1
|
Bitew MA, Paredes-Santos TC, Maru P, Krishnamurthy S, Wang Y, Sangaré LO, Duley S, Yamaryo-Botté Y, Botte C, Saeij JPJ. A genome-wide CRISPR screen identifies GRA38 as a key regulator of lipid homeostasis during Toxoplasma gondii adaptation to lipid-rich conditions. RESEARCH SQUARE 2025:rs.3.rs-6436164. [PMID: 40321756 PMCID: PMC12047978 DOI: 10.21203/rs.3.rs-6436164/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
Intracellular parasites like Toxoplasma gondii scavenge host nutrients, particularly lipids, to support their growth and survival. Although Toxoplasma is known to adjust its metabolism based on nutrient availability, the mechanisms that mediate lipid sensing and metabolic adaptation remain poorly understood. Here, we performed a genome-wide CRISPR screen under lipid-rich (10% Fetal Bovine Serum (FBS)) and lipid-limited (1% FBS) conditions to identify genes critical for lipid-responsive fitness. We identified the Toxoplasma protein GRA38 as a lipid-dependent regulator of parasite fitness. GRA38 exhibits phosphatidic acid (PA) phosphatase (PAP) activity in vitro, which is significantly reduced by mutation of its conserved DxDxT/V catalytic motif. Disruption of GRA38 led to the accumulation of PA species and widespread alterations in lipid composition, consistent with impaired PAP activity. These lipid imbalances correlated with reduced parasite virulence in mice. Our findings identify GRA38 as a metabolic regulator important for maintaining lipid homeostasis and pathogenesis in Toxoplasma gondii.
Collapse
Affiliation(s)
- Mebratu A Bitew
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Tatiana C Paredes-Santos
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Parag Maru
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Shruthi Krishnamurthy
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Yifan Wang
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Lamba O Sangaré
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Samuel Duley
- Apicolipid Team & Gemeli Platform, Institute for Advanced Biosciences, CNRS UMR5309, Université Grenoble Alpes, INSERM U1209, Grenoble, France
| | - Yoshiki Yamaryo-Botté
- Apicolipid Team & Gemeli Platform, Institute for Advanced Biosciences, CNRS UMR5309, Université Grenoble Alpes, INSERM U1209, Grenoble, France
| | - Cyrille Botte
- Apicolipid Team & Gemeli Platform, Institute for Advanced Biosciences, CNRS UMR5309, Université Grenoble Alpes, INSERM U1209, Grenoble, France
| | - Jeroen P J Saeij
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| |
Collapse
|
2
|
Fan YM, Zhang QQ, Pan M, Hou ZF, Fu L, Xu X, Huang SY. Toxoplasma gondii sustains survival by regulating cholesterol biosynthesis and uptake via SREBP2 activation. J Lipid Res 2024; 65:100684. [PMID: 39490926 PMCID: PMC11626538 DOI: 10.1016/j.jlr.2024.100684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/29/2024] [Accepted: 10/11/2024] [Indexed: 11/05/2024] Open
Abstract
Toxoplasma gondii (T. gondii) is an obligate intracellular parasite that cannot biosynthesize cholesterol via the mevalonate pathway, it sources this lipid from its host. We discovered that T. gondii infection upregulated the expression of host cholesterol synthesis-related genes HMG-CoA reductase(HMGCR), squalene epoxidase (SQLE), and dehydrocholesterol reductase-7 (DHCR7), and increased the uptake pathway gene low-density lipoprotein receptor (LDLR). We found a protein, sterol regulatory element binding protein 2 (SREBP2), which is the key protein regulating the host cholesterol synthesis and uptake during T. gondii infection. T. gondii induced a dose-dependent nuclear translocation of SREBP2. Knockdown SREBP2 reduced T. gondii-induced cholesterol biosynthesis and uptake. Consequently, the parasite's ability to acquire cholesterol was significantly diminished, impairing its invasion, replication, and bradyzoites development. Interfering cholesterol metabolism using AY9944 effectively inhibited T. gondii replication. In summary, SREBP2 played an important role in T. gondii infection in vitro, serving as a potential target for regulating T. gondii-induced cholesterol metabolism, offering insights into the prevention and treatment of toxoplasmosis.
Collapse
Affiliation(s)
- Yi-Min Fan
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, and Jiangsu Key Laboratory of Zoonosis, Yangzhou, Jiangsu Province, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, PR China
| | - Qing-Qi Zhang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, and Jiangsu Key Laboratory of Zoonosis, Yangzhou, Jiangsu Province, PR China
| | - Ming Pan
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, and Jiangsu Key Laboratory of Zoonosis, Yangzhou, Jiangsu Province, PR China
| | - Zhao-Feng Hou
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, and Jiangsu Key Laboratory of Zoonosis, Yangzhou, Jiangsu Province, PR China
| | - Lizhi Fu
- Chongqing Academy of Animal Sciences, Chongqing, PR China
| | - Xiulong Xu
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, and Jiangsu Key Laboratory of Zoonosis, Yangzhou, Jiangsu Province, PR China
| | - Si-Yang Huang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, and Jiangsu Key Laboratory of Zoonosis, Yangzhou, Jiangsu Province, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, PR China; Chongqing Academy of Animal Sciences, Chongqing, PR China.
| |
Collapse
|
3
|
Back PS, Moon AS, Pasquarelli RR, Bell HN, Torres JA, Chen AL, Sha J, Vashisht AA, Wohlschlegel JA, Bradley PJ. IMC29 Plays an Important Role in Toxoplasma Endodyogeny and Reveals New Components of the Daughter-Enriched IMC Proteome. mBio 2023; 14:e0304222. [PMID: 36622147 PMCID: PMC9973257 DOI: 10.1128/mbio.03042-22] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/07/2022] [Indexed: 01/10/2023] Open
Abstract
The Toxoplasma inner membrane complex (IMC) is a unique organelle that plays critical roles in parasite motility, invasion, egress, and replication. The IMC is delineated into the apical, body, and basal regions, defined by proteins that localize to these distinct subcompartments. The IMC can be further segregated by proteins that localize specifically to the maternal IMC, the daughter bud IMC, or both. While the function of the maternal IMC has been better characterized, the precise roles of most daughter IMC components remain poorly understood. Here, we demonstrate that the daughter protein IMC29 plays an important role in parasite replication. We show that Δimc29 parasites exhibit severe replication defects, resulting in substantial growth defects and loss of virulence. Deletion analyses revealed that IMC29 localization is largely dependent on the N-terminal half of the protein containing four predicted coiled-coil domains while IMC29 function requires a short C-terminal helical region. Using proximity labeling, we identify eight novel IMC proteins enriched in daughter buds, significantly expanding the daughter IMC proteome. We additionally report four novel proteins with unique localizations to the interface between two parasites or to the outer face of the IMC, exposing new subregions of the organelle. Together, this work establishes IMC29 as an important early daughter bud component of replication and uncovers an array of new IMC proteins that provides important insights into this organelle. IMPORTANCE The inner membrane complex (IMC) is a conserved structure across the Apicomplexa phylum, which includes obligate intracellular parasites that cause toxoplasmosis, malaria, and cryptosporidiosis. The IMC is critical for the parasite to maintain its intracellular lifestyle, particularly in providing a scaffold for daughter bud formation during parasite replication. While many IMC proteins in the later stages of division have been identified, components of the early stages of division remain unknown. Here, we focus on the early daughter protein IMC29, demonstrating that it is crucial for faithful parasite replication and identifying specific regions of the protein that are important for its localization and function. We additionally use proximity labeling to reveal a suite of daughter-enriched IMC proteins, which represent promising candidates to further explore this IMC subcompartment.
Collapse
Affiliation(s)
- Peter S. Back
- Molecular Biology Institute, University of California, Los Angeles, California, USA
| | - Andy S. Moon
- Department of Molecular Microbiology and Immunology, University of California, Los Angeles, California, USA
| | | | - Hannah N. Bell
- Department of Molecular Microbiology and Immunology, University of California, Los Angeles, California, USA
| | - Juan A. Torres
- Department of Molecular Microbiology and Immunology, University of California, Los Angeles, California, USA
| | - Allan L. Chen
- Department of Molecular Microbiology and Immunology, University of California, Los Angeles, California, USA
| | - Jihui Sha
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Ajay A. Vashisht
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - James A. Wohlschlegel
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Peter J. Bradley
- Department of Molecular Microbiology and Immunology, University of California, Los Angeles, California, USA
| |
Collapse
|
4
|
Sterol-Sensing Domain (SSD)-Containing Proteins in Sterol Auxotrophic Phytophthora capsici Mediate Sterol Signaling and Play a Role in Asexual Reproduction and Pathogenicity. Microbiol Spectr 2023; 11:e0379722. [PMID: 36629430 PMCID: PMC9927452 DOI: 10.1128/spectrum.03797-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Phytophthora species are devastating filamentous plant pathogens that belong to oomycetes, a group of microorganisms similar to fungi in morphology but phylogenetically distinct. They are sterol auxotrophic, but nevertheless exploit exogenous sterols for growth and development. However, as for now the mechanisms underlying sterol utilization in Phytophthora are unknown. In this study, we identified four genes in Phytophthora capsici that encode proteins containing a sterol-sensing domain (SSD), a protein domain of around 180 amino acids comprising five transmembrane segments and known to feature in sterol signaling in animals. Using a modified CRISPR/Cas9 system, we successfully knocked out the four genes named PcSCP1 to PcSCP4 (for P. capsici SSD-containing protein 1 to 4), either individually or sequentially, thereby creating single, double, triple, and quadruple knockout transformants. Results showed that knocking out just one of the four PcSCPs was not sufficient to block sterol signaling. However, the quadruple "all-four" PcSCPs knockout transformants no longer responded to sterol treatment in asexual reproduction, in contrast to wild-type P. capsici that produced zoospores under sterol treatment. Apparently, the four PcSCPs play a key role in sterol signaling in P. capsici with functional redundancy. Transcriptome analysis indicated that the expression of a subset of genes is regulated by exogenous sterols via PcSCPs. Further investigations showed that sterols could stimulate zoospore differentiation via PcSCPs by controlling actin-mediated membrane trafficking. Moreover, the pathogenicity of the "all-four" PcSCPs knockout transformants was significantly decreased and many pathogenicity related genes were downregulated, implying that PcSCPs also contribute to plant-pathogen interaction. IMPORTANCE Phytophthora is an important genus of oomycetes that comprises many destructive plant pathogens. Due to the incompleteness of the sterol synthesis pathway, Phytophthora spp. do not possess the ability to produce sterols. Therefore, these sterol auxotrophic oomycetes need to recruit sterols from the environment such as host plants to support growth and development, which seems crucial during pathogen-plant interactions. However, the mechanisms underlying sterol utilization by Phytophthora spp. remain largely unknown. Here, we show that a family of sterol-sensing domain-containing proteins (SCPs) consisting of four members in P. capsici plays a key role in sterol signaling with functional redundancy. Moreover, these SCPs play a role in different biological processes, including asexual reproduction and pathogenicity. Our study overall revealed the multiple functions of PcSCPs and addressed the question of how exogenous sterols regulate the development of heterothallic Phytophthora spp. via SSD-containing proteins.
Collapse
|
5
|
A. PORTES JULIANA, C. VOMMARO ROSSIANE, AYRES CALDAS LUCIO, S. MARTINS-DUARTE ERICA. Intracellular life of protozoan Toxoplasma gondii: Parasitophorous vacuole establishment and survival strategies. BIOCELL 2023. [DOI: 10.32604/biocell.2023.026629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
6
|
Nyonda MA, Kloehn J, Sosnowski P, Krishnan A, Lentini G, Maco B, Marq JB, Hannich JT, Hopfgartner G, Soldati-Favre D. Ceramide biosynthesis is critical for establishment of the intracellular niche of Toxoplasma gondii. Cell Rep 2022; 40:111224. [PMID: 35977499 PMCID: PMC9396527 DOI: 10.1016/j.celrep.2022.111224] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 06/06/2022] [Accepted: 07/26/2022] [Indexed: 11/15/2022] Open
Abstract
Toxoplasma gondii possesses sphingolipid synthesis capabilities and is equipped to salvage lipids from its host. The contribution of these two routes of lipid acquisition during parasite development is unclear. As part of a complete ceramide synthesis pathway, T. gondii expresses two serine palmitoyltransferases (TgSPT1 and TgSPT2) and a dihydroceramide desaturase. After deletion of these genes, we determine their role in parasite development in vitro and in vivo during acute and chronic infection. Detailed phenotyping through lipidomic approaches reveal a perturbed sphingolipidome in these mutants, characterized by a drastic reduction in ceramides and ceramide phosphoethanolamines but not sphingomyelins. Critically, parasites lacking TgSPT1 display decreased fitness, marked by reduced growth rates and a selective defect in rhoptry discharge in the form of secretory vesicles, causing an invasion defect. Disruption of de novo ceramide synthesis modestly affects acute infection in vivo but severely reduces cyst burden in the brain of chronically infected mice.
Collapse
Affiliation(s)
- Mary Akinyi Nyonda
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Joachim Kloehn
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Piotr Sosnowski
- Life Sciences Mass Spectrometry, Department of Inorganic and Analytical Chemistry, University of Geneva, 24 Quai Ernest Ansermet, 1211 Geneva 4, Switzerland
| | - Aarti Krishnan
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Gaëlle Lentini
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Bohumil Maco
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Jean-Baptiste Marq
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - J Thomas Hannich
- Department of Biochemistry, NCCR Chemical Biology, University of Geneva, Quai Ernest-Ansermet 30, Geneva, Switzerland
| | - Gerard Hopfgartner
- Life Sciences Mass Spectrometry, Department of Inorganic and Analytical Chemistry, University of Geneva, 24 Quai Ernest Ansermet, 1211 Geneva 4, Switzerland
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
7
|
Malwal SR, Oldfield E. Mycobacterial membrane protein Large 3-like-family proteins in bacteria, protozoa, fungi, plants, and animals: A bioinformatics and structural investigation. Proteins 2021; 90:776-790. [PMID: 34739144 DOI: 10.1002/prot.26273] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/25/2021] [Indexed: 01/20/2023]
Abstract
Lipid transporters play an important role in most if not all organisms, ranging from bacteria to humans. For example, in Mycobacterium tuberculosis, the trehalose monomycolate transporter MmpL3 is involved in cell wall biosynthesis, while in humans, cholesterol transporters are involved in normal cell function as well as in disease. Here, using structural and bioinformatics information, we propose that there are proteins that also contain "MmpL3-like" (MMPL) transmembrane (TM) domains in many protozoa, including Trypanosoma cruzi, as well as in the bacterium Staphylococcus aureus, where the fatty acid transporter FarE has the same set of "active-site" residues as those found in the mycobacterial MmpL3s, and in T. cruzi. We also show that there are strong sequence and predicted structural similarities between the TM proton-translocation domain seen in the X-ray structures of mycobacterial MmpL3s and several human as well as fungal lipid transporters, leading to the proposal that there are similar proteins in apicomplexan parasites, and in plants. The animal, fungal, apicomplexan, and plant proteins have larger extra-membrane domains than are found in the bacterial MmpL3, but they have a similar TM domain architecture, with the introduction of a (catalytically essential) Phe > His residue change, and a Ser/Thr H-bond network, involved in H+ -transport. Overall, the results are of interest since they show that MMPL-family proteins are present in essentially all life forms: archaea, bacteria, protozoa, fungi, plants and animals and, where known, they are involved in "lipid" (glycolipid, phospholipid, sphingolipid, fatty acid, cholesterol, ergosterol) transport, powered by transmembrane molecular pumps having similar structures.
Collapse
Affiliation(s)
- Satish R Malwal
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Eric Oldfield
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
8
|
Hernández J, Gabrielli M, Costa J, Uttaro AD. Phagocytic and pinocytic uptake of cholesterol in Tetrahymena thermophila impact differently on gene regulation for sterol homeostasis. Sci Rep 2021; 11:9067. [PMID: 33907281 PMCID: PMC8079401 DOI: 10.1038/s41598-021-88737-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 04/15/2021] [Indexed: 01/02/2023] Open
Abstract
The ciliate Tetrahymena thermophila can either synthesize tetrahymanol or when available, assimilate and modify sterols from its diet. This metabolic shift is mainly driven by transcriptional regulation of genes for tetrahymanol synthesis (TS) and sterol bioconversion (SB). The mechanistic details of sterol uptake, intracellular trafficking and the associated gene expression changes are unknown. By following cholesterol incorporation over time in a conditional phagocytosis-deficient mutant, we found that although phagocytosis is the main sterol intake route, a secondary endocytic pathway exists. Different expression patterns for TS and SB genes were associated with these entry mechanisms. Squalene synthase was down-regulated by a massive cholesterol intake only attainable by phagocytosis-proficient cells, whereas C22-sterol desaturase required ten times less cholesterol and was up-regulated in both wild-type and mutant cells. These patterns are suggestive of at least two different signaling pathways. Sterol trafficking beyond phagosomes and esterification was impaired by the NPC1 inhibitor U18666A. NPC1 is a protein that mediates cholesterol export from late endosomes/lysosomes in mammalian cells. U18666A also produced a delay in the transcriptional response to cholesterol, suggesting that the regulatory signals are triggered between lysosomes and the endoplasmic reticulum. These findings could hint at partial conservation of sterol homeostasis between eukaryote lineages.
Collapse
Affiliation(s)
- Josefina Hernández
- Instituto de Biología Molecular y Celular de Rosario, CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, S2000FHQ, Ocampo y Esmeralda, Rosario, Argentina
| | - Matías Gabrielli
- Instituto de Biología Molecular y Celular de Rosario, CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, S2000FHQ, Ocampo y Esmeralda, Rosario, Argentina
| | - Joaquín Costa
- Instituto de Biología Molecular y Celular de Rosario, CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, S2000FHQ, Ocampo y Esmeralda, Rosario, Argentina
| | - Antonio D Uttaro
- Instituto de Biología Molecular y Celular de Rosario, CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, S2000FHQ, Ocampo y Esmeralda, Rosario, Argentina.
| |
Collapse
|
9
|
Gubbels MJ, Coppens I, Zarringhalam K, Duraisingh MT, Engelberg K. The Modular Circuitry of Apicomplexan Cell Division Plasticity. Front Cell Infect Microbiol 2021; 11:670049. [PMID: 33912479 PMCID: PMC8072463 DOI: 10.3389/fcimb.2021.670049] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 03/22/2021] [Indexed: 12/31/2022] Open
Abstract
The close-knit group of apicomplexan parasites displays a wide variety of cell division modes, which differ between parasites as well as between different life stages within a single parasite species. The beginning and endpoint of the asexual replication cycles is a 'zoite' harboring the defining apical organelles required for host cell invasion. However, the number of zoites produced per division round varies dramatically and can unfold in several different ways. This plasticity of the cell division cycle originates from a combination of hard-wired developmental programs modulated by environmental triggers. Although the environmental triggers and sensors differ between species and developmental stages, widely conserved secondary messengers mediate the signal transduction pathways. These environmental and genetic input integrate in division-mode specific chromosome organization and chromatin modifications that set the stage for each division mode. Cell cycle progression is conveyed by a smorgasbord of positively and negatively acting transcription factors, often acting in concert with epigenetic reader complexes, that can vary dramatically between species as well as division modes. A unique set of cell cycle regulators with spatially distinct localization patterns insert discrete check points which permit individual control and can uncouple general cell cycle progression from nuclear amplification. Clusters of expressed genes are grouped into four functional modules seen in all division modes: 1. mother cytoskeleton disassembly; 2. DNA replication and segregation (D&S); 3. karyokinesis; 4. zoite assembly. A plug-and-play strategy results in the variety of extant division modes. The timing of mother cytoskeleton disassembly is hard-wired at the species level for asexual division modes: it is either the first step, or it is the last step. In the former scenario zoite assembly occurs at the plasma membrane (external budding), and in the latter scenario zoites are assembled in the cytoplasm (internal budding). The number of times each other module is repeated can vary regardless of this first decision, and defines the modes of cell division: schizogony, binary fission, endodyogeny, endopolygeny.
Collapse
Affiliation(s)
- Marc-Jan Gubbels
- Department of Biology, Boston College, Chestnut Hill, MA, United States
| | - Isabelle Coppens
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Kourosh Zarringhalam
- Department of Mathematics, University of Massachusetts Boston, Boston, MA, United States
| | - Manoj T. Duraisingh
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, United States
| | - Klemens Engelberg
- Department of Biology, Boston College, Chestnut Hill, MA, United States
| |
Collapse
|
10
|
Hammarton TC. Who Needs a Contractile Actomyosin Ring? The Plethora of Alternative Ways to Divide a Protozoan Parasite. Front Cell Infect Microbiol 2019; 9:397. [PMID: 31824870 PMCID: PMC6881465 DOI: 10.3389/fcimb.2019.00397] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/06/2019] [Indexed: 01/21/2023] Open
Abstract
Cytokinesis, or the division of the cytoplasm, following the end of mitosis or meiosis, is accomplished in animal cells, fungi, and amoebae, by the constriction of an actomyosin contractile ring, comprising filamentous actin, myosin II, and associated proteins. However, despite this being the best-studied mode of cytokinesis, it is restricted to the Opisthokonta and Amoebozoa, since members of other evolutionary supergroups lack myosin II and must, therefore, employ different mechanisms. In particular, parasitic protozoa, many of which cause significant morbidity and mortality in humans and animals as well as considerable economic losses, employ a wide diversity of mechanisms to divide, few, if any, of which involve myosin II. In some cases, cell division is not only myosin II-independent, but actin-independent too. Mechanisms employed range from primitive mechanical cell rupture (cytofission), to motility- and/or microtubule remodeling-dependent mechanisms, to budding involving the constriction of divergent contractile rings, to hijacking host cell division machinery, with some species able to utilize multiple mechanisms. Here, I review current knowledge of cytokinesis mechanisms and their molecular control in mammalian-infective parasitic protozoa from the Excavata, Alveolata, and Amoebozoa supergroups, highlighting their often-underappreciated diversity and complexity. Billions of people and animals across the world are at risk from these pathogens, for which vaccines and/or optimal treatments are often not available. Exploiting the divergent cell division machinery in these parasites may provide new avenues for the treatment of protozoal disease.
Collapse
Affiliation(s)
- Tansy C Hammarton
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
11
|
Di Maggio LS, Tirloni L, Pinto AFM, Diedrich JK, Yates JR, Carmona C, Berasain P, da Silva Vaz I. A proteomic comparison of excretion/secretion products in Fasciola hepatica newly excysted juveniles (NEJ) derived from Lymnaea viatrix or Pseudosuccinea columella. Exp Parasitol 2019; 201:11-20. [PMID: 31022392 DOI: 10.1016/j.exppara.2019.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/19/2019] [Accepted: 04/12/2019] [Indexed: 12/13/2022]
Abstract
The characteristics of parasitic infections are often tied to host behavior. Although most studies have investigated definitive hosts, intermediate hosts can also play a role in shaping the distribution and accumulation of parasites. This is particularly relevant in larval stages, where intermediate host's behavior could potentially interfere in the molecules secreted by the parasite into the next host during infection. To investigate this hypothesis, we used a proteomic approach to analyze excretion/secretion products (ESP) from Fasciola hepatica newly excysted juveniles (NEJ) derived from two intermediate host species, Lymnaea viatrix and Pseudosuccinea columella. The two analyzed proteomes showed differences in identity, abundance, and functional classification of the proteins. This observation could be due to differences in the biological cycle of the parasite in the host, environmental aspects, and/or host-dependent factors. Categories such as protein modification machinery, protease inhibitors, signal transduction, and cysteine-rich proteins showed different abundance between samples. More specifically, differences in abundance of individual proteins such as peptidyl-prolyl cis-trans isomerase, thioredoxin, cathepsin B, cathepsin L, and Kunitz-type inhibitors were identified. Based on the differences identified between NEJ ESP samples, we can conclude that the intermediate host is a factor influencing the proteomic profile of ESP in F. hepatica.
Collapse
Affiliation(s)
- Lucía Sánchez Di Maggio
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Unidad de Biología Parasitaria, Facultad de Ciencias, Universidad de la República Oriental del Uruguay, Montevideo, Uruguay
| | - Lucas Tirloni
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; College of Veterinary Medicine, Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, USA
| | - Antônio F M Pinto
- Department of Molecular Medicine, The Scripps Research Institute, CA, USA
| | - Jolene K Diedrich
- Department of Molecular Medicine, The Scripps Research Institute, CA, USA
| | - John R Yates
- Department of Molecular Medicine, The Scripps Research Institute, CA, USA
| | - Carlos Carmona
- Unidad de Biología Parasitaria, Facultad de Ciencias, Universidad de la República Oriental del Uruguay, Montevideo, Uruguay
| | - Patricia Berasain
- Unidad de Biología Parasitaria, Facultad de Ciencias, Universidad de la República Oriental del Uruguay, Montevideo, Uruguay.
| | - Itabajara da Silva Vaz
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
12
|
Bhatnagar S, Nicklas S, Morrisey JM, Goldberg DE, Vaidya AB. Diverse Chemical Compounds Target Plasmodium falciparum Plasma Membrane Lipid Homeostasis. ACS Infect Dis 2019; 5:550-558. [PMID: 30638365 DOI: 10.1021/acsinfecdis.8b00277] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Lipid homeostasis is essential to the maintenance of life. We previously reported that disruptions of the parasite Na+ homeostasis via inhibition of PfATP4 resulted in elevated cholesterol within the parasite plasma membrane as assessed by saponin sensitivity. A large number of compounds have been shown to target the parasite Na+ homeostasis. We screened 800 compounds from the Malaria and Pathogen Boxes to identify chemotypes that disrupted the parasite plasma membrane lipid homeostasis. Here, we show that the compounds disrupting parasite Na+ homeostasis also induced saponin sensitivity, an indication of parasite lipid homeostasis disruption. Remarkably, 13 compounds were identified that altered the plasma membrane lipid composition independently of the Na+ homeostasis disruption. Further studies suggest that these compounds target the Plasmodium falciparum Niemann-Pick type C1-related (PfNCR1) protein, which is hypothesized to be involved in maintaining plasma membrane lipid composition. PfNCR1, like PfATP4, appears to be targeted by multiple chemotypes with the potential for drug discovery.
Collapse
Affiliation(s)
- Suyash Bhatnagar
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, Pennsylvania 19129, United States of America
| | - Sezin Nicklas
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, Pennsylvania 19129, United States of America
| | - Joanne M. Morrisey
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, Pennsylvania 19129, United States of America
| | - Daniel E. Goldberg
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, 4990 Children’s Place, St. Louis, Missouri 63110, United States of America
| | - Akhil B. Vaidya
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, Pennsylvania 19129, United States of America
| |
Collapse
|
13
|
Istvan ES, Das S, Bhatnagar S, Beck JR, Owen E, Llinas M, Ganesan SM, Niles JC, Winzeler E, Vaidya AB, Goldberg DE. Plasmodium Niemann-Pick type C1-related protein is a druggable target required for parasite membrane homeostasis. eLife 2019; 8:40529. [PMID: 30888318 PMCID: PMC6424564 DOI: 10.7554/elife.40529] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 02/05/2019] [Indexed: 01/05/2023] Open
Abstract
Plasmodium parasites possess a protein with homology to Niemann-Pick Type C1 proteins (Niemann-Pick Type C1-Related protein, NCR1). We isolated parasites with resistance-conferring mutations in Plasmodium falciparum NCR1 (PfNCR1) during selections with three diverse small-molecule antimalarial compounds and show that the mutations are causative for compound resistance. PfNCR1 protein knockdown results in severely attenuated growth and confers hypersensitivity to the compounds. Compound treatment or protein knockdown leads to increased sensitivity of the parasite plasma membrane (PPM) to the amphipathic glycoside saponin and engenders digestive vacuoles (DVs) that are small and malformed. Immuno-electron microscopy and split-GFP experiments localize PfNCR1 to the PPM. Our experiments show that PfNCR1 activity is critically important for the composition of the PPM and is required for DV biogenesis, suggesting PfNCR1 as a novel antimalarial drug target. Editorial note: This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter).
Collapse
Affiliation(s)
- Eva S Istvan
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, Saint Louis, United States.,Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, United States
| | - Sudipta Das
- Department of Microbiology and Immunology, Center for Molecular Parasitology, Drexel University College of Medicine, Philadelphia, United States
| | - Suyash Bhatnagar
- Department of Microbiology and Immunology, Center for Molecular Parasitology, Drexel University College of Medicine, Philadelphia, United States
| | - Josh R Beck
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, Saint Louis, United States.,Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, United States
| | - Edward Owen
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, United States.,Huck Center for Malaria Research, Pennsylvania State University, University Park, United States.,Department of Chemistry, Pennsylvania State University, University Park, United States
| | - Manuel Llinas
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, United States.,Huck Center for Malaria Research, Pennsylvania State University, University Park, United States.,Department of Chemistry, Pennsylvania State University, University Park, United States
| | - Suresh M Ganesan
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, United States
| | - Jacquin C Niles
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, United States
| | - Elizabeth Winzeler
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, United States
| | - Akhil B Vaidya
- Department of Microbiology and Immunology, Center for Molecular Parasitology, Drexel University College of Medicine, Philadelphia, United States
| | - Daniel E Goldberg
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, Saint Louis, United States.,Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, United States
| |
Collapse
|
14
|
Affiliation(s)
- Isabelle Coppens
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- * E-mail: (IC); (JDR)
| | - Julia D. Romano
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- * E-mail: (IC); (JDR)
| |
Collapse
|
15
|
Ablation of an Ovarian Tumor Family Deubiquitinase Exposes the Underlying Regulation Governing the Plasticity of Cell Cycle Progression in Toxoplasma gondii. mBio 2017; 8:mBio.01846-17. [PMID: 29162714 PMCID: PMC5698556 DOI: 10.1128/mbio.01846-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The Toxoplasma genome encodes the capacity for distinct architectures underlying cell cycle progression in a life cycle stage-dependent manner. Replication in intermediate hosts occurs by endodyogeny, whereas a hybrid of schizogony and endopolygeny occurs in the gut of the definitive feline host. Here, we characterize the consequence of the loss of a cell cycle-regulated ovarian tumor (OTU family) deubiquitinase, OTUD3A of Toxoplasma gondii (TgOTUD3A; TGGT1_258780), in T. gondii tachyzoites. Rather than the mutation being detrimental, mutant parasites exhibited a fitness advantage, outcompeting the wild type. This phenotype was due to roughly one-third of TgOTUD3A-knockout (TgOTUD3A-KO) tachyzoites exhibiting deviations from endodyogeny by employing replication strategies that produced 3, 4, or 5 viable progeny within a gravid mother instead of the usual 2. We established the mechanistic basis underlying these altered replication strategies to be a dysregulation of centrosome duplication, causing a transient loss of stoichiometry between the inner and outer cores that resulted in a failure to terminate S phase at the attainment of 2N ploidy and/or the decoupling of mitosis and cytokinesis. The resulting dysregulation manifested as deviations in the normal transitions from S phase to mitosis (S/M) (endopolygeny-like) or M phase to cytokinesis (M/C) (schizogony-like). Notably, these imbalances are corrected prior to cytokinesis, resulting in the generation of normal progeny. Our findings suggest that decisions regarding the utilization of specific cell cycle architectures are controlled by a ubiquitin-mediated mechanism that is dependent on the absolute threshold levels of an as-yet-unknown target(s). Analysis of the TgOTUD3A-KO mutant provides new insights into mechanisms underlying the plasticity of apicomplexan cell cycle architecture. Replication by Toxoplasma gondii can occur by 3 distinct cell cycle architectures. Endodyogeny is used by asexual stages, while a hybrid of schizogony and endopolygeny is used by merozoites in the definitive feline host. Here, we establish that the disruption of an ovarian-tumor (OTU) family deubiquitinase, TgOTUD3A, in tachyzoites results in dysregulation of the mechanism controlling the selection of replication strategy in a subset of parasites. The mechanistic basis for these altered cell cycles lies in the unique biology of the bipartite centrosome that is associated with the transient loss of stoichiometry between the inner and outer centrosome cores in the TgOTUD3A-KO mutant. This highlights the importance of ubiquitin-mediated regulation in the transition from the nuclear to the budding phases of the cell cycle and provides new mechanistic insights into the regulation of the organization of the apicomplexan cell cycle.
Collapse
|
16
|
Differential Roles for Inner Membrane Complex Proteins across Toxoplasma gondii and Sarcocystis neurona Development. mSphere 2017; 2:mSphere00409-17. [PMID: 29062899 PMCID: PMC5646244 DOI: 10.1128/msphere.00409-17] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 09/29/2017] [Indexed: 12/30/2022] Open
Abstract
The inner membrane complex (IMC) is a defining feature of apicomplexan parasites key to both their motility and unique cell division. To provide further insights into the IMC, we analyzed the dynamics and functions of representative alveolin domain-containing IMC proteins across developmental stages. Our work shows universal but distinct roles for IMC1, -3, and -7 during Toxoplasma asexual division but more specialized functions for these proteins during gametogenesis. In addition, we find that IMC15 is involved in daughter formation in both Toxoplasma and Sarcocystis tachyzoites, bradyzoites, and sporozoites. IMC14 and IMC15 function in limiting the number of Toxoplasma offspring per division. Furthermore, IMC7, -12, and -14, which are recruited in the G1 cell cycle stage, are required for stress resistance of extracellular tachyzoites. Thus, although the roles of the different IMC proteins appear to overlap, stage- and development-specific behaviors indicate that their functions are uniquely tailored to each life stage requirement. The inner membrane complex (IMC) of apicomplexan parasites contains a network of intermediate filament-like proteins. The 14 alveolin domain-containing IMC proteins in Toxoplasma gondii fall into different groups defined by their distinct spatiotemporal dynamics during the internal budding process of tachyzoites. Here, we analyzed representatives of different IMC protein groups across all stages of the Toxoplasma life cycle and during Sarcocystis neurona asexual development. We found that across asexually dividing Toxoplasma stages, IMC7 is present exclusively in the mother’s cytoskeleton, whereas IMC1 and IMC3 are both present in mother and daughter cytoskeletons (IMC3 is strongly enriched in daughter buds). In developing macro- and microgametocytes, IMC1 and -3 are absent, whereas IMC7 is lost in early microgametocytes but retained in macrogametocytes until late in their development. We found no roles for IMC proteins during meiosis and sporoblast formation. However, we observed that IMC1 and IMC3, but not IMC7, are present in sporozoites. Although the spatiotemporal pattern of IMC15 and IMC3 suggests orthologous functions in Sarcocystis, IMC7 may have functionally diverged in Sarcocystis merozoites. To functionally characterize IMC proteins, we knocked out IMC7, -12, -14, and -15 in Toxoplasma. IMC14 and -15 appear to be involved in switching between endodyogeny and endopolygeny. In addition, IMC7, -12, and -14, which are all recruited to the cytoskeleton outside cytokinesis, are critical for the structural integrity of extracellular tachyzoites. Altogether, stage- and development-specific roles for IMC proteins can be discerned, suggesting different niches for each IMC protein across the entire life cycle. IMPORTANCE The inner membrane complex (IMC) is a defining feature of apicomplexan parasites key to both their motility and unique cell division. To provide further insights into the IMC, we analyzed the dynamics and functions of representative alveolin domain-containing IMC proteins across developmental stages. Our work shows universal but distinct roles for IMC1, -3, and -7 during Toxoplasma asexual division but more specialized functions for these proteins during gametogenesis. In addition, we find that IMC15 is involved in daughter formation in both Toxoplasma and Sarcocystis. IMC14 and IMC15 function in limiting the number of Toxoplasma offspring per division. Furthermore, IMC7, -12, and -14, which are recruited in the G1 cell cycle stage, are required for stress resistance of extracellular tachyzoites. Thus, although the roles of the different IMC proteins appear to overlap, stage- and development-specific behaviors indicate that their functions are uniquely tailored to each life stage requirement.
Collapse
|
17
|
Vilaça R, Barros I, Matmati N, Silva E, Martins T, Teixeira V, Hannun YA, Costa V. The ceramide activated protein phosphatase Sit4 impairs sphingolipid dynamics, mitochondrial function and lifespan in a yeast model of Niemann-Pick type C1. Biochim Biophys Acta Mol Basis Dis 2017; 1864:79-88. [PMID: 28988886 DOI: 10.1016/j.bbadis.2017.10.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 09/29/2017] [Accepted: 10/05/2017] [Indexed: 12/20/2022]
Abstract
The Niemann-Pick type C is a rare neurodegenerative disease that results from loss-of-function point mutations in NPC1 or NPC2, which affect the homeostasis of sphingolipids and sterols in human cells. We have previously shown that yeast lacking Ncr1, the orthologue of human NPC1 protein, display a premature ageing phenotype and higher sensitivity to oxidative stress associated with mitochondrial dysfunctions and accumulation of long chain bases. In this study, a lipidomic analysis revealed specific changes in the levels of ceramide species in ncr1Δ cells, including decreases in dihydroceramides and increases in phytoceramides. Moreover, the activation of Sit4, a ceramide-activated protein phosphatase, increased in ncr1Δ cells. Deletion of SIT4 or CDC55, its regulatory subunit, increased the chronological lifespan and hydrogen peroxide resistance of ncr1Δ cells and suppressed its mitochondrial defects. Notably, Sch9 and Pkh1-mediated phosphorylation of Sch9 decreased significantly in ncr1Δsit4Δ cells. These results suggest that phytoceramide accumulation and Sit4-dependent signaling mediate the mitochondrial dysfunction and shortened lifespan in the yeast model of Niemann-Pick type C1, in part through modulation of the Pkh1-Sch9 pathway.
Collapse
Affiliation(s)
- Rita Vilaça
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal; Departamento de Biologia Molecular, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Ivo Barros
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal; Departamento de Biologia Molecular, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Nabil Matmati
- Stony Brook Cancer Center, Stony Brook University, Health Science Center, Stony Brook, NY, USA
| | - Elísio Silva
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal; Departamento de Biologia Molecular, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Telma Martins
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Vítor Teixeira
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal; Departamento de Biologia Molecular, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Yusuf A Hannun
- Stony Brook Cancer Center, Stony Brook University, Health Science Center, Stony Brook, NY, USA
| | - Vítor Costa
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal; Departamento de Biologia Molecular, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
18
|
Bolaños J, Betanzos A, Javier-Reyna R, García- Rivera G, Huerta M, Pais-Morales J, González-Robles A, Rodríguez MA, Schnoor M, Orozco E. EhNPC1 and EhNPC2 Proteins Participate in Trafficking of Exogenous Cholesterol in Entamoeba histolytica Trophozoites: Relevance for Phagocytosis. PLoS Pathog 2016; 12:e1006089. [PMID: 28002502 PMCID: PMC5176366 DOI: 10.1371/journal.ppat.1006089] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 11/25/2016] [Indexed: 12/31/2022] Open
Abstract
Entamoeba histolytica, the highly phagocytic protozoan causative of human amoebiasis lacks the machinery to synthesize cholesterol. Here, we investigated the presence of NPC1 and NPC2 proteins in this parasite, which are involved in cholesterol trafficking in mammals. Bioinformatics analysis revealed one Ehnpc1 and two Ehnpc2 genes. EhNPC1 appeared as a transmembrane protein and both EhNPC2 as peripheral membrane proteins. Molecular docking predicted that EhNPC1 and EhNPC2 bind cholesterol and interact with each other. Genes and proteins were identified in trophozoites. Serum pulse-chase and confocal microscopy assays unveiled that after trophozoites sensed the cholesterol source, EhNPC1 and EhNPC2 were organized around the plasma membrane in a punctuated pattern. Vesicles emerged and increased in number and size and some appeared full of cholesterol with EhNPC1 or EhNPC2 facing the extracellular space. Both proteins, but mostly EhNPC2, were found out of the cell associated with cholesterol. EhNPC1 and cholesterol formed networks from the plasma membrane to the nucleus. EhNPC2 appeared in erythrocytes that were being ingested by trophozoites, co-localizing with cholesterol of erythrocytes, whereas EhNPC1 surrounded the phagocytic cup. EhNPC1 and EhNPC2 co-localized with EhSERCA in the endoplasmic reticulum and with lysobisphosphatidic acid and EhADH (an Alix protein) in phagolysosomes. Immunoprecipitation assays confirmed the EhNPC1 and EhNPC2 association with cholesterol, EhRab7A and EhADH. Serum starved and blockage of cholesterol trafficking caused a low rate of phagocytosis and incapability of trophozoites to produce damage in the mouse colon. Ehnpc1 and Ehnpc2 knockdown provoked in trophozoites a lower intracellular cholesterol concentration and a diminished rate of phagocytosis; and Ehnpc1 silencing also produced a decrease of trophozoites movement. Trafficking of EhNPC1 and EhNPC2 during cholesterol uptake and phagocytosis as well as their association with molecules involved in endocytosis strongly suggest that these proteins play a key role in cholesterol uptake. NPC1 and NPC2 proteins are involved in cholesterol trafficking in mammals. Using different approaches, we have detected the orthologues EhNPC1 and EhNPC2 proteins in Entamoeba histolytica. Trophozoites are particularly rich in membranes and vacuoles, but they do not possess the machinery to synthetize cholesterol. Thus, they are completely dependent on molecules able to “fish” cholesterol from the medium. The relevance of our findings lies in the fact that cholesterol is fundamental for endocytosis and motility; and, phagocytosis is an important nutritional and virulence factor for E. histolytica. In silico and experimental strategies, using U18666A to arrest cholesterol trafficking, as well as, knockdown mutants, showed that EhNPC1 and EhNPC2 participate in cholesterol uptake and trafficking in this parasite. They are secreted by trophozoites and directly involved in erythrophagocytosis and motility. Our findings revealed E. histolytica as one of the first protozoa in which these proteins are being characterized. Moreover, E. histolytica provides an excellent and less complicated model to elucidate the intricate event of cholesterol trafficking in eukaryotic cells. The relevance of cholesterol transport for the parasite virulence and the involvement of EhNPC1 and EhNPC2 in this process, make these proteins promising targets for therapy strategies development against the parasite.
Collapse
Affiliation(s)
- Jeni Bolaños
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, D.F., México
| | - Abigail Betanzos
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, D.F., México
- Cátedras, Consejo Nacional de Ciencia y Tecnología, D.F., México
| | - Rosario Javier-Reyna
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, D.F., México
| | - Guillermina García- Rivera
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, D.F., México
| | - Miriam Huerta
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, D.F., México
| | - Jonnatan Pais-Morales
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, D.F., México
| | - Arturo González-Robles
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, D.F., México
| | - Mario A. Rodríguez
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, D.F., México
| | - Michael Schnoor
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, D.F., México
| | - Esther Orozco
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, D.F., México
- * E-mail:
| |
Collapse
|
19
|
Neospora caninum Recruits Host Cell Structures to Its Parasitophorous Vacuole and Salvages Lipids from Organelles. EUKARYOTIC CELL 2015; 14:454-73. [PMID: 25750213 DOI: 10.1128/ec.00262-14] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 02/24/2015] [Indexed: 12/21/2022]
Abstract
Toxoplasma gondii and Neospora caninum, which cause the diseases toxoplasmosis and neosporosis, respectively, are two closely related apicomplexan parasites. They have similar heteroxenous life cycles and conserved genomes and share many metabolic features. Despite these similarities, T. gondii and N. caninum differ in their transmission strategies and zoonotic potential. Comparative analyses of the two parasites are important to identify the unique biological features that underlie the basis of host preference and pathogenicity. T. gondii and N. caninum are obligate intravacuolar parasites; in contrast to T. gondii, events that occur during N. caninum infection remain largely uncharacterized. We examined the capability of N. caninum (Liverpool isolate) to interact with host organelles and scavenge nutrients in comparison to that of T. gondii (RH strain). N. caninum reorganizes the host microtubular cytoskeleton and attracts endoplasmic reticulum (ER), mitochondria, lysosomes, multivesicular bodies, and Golgi vesicles to its vacuole though with some notable differences from T. gondii. For example, the host ER gathers around the N. caninum parasitophorous vacuole (PV) but does not physically associate with the vacuolar membrane; the host Golgi apparatus surrounds the N. caninum PV but does not fragment into ministacks. N. caninum relies on plasma lipoproteins and scavenges cholesterol from NPC1-containing endocytic organelles. This parasite salvages sphingolipids from host Golgi Rab14 vesicles that it sequesters into its vacuole. Our data highlight a remarkable degree of conservation in the intracellular infection program of N. caninum and T. gondii. The minor differences between the two parasites related to the recruitment and rearrangement of host organelles around their vacuoles likely reflect divergent evolutionary paths.
Collapse
|
20
|
Harding CR, Meissner M. The inner membrane complex through development of Toxoplasma gondii and Plasmodium. Cell Microbiol 2014; 16:632-41. [PMID: 24612102 PMCID: PMC4286798 DOI: 10.1111/cmi.12285] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 02/20/2014] [Accepted: 02/20/2014] [Indexed: 12/30/2022]
Abstract
Plasmodium spp. and Toxoplasma gondii are important human and veterinary pathogens. These parasites possess an unusual double membrane structure located directly below the plasma membrane named the inner membrane complex (IMC). First identified in early electron micrograph studies, huge advances in genetic manipulation of the Apicomplexa have allowed the visualization of a dynamic, highly structured cellular compartment with important roles in maintaining the structure and motility of these parasites. This review summarizes recent advances in the field and highlights the changes the IMC undergoes during the complex life cycles of the Apicomplexa.
Collapse
Affiliation(s)
- Clare R Harding
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, The University of Glasgow, Glasgow, UK
| | | |
Collapse
|
21
|
Exploitation of auxotrophies and metabolic defects in Toxoplasma as therapeutic approaches. Int J Parasitol 2014; 44:109-20. [DOI: 10.1016/j.ijpara.2013.09.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Revised: 09/22/2013] [Accepted: 09/22/2013] [Indexed: 12/30/2022]
|
22
|
Targeting lipid biosynthesis and salvage in apicomplexan parasites for improved chemotherapies. Nat Rev Microbiol 2013; 11:823-35. [DOI: 10.1038/nrmicro3139] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
23
|
Lopez ME, Scott MP. Genetic dissection of a cell-autonomous neurodegenerative disorder: lessons learned from mouse models of Niemann-Pick disease type C. Dis Model Mech 2013; 6:1089-100. [PMID: 23907005 PMCID: PMC3759329 DOI: 10.1242/dmm.012385] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Understanding neurodegenerative disease progression and its treatment requires the systematic characterization and manipulation of relevant cell types and molecular pathways. The neurodegenerative lysosomal storage disorder Niemann-Pick disease type C (NPC) is highly amenable to genetic approaches that allow exploration of the disease biology at the organismal, cellular and molecular level. Although NPC is a rare disease, genetic analysis of the associated neuropathology promises to provide insight into the logic of disease neural circuitry, selective neuron vulnerability and neural-glial interactions. The ability to control the disorder cell-autonomously and in naturally occurring spontaneous animal models that recapitulate many aspects of the human disease allows for an unparalleled dissection of the disease neurobiology in vivo. Here, we review progress in mouse-model-based studies of NPC disease, specifically focusing on the subtype that is caused by a deficiency in NPC1, a sterol-binding late endosomal membrane protein involved in lipid trafficking. We also discuss recent findings and future directions in NPC disease research that are pertinent to understanding the cellular and molecular mechanisms underlying neurodegeneration in general.
Collapse
Affiliation(s)
- Manuel E Lopez
- Departments of Developmental Biology, Genetics, and Bioengineering, Howard Hughes Medical Institute, Stanford University School of Medicine, Clark Center W200, 318 Campus Drive, Stanford, CA 94305-5439, USA
| | | |
Collapse
|
24
|
Romano JD, Sonda S, Bergbower E, Smith ME, Coppens I. Toxoplasma gondii salvages sphingolipids from the host Golgi through the rerouting of selected Rab vesicles to the parasitophorous vacuole. Mol Biol Cell 2013; 24:1974-95. [PMID: 23615442 PMCID: PMC3681701 DOI: 10.1091/mbc.e12-11-0827] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The obligate intracellular protozoan Toxoplasma gondii actively invades mammalian cells and, upon entry, forms its own membrane-bound compartment, named the parasitophorous vacuole (PV). Within the PV, the parasite replicates and scavenges nutrients, including lipids, from host organelles. Although T. gondii can synthesize sphingolipids de novo, it also scavenges these lipids from the host Golgi. How the parasite obtains sphingolipids from the Golgi remains unclear, as the PV avoids fusion with host organelles. In this study, we explore the host Golgi-PV interaction and evaluate the importance of host-derived sphingolipids for parasite growth. We demonstrate that the PV preferentially localizes near the host Golgi early during infection and remains closely associated with this organelle throughout infection. The parasite subverts the structure of the host Golgi, resulting in its fragmentation into numerous ministacks, which surround the PV, and hijacks host Golgi-derived vesicles within the PV. These vesicles, marked with Rab14, Rab30, or Rab43, colocalize with host-derived sphingolipids in the vacuolar space. Scavenged sphingolipids contribute to parasite replication since alterations in host sphingolipid metabolism are detrimental for the parasite's growth. Thus our results reveal that T. gondii relies on host-derived sphingolipids for its development and scavenges these lipids via Golgi-derived vesicles.
Collapse
Affiliation(s)
- Julia D Romano
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| | | | | | | | | |
Collapse
|
25
|
Lige B, Sampels V, Coppens I. Characterization of a second sterol-esterifying enzyme in Toxoplasma highlights the importance of cholesterol storage pathways for the parasite. Mol Microbiol 2013; 87:951-67. [PMID: 23374239 DOI: 10.1111/mmi.12142] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2012] [Indexed: 11/28/2022]
Abstract
Lipid bodies are eukaryotic structures for temporary storage of neutral lipids such as acylglycerols and steryl esters. Fatty acyl-CoA and cholesterol are two substrates for cholesteryl ester (CE) synthesis via the ACAT reaction. The intracellular parasite Toxoplasma gondii is incapable of sterol synthesis and unremittingly scavenges cholesterol from mammalian host cells. We previously demonstrated that the parasite expresses a cholesteryl ester-synthesizing enzyme, TgACAT1. In this article, we identified and characterized a second ACAT-like enzyme, TgACAT2, which shares 56% identity with TgACAT1. Both enzymes are endoplasmic reticulum-associated and contribute to CE formation for storage in lipid bodies. While TgACAT1 preferentially utilizes palmitoyl-CoA, TgACAT2 has broader fatty acid specificity and produces more CE. Genetic ablation of each individual ACAT results in parasite growth impairment whereas dual ablation of ACAT1 and ACAT2 is not tolerated by Toxoplasma. ΔACAT1 and ΔACAT2 parasites have reduced CE levels, fewer lipid bodies, and accumulate free cholesterol, which causes injurious membrane effects. Mutant parasites are particularly vulnerable to ACAT inhibitors. This study underlines the important physiological role of ACAT enzymes to store cholesterol in a sterol-auxotrophic organism such as Toxoplasma, and furthermore opens up possibilities of exploiting TgACAT as targets for the development of antitoxoplasmosis drugs.
Collapse
Affiliation(s)
- Bao Lige
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
26
|
Lige B, Romano JD, Sampels V, Sonda S, Joiner KA, Coppens I. Introduction of caveolae structural proteins into the protozoan Toxoplasma results in the formation of heterologous caveolae but not caveolar endocytosis. PLoS One 2012; 7:e51773. [PMID: 23272165 PMCID: PMC3522706 DOI: 10.1371/journal.pone.0051773] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 11/08/2012] [Indexed: 11/30/2022] Open
Abstract
Present on the plasma membrane of most metazoans, caveolae are specialized microdomains implicated in several endocytic and trafficking mechanisms. Caveolins and the more recently discovered cavins are the major protein components of caveolae. Previous studies reported that caveolar invaginations can be induced de novo on the surface of caveolae-negative mammalian cells upon heterologous expression of caveolin-1. However, it remains undocumented whether other components in the transfected cells participate in caveolae formation. To address this issue, we have exploited the protozoan Toxoplasma as a heterologous expression system to provide insights into the minimal requirements for caveogenesis and caveolar endocytosis. Upon expression of caveolin-1, Toxoplasma accumulates prototypical exocytic caveolae 'precursors' in the cytoplasm. Toxoplasma expressing caveolin-1 alone, or in conjunction with cavin-1, neither develops surface-located caveolae nor internalizes caveolar ligands. These data suggest that the formation of functional caveolae at the plasma membrane in Toxoplasma and, by inference in all non-mammalian cells, requires effectors other than caveolin-1 and cavin-1. Interestingly, Toxoplasma co-expressing caveolin-1 and cavin-1 displays an impressive spiraled network of membranes containing the two proteins, in the cytoplasm. This suggests a synergistic activity of caveolin-1 and cavin-1 in the morphogenesis and remodeling of membranes, as illustrated for Toxoplasma.
Collapse
Affiliation(s)
- Bao Lige
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health Baltimore, Maryland, United States of America
| | - Julia D. Romano
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health Baltimore, Maryland, United States of America
| | - Vera Sampels
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health Baltimore, Maryland, United States of America
| | - Sabrina Sonda
- Institute of Parasitology, University of Zurich, Zurich, Switzerland
| | - Keith A. Joiner
- Arizona Health Science Center, University of Arizona College of Medicine, Tucson, Arizona, United States of America
| | - Isabelle Coppens
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health Baltimore, Maryland, United States of America
| |
Collapse
|
27
|
Fierce competition between Toxoplasma and Chlamydia for host cell structures in dually infected cells. EUKARYOTIC CELL 2012; 12:265-77. [PMID: 23243063 DOI: 10.1128/ec.00313-12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The prokaryote Chlamydia trachomatis and the protozoan Toxoplasma gondii, two obligate intracellular pathogens of humans, have evolved a similar modus operandi to colonize their host cell and salvage nutrients from organelles. In order to gain fundamental knowledge on the pathogenicity of these microorganisms, we have established a cell culture model whereby single fibroblasts are coinfected by C. trachomatis and T. gondii. We previously reported that the two pathogens compete for the same nutrient pools in coinfected cells and that Toxoplasma holds a significant competitive advantage over Chlamydia. Here we have expanded our coinfection studies by examining the respective abilities of Chlamydia and Toxoplasma to co-opt the host cytoskeleton and recruit organelles. We demonstrate that the two pathogen-containing vacuoles migrate independently to the host perinuclear region and rearrange the host microtubular network around each vacuole. However, Toxoplasma outcompetes Chlamydia to the host microtubule-organizing center to the detriment of the bacterium, which then shifts to a stress-induced persistent state. Solely in cells preinfected with Chlamydia, the centrosomes become associated with the chlamydial inclusion, while the Toxoplasma parasitophorous vacuole displays growth defects. Both pathogens fragment the host Golgi apparatus and recruit Golgi elements to retrieve sphingolipids. This study demonstrates that the productive infection by both Chlamydia and Toxoplasma depends on the capability of each pathogen to successfully adhere to a finely tuned developmental program that aims to remodel the host cell for the pathogen's benefit. In particular, this investigation emphasizes the essentiality of host organelle interception by intravacuolar pathogens to facilitate access to nutrients.
Collapse
|
28
|
Anderson-White B, Beck JR, Chen CT, Meissner M, Bradley PJ, Gubbels MJ. Cytoskeleton assembly in Toxoplasma gondii cell division. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 298:1-31. [PMID: 22878103 PMCID: PMC4066374 DOI: 10.1016/b978-0-12-394309-5.00001-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Cell division across members of the protozoan parasite phylum Apicomplexa displays a surprising diversity between different species as well as between different life stages of the same parasite. In most cases, infection of a host cell by a single parasite results in the formation of a polyploid cell from which individual daughters bud in a process dependent on a final round of mitosis. Unlike other apicomplexans, Toxoplasma gondii divides by a binary process consisting of internal budding that results in only two daughter cells per round of division. Since T. gondii is experimentally accessible and displays the simplest division mode, it has manifested itself as a model for apicomplexan daughter formation. Here, we review newly emerging insights in the prominent role that assembly of the cortical cytoskeletal scaffold plays in the process of daughter parasite formation.
Collapse
Affiliation(s)
| | - Josh R. Beck
- University of California Los Angeles, Department of Microbiology, Immunology and Molecular Genetics, Los Angeles, CA 90095, USA
| | - Chun-Ti Chen
- Boston College, Department of Biology, Chestnut Hill, MA 02467, USA
| | - Markus Meissner
- Division of Infection and Immunity, Institute of Biomedical Life Sciences, Wellcome Centre for Molecular Parasitology, Glasgow Biomedical Research Centre, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK
| | - Peter J. Bradley
- University of California Los Angeles, Department of Microbiology, Immunology and Molecular Genetics, Los Angeles, CA 90095, USA
| | - Marc-Jan Gubbels
- Boston College, Department of Biology, Chestnut Hill, MA 02467, USA
| |
Collapse
|