse model of colonization, immunization with lipidated antigens led to a moderate but consistent reduction of pneumococcal colonization as compared to the non-lipidated proteins, indicating that protein lipidation can improve the protective capacity of the coupled antigen. Thus, protein lipidation represents a promising approach for the development of a serotype-independent pneumococcal vaccine.
Collapse
Affiliation(s)
- Franziska Voß
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute of Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, 17489 Greifswald, Germany; (F.V.); (D.T.); (S.W.)
| | - Lucille F. van Beek
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, 6525 GA Nijmegen, The Netherlands; (L.F.v.B.); (F.J.v.O.); (M.I.d.J.)
- Radboud Center for Infectious Diseases, Radboudumc, 6525 GA Nijmegen, The Netherlands
| | - Dominik Schwudke
- Division of Bioanalytical Chemistry, Priority Area Infection, Research Center Borstel, Leibniz Center for Medicine and Bioscience, 23845 Borstel, Germany;
- German Center for Infection Research (DZIF), 38124 Braunschweig, Germany
- Airway Research Center North Member of the German Center for Lung Research (DZL), 22927 Großhansdorf, Germany
| | - Thomas H. A. Ederveen
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands;
| | - Fred J. van Opzeeland
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, 6525 GA Nijmegen, The Netherlands; (L.F.v.B.); (F.J.v.O.); (M.I.d.J.)
- Radboud Center for Infectious Diseases, Radboudumc, 6525 GA Nijmegen, The Netherlands
| | - Daniela Thalheim
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute of Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, 17489 Greifswald, Germany; (F.V.); (D.T.); (S.W.)
| | - Sidney Werner
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute of Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, 17489 Greifswald, Germany; (F.V.); (D.T.); (S.W.)
| | - Marien I. de Jonge
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, 6525 GA Nijmegen, The Netherlands; (L.F.v.B.); (F.J.v.O.); (M.I.d.J.)
- Radboud Center for Infectious Diseases, Radboudumc, 6525 GA Nijmegen, The Netherlands
| | - Sven Hammerschmidt
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute of Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, 17489 Greifswald, Germany; (F.V.); (D.T.); (S.W.)
- Correspondence: ; Tel.: +49-383-4420-5700; Fax: +49-3834-4205-709
| |
Collapse
|
12
|
Swarthout TD, Fronterre C, Lourenço J, Obolski U, Gori A, Bar-Zeev N, Everett D, Kamng'ona AW, Mwalukomo TS, Mataya AA, Mwansambo C, Banda M, Gupta S, Diggle P, French N, Heyderman RS. High residual carriage of vaccine-serotype Streptococcus pneumoniae after introduction of pneumococcal conjugate vaccine in Malawi. Nat Commun 2020; 11:2222. [PMID: 32376860 PMCID: PMC7203201 DOI: 10.1038/s41467-020-15786-9] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 03/28/2020] [Indexed: 12/22/2022] Open
Abstract
There are concerns that pneumococcal conjugate vaccines (PCVs) in sub-Saharan Africa sub-optimally interrupt Streptococcus pneumoniae vaccine-serotype (VT) carriage and transmission. Here we assess PCV carriage using rolling, prospective nasopharyngeal carriage surveys between 2015 and 2018, 3.6–7.1 years after Malawi’s 2011 PCV13 introduction. Carriage decay rate is analysed using non-linear regression. Despite evidence of reduction in VT carriage over the study period, there is high persistent residual carriage. This includes among PCV-vaccinated children 3–5-year-old (16.1% relative reduction from 19.9% to 16.7%); PCV-unvaccinated children 6–8-year-old (40.5% reduction from 26.4% to 15.7%); HIV-infected adults 18-40-years-old on antiretroviral therapy (41.4% reduction from 15.2% to 8.9%). VT carriage prevalence half-life is similar among PCV-vaccinated and PCV-unvaccinated children (3.26 and 3.34 years, respectively). Compared with high-income settings, there is high residual VT carriage 3.6–7.1 years after PCV introduction. Rigorous evaluation of strategies to augment vaccine-induced control of carriage, including alternative schedules and catch-up campaigns, is required. Impact of pneumococcal conjugate vaccines (PCV) in controlling carriage needs to be evaluated to inform vaccine policy. Here, Swarthout et al. show in a prospective rolling cross-sectional study in Malawi a high residual prevalence of vaccine-serotype S. pneumoniae 7 years after PCV introduction.
Collapse
Affiliation(s)
- Todd D Swarthout
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi. .,NIHR Global Health Research Unit on Mucosal Pathogens, Division of Infection and Immunity, University College London, London, UK. .,Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool, UK.
| | - Claudio Fronterre
- CHICAS, Lancaster Medical School, Lancaster University, Lancaster, UK
| | - José Lourenço
- Department of Zoology, University of Oxford, Oxford, UK
| | - Uri Obolski
- School of Public Health, Tel Aviv University, Tel Aviv, Israel.,Porter School of the Environment and Earth Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Andrea Gori
- NIHR Global Health Research Unit on Mucosal Pathogens, Division of Infection and Immunity, University College London, London, UK
| | - Naor Bar-Zeev
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi.,International Vaccine Access Center, Department of International Health, Johns Hopkins University, Baltimore, USA
| | - Dean Everett
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi.,The Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Arox W Kamng'ona
- Department of Biomedical Sciences, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Thandie S Mwalukomo
- Department of Medicine, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Andrew A Mataya
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | | | | | - Sunetra Gupta
- Department of Zoology, University of Oxford, Oxford, UK
| | - Peter Diggle
- CHICAS, Lancaster Medical School, Lancaster University, Lancaster, UK
| | - Neil French
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi.,Centre for Global Vaccine Research, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Robert S Heyderman
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi.,NIHR Global Health Research Unit on Mucosal Pathogens, Division of Infection and Immunity, University College London, London, UK
| |
Collapse
|
13
|
Weight CM, Venturini C, Pojar S, Jochems SP, Reiné J, Nikolaou E, Solórzano C, Noursadeghi M, Brown JS, Ferreira DM, Heyderman RS. Microinvasion by Streptococcus pneumoniae induces epithelial innate immunity during colonisation at the human mucosal surface. Nat Commun 2019; 10:3060. [PMID: 31311921 PMCID: PMC6635362 DOI: 10.1038/s41467-019-11005-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 06/04/2019] [Indexed: 12/18/2022] Open
Abstract
Control of Streptococcus pneumoniae colonisation at human mucosal surfaces is critical to reducing the burden of pneumonia and invasive pneumococcal disease, interrupting transmission, and achieving herd protection. Here, we use an experimental human pneumococcal carriage model (EHPC) to show that S. pneumoniae colonisation is associated with epithelial surface adherence, micro-colony formation and invasion, without overt disease. Interactions between different strains and the epithelium shaped the host transcriptomic response in vitro. Using epithelial modules from a human epithelial cell model that recapitulates our in vivo findings, comprising of innate signalling and regulatory pathways, inflammatory mediators, cellular metabolism and stress response genes, we find that inflammation in the EHPC model is most prominent around the time of bacterial clearance. Our results indicate that, rather than being confined to the epithelial surface and the overlying mucus layer, the pneumococcus undergoes micro-invasion of the epithelium that enhances inflammatory and innate immune responses associated with clearance. Streptococcus pneumoniae is a common coloniser of the human nasopharynx, but it also causes severe diseases. Here, Weight et al. use an experimental human pneumococcal carriage model to show that bacterial colonisation is associated with invasion of the epithelium and enhancement of immune responses.
Collapse
Affiliation(s)
- Caroline M Weight
- Division of Infection and Immunity, University College London, London, UK.
| | - Cristina Venturini
- Division of Infection and Immunity, University College London, London, UK
| | - Sherin Pojar
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Simon P Jochems
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Jesús Reiné
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Elissavet Nikolaou
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Carla Solórzano
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Mahdad Noursadeghi
- Division of Infection and Immunity, University College London, London, UK
| | - Jeremy S Brown
- Department of Respiratory Medicine, University College London, London, UK
| | - Daniela M Ferreira
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Robert S Heyderman
- Division of Infection and Immunity, University College London, London, UK
| |
Collapse
|
14
|
Ramos-Sevillano E, Ercoli G, Brown JS. Mechanisms of Naturally Acquired Immunity to Streptococcus pneumoniae. Front Immunol 2019; 10:358. [PMID: 30881363 PMCID: PMC6405633 DOI: 10.3389/fimmu.2019.00358] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 02/12/2019] [Indexed: 12/11/2022] Open
Abstract
In this review we give an update on the mechanisms of naturally acquired immunity against Streptococcus pneumoniae, one of the major human bacterial pathogens that is a common cause of pneumonia, septicaemia, and meningitis. A clear understanding of the natural mechanisms of immunity to S. pneumoniae is necessary to help define why the very young and elderly are at high risk of disease, and for devising new prevention strategies. Recent data has shown that nasopharynx colonization by S. pneumoniae induces antibody responses to protein and capsular antigens in both mice and humans, and also induces Th17 CD4+ cellular immune responses in mice and increases pre-existing responses in humans. These responses are protective, demonstrating that colonization is an immunizing event. We discuss the data from animal models and humans on the relative importance of naturally acquired antibody and Th17 cells on immunity to S. pneumoniae at three different anatomical sites of infection, the nasopharynx (the site of natural asymptomatic carriage), the lung (site of pneumonia), and the blood (site of sepsis). Mouse data suggest that CD4+ Th17 cells prevent both primary and secondary nasopharyngeal carriage with no role for antibody induced by previous colonization. In contrast, antibody is necessary for prevention of sepsis but CD4+ cellular responses are not. Protection against pneumonia requires a combination of both antibody and Th17 cells, in both cases targeting protein rather than capsular antigen. Proof of which immune component prevents human infection is less easily available, but two recent papers demonstrate that human IgG targeting S. pneumoniae protein antigens is highly protective against septicaemia. The role of CD4+ responses to prior nasopharyngeal colonization for protective immunity in humans is unclear. The evidence that there is significant naturally-acquired immunity to S. pneumoniae independent of anti-capsular polysaccharide has clinical implications for the detection of subjects at risk of S. pneumoniae infections, and the data showing the importance of protein antigens as targets for antibody and Th17 mediated immunity should aid the development of new vaccine strategies.
Collapse
Affiliation(s)
| | | | - Jeremy S. Brown
- Centre for Inflammation and Tissue Repair, UCL Respiratory, London, United Kingdom
| |
Collapse
|
15
|
Oliver E, Pope C, Clarke E, Langton Hewer C, Ogunniyi AD, Paton JC, Mitchell T, Malley R, Finn A. Th17 responses to pneumococcus in blood and adenoidal cells in children. Clin Exp Immunol 2019; 195:213-225. [PMID: 30325010 PMCID: PMC6330644 DOI: 10.1111/cei.13225] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2018] [Indexed: 11/30/2022] Open
Abstract
Pneumococcal infections cause a large global health burden, and the search for serotype-independent vaccines continues. Existing conjugate vaccines reduce nasopharyngeal colonization by target serotypes. Such mucosal effects of novel antigens may similarly be important. CD4+ Th17 cell-dependent, antibody-independent reductions in colonization and enhanced clearance have been described in mice. Here we describe the evaluation of T helper type 17 (Th17) cytokine responses to candidate pneumococcal protein vaccine antigens in human cell culture, using adenoidal and peripheral blood mononuclear cells. Optimal detection of interleukin (IL)-17A was at day 7, and of IL-22 at day 11, in these primary cell cultures. Removal of CD45RO+ memory T cells abolished these responses. Age-associated increases in magnitude of responses were evident for IL-17A, but not IL-22, in adenoidal cells. There was a strong correlation between individual IL-17A and IL-22 responses after pneumococcal antigen stimulation (P < 0·015). Intracellular cytokine staining following phorbol myristate acetate (PMA)/ionomycin stimulation demonstrated that > 30% CD4+ T cells positive for IL-22 express the innate markers γδT cell receptor and/or CD56, with much lower proportions for IL-17A+ cells (P < 0·001). Responses to several vaccine candidate antigens were observed but were consistently absent, particularly in blood, to PhtD (P < 0·0001), an antigen recently shown not to impact colonization in a clinical trial of a PhtD-containing conjugate vaccine in infants. The data presented and approach discussed have the potential to assist in the identification of novel vaccine antigens aimed at reducing pneumococcal carriage and transmission, thus improving the design of empirical clinical trials.
Collapse
Affiliation(s)
- E. Oliver
- School of Cellular and Molecular Medicine, Biomedical Sciences BuildingUniversity of BristolBristolUK
| | - C. Pope
- School of Cellular and Molecular Medicine, Biomedical Sciences BuildingUniversity of BristolBristolUK
| | - E. Clarke
- Vaccines and Immunity Theme, MRC Unit The GambiaFajaraThe Gambia
| | | | - A. D. Ogunniyi
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary SciencesThe University of AdelaideAdelaideAustralia
| | - J. C. Paton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical ScienceUniversity of AdelaideAdelaideAustralia
| | - T. Mitchell
- Institute of Microbiology and InfectionUniversity of BirminghamBirminghamUK
| | - R. Malley
- Division of Infectious Diseases, Department of MedicineChildren’s Hospital and Harvard Medical SchoolBostonMAUSA
| | - A. Finn
- School of Cellular and Molecular Medicine, Biomedical Sciences BuildingUniversity of BristolBristolUK
| |
Collapse
|
16
|
Lu YJ, Oliver E, Zhang F, Pope C, Finn A, Malley R. Screening for Th17-Dependent Pneumococcal Vaccine Antigens: Comparison of Murine and Human Cellular Immune Responses. Infect Immun 2018; 86:e00490-18. [PMID: 30150255 PMCID: PMC6204694 DOI: 10.1128/iai.00490-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 08/17/2018] [Indexed: 12/14/2022] Open
Abstract
Conjugate vaccines against Streptococcus pneumoniae have significantly reduced the incidence of diseases caused by the serotypes included in those vaccines; however, there is still a need for vaccines that confer serotype-independent protection. In the current study, we have constructed a library of conserved surface proteins from S. pneumoniae and have screened for IL-17A and IL-22 production in human immune cells obtained from adenoidal/tonsillar tissues of children and IL-17A production in splenocytes from mice that had been immunized with a killed whole-cell vaccine or previously exposed to pneumococcus. A positive correlation was found between the rankings of proteins from human IL-17A and IL-22 screens, but not between those from human and mouse screens. All proteins were tested for protection against colonization, and we identified protective antigens that are IL-17A dependent. We found that the likelihood of finding a protective antigen is significantly higher for groups of proteins ranked in the top 50% of all three screens than for groups of proteins ranked in the bottom 50% of all three. The results thus confirmed the value of such screens for identifying Th17 antigens. Further, these experiments have evaluated and compared the breadth of human and mouse Th17 responses to pneumococcal colonization and have enabled the identification of potential vaccine candidates based on immunological responses in mouse and human cells.
Collapse
Affiliation(s)
- Ying-Jie Lu
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Elizabeth Oliver
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Fan Zhang
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Caroline Pope
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Adam Finn
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
- School of Population Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Richard Malley
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
17
|
Ritchie ND, Ritchie R, Bayes HK, Mitchell TJ, Evans TJ. IL-17 can be protective or deleterious in murine pneumococcal pneumonia. PLoS Pathog 2018; 14:e1007099. [PMID: 29813133 PMCID: PMC5993294 DOI: 10.1371/journal.ppat.1007099] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/08/2018] [Accepted: 05/14/2018] [Indexed: 12/21/2022] Open
Abstract
Streptococcus pneumoniae is the major bacterial cause of community-acquired pneumonia, and the leading agent of childhood pneumonia deaths worldwide. Nasal colonization is an essential step prior to infection. The cytokine IL-17 protects against such colonization and vaccines that enhance IL-17 responses to pneumococcal colonization are being developed. The role of IL-17 in host defence against pneumonia is not known. To address this issue, we have utilized a murine model of pneumococcal pneumonia in which the gene for the IL-17 cytokine family receptor, Il17ra, has been inactivated. Using this model, we show that IL-17 produced predominantly from γδ T cells protects mice against death from the invasive TIGR4 strain (serotype 4) which expresses a relatively thin capsule. However, in pneumonia produced by two heavily encapsulated strains with low invasive potential (serotypes 3 and 6B), IL-17 significantly enhanced mortality. Neutrophil uptake and killing of the serotype 3 strain was significantly impaired compared to the serotype 4 strain and depletion of neutrophils with antibody enhanced survival of mice infected with the highly encapsulated SRL1 strain. These data strongly suggest that IL-17 mediated neutrophil recruitment to the lungs clears infection from the invasive TIGR4 strain but that lung neutrophils exacerbate disease caused by the highly encapsulated pneumococcal strains. Thus, whilst augmenting IL-17 immune responses against pneumococci may decrease nasal colonization, this may worsen outcome during pneumonia caused by some strains.
Collapse
MESH Headings
- Animals
- Bacteremia/immunology
- Bacteremia/microbiology
- Bacterial Capsules/immunology
- Bacterial Capsules/ultrastructure
- Bronchoalveolar Lavage Fluid/cytology
- Bronchoalveolar Lavage Fluid/microbiology
- Disease Models, Animal
- Interleukin-17/immunology
- Lung/cytology
- Lung/enzymology
- Lung/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Microscopy, Electron, Transmission
- Microscopy, Fluorescence
- Nasopharynx/microbiology
- Neutrophils/cytology
- Neutrophils/immunology
- Peroxidase/metabolism
- Phagocytosis
- Pneumonia, Pneumococcal/immunology
- Pneumonia, Pneumococcal/mortality
- Pneumonia, Pneumococcal/prevention & control
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Interleukin-17/genetics
- Specific Pathogen-Free Organisms
- Streptococcus pneumoniae/immunology
- Streptococcus pneumoniae/ultrastructure
Collapse
Affiliation(s)
- Neil D. Ritchie
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Ryan Ritchie
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Hannah K. Bayes
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Tim J. Mitchell
- Institute of Microbiology and Infection, College of Medical and Dental Sciences University of Birmingham, Birmingham, United Kingdom
| | - Tom J. Evans
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
18
|
Abstract
Colonization of the human nasopharynx by pneumococcus is extremely common and is both the primary reservoir for transmission and a prerequisite for disease. Current vaccines targeting the polysaccharide capsule effectively prevent colonization, conferring herd protection within vaccinated communities. However, these vaccines cover only a subset of all circulating pneumococcal strains, and serotype replacement has been observed. Given the success of pneumococcal conjugate vaccine (PCV) in preventing colonization in unvaccinated adults within vaccinated communities, reducing nasopharyngeal colonization has become an outcome of interest for novel vaccines. Here, we discuss the immunological mechanisms that control nasopharyngeal colonization, with an emphasis on findings from human studies. Increased understanding of these immunological mechanisms is required to identify correlates of protection against colonization that will facilitate the early testing and design of novel vaccines.
Collapse
Affiliation(s)
- Simon P. Jochems
- Department of Clinicial Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- * E-mail: (SPJ); (DMF)
| | - Jeffrey N. Weiser
- Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Richard Malley
- Division of Infectious Diseases, Boston Children′s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Daniela M. Ferreira
- Department of Clinicial Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- * E-mail: (SPJ); (DMF)
| |
Collapse
|
19
|
Th17-Mediated Cross Protection against Pneumococcal Carriage by Vaccination with a Variable Antigen. Infect Immun 2017; 85:IAI.00281-17. [PMID: 28717032 DOI: 10.1128/iai.00281-17] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/06/2017] [Indexed: 12/22/2022] Open
Abstract
Serotype-specific protection against Streptococcus pneumoniae is an important limitation of the current polysaccharide-based vaccines. To prevent serotype replacement, reduce transmission, and limit the emergence of new variants, it is essential to induce broad protection and restrict pneumococcal colonization. In this study, we used a prototype vaccine formulation consisting of lipopolysaccharide (LPS)-detoxified outer membrane vesicles (OMVs) from Salmonella enterica serovar Typhimurium displaying the variable N terminus of PspA (α1α2) for intranasal vaccination, which induced strong Th17 immunity associated with a substantial reduction of pneumococcal colonization. Despite the variable nature of this protein, a common major histocompatibility complex class (MHC-II) epitope was identified, based on in silico prediction combined with ex vivo screening, and was essential for interleukin-17 A (IL-17A)-mediated cross-reactivity and associated with cross protection. Based on 1,352 PspA sequences derived from a pneumococcal carriage cohort, this OMV-based vaccine formulation containing a single α1α2 type was estimated to cover 19.1% of strains, illustrating the potential of Th17-mediated cross protection.
Collapse
|
20
|
Ojal J, Hammitt LL, Gaitho J, Scott JAG, Goldblatt D. Pneumococcal conjugate vaccine induced IgG and nasopharyngeal carriage of pneumococci: Hyporesponsiveness and immune correlates of protection for carriage. Vaccine 2017; 35:4652-4657. [PMID: 28739116 PMCID: PMC5571437 DOI: 10.1016/j.vaccine.2017.05.088] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/28/2017] [Accepted: 05/30/2017] [Indexed: 11/09/2022]
Abstract
We have confirmed hyporesponsiveness in an equatorial African setting in both infants and toddlers. Responses to vaccination are likely to improve with reducing vaccine-serotypes prevalence. We have not found clear correlates of protection (CoP) against carriage acquisition. Assessing the potential of new vaccines through the use of CoP against carriage is still difficult.
Background Prior studies have demonstrated hyporesponsiveness to pneumococcal conjugate vaccines (PCVs) when administered in the presence of homologous carriage. This may be substantially more important in Africa where carriage prevalence is high. Deriving a correlate of protection (CoP) for carriage is important in guiding the future use of extended PCVs as population control of pneumococcal disease by vaccination is now focused principally on its indirect effect. We therefore explored the complex relationship between existing carriage and vaccine responsiveness, and between serum IgG levels and risk of acquisition. Methods We undertook secondary analyses of data from two previously published clinical trials of the safety and immunogenicity of PCV in Kenya. We compared responses to vaccination between serotype-specific carriers and non-carriers at vaccination. We assessed the risk of carriage acquisition in relation to PCV-induced serum IgG levels using either a step- or continuous-risk function. Results For newborns, the immune response among carriers was 51–82% lower than that among non-carriers, depending on serotype. Among toddlers, for serotypes 6B, 14 and 19F the post-vaccination response among carriers was lower by between 29 and 70%. The estimated CoP against acquisition ranged from 0.26 to 1.93 μg/mL across serotypes, however, these thresholds could not be distinguished statistically from a model with constant probability of carriage independent of assay value. Conclusion We have confirmed hyporesponsiveness in an equatorial African setting in both infants and toddlers. Population responses to vaccination are likely to improve with time as carriage prevalence of vaccine serotypes is reduced. We have not found clear correlates of protection against carriage acquisition among toddlers in this population. Assessing the potential of new vaccines through the use of CoP against carriage is still difficult as there are no clear-cut serotype specific correlates.
Collapse
Affiliation(s)
- John Ojal
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya; Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, United Kingdom.
| | - Laura L Hammitt
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya; Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - John Gaitho
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - J Anthony G Scott
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya; Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - David Goldblatt
- Great Ormond Street Institute of Child Health, University College, London, United Kingdom
| |
Collapse
|
21
|
Hoe E, Anderson J, Nathanielsz J, Toh ZQ, Marimla R, Balloch A, Licciardi PV. The contrasting roles of Th17 immunity in human health and disease. Microbiol Immunol 2017; 61:49-56. [PMID: 28225165 DOI: 10.1111/1348-0421.12471] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 02/16/2017] [Indexed: 12/18/2022]
Abstract
The human immune system is a tightly regulated network that protects the host from disease. An important aspect of this is the balance between pro-inflammatory Th17 cells and anti-inflammatory T regulatory (Treg) cells in maintaining immune homeostasis. Foxp3+ Treg are critical for sustaining immune tolerance through IL-10 and transforming growth factor-β while related orphan receptor-γt+ Th17 cells promote immunopathology and auto-inflammatory diseases through the actions of IL-17A, IL-21 and IL-22. Therefore, imbalance between Treg and Th17 cells can result in serious pathology in many organs and tissues. Recently, certain IL-17-producing cells have been found to be protective against infectious disease, particularly in relation to extracellular bacteria such Streptococcus pneumoniae; a number of other novel IL-17-secreting cell populations have also been reported to protect against a variety of other pathogens. In this mini-review, the dual roles of Treg and Th17 cells are discussed in the context of autoimmunity and infections, highlighting recent advances in the field. Development of novel strategies specifically designed to target these critical immune response pathways will become increasingly important in maintenance of human health.
Collapse
Affiliation(s)
- Edwin Hoe
- Pneumococcal Research Group, Murdoch Children's Research Institute, Melbourne, Vic, Australia
| | - Jeremy Anderson
- Pneumococcal Research Group, Murdoch Children's Research Institute, Melbourne, Vic, Australia
| | - Jordan Nathanielsz
- Pneumococcal Research Group, Murdoch Children's Research Institute, Melbourne, Vic, Australia
| | - Zheng Quan Toh
- Pneumococcal Research Group, Murdoch Children's Research Institute, Melbourne, Vic, Australia
| | - Rachel Marimla
- Pneumococcal Research Group, Murdoch Children's Research Institute, Melbourne, Vic, Australia
| | - Anne Balloch
- Pneumococcal Research Group, Murdoch Children's Research Institute, Melbourne, Vic, Australia
| | - Paul V Licciardi
- Pneumococcal Research Group, Murdoch Children's Research Institute, Melbourne, Vic, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Vic, Australia
| |
Collapse
|
22
|
Balandya E, Reynolds T, Obaro S, Makani J. Alteration of lymphocyte phenotype and function in sickle cell anemia: Implications for vaccine responses. Am J Hematol 2016; 91:938-46. [PMID: 27237467 DOI: 10.1002/ajh.24438] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 05/24/2016] [Accepted: 05/26/2016] [Indexed: 02/07/2023]
Abstract
Individuals with sickle cell anemia (SCA) have increased susceptibility to infections, secondary to impairment of immune function. Besides the described dysfunction in innate immunity, including impaired opsonization and phagocytosis of bacteria, evidence of dysfunction of T and B lymphocytes in SCA has also been reported. This includes reduction in the proportion of circulating CD4+ and CD8+ T cells, reduction of CD4+ helper: CD8+ suppressor T cell ratio, aberrant activation and dysfunction of regulatory T cells (Treg ), skewing of CD4+ T cells towards Th2 response and loss of IgM-secreting CD27 + IgM(high) IgD(low) memory B cells. These changes occur on the background of immune activation characterized by predominance of memory CD4+ T cell phenotypes, increased Th17 signaling and elevated levels of C-reactive protein and pro-inflammatory cytokines IL-6 and TNF-α, which may affect the immunogenicity and protective efficacy of vaccines available to prevent infections in SCA. Thus, in order to optimize the use of vaccines in SCA, a thorough understanding of T and B lymphocyte functions and vaccine reactivity among individuals with SCA is needed. Studies should be encouraged of different SCA populations, including sub-Saharan Africa where the burden of SCA is highest. This article summarizes our current understanding of lymphocyte biology in SCA, and highlights areas that warrant future research. Am. J. Hematol. 91:938-946, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Emmanuel Balandya
- Muhimbili University of Health and Allied Sciences (MUHAS); P.O. Box 65001 Dar-es-Salaam Tanzania
| | - Teri Reynolds
- Muhimbili University of Health and Allied Sciences (MUHAS); P.O. Box 65001 Dar-es-Salaam Tanzania
- University of San Francisco, California (UCSF); 505 Parnassus Ave. San Francisco CA 94143 United States
| | - Stephen Obaro
- University of Nebraska Medical Center (UNMC), 982162 Nebraska Medical Center; Omaha Nebraska 68198-2162 United States
- University of Abuja Teaching Hospital; Gwagwalada, P.M.B 228 Abuja Nigeria
| | - Julie Makani
- Muhimbili University of Health and Allied Sciences (MUHAS); P.O. Box 65001 Dar-es-Salaam Tanzania
| |
Collapse
|
23
|
Mubarak A, Ahmed MS, Upile N, Vaughan C, Xie C, Sharma R, Acar P, McCormick MS, Paton JC, Mitchell T, Cunliffe N, Zhang Q. A dynamic relationship between mucosal T helper type 17 and regulatory T-cell populations in nasopharynx evolves with age and associates with the clearance of pneumococcal carriage in humans. Clin Microbiol Infect 2016; 22:736.e1-7. [PMID: 27256063 DOI: 10.1016/j.cmi.2016.05.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 05/12/2016] [Accepted: 05/19/2016] [Indexed: 12/13/2022]
Abstract
Pneumococcal carriage is common in young children, which may account for the high incidence of disease in this age group. Host factors determining the clearance of carriage in humans remain unclear. We aimed to study the relationships between T helper type 17 (Th17) and Foxp3(+) regulatory T (Treg) cells in nasopharynx-associated lymphoid tissue (NALT) and carriage in children and adults. Frequencies of Th17 and Treg cells in NALT were analysed by flow cytometry in association with age and pneumococcal carriage status. Cytokine responses following pneumococcal stimulation were analysed by cytometric beads array. The frequencies of Th17 and Treg cells in NALT were inversely correlated (R -0.60). Whereas Treg cell frequency decreased with age (R -0.63), both Th17 and the Th17: Treg ratio increased with age (R 0.62 and R 0.64, respectively). Also, the Th17: Treg ratio was higher in carriage-negative than in carriage-positive children (p <0.01). Pneumococcal stimulation of tonsillar cells increased both Th17 and Treg cell numbers, but the Th17: Treg ratio and pattern of cytokine responses differed between carriage-negative and carriage-positive children. The former showed markedly higher Th17: Treg and interleukin-17A: interleukin-10 ratios than in the latter (p <0.01). Pneumococcal stimulation also induces Th17, although the capacity of this Th17 differentiation from naive T cells of young children was low, but increased with age. We demonstrated a dynamic relationship between Th17 and Treg cells in human nasopharynx that evolves with age. The balance between Th17 and Treg cells in NALT appears to be a major host factor closely associated with the clearance of Streptococcus pneumoniae from the nasopharynx.
Collapse
Affiliation(s)
- A Mubarak
- Institute of Infection and Global Health, Department of Clinical Infection Microbiology and Immunology, Liverpool, UK
| | - M S Ahmed
- Institute of Infection and Global Health, Department of Clinical Infection Microbiology and Immunology, Liverpool, UK
| | - N Upile
- Department of Otolaryngology, Alder Hey Children's Hospital, Liverpool, UK
| | - C Vaughan
- Department of Otolaryngology, Alder Hey Children's Hospital, Liverpool, UK
| | - C Xie
- Department of Otolaryngology, Alder Hey Children's Hospital, Liverpool, UK
| | - R Sharma
- Department of Otolaryngology, Alder Hey Children's Hospital, Liverpool, UK
| | - P Acar
- Department of Otolaryngology, Royal Liverpool University Hospital, Liverpool, UK
| | - M S McCormick
- Department of Otolaryngology, Royal Liverpool University Hospital, Liverpool, UK
| | - J C Paton
- Institute of Infection, Research Centre for Infectious Diseases, School of Biomedical Sciences, University of Adelaide, Adelaide, Australia
| | - T Mitchell
- Institute of Microbiology and Infection and School of Immunity and Infection, University of Birmingham, Birmingham, UK
| | - N Cunliffe
- Institute of Infection and Global Health, Department of Clinical Infection Microbiology and Immunology, Liverpool, UK
| | - Q Zhang
- Institute of Infection and Global Health, Department of Clinical Infection Microbiology and Immunology, Liverpool, UK.
| |
Collapse
|
24
|
Elhaik Goldman S, Dotan S, Talias A, Lilo A, Azriel S, Malka I, Portnoi M, Ohayon A, Kafka D, Ellis R, Elkabets M, Porgador A, Levin D, Azhari R, Swiatlo E, Ling E, Feldman G, Tal M, Dagan R, Mizrachi Nebenzahl Y. Streptococcus pneumoniae fructose-1,6-bisphosphate aldolase, a protein vaccine candidate, elicits Th1/Th2/Th17-type cytokine responses in mice. Int J Mol Med 2016; 37:1127-38. [PMID: 26935978 DOI: 10.3892/ijmm.2016.2512] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 02/08/2016] [Indexed: 11/06/2022] Open
Abstract
Streptococcus pneumoniae (S. pneumoniae) is a major pathogen worldwide. The currently available polysaccharide-based vaccines significantly reduce morbidity and mortality. However, the inherent disadvantages of the currently available polysaccharide-based vaccines have motivated the search for other bacterial immunogens capable of eliciting a protective immune response against S. pneumoniae. Fructose-1,6-bisphosphate aldolase (FBA) is a glycolytic enzyme, which was found to localize to the bacterial surface, where it functions as an adhesin. Previously, immunizing mice with recombinant FBA (rFBA) in the presence of alum elicited a protective immune response against a lethal challenge with S. pneumoniae. Thus, the aim of the present study was to determine the cytokine responses that are indicative of protective immunity following immunization with rFBA. The protective effects against pneumococcal challenge in mice immunized with rFBA with complete Freund's adjuvant (CFA) in the initial immunization and with incomplete Freund's adjuvant (IFA) in booster immunizations surpassed the protective effects observed following immunization with either rFBA + alum or pVACfba. CD4+ T-cells obtained from the rFBA/CFA/IFA/IFA-immunized mice co-cultured with rFBA-pulsed antigen-presenting cells (APCs), exhibited a significantly greater proliferative ability than CD4+ T-cells obtained from the adjuvant-immunized mice co-cultured with rFBA‑pulsed APCs. The levels of the Th1-type cytokines, interferon (IFN)-γ, interleukin (IL)-2, tumor necrosis factor (TNF)-α and IL-12, the Th2-type cytokines, IL-4, IL-5 and IL-10, and the Th17-type cytokine, IL-17A, significantly increased within 72 h of the initiation of co-culture with CD4+ T-cells obtained from the rFBA‑immunized mice, in comparison with the co-cultures with CD4+ T-cells obtained from the adjuvant-immunized mice. Immunizing mice with rFBA resulted in an IgG1/IgG2 ratio of 41, indicating a Th2 response with substantial Th1 involvement. In addition, rabbit and mouse anti-rFBA antisera significantly protected the mice against a lethal S. pneumoniae challenge in comparison with preimmune sera. Our results emphasize the mixed involvement of the Th1, Th2 and Th17 arms of the immune system in response to immunization with pneumococcal rFBA, a potential vaccine candidate.
Collapse
Affiliation(s)
- Shirin Elhaik Goldman
- Pediatric Infectious Disease Unit, Soroka University Medical Center, Beer‑Sheva 84100, Israel
| | - Shahar Dotan
- NasVax/Protea Vaccine Technologies Ltd., Kiryat Weizmann, Science Park, Ness Ziona 74140, Israel
| | - Amir Talias
- Pediatric Infectious Disease Unit, Soroka University Medical Center, Beer‑Sheva 84100, Israel
| | - Amit Lilo
- Pediatric Infectious Disease Unit, Soroka University Medical Center, Beer‑Sheva 84100, Israel
| | - Shalhevet Azriel
- Pediatric Infectious Disease Unit, Soroka University Medical Center, Beer‑Sheva 84100, Israel
| | - Itay Malka
- Pediatric Infectious Disease Unit, Soroka University Medical Center, Beer‑Sheva 84100, Israel
| | - Maxim Portnoi
- Pediatric Infectious Disease Unit, Soroka University Medical Center, Beer‑Sheva 84100, Israel
| | - Ariel Ohayon
- Pediatric Infectious Disease Unit, Soroka University Medical Center, Beer‑Sheva 84100, Israel
| | - Daniel Kafka
- Pediatric Infectious Disease Unit, Soroka University Medical Center, Beer‑Sheva 84100, Israel
| | - Ronald Ellis
- NasVax/Protea Vaccine Technologies Ltd., Kiryat Weizmann, Science Park, Ness Ziona 74140, Israel
| | - Moshe Elkabets
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Angel Porgador
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Ditza Levin
- Prof. Ephraim Katzir Department of Biotechnology Engineering, ORT Braude College, Karmiel 21982, Israel
| | - Rosa Azhari
- Prof. Ephraim Katzir Department of Biotechnology Engineering, ORT Braude College, Karmiel 21982, Israel
| | - Edwin Swiatlo
- Division of Infectious Diseases, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Eduard Ling
- Pediatric Infectious Disease Unit, Soroka University Medical Center, Beer‑Sheva 84100, Israel
| | - Galia Feldman
- Pediatric Infectious Disease Unit, Soroka University Medical Center, Beer‑Sheva 84100, Israel
| | - Michael Tal
- NasVax/Protea Vaccine Technologies Ltd., Kiryat Weizmann, Science Park, Ness Ziona 74140, Israel
| | - Ron Dagan
- Pediatric Infectious Disease Unit, Soroka University Medical Center, Beer‑Sheva 84100, Israel
| | | |
Collapse
|
25
|
Immune ageing and susceptibility to Streptococcus pneumoniae. Biogerontology 2015; 17:449-65. [DOI: 10.1007/s10522-015-9614-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 10/05/2015] [Indexed: 12/16/2022]
|
26
|
New technologies for monitoring human antigen-specific T cells and regulatory T cells by flow-cytometry. Curr Opin Pharmacol 2015; 23:17-24. [DOI: 10.1016/j.coph.2015.04.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 04/24/2015] [Indexed: 11/24/2022]
|
27
|
Hoe E, Boelsen LK, Toh ZQ, Sun GW, Koo GC, Balloch A, Marimla R, Dunne EM, Tikoduadua L, Russell FM, Satzke C, Mulholland EK, Licciardi PV. Reduced IL-17A Secretion Is Associated with High Levels of Pneumococcal Nasopharyngeal Carriage in Fijian Children. PLoS One 2015; 10:e0129199. [PMID: 26069966 PMCID: PMC4466549 DOI: 10.1371/journal.pone.0129199] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 05/07/2015] [Indexed: 01/13/2023] Open
Abstract
Streptococcus pneumonia (the pneumococcus) is the leading vaccine preventable cause of serious infections in infants under 5 years of age. The major correlate of protection for pneumococcal infections is serotype-specific IgG antibody. More recently, antibody-independent mechanisms of protection have also been identified. Preclinical studies have found that IL-17 secreting CD4+ Th17 cells in reducing pneumococcal colonisation. This study assessed IL-17A levels in children from Fiji with high and low pneumococcal carriage density, as measured by quantitative real-time PCR (qPCR). We studied Th17 responses in 54 children who were designated as high density carriers (N=27, >8.21x105 CFU/ml) or low density carriers (N=27, <1.67x105 CFU/ml). Blood samples were collected, and isolated peripheral blood mononuclear cells (PBMCs) were stimulated for 6 days. Supernatants were harvested for cytokine analysis by multiplex bead array and/or ELISA. Th17 cytokines assayed included IL-17A, IL-21, IL-22 as well as TNF-α, IL-10, TGF-β, IL-6, IL-23 and IFNγ. Cytokine levels were significantly lower in children with high density pneumococcal carriage compared with children with low density carriage for IL-17A (p=0.002) and IL-23 (p=0.04). There was a trend towards significance for IL-22 (p=0.057) while no difference was observed for the other cytokines. These data provide further support for the role of Th17-mediated protection in humans and suggest that these cytokines may be important in the defence against pneumococcal carriage.
Collapse
Affiliation(s)
- Edwin Hoe
- Pneumococcal Research, Murdoch Childrens Research Institute, Melbourne, Australia
| | - Laura K. Boelsen
- Pneumococcal Research, Murdoch Childrens Research Institute, Melbourne, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| | - Zheng Quan Toh
- Pneumococcal Research, Murdoch Childrens Research Institute, Melbourne, Australia
| | - Guang Wen Sun
- School of Applied Science, Republic Polytechnic, Singapore, Singapore
| | - Ghee Chong Koo
- School of Applied Science, Republic Polytechnic, Singapore, Singapore
| | - Anne Balloch
- Pneumococcal Research, Murdoch Childrens Research Institute, Melbourne, Australia
| | - Rachel Marimla
- Pneumococcal Research, Murdoch Childrens Research Institute, Melbourne, Australia
| | - Eileen M. Dunne
- Pneumococcal Research, Murdoch Childrens Research Institute, Melbourne, Australia
| | | | - Fiona M. Russell
- Pneumococcal Research, Murdoch Childrens Research Institute, Melbourne, Australia
- Centre for International Child Health, Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| | - Catherine Satzke
- Pneumococcal Research, Murdoch Childrens Research Institute, Melbourne, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Australia
- The Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - E. Kim Mulholland
- Pneumococcal Research, Murdoch Childrens Research Institute, Melbourne, Australia
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Paul V. Licciardi
- Pneumococcal Research, Murdoch Childrens Research Institute, Melbourne, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Australia
- * E-mail:
| |
Collapse
|
28
|
Iwajomo OH, Moons P, Nkhata R, Mzinza D, Ogunniyi AD, Williams NA, Heyderman RS, Finn A. Delayed reconstitution of B cell immunity to pneumococcus in HIV-infected Malawian children on antiretroviral therapy. J Infect 2015; 70:616-23. [PMID: 25452037 PMCID: PMC4441108 DOI: 10.1016/j.jinf.2014.10.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 10/23/2014] [Accepted: 10/25/2014] [Indexed: 12/03/2022]
Abstract
OBJECTIVE Despite CD4(+) count restoration and viral load suppression with antiretroviral therapy (ART), HIV-infected children remain at increased risk of life-threatening infections including invasive pneumococcal disease (IPD). We therefore investigated whether persistent susceptibility to IPD following ART is associated with incomplete recovery of B-cell function. METHODS 41 HIV-infected Malawian children commencing ART were followed-up for a 1 year period during which time blood samples were collected at 0, 3, 6 and 12 months for comprehensive immunophenotyping and pneumomococcal-specific Memory B-cell Enzyme-Linked Immunospot assays. In addition, nasopharyngeal swab samples were cultured to determine pneumococcal carriage rates. RESULTS Normalization of major lymphocyte subsets such as CD4(+) percentages was evident following 3 months of ART. The proportions of mature naïve B cells (CD19(+) CD10(-) CD27(-) CD21(hi)) and resting memory B cells (CD19(+) CD27(+) CD21(hi)) increased and apoptosis-prone mature activated B cells (CD19(+) CD21(lo) CD10(-)) decreased markedly by 12 months. However, in the context of high nasopharyngeal pneumococcal carriage rates (83%), restoration of pneumococcal protein antigen-specific B-cell memory was more delayed. CONCLUSIONS These data show that, in chronically HIV-infected children receiving ART, improvement in B-cell memory profiles and function is slower than CD4(+) T-cells. This supports early initiation of ART and informs research into optimal timing of immunization with pneumococcal vaccines.
Collapse
Affiliation(s)
- Oluwadamilola H Iwajomo
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom; Malawi Liverpool Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
| | - Peter Moons
- Department of Pediatrics, University of Malawi College of Medicine, Blantyre, Malawi
| | - Rose Nkhata
- Malawi Liverpool Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
| | - David Mzinza
- Malawi Liverpool Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
| | - Abiodun D Ogunniyi
- Research Centre for Infectious Diseases, School of Molecular and Biomedical Science, The University of Adelaide, Adelaide, Australia
| | - Neil A Williams
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Robert S Heyderman
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom; Malawi Liverpool Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
| | - Adam Finn
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom.
| |
Collapse
|
29
|
Cauley LS, Vella AT. Why is coinfection with influenza virus and bacteria so difficult to control? DISCOVERY MEDICINE 2015; 19:33-40. [PMID: 25636959 PMCID: PMC4313126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Influenza viruses are genetically labile pathogens which avoid immune detection by constantly changing their coat proteins. Most human infections are caused by mildly pathogenic viruses which rarely cause life-threatening disease in healthy people, but some individuals with a weakened immune system can experience severe complications. Widespread infections with highly pathogenic strains of influenza virus are less common, but have the potential to cause enormous death tolls among healthy adults if infection rates reach pandemic proportions. Increased virulence has been attributed to a variety of factors, including enhanced susceptibility to coinfection with common strains of bacteria. The mechanisms that facilitate dual infection are a major focus of current research, as preventative measures are needed to avert future pandemics.
Collapse
Affiliation(s)
- Linda S Cauley
- Department of Immunology, University of Connecticut Health Center, 263 Farmington Ave., Farmington, CT 06032, USA
| | - Anthony T Vella
- Department of Immunology, University of Connecticut Health Center, 263 Farmington Ave., Farmington, CT 06032, USA
| |
Collapse
|
30
|
|
31
|
Mucosal immunization with the live attenuated vaccine SPY1 induces humoral and Th2-Th17-regulatory T cell cellular immunity and protects against pneumococcal infection. Infect Immun 2014; 83:90-100. [PMID: 25312946 DOI: 10.1128/iai.02334-14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mucosal immunization with attenuated vaccine can protect against pneumococcal invasion infection, but the mechanism was unknown. Our study found that mucosal delivery with the live attenuated SPY1 vaccine strain can confer T cell- and B cell-dependent protection against pneumococcal colonization and invasive infection; yet it is still unclear which cell subsets contribute to the protection, and their roles in pneumococcal colonization and invasion remain elusive. Adoptive transfer of anti-SPY1 antibody conferred protection to naive μMT mice, and immune T cells were indispensable to protection examined in nude mice. A critical role of interleukin 17A (IL-17A) in colonization was demonstrated in mice lacking IL-17A, and a vaccine-specific Th2 immune subset was necessary for systemic protection. Of note, we found that SPY1 could stimulate an immunoregulatory response and that SPY1-elicited regulatory T cells participated in protection against colonization and lethal infection. The data presented here aid our understanding of how live attenuated strains are able to function as effective vaccines and may contribute to a more comprehensive evaluation of live vaccines and other mucosal vaccines.
Collapse
|
32
|
Engen SA, Valen Rukke H, Becattini S, Jarrossay D, Blix IJ, Petersen FC, Sallusto F, Schenck K. The oral commensal Streptococcus mitis shows a mixed memory Th cell signature that is similar to and cross-reactive with Streptococcus pneumoniae. PLoS One 2014; 9:e104306. [PMID: 25119879 PMCID: PMC4131883 DOI: 10.1371/journal.pone.0104306] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 07/07/2014] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Carriage of and infection with Streptococcus pneumoniae is known to predominantly induce T helper 17 (Th17) responses in humans, but the types of Th cells showing reactivity towards commensal streptococci with low pathogenic potential, such as the oral commensals S. mitis and S. salivarius, remain uncharacterized. METHODS Memory CD4(+) T helper (Th) cell subsets were isolated from healthy human blood donors according to differential expression of chemokine receptors, expanded in vitro using polyclonal stimuli and characterized for reactivity against different streptococcal strains. RESULTS Th cells responding to S. mitis, S. salivarius and S. pneumoniae were predominantly in a CCR6(+)CXCR3(+) subset and produced IFN-γ, and in a CCR6(+)CCR4(+) subset and produced IL-17 and IL-22. Frequencies of S. pneumoniae-reactive Th cells were higher than frequencies of S. mitis- and S. salivarius-specific Th cells. S. mitis and S. pneumoniae isogenic capsule knock-out mutants and a S. mitis mutant expressing the serotype 4 capsule of S. pneumoniae showed no different Th cell responses as compared to wild type strains. S. mitis-specific Th17 cells showed cross-reactivity with S. pneumoniae. CONCLUSIONS As Th17 cells partly control clearance of S. pneumoniae, cross-reactive Th17 cells that may be induced by commensal bacterial species may influence the immune response, independent of capsule expression.
Collapse
Affiliation(s)
| | | | - Simone Becattini
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - David Jarrossay
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Inger Johanne Blix
- Department of Oral Biology, University of Oslo, Oslo, Norway
- Department of Periodontology, University of Oslo, Oslo, Norway
| | | | - Federica Sallusto
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Karl Schenck
- Department of Oral Biology, University of Oslo, Oslo, Norway
| |
Collapse
|
33
|
Engen SA, Valen Rukke H, Becattini S, Jarrossay D, Blix IJ, Petersen FC, Sallusto F, Schenck K. The Oral Commensal Streptococcus mitis Shows a Mixed Memory Th Cell Signature That Is Similar to and Cross-Reactive with Streptococcus pneumoniae. PLoS One 2014. [DOI: 10.1371/journal.pone.0104306 order by 8029-- awyx] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
|
34
|
The Oral Commensal Streptococcus mitis Shows a Mixed Memory Th Cell Signature That Is Similar to and Cross-Reactive with Streptococcus pneumoniae. PLoS One 2014. [DOI: 10.1371/journal.pone.0104306 order by 1-- #] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
|
35
|
The Oral Commensal Streptococcus mitis Shows a Mixed Memory Th Cell Signature That Is Similar to and Cross-Reactive with Streptococcus pneumoniae. PLoS One 2014. [DOI: 10.1371/journal.pone.0104306 order by 1-- gadu] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
|
36
|
The Oral Commensal Streptococcus mitis Shows a Mixed Memory Th Cell Signature That Is Similar to and Cross-Reactive with Streptococcus pneumoniae. PLoS One 2014. [DOI: 10.1371/journal.pone.0104306 order by 1-- -] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
|
37
|
The Oral Commensal Streptococcus mitis Shows a Mixed Memory Th Cell Signature That Is Similar to and Cross-Reactive with Streptococcus pneumoniae. PLoS One 2014. [DOI: 10.1371/journal.pone.0104306 order by 8029-- #] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
|
38
|
The Oral Commensal Streptococcus mitis Shows a Mixed Memory Th Cell Signature That Is Similar to and Cross-Reactive with Streptococcus pneumoniae. PLoS One 2014. [DOI: 10.1371/journal.pone.0104306 order by 8029-- -] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
|
39
|
The Oral Commensal Streptococcus mitis Shows a Mixed Memory Th Cell Signature That Is Similar to and Cross-Reactive with Streptococcus pneumoniae. PLoS One 2014. [DOI: 10.1371/journal.pone.0104306 and 1880=1880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
|
40
|
Sepako E, Glennie SJ, Jambo KC, Mzinza D, Iwajomo OH, Banda D, van Oosterhout JJ, A. Williams N, Gordon SB, Heyderman RS. Incomplete recovery of pneumococcal CD4 T cell immunity after initiation of antiretroviral therapy in HIV-infected malawian adults. PLoS One 2014; 9:e100640. [PMID: 24959834 PMCID: PMC4069109 DOI: 10.1371/journal.pone.0100640] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 05/29/2014] [Indexed: 11/19/2022] Open
Abstract
HIV-infected African adults are at a considerably increased risk of life-threatening invasive pneumococcal disease (IPD) which persists despite antiretroviral therapy (ART). Defects in naturally acquired pneumococcal-specific T-cell immunity have been identified in HIV-infected adults. We have therefore determined the extent and nature of pneumococcal antigen-specific immune recovery following ART. HIV-infected adults were followed up at 3, 6 and 12 months after initiating ART. Nasopharyngeal swabs were cultured to determine carriage rates. Pneumococcal-specific CD4 T-cell immunity was assessed by IFN-γ ELISpot, proliferation assay, CD154 expression and intracellular cytokine assay. S. pneumoniae colonization was detected in 27% (13/48) of HIV-infected patients prior to ART. The rates remained elevated after 12 months ART, 41% (16/39) (p = 0.17) and significantly higher than in HIV-uninfected individuals (HIVneg 14%(4/29); p = 0.0147). CD4+ T-cell proliferative responses to pneumococcal antigens increased significantly to levels comparable with HIV-negative individuals at 12 months ART (p = 0.0799). However, recovery of the pneumococcal-specific CD154 expression was incomplete (p = 0.0015) as were IFN-γ ELISpot responses (p = 0.0040) and polyfunctional CD4+ T-cell responses (TNF-α, IL-2 and IFN-γ expression) (p = 0.0040) to a pneumolysin-deficient mutant strain. Impaired control of pneumococcal colonisation and incomplete restoration of pneumococcal-specific immunity may explain the persistently higher risk of IPD amongst HIV-infected adults on ART. Whether vaccination and prolonged ART can overcome this immunological defect and reduce the high levels of pneumococcal colonisation requires further evaluation.
Collapse
Affiliation(s)
- Enoch Sepako
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
- Respiratory Infection Group, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Sarah J. Glennie
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
- Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Kondwani C. Jambo
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
- Respiratory Infection Group, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - David Mzinza
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
| | - Oluwadamilola H. Iwajomo
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
- Division of Clinical Sciences, University of Toronto, Ontario, Canada
- Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Dominic Banda
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
| | | | - Neil A. Williams
- Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Stephen B. Gordon
- Respiratory Infection Group, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Robert S. Heyderman
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
| |
Collapse
|
41
|
Khan MN, Coleman JR, Vernatter J, Varshney AK, Dufaud C, Pirofski LA. An ahemolytic pneumolysin of Streptococcus pneumoniae manipulates human innate and CD4⁺ T-cell responses and reduces resistance to colonization in mice in a serotype-independent manner. J Infect Dis 2014; 210:1658-69. [PMID: 25001458 DOI: 10.1093/infdis/jiu321] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Some Streptococcus pneumoniae serotypes express an ahemolytic pneumolysin (PLYa). Serotypes that commonly express PLYa, including serotype 8 (ST8) and ST1, are often associated with a low prevalence during colonization but a higher propensity to cause invasive disease. We sought to study the host response to ST8 PLYa in a homologous and heterologous capsular background. METHODS We genetically exchanged the PLYa of ST8 strain 6308 with the hemolytic PLY (PLYh) of ST3 A66.1 and vice versa and determined the impact of the exchange on nasopharyngeal colonization in mice. Then, to compare the response of human cells to PLYa-expressing and PLYh-expressing strains, we infected human peripheral blood mononuclear cells (PBMCs) with PLY-switched strains and assessed dendritic cell and CD4(+) T-cell responses by intracellular cytokine staining. RESULT Mice colonized with PLYa-expressing strains had significantly higher colonization densities than those colonized with PLYh-expressing strains, irrespective of capsular background. Compared with infection of PBMCs with PLYh-expressing strains, infection with PLYa-expressing strains induced diminished innate (dendritic cell cytokines, costimulatory receptor, and apoptotic) and adaptive (CD4(+) T-cell proliferative and memory interleukin 17A) responses. CONCLUSION Our findings demonstrate that PLYa has the potential to manipulate host immunity irrespective of capsule type. PLY exchange between STs expressing PLYa and PLYh could lead to unexpected colonization or invasion phenotypes.
Collapse
Affiliation(s)
- M Nadeem Khan
- Department of Medicine, Division of Infectious Disease, Albert Einstein College of Medicine and Montefiore Medical Center
| | | | - Joshua Vernatter
- Department of Medicine, Division of Infectious Disease, Albert Einstein College of Medicine and Montefiore Medical Center
| | - Avanish Kumar Varshney
- Department of Medicine, Division of Infectious Disease, Albert Einstein College of Medicine and Montefiore Medical Center
| | - Chad Dufaud
- Department of Medicine, Division of Infectious Disease, Albert Einstein College of Medicine and Montefiore Medical Center
| | - Liise-Anne Pirofski
- Department of Medicine, Division of Infectious Disease, Albert Einstein College of Medicine and Montefiore Medical Center Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx
| |
Collapse
|
42
|
Serotype-independent protection against pneumococcal infections elicited by intranasal immunization with ethanol-killed pneumococcal strain, SPY1. J Microbiol 2014; 52:315-23. [PMID: 24682994 DOI: 10.1007/s12275-014-3583-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 01/28/2014] [Accepted: 02/10/2014] [Indexed: 02/08/2023]
Abstract
The 23-valent polysaccharide vaccine and the 7-valent pneumococcal conjugate vaccine are licensed vaccines that protect against pneumococcal infections worldwide. However, the incidence of pneumococcal diseases remains high in low-income countries. Whole-cell vaccines with high safety and strong immunogenicity may be a favorable choice. We previously obtained a capsule-deficient Streptococcus pneumoniae mutant named SPY1 derived from strain D39. As an attenuated live pneumococcal vaccine, intranasal immunization with SPY1 elicits broad serotype-independent protection against pneumococcal infection. In this study, for safety consideration, we inactivated SPY1 with 70% ethanol and intranasally immunized BALB/c mice with killed SPY1 plus cholera toxin adjuvant for four times. Results showed that intranasal immunization with inactivated SPY1 induced strong humoral and cellular immune responses. Intranasal immunization with inactivated SPY1 plus cholera toxin adjuvant elicited effective serotype-independent protection against the colonization of pneumococcal strains 19F and 4 as well as lethal infection of pneumococcal serotypes 2, 3, 14, and 6B. The protection rates provided by inactivated SPY1 against lethal pneumococcal infection were comparable to those of currently used polysaccharide vaccines. In addition, vaccine-specific B-cell and T-cell immune responses mediated the protection elicited by SPY1. In conclusion, the 70% ethanol-inactivated pneumococcal whole-cell vaccine SPY1 is a potentially safe and less complex vaccine strategy that offers broad protection against S. pneumoniae.
Collapse
|
43
|
Brown AF, Leech JM, Rogers TR, McLoughlin RM. Staphylococcus aureus Colonization: Modulation of Host Immune Response and Impact on Human Vaccine Design. Front Immunol 2014; 4:507. [PMID: 24409186 PMCID: PMC3884195 DOI: 10.3389/fimmu.2013.00507] [Citation(s) in RCA: 158] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 12/21/2013] [Indexed: 12/15/2022] Open
Abstract
In apparent contrast to its invasive potential Staphylococcus aureus colonizes the anterior nares of 20–80% of the human population. The relationship between host and microbe appears particularly individualized and colonization status seems somehow predetermined. After decolonization, persistent carriers often become re-colonized with their prior S. aureus strain, whereas non-carriers resist experimental colonization. Efforts to identify factors facilitating colonization have thus far largely focused on the microorganism rather than on the human host. The host responds to S. aureus nasal colonization via local expression of anti-microbial peptides, lipids, and cytokines. Interplay with the co-existing microbiota also influences colonization and immune regulation. Transient or persistent S. aureus colonization induces specific systemic immune responses. Humoral responses are the most studied of these and little is known of cellular responses induced by colonization. Intriguingly, colonized patients who develop bacteremia may have a lower S. aureus-attributable mortality than their non-colonized counterparts. This could imply a staphylococcal-specific immune “priming” or immunomodulation occurring as a consequence of colonization and impacting on the outcome of infection. This has yet to be fully explored. An effective vaccine remains elusive. Anti-S. aureus vaccine strategies may need to drive both humoral and cellular immune responses to confer efficient protection. Understanding the influence of colonization on adaptive response is essential to intelligent vaccine design, and may determine the efficacy of vaccine-mediated immunity. Clinical trials should consider colonization status and the resulting impact of this on individual patient responses. We urgently need an increased appreciation of colonization and its modulation of host immunity.
Collapse
Affiliation(s)
- Aisling F Brown
- Host-Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute , Dublin , Ireland
| | - John M Leech
- Host-Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute , Dublin , Ireland
| | - Thomas R Rogers
- Sir Patrick Dun Laboratory, Department of Clinical Microbiology, Trinity College Dublin, St James's Hospital , Dublin , Ireland
| | - Rachel M McLoughlin
- Host-Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute , Dublin , Ireland
| |
Collapse
|
44
|
Hallissey CM, Heyderman RS, Williams NA. Human tonsil-derived dendritic cells are poor inducers of T cell immunity to mucosally encountered pathogens. J Infect Dis 2013; 209:1847-56. [PMID: 24371254 DOI: 10.1093/infdis/jit819] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The mucosal immune system must initiate and regulate protective immunity, while balancing this immunity with tolerance to harmless antigens and bacterial commensals. We have explored the hypothesis that mucosal dendritic cells (DC) control the balance between regulation and immunity, by studying the responses of human tonsil-derived DC to Neisseria meningitidis as a model organism. We show that tonsil DC are able to sample their antigenic environment, internalizing Nm and expressing high levels of HLA-DR and CD86. However, in comparison to monocyte-derived DC (moDC), they respond to pathogen encounter with only low level cytokine production, largely dominated by TGFβ. Functionally, tonsil DC also only stimulated low levels of antigen-specific T cell proliferation and cytokine production when compared to moDC. We therefore propose that the default role for DC in the nasopharynx is to maintain tolerance/ignorance of the large volume of harmless antigens and bacterial commensals encountered at the nasopharyngeal mucosa.
Collapse
Affiliation(s)
- Claire M Hallissey
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | | | | |
Collapse
|
45
|
Leroux-Roels I, Devaster JM, Leroux-Roels G, Verlant V, Henckaerts I, Moris P, Hermand P, Van Belle P, Poolman JT, Vandepapelière P, Horsmans Y. Adjuvant system AS02V enhances humoral and cellular immune responses to pneumococcal protein PhtD vaccine in healthy young and older adults: randomised, controlled trials. Vaccine 2013; 33:577-84. [PMID: 24176494 DOI: 10.1016/j.vaccine.2013.10.052] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 10/10/2013] [Accepted: 10/16/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND The protection elicited by polysaccharide pneumococcal vaccines against community-acquired pneumonia in older adults remains debatable. Alternative vaccine targets include well-conserved pneumococcal protein antigens, such as pneumococcal histidine triad protein D (PhtD). OBJECTIVE To evaluate humoral and cellular immune responses and safety/reactogenicity following immunisation with PhtD vaccine with or without adjuvant (alum or AS02V) in older (≥65 years) and young (18-45 years) healthy adults. METHODS Two phase I/II, single-blind, parallel-group studies were conducted in 150 older and 147 young adults. Participants were randomised to receive 2 doses (months 0 and 2) of PhtD 30 μg, PhtD 10 μg plus alum, PhtD 30 μg plus alum, PhtD 10 μg plus AS02V or PhtD 30 μg plus AS02V, or the 23-valent polysaccharide pneumococcal vaccine (23PPV) at month 0 with placebo (saline solution) at month 2. Safety/reactogenicity was assessed. PhtD-specific antibody, T cell and memory B cell responses were evaluated. RESULTS Solicited adverse events were more common in young participants and with adjuvanted vaccines. No vaccine-related serious adverse events were reported. Although anti-PhtD geometric mean antibody concentrations (GMCs) were consistently lower in the older adult cohort than in young adults, GMCs in the older cohort following PhtD 30 μg plus AS02V were comparable to those induced by plain PhtD or PhtD 30 μg plus alum in the young cohort. Compared with alum adjuvant, AS02V adjuvant system was associated with an increased frequency of PhtD-specific CD4 cells in both cohorts and a significantly higher specific memory B cell response in the older cohort, similar to responses obtained in the young cohort. CONCLUSION The improved immune response to PhtD vaccine containing the AS02V adjuvant system in comparison to alum suggests that the reduced immune response to vaccines in older adults can be partially restored to the response level observed in young adults. ClinicalTrials.gov identifiers: NCT00307528/NCT01767402.
Collapse
Affiliation(s)
- Isabel Leroux-Roels
- Centre for Vaccinology, Ghent University and Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium.
| | | | - Geert Leroux-Roels
- Centre for Vaccinology, Ghent University and Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium.
| | | | | | | | | | | | - Jan T Poolman
- GlaxoSmithKline Vaccines, Rixensart, Belgium; Crucell, PO Box 2048, 2301 CA, Leiden, The Netherlands.
| | - Pierre Vandepapelière
- GlaxoSmithKline Vaccines, Rixensart, Belgium; Neovacs S.A., 3-5, Impasse Reille, 75014 Paris, France.
| | - Yves Horsmans
- Unité de Pharmacologie Clinique, University Hospital St-Luc, Avenue Hippocrate 10, 1200 Brussels, Belgium.
| |
Collapse
|
46
|
CD4 T cell memory and antibody responses directed against the pneumococcal histidine triad proteins PhtD and PhtE following nasopharyngeal colonization and immunization and their role in protection against pneumococcal colonization in mice. Infect Immun 2013; 81:3781-92. [PMID: 23897609 DOI: 10.1128/iai.00313-13] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The present study was undertaken to understand the role of vaccine candidates PhtD and PhtE in pneumococcal nasopharyngeal (NP) colonization, their ability to induce CD4 T cell memory and antibody responses following primary NP colonization, and their contribution to protection against secondary pneumococcal colonization in mice. The study was also aimed at understanding the potential of immunization with PhtD and PhtE in eliciting qualitative CD4 T cell memory responses and protection against pneumococcal NP colonization in mice. PhtD and PhtE isogenic mutants in a TIGR4 background (TIGR4 ΔPhtD and TIGR4 ΔPhtE) were constructed and found to have a significantly reduced colonization density over time in the nasopharynges of mice compared to those of mice colonized with wild-type TIGR4. Mice with primary colonization by wild-type TIGR4, TIGR4 ΔPhtD, or TIGR4 ΔPhtE were protected against secondary colonization by wild-type TIGR4; nonetheless, the clearance of secondary colonization was slower in mice with primary colonization by either TIGR4 ΔPhtD or TIGR4 ΔPhtE than in mice with primary colonization by wild-type TIGR4. Colonization was found to be an immunizing event for PhtD and PhtE antigens (antibody response); however, we failed to detect any antigen (PhtD or PhtE)-specific CD4 T cell responses in any of the colonized groups of mice. Intranasal immunization with either PhtD or PhtE protein generated robust serum antibody and CD4 Th1-biased immune memory and conferred protection against pneumococcal colonization in mice. We conclude that PhtD and PhtE show promise as components in next-generation pneumococcal vaccine formulations.
Collapse
|
47
|
Bacher P, Scheffold A. Flow-cytometric analysis of rare antigen-specific T cells. Cytometry A 2013; 83:692-701. [PMID: 23788442 DOI: 10.1002/cyto.a.22317] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 05/09/2013] [Accepted: 05/14/2013] [Indexed: 12/20/2022]
Abstract
The cytometric enumeration and characterization of antigen-specific lymphocytes, as introduced about 15 years ago, has contributed significantly to our understanding of adaptive immune responses in health and disease. Despite the development of several technologies, allowing to directly or indirectly analyze many aspects of lymphocyte specificity and function, several unresolved issues remain, due to the low frequency of certain antigen-specific lymphocyte subsets and the complexity of T cell antigen recognition. This is especially true for CD4(+) conventional as well as regulatory T cells, which bring major contributions to immune protection and pathology. Here we review the current technologies for the analysis of antigen specific T cells within the physiologic T cell repertoire and with a special focus on recent technologies addressing the analysis of rare antigen-specific T cell populations including naive and regulatory T cells.
Collapse
Affiliation(s)
- Petra Bacher
- Miltenyi Biotec GmbH, Bergisch Gladbach, Germany
| | | |
Collapse
|
48
|
Siebert JN, L'huillier AG, Grillet S, Delhumeau C, Siegrist CA, Posfay-Barbe KM. Memory B cell compartment constitution and susceptibility to recurrent lower respiratory tract infections in young children. J Leukoc Biol 2013; 93:951-62. [PMID: 23530161 DOI: 10.1189/jlb.0312117] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
A proportion of children have recurrent LRTIs, mostly as a result of Spn, which persist after 2 years of age. Here, we investigate, by flow cytofluorometry, the constitution of the memory B cell compartment in 90 healthy children and 49 children with recurrent LRTIs to determine if an increased susceptibility to recurrent LRTIs results from a delayed or abnormal ontogeny with poor antibody-mediated protection. Total IgA, IgM, IgG, and IgG subclasses were measured by nephelometry, as well as antipneumococcal antibodies by ELISA. Pneumococcal vaccination status was obtained. We show that the memory B cells increase between birth and 2 years of age (1.6% vs. 21.1%, P<0.001) without further significant increase noted per additional years (3-4 years old: 23.3%; 4-5 years old: 22.2%, P>0.40) to reach adult-like values (31.8±11.8%, P=0.08). Proportions of switched and IgM memory B cells were similar in children and adults. Comparatively, LRTI children had no delay in the constitution of their memory B cell compartment (2-3 years old: 26.9%; 3-4 years old: 18.2%; 4-5 years old: 26.8%, P>0.05). Their switched and IgM memory B cells were similar among age categories, and the distribution was overall similar to that of healthy controls. LRTI children had normal total and pneumococcal serotype-specific antibody values but showed a rapid waning of antipneumococcal antibody levels after vaccination. In summary, our results show that the memory B cell compartment is already similarly constituted at 2 years of age in healthy and LRTI children and thus, cannot explain the increased susceptibility to bacterial pneumonia. However, the waning of antibodies might predispose children to recurrent infections in the absence of revaccination.
Collapse
Affiliation(s)
- Johan N Siebert
- Department of Pediatrics, University Hospitals of Geneva and Medical School, University of Geneva, Geneva, Switzerland
| | | | | | | | | | | |
Collapse
|
49
|
Wright AKA, Bangert M, Gritzfeld JF, Ferreira DM, Jambo KC, Wright AD, Collins AM, Gordon SB. Experimental human pneumococcal carriage augments IL-17A-dependent T-cell defence of the lung. PLoS Pathog 2013; 9:e1003274. [PMID: 23555269 PMCID: PMC3610738 DOI: 10.1371/journal.ppat.1003274] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 02/12/2013] [Indexed: 11/19/2022] Open
Abstract
Pneumococcal carriage is both immunising and a pre-requisite for mucosal and systemic disease. Murine models of pneumococcal colonisation show that IL-17A-secreting CD4(+) T-cells (Th-17 cells) are essential for clearance of pneumococci from the nasopharynx. Pneumococcal-responding IL-17A-secreting CD4(+) T-cells have not been described in the adult human lung and it is unknown whether they can be elicited by carriage and protect the lung from pneumococcal infection. We investigated the direct effect of experimental human pneumococcal nasal carriage (EHPC) on the frequency and phenotype of cognate CD4(+) T-cells in broncho-alveolar lavage and blood using multi-parameter flow cytometry. We then examined whether they could augment ex vivo alveolar macrophage killing of pneumococci using an in vitro assay. We showed that human pneumococcal carriage leads to a 17.4-fold (p = 0.007) and 8-fold (p = 0.003) increase in the frequency of cognate IL-17A(+) CD4(+) T-cells in BAL and blood, respectively. The phenotype with the largest proportion were TNF(+)/IL-17A(+) co-producing CD4(+) memory T-cells (p<0.01); IFNγ(+) CD4(+) memory T-cells were not significantly increased following carriage. Pneumococci could stimulate large amounts of IL-17A protein from BAL cells in the absence of carriage but in the presence of cognate CD4(+) memory T-cells, IL-17A protein levels were increased by a further 50%. Further to this we then show that alveolar macrophages, which express IL-17A receptors A and C, showed enhanced killing of opsonised pneumococci when stimulated with rhIL-17A (p = 0.013). Killing negatively correlated with RC (r = -0.9, p = 0.017) but not RA expression. We conclude that human pneumococcal carriage can increase the proportion of lung IL-17A-secreting CD4(+) memory T-cells that may enhance innate cellular immunity against pathogenic challenge. These pathways may be utilised to enhance vaccine efficacy to protect the lung against pneumonia.
Collapse
Affiliation(s)
- Adam K. A. Wright
- Respiratory Infection Group, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- National Institute for Health Research Biomedical Research Centre in Microbial Diseases, Royal Liverpool and Broadgreen University Hospitals NHS Trust, Liverpool, United Kingdom
| | - Mathieu Bangert
- Respiratory Infection Group, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Jenna F. Gritzfeld
- Respiratory Infection Group, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Daniela M. Ferreira
- Respiratory Infection Group, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Kondwani C. Jambo
- Respiratory Infection Group, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Chichiri, Blantyre, Malawi
| | - Angela D. Wright
- Comprehensive Local Research Network, Royal Liverpool and Broadgreen University Hospital Trust, Liverpool, United Kingdom
| | - Andrea M. Collins
- Respiratory Infection Group, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- National Institute for Health Research Biomedical Research Centre in Microbial Diseases, Royal Liverpool and Broadgreen University Hospitals NHS Trust, Liverpool, United Kingdom
| | - Stephen B. Gordon
- Respiratory Infection Group, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
50
|
Glennie SJ, Banda D, Gould K, Hinds J, Kamngona A, Everett DDB, Williams NA, Heyderman RS. Defective pneumococcal-specific Th1 responses in HIV-infected adults precedes a loss of control of pneumococcal colonization. Clin Infect Dis 2013; 56:291-9. [PMID: 23024291 PMCID: PMC3526250 DOI: 10.1093/cid/cis842] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 09/18/2012] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND African adults infected with human immunodeficiency virus (HIV) have high rates of pneumococcal colonization and invasive disease. Here we have investigated the possibility that HIV disrupts the normal balance of pneumococcal-specific helper T cell (Th) 1/Th17 immunity to colonization, resulting in a more permissive nasopharyngeal niche. METHODS One hundred thirty-six HIV-infected and -uninfected Malawian adults were enrolled in the study. Changes in rates and composition of nasopharyngeal pneumococcal colonization were analyzed using microarray. The underlying pneumococcal-specific Th1/Th17 responses associated with altered pneumococcal colonization were investigated using flow cytometry. RESULTS We find that pneumococcal carriage is only modestly increased in asymptomatic HIV-infected Malawian adults but that colonization rates rise dramatically during symptomatic disease (HIV(neg) 13%, HIV(asy) 19%, and HIV(sym) 38%). These rates remain high in subjects established on antiretroviral therapy (ART): 33% (at 6-12 months) and 52% (at 18 months), with HIV-infected individuals carrying a broader range of invasive and noninvasive serotypes compared with HIV-negative controls. The frequency of multiple serotype carriage (>1 serotype HIV(neg) 26%, HIV(asy) 30%, HIV(sym) 31%, HIV(ART) 31%) is not affected. These changes in colonization are associated with generalized CD4 T-cell depletion, impaired antigen-specific proliferation, and a defect in pneumococcal-specific T-cell interferon-γ but not interleukin 17 production. CONCLUSIONS These data reveal the persistently poor control of pneumococcal colonization in HIV-infected adults following immune ART-mediated reconstitution, highlighting a potential reservoir for person-to-person spread and vaccine escape. Novel approaches to control colonization either through vaccination or through improvements in the quality of immune reconstitution are required.
Collapse
Affiliation(s)
- Sarah J Glennie
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi.
| | | | | | | | | | | | | | | |
Collapse
|