1
|
Tukwasibwe S, Traherne JA, Chazara O, Jayaraman J, Trowsdale J, Moffett A, Jiang W, Nankabirwa JI, Rek J, Arinaitwe E, Nsobya SL, Atuheirwe M, Frank M, Godwin A, Jagannathan P, Cose S, Kamya MR, Dorsey G, Rosenthal PJ, Colucci F, Nakimuli A. Diversity of KIR genes and their HLA-C ligands in Ugandan populations with historically varied malaria transmission intensity. Malar J 2021; 20:111. [PMID: 33632228 PMCID: PMC7908804 DOI: 10.1186/s12936-021-03652-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 02/16/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Malaria is one of the most serious infectious diseases in the world. The malaria burden is greatly affected by human immunity, and immune responses vary between populations. Genetic diversity in KIR and HLA-C genes, which are important in immunity to infectious diseases, is likely to play a role in this heterogeneity. Several studies have shown that KIR and HLA-C genes influence the immune response to viral infections, but few studies have examined the role of KIR and HLA-C in malaria infection, and these have used low-resolution genotyping. The aim of this study was to determine whether genetic variation in KIR and their HLA-C ligands differ in Ugandan populations with historically varied malaria transmission intensity using more comprehensive genotyping approaches. METHODS High throughput multiplex quantitative real-time PCR method was used to genotype KIR genetic variants and copy number variation and a high-throughput real-time PCR method was developed to genotype HLA-C1 and C2 allotypes for 1344 participants, aged 6 months to 10 years, enrolled from Ugandan populations with historically high (Tororo District), medium (Jinja District) and low (Kanungu District) malaria transmission intensity. RESULTS The prevalence of KIR3DS1, KIR2DL5, KIR2DS5, and KIR2DS1 genes was significantly lower in populations from Kanungu compared to Tororo (7.6 vs 13.2%: p = 0.006, 57.2 vs 66.4%: p = 0.005, 33.2 vs 46.6%: p < 0.001, and 19.7 vs 26.7%: p = 0.014, respectively) or Jinja (7.6 vs 18.1%: p < 0.001, 57.2 vs 63.8%: p = 0.048, 33.2 vs 43.5%: p = 0.002, and 19.7 vs 30.4%: p < 0.001, respectively). The prevalence of homozygous HLA-C2 was significantly higher in populations from Kanungu (31.6%) compared to Jinja (21.4%), p = 0.043, with no significant difference between Kanungu and Tororo (26.7%), p = 0.296. CONCLUSIONS The KIR3DS1, KIR2DL5, KIR2DS5 and KIR2DS1 genes may partly explain differences in transmission intensity of malaria since these genes have been positively selected for in places with historically high malaria transmission intensity. The high-throughput, multiplex, real-time HLA-C genotyping PCR method developed will be useful in disease-association studies involving large cohorts.
Collapse
Affiliation(s)
- Stephen Tukwasibwe
- Department of Obstetrics and Gynaecology, School of Medicine, Makerere University College of Health Sciences, P.O BOX 7072, Kampala, Uganda
- Infectious Diseases Research Collaboration, 2C Nakasero Hill Road, Kampala, Uganda
| | | | - Olympe Chazara
- Department of Pathology, University of Cambridge, Cambridge, UK
- University of Cambridge Centre for Trophoblast Research, Cambridge, UK
| | - Jyothi Jayaraman
- Department of Pathology, University of Cambridge, Cambridge, UK
- University of Cambridge Centre for Trophoblast Research, Cambridge, UK
| | - John Trowsdale
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Ashley Moffett
- Department of Pathology, University of Cambridge, Cambridge, UK
- University of Cambridge Centre for Trophoblast Research, Cambridge, UK
| | - Wei Jiang
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Joaniter I. Nankabirwa
- Department of Obstetrics and Gynaecology, School of Medicine, Makerere University College of Health Sciences, P.O BOX 7072, Kampala, Uganda
- Infectious Diseases Research Collaboration, 2C Nakasero Hill Road, Kampala, Uganda
| | - John Rek
- Infectious Diseases Research Collaboration, 2C Nakasero Hill Road, Kampala, Uganda
| | - Emmanuel Arinaitwe
- Infectious Diseases Research Collaboration, 2C Nakasero Hill Road, Kampala, Uganda
| | - Samuel L. Nsobya
- Department of Obstetrics and Gynaecology, School of Medicine, Makerere University College of Health Sciences, P.O BOX 7072, Kampala, Uganda
- Infectious Diseases Research Collaboration, 2C Nakasero Hill Road, Kampala, Uganda
| | - Maxine Atuheirwe
- Department of Obstetrics and Gynaecology, School of Medicine, Makerere University College of Health Sciences, P.O BOX 7072, Kampala, Uganda
| | - Mubiru Frank
- Department of Obstetrics and Gynaecology, School of Medicine, Makerere University College of Health Sciences, P.O BOX 7072, Kampala, Uganda
| | - Anguzu Godwin
- Department of Obstetrics and Gynaecology, School of Medicine, Makerere University College of Health Sciences, P.O BOX 7072, Kampala, Uganda
| | | | - Stephen Cose
- MRC/UVRI and LSHTM Uganda Research Unit, Kampala, Uganda
| | - Moses R. Kamya
- Department of Obstetrics and Gynaecology, School of Medicine, Makerere University College of Health Sciences, P.O BOX 7072, Kampala, Uganda
- Infectious Diseases Research Collaboration, 2C Nakasero Hill Road, Kampala, Uganda
| | | | | | - Francesco Colucci
- University of Cambridge Centre for Trophoblast Research, Cambridge, UK
- Department of Obstetrics & Gynaecology, University of Cambridge, National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, CB2 0SW UK
| | - Annettee Nakimuli
- Department of Obstetrics and Gynaecology, School of Medicine, Makerere University College of Health Sciences, P.O BOX 7072, Kampala, Uganda
| |
Collapse
|
2
|
Brasó-Vives M, Povolotskaya IS, Hartasánchez DA, Farré X, Fernandez-Callejo M, Raveendran M, Harris RA, Rosene DL, Lorente-Galdos B, Navarro A, Marques-Bonet T, Rogers J, Juan D. Copy number variants and fixed duplications among 198 rhesus macaques (Macaca mulatta). PLoS Genet 2020; 16:e1008742. [PMID: 32392208 PMCID: PMC7241854 DOI: 10.1371/journal.pgen.1008742] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 05/21/2020] [Accepted: 03/27/2020] [Indexed: 01/01/2023] Open
Abstract
The rhesus macaque is an abundant species of Old World monkeys and a valuable model organism for biomedical research due to its close phylogenetic relationship to humans. Copy number variation is one of the main sources of genomic diversity within and between species and a widely recognized cause of inter-individual differences in disease risk. However, copy number differences among rhesus macaques and between the human and macaque genomes, as well as the relevance of this diversity to research involving this nonhuman primate, remain understudied. Here we present a high-resolution map of sequence copy number for the rhesus macaque genome constructed from a dataset of 198 individuals. Our results show that about one-eighth of the rhesus macaque reference genome is composed of recently duplicated regions, either copy number variable regions or fixed duplications. Comparison with human genomic copy number maps based on previously published data shows that, despite overall similarities in the genome-wide distribution of these regions, there are specific differences at the chromosome level. Some of these create differences in the copy number profile between human disease genes and their rhesus macaque orthologs. Our results highlight the importance of addressing the number of copies of target genes in the design of experiments and cautions against human-centered assumptions in research conducted with model organisms. Overall, we present a genome-wide copy number map from a large sample of rhesus macaque individuals representing an important novel contribution concerning the evolution of copy number in primate genomes.
Collapse
Affiliation(s)
- Marina Brasó-Vives
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Parc de Recerca Biomèdica de Barcelona, Barcelona, Catalonia, Spain
- Laboratoire de Biométrie et Biologie Évolutive UMR 5558, Université de Lyon, Université Lyon 1, CNRS, Villeurbanne, France
| | - Inna S. Povolotskaya
- Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University, Moscow, Russia
| | - Diego A. Hartasánchez
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Parc de Recerca Biomèdica de Barcelona, Barcelona, Catalonia, Spain
| | - Xavier Farré
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Parc de Recerca Biomèdica de Barcelona, Barcelona, Catalonia, Spain
| | - Marcos Fernandez-Callejo
- National Centre for Genomic Analysis-Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Catalonia, Spain
| | - Muthuswamy Raveendran
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - R. Alan Harris
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Douglas L. Rosene
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Belen Lorente-Galdos
- Department of Neuroscience, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Arcadi Navarro
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Parc de Recerca Biomèdica de Barcelona, Barcelona, Catalonia, Spain
- National Institute for Bioinformatics (INB), Barcelona, Catalonia, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Catalonia, Spain
| | - Tomas Marques-Bonet
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Parc de Recerca Biomèdica de Barcelona, Barcelona, Catalonia, Spain
- National Centre for Genomic Analysis-Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Catalonia, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Catalonia, Spain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Catalonia, Spain
| | - Jeffrey Rogers
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - David Juan
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Parc de Recerca Biomèdica de Barcelona, Barcelona, Catalonia, Spain
| |
Collapse
|
3
|
Walter L, Bontrop R. Editorial: Comparative Genetics of NK Cell Receptor Families in Relation to MHC Class I Ligands and Their Function. Front Immunol 2020; 11:561. [PMID: 32296444 PMCID: PMC7141485 DOI: 10.3389/fimmu.2020.00561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 03/12/2020] [Indexed: 12/01/2022] Open
Affiliation(s)
- Lutz Walter
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Ronald Bontrop
- Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, Netherlands
| |
Collapse
|
4
|
Nomenclature report for killer-cell immunoglobulin-like receptors (KIR) in macaque species: new genes/alleles, renaming recombinant entities and IPD-NHKIR updates. Immunogenetics 2019; 72:37-47. [PMID: 31781789 DOI: 10.1007/s00251-019-01135-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 10/04/2019] [Indexed: 12/16/2022]
Abstract
The Killer-cell Immunoglobulin-like Receptors (KIR) are encoded by a diverse group of genes, which are characterized by allelic polymorphism, gene duplications, and recombinations, which may generate recombinant entities. The number of reported macaque KIR sequences is steadily increasing, and these data illustrate a gene system that may match or exceed the complexity of the human KIR cluster. This report lists the names of quality controlled and annotated KIR genes/alleles with all the relevant references for two different macaque species: rhesus and cynomolgus macaques. Numerous recombinant KIR genes in these species necessitate a revision of some of the earlier-published nomenclature guidelines. In addition, this report summarizes the latest information on the Immuno Polymorphism Database (IPD)-NHKIR Database, which contains annotated KIR sequences from four non-human primate species.
Collapse
|
5
|
Dabrowska M, Czubak K, Juzwa W, Krzyzosiak WJ, Olejniczak M, Kozlowski P. qEva-CRISPR: a method for quantitative evaluation of CRISPR/Cas-mediated genome editing in target and off-target sites. Nucleic Acids Res 2018; 46:e101. [PMID: 29878242 PMCID: PMC6158505 DOI: 10.1093/nar/gky505] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 05/23/2018] [Indexed: 02/06/2023] Open
Abstract
Genome editing technology based on engineered nucleases has been increasingly applied for targeted modification of genes in a variety of cell types and organisms. However, the methods currently used for evaluating the editing efficiency still suffer from many limitations, including preferential detection of some mutation types, sensitivity to polymorphisms that hamper mismatch detection, lack of multiplex capability, or sensitivity to assay conditions. Here, we describe qEva-CRISPR, a new quantitative method that overcomes these limitations and allows simultaneous (multiplex) analysis of CRISPR/Cas9-induced modifications in a target and the corresponding off-targets or in several different targets. We demonstrate all of the advantages of the qEva-CRISPR method using a number of sgRNAs targeting the TP53, VEGFA, CCR5, EMX1 and HTT genes in different cell lines and under different experimental conditions. Unlike other methods, qEva-CRISPR detects all types of mutations, including point mutations and large deletions, and its sensitivity does not depend on the mutation type. Moreover, this approach allows for successful analysis of targets located in 'difficult' genomic regions. In conclusion, qEva-CRISPR may become a method of choice for unbiased sgRNA screening to evaluate experimental conditions that affect genome editing or to distinguish homology-directed repair from non-homologous end joining.
Collapse
Affiliation(s)
- Magdalena Dabrowska
- Department of Genome Engineering, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Karol Czubak
- Department of Molecular Genetics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Wojciech Juzwa
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, 60-627 Poznan, Poland
| | - Wlodzimierz J Krzyzosiak
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Marta Olejniczak
- Department of Genome Engineering, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Piotr Kozlowski
- Department of Molecular Genetics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| |
Collapse
|
6
|
Abstract
The increasing number of Killer Immunoglobulin-like Receptor (KIR) sequences available for non-human primate species and cattle has prompted development of a centralized database, guidelines for a standardized nomenclature, and minimum requirements for database submission. The guidelines and nomenclature are based on those used for human KIR and incorporate modifications made for inclusion of non-human species in the companion IPD-NHKIR database. Included in this first release are the rhesus macaque (Macaca mulatta), chimpanzee (Pan troglodytes), orangutan (Pongo abelii and Pongo pygmaeus), and cattle (Bos taurus).
Collapse
|
7
|
Chaisri S, Traherne JA, Jayaraman J, Romphruk A, Trowsdale J, Leelayuwat C. Novel KIR genotypes and gene copy number variations in northeastern Thais. Immunology 2017; 153:380-386. [PMID: 28950036 DOI: 10.1111/imm.12847] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 09/20/2017] [Accepted: 09/21/2017] [Indexed: 01/02/2023] Open
Abstract
KIR (Killer Immunoglobulin-like Receptor) variants influence immune responses and are genetic factors in disease susceptibility. Using sequence-specific priming PCR, we have previously described the diversity of KIR genes in term of presence/absence in northeastern Thais (NETs). To provide additional resolution beyond conventional methods, quantitative PCR was applied to determine KIR copy number profiles. Novel expanded and contracted KIR copy number profiles were identified at cumulatively high frequencies. These all comprise haplotypes with duplication (6·9%) or deletion (2·7%) of KIR3DL1/S1 along with adjacent genes. Five expanded KIR profiles comprised haplotypes with duplications of KIR2DP1, 2DL1, 3DP1, 2DL4, 3DL1/S1 and 2DS1/4, whereas two contracted profiles contained only a single copy of KIR3DP1, 3DL1/S1 and 2DL4. Using a KIR haplotype prediction program (KIR Haplotype Identifier), 14% of NET haplotypes carried atypical haplotypes based on the gene copy number data.
Collapse
Affiliation(s)
- Suwit Chaisri
- Chulabhorn International College of Medicine (CICM), Thammasat University, Klong Luang, Thailand.,The Centre for Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - James A Traherne
- Division of Immunology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Jyothi Jayaraman
- Division of Immunology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Amornrat Romphruk
- The Centre for Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand.,Blood Transfusion Centre, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - John Trowsdale
- Division of Immunology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Chanvit Leelayuwat
- The Centre for Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand.,Department of Clinical Immunology and Transfusion Sciences, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
8
|
Prall TM, Graham ME, Karl JA, Wiseman RW, Ericsen AJ, Raveendran M, Alan Harris R, Muzny DM, Gibbs RA, Rogers J, O'Connor DH. Improved full-length killer cell immunoglobulin-like receptor transcript discovery in Mauritian cynomolgus macaques. Immunogenetics 2017; 69:325-339. [PMID: 28343239 PMCID: PMC5856007 DOI: 10.1007/s00251-017-0977-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 03/08/2017] [Indexed: 12/25/2022]
Abstract
Killer cell immunoglobulin-like receptors (KIRs) modulate disease progression of pathogens including HIV, malaria, and hepatitis C. Cynomolgus and rhesus macaques are widely used as nonhuman primate models to study human pathogens, and so, considerable effort has been put into characterizing their KIR genetics. However, previous studies have relied on cDNA cloning and Sanger sequencing that lack the throughput of current sequencing platforms. In this study, we present a high throughput, full-length allele discovery method utilizing Pacific Biosciences circular consensus sequencing (CCS). We also describe a new approach to Macaque Exome Sequencing (MES) and the development of the Rhexome1.0, an adapted target capture reagent that includes macaque-specific capture probe sets. By using sequence reads generated by whole genome sequencing (WGS) and MES to inform primer design, we were able to increase the sensitivity of KIR allele discovery. We demonstrate this increased sensitivity by defining nine novel alleles within a cohort of Mauritian cynomolgus macaques (MCM), a geographically isolated population with restricted KIR genetics that was thought to be completely characterized. Finally, we describe an approach to genotyping KIRs directly from sequence reads generated using WGS/MES reads. The findings presented here expand our understanding of KIR genetics in MCM by associating new genes with all eight KIR haplotypes and demonstrating the existence of at least one KIR3DS gene associated with every haplotype.
Collapse
Affiliation(s)
- Trent M Prall
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI, 53711, USA
| | - Michael E Graham
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI, 53711, USA
| | - Julie A Karl
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI, 53711, USA
| | - Roger W Wiseman
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI, 53711, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI, 53711, USA
| | - Adam J Ericsen
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI, 53711, USA
| | | | - R Alan Harris
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Donna M Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Richard A Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jeffrey Rogers
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - David H O'Connor
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI, 53711, USA.
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI, 53711, USA.
| |
Collapse
|
9
|
Walter L, Petersen B. Diversification of both KIR and NKG2 natural killer cell receptor genes in macaques - implications for highly complex MHC-dependent regulation of natural killer cells. Immunology 2016; 150:139-145. [PMID: 27565739 DOI: 10.1111/imm.12666] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 08/17/2016] [Accepted: 08/23/2016] [Indexed: 02/01/2023] Open
Abstract
The killer immunoglobulin-like receptors (KIR) as well as their MHC class I ligands display enormous genetic diversity and polymorphism in macaque species. Signals resulting from interaction between KIR or CD94/NKG2 receptors and their cognate MHC class I proteins essentially regulate the activity of natural killer (NK) cells. Macaque and human KIR share many features, such as clonal expression patterns, gene copy number variations, specificity for particular MHC class I allotypes, or epistasis between KIR and MHC class I genes that influence susceptibility and resistance to immunodeficiency virus infection. In this review article we also annotated publicly available rhesus macaque BAC clone sequences and provide the first description of the CD94-NKG2 genomic region. Besides the presence of genes that are orthologous to human NKG2A and NKG2F, this region contains three NKG2C paralogues. Hence, the genome of rhesus macaques contains moderately expanded and diversified NKG2 genes in addition to highly diversified KIR genes. The presence of two diversified NK cell receptor families in one species has not been described before and is expected to require a complex MHC-dependent regulation of NK cells.
Collapse
Affiliation(s)
- Lutz Walter
- Primate Genetics Laboratory, Leibniz Institute for Primate Research, German Primate Center, Göttingen, Germany
| | - Beatrix Petersen
- Primate Genetics Laboratory, Leibniz Institute for Primate Research, German Primate Center, Göttingen, Germany
| |
Collapse
|
10
|
de Groot NG, Blokhuis JH, Otting N, Doxiadis GGM, Bontrop RE. Co-evolution of the MHC class I and KIR gene families in rhesus macaques: ancestry and plasticity. Immunol Rev 2016; 267:228-45. [PMID: 26284481 PMCID: PMC4544828 DOI: 10.1111/imr.12313] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Researchers dealing with the human leukocyte antigen (HLA) class I and killer immunoglobulin receptor (KIR) multi‐gene families in humans are often wary of the complex and seemingly different situation that is encountered regarding these gene families in Old World monkeys. For the sake of comparison, the well‐defined and thoroughly studied situation in humans has been taken as a reference. In macaques, both the major histocompatibility complex class I and KIR gene families are plastic entities that have experienced various rounds of expansion, contraction, and subsequent recombination processes. As a consequence, haplotypes in macaques display substantial diversity with regard to gene copy number variation. Additionally, for both multi‐gene families, differential levels of polymorphism (allelic variation), and expression are observed as well. A comparative genetic approach has allowed us to answer questions related to ancestry, to shed light on unique adaptations of the species’ immune system, and to provide insights into the genetic events and selective pressures that have shaped the range of these gene families.
Collapse
Affiliation(s)
- Natasja G de Groot
- Department of Comparative Genetics & Refinement, BPRC, Rijswijk, The Netherlands
| | - Jeroen H Blokhuis
- Department of Comparative Genetics & Refinement, BPRC, Rijswijk, The Netherlands
| | - Nel Otting
- Department of Comparative Genetics & Refinement, BPRC, Rijswijk, The Netherlands
| | - Gaby G M Doxiadis
- Department of Comparative Genetics & Refinement, BPRC, Rijswijk, The Netherlands
| | - Ronald E Bontrop
- Department of Comparative Genetics & Refinement, BPRC, Rijswijk, The Netherlands.,Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
11
|
Walter L, Ansari AA. MHC and KIR Polymorphisms in Rhesus Macaque SIV Infection. Front Immunol 2015; 6:540. [PMID: 26557119 PMCID: PMC4617107 DOI: 10.3389/fimmu.2015.00540] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 10/08/2015] [Indexed: 02/04/2023] Open
Abstract
Natural killer lymphocytes are essentially involved as the first line of defense against agents such as viruses and malignant cells. The activity of these cells is regulated via interaction of specific and diverse killer cell immunoglobulin-like receptors (KIR) with the highly polymorphic cognate MHC class I proteins on target cells. Genetic variability of both KIR and MHC-I ligands has been shown to be associated with resistance to many diseases, including infection with the immunodeficiency virus. Disease course and progression to AIDS after infection with human immunodeficiency virus-1 (HIV-1) is essentially influenced by the presence of the stimulatory KIR3DS1 receptor in combination with HLA-Bw4. Knowledge of such genetic interactions that contribute to not only disease resistance but also susceptibility are just as important. Such combined genetic factors were recently reported in the rhesus macaque AIDS model. Here, we review the rhesus macaque MHC class I and KIR gene systems and the role of their polymorphisms in the SIV infection model.
Collapse
Affiliation(s)
- Lutz Walter
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research , Göttingen , Germany
| | - Aftab A Ansari
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine , Atlanta, GA , USA
| |
Collapse
|
12
|
Abstract
Natural killer (NK) cells play a central role in immune responses through direct cytotoxicity and the release of cytokines that prime adaptive immunity. In simian primates, NK cell responses are regulated by interactions between two highly polymorphic sets of molecules: the killer-cell immunoglobulin-like receptors (KIRs) and their major histocompatibility complex (MHC) class I ligands. KIR-MHC class I interactions in humans have been implicated in the outcome of a number viral diseases and cancers. However, studies to address the role of KIRs in animal models have been limited by the complex immunogenetics and lack of defined ligands for KIRs in non-human primates. Due to the rapid evolution of KIRs, there is little conservation among the KIR genes of different primate species and it is not possible to predict the specificity of KIRs from known KIR-MHC class I interactions in humans. Hence, the MHC class I ligands for KIRs in species other than humans are poorly defined. Here, we review the KIR genes of the rhesus macaque, an important animal model for human immunodeficiency virus infection and other infectious diseases, and the MHC class I ligands that have been identified for KIRs in this species.
Collapse
Affiliation(s)
- Benjamin N. Bimber
- Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR 97239
| | - David T. Evans
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53711
| |
Collapse
|
13
|
Albrecht C, Malzahn D, Brameier M, Hermes M, Ansari AA, Walter L. Progression to AIDS in SIV-Infected Rhesus Macaques is Associated with Distinct KIR and MHC class I Polymorphisms and NK Cell Dysfunction. Front Immunol 2014; 5:600. [PMID: 25506344 PMCID: PMC4246914 DOI: 10.3389/fimmu.2014.00600] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 11/07/2014] [Indexed: 12/21/2022] Open
Abstract
Killer cell immunoglobulin-like receptors (KIR) regulate the activity of natural killer (NK) cells and have been shown to be associated with susceptibility to a number of human infectious diseases. Here, we analyzed NK cell function and genetic associations in a cohort of 52 rhesus macaques experimentally infected with SIVmac and subsequently stratified into high viral load (HVL) and low viral load (LVL) plasma viral loads at set point. This stratification coincided with fast (HVL) and slow (LVL) disease progression indicated by the disease course and critical clinical parameters including CD4+ T cell counts. HVL animals revealed sustained proliferation of NK cells but distinct loss of peripheral blood NK cell numbers and lytic function. Genetic analyses revealed that KIR genes 3DL05, 3DS05, and 3DL10 as well as 3DSW08, 3DLW03, and 3DSW09 are correlated, most likely due to underlying haplotypes. SIV-infection outcome associated with presence of transcripts for two inhibitory KIR genes (KIR3DL02, KIR3DL10) and three activating KIR genes (KIR3DSW08, KIR3DS02, KIR3DS05). Presence of KIR3DL02 and KIR3DSW08 was associated with LVL outcome, whereas presence of KIR3DS02 was associated with HVL outcome. Furthermore, we identified epistasis between KIR and MHC class I alleles as the transcript presence of the correlated genes KIR3DL05, KIR3DS05, and KIR3DL10 increased HVL risk when Mamu-B*012 transcripts were also present or when Mamu-A1*001 transcripts were absent. These genetic associations were mirrored by changes in the numbers, the level of proliferation, and lytic capabilities of NK cells as well as overall survival time and gastro-intestinal tissue viral load.
Collapse
Affiliation(s)
- Christina Albrecht
- Primate Genetics Laboratory, German Primate Center, Leibniz-Institute for Primate Research , Göttingen , Germany
| | - Dörthe Malzahn
- Department of Genetic Epidemiology, University Medical Center, Georg-August-University , Göttingen , Germany
| | - Markus Brameier
- Primate Genetics Laboratory, German Primate Center, Leibniz-Institute for Primate Research , Göttingen , Germany
| | - Meike Hermes
- Primate Genetics Laboratory, German Primate Center, Leibniz-Institute for Primate Research , Göttingen , Germany
| | - Aftab A Ansari
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine , Atlanta, GA , USA
| | - Lutz Walter
- Primate Genetics Laboratory, German Primate Center, Leibniz-Institute for Primate Research , Göttingen , Germany
| |
Collapse
|
14
|
Reeves RK, Bosinger SE. Innate Immunity in Simian Immunodeficiency Virus Infection. NATURAL HOSTS OF SIV 2014. [PMCID: PMC7149674 DOI: 10.1016/b978-0-12-404734-1.00008-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The past decade has seen the emergence of innate immunity as a mature field. The study of innate immunity has had a significant impact on the concepts of HIV immunity, pathogenesis, and vaccines. In this chapter, basic concepts of innate immunity at the anatomical, cellular, and molecular levels will be introduced from the perspective of their interplay with HIV and simian immunodeficiency virus (SIV). An emphasis will be placed on studies using SIV/non-human primate (NHP) models that shape current models of HIV pathogenesis. Finally, studies modulating the innate system in vivo in NHPs will be discussed.
Collapse
|
15
|
Immunopathogenesis of simian immunodeficiency virus infection in nonhuman primates. Curr Opin HIV AIDS 2013; 8:273-9. [PMID: 23615117 DOI: 10.1097/coh.0b013e328361cf5b] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Soon after the discovery of HIV-infected humans, rhesus macaques in a colony at the New England Primate Research Center showed similar signs of a progressive immune suppression. The discovery of the simian immunodeficiency virus (SIV)-associated disease opened the door to study an AIDS-like illness in nonhuman primates (NHP). Even after 3 decades, this animal model remains an invaluable tool to provide a greater insight into HIV immunopathogenesis. In this review, recent progress in deciphering pathways of immunopathogenesis in SIV-infected NHP is discussed. RECENT FINDINGS The immense diversity of mutations in SIV stocks prepared at different laboratories has recently been realized. The massive expansion of the enteric virome is a key finding in SIV-induced immunopathogenesis. Defining the function of host restriction factors, like the recently discovered SAMHD1, helps to evaluate the impact of the innate immune responses on virus replication. Utilization of pyrosequencing and defining molecular mechanisms of major histocompatibility complex (MHC) class I restriction helps to understand how the virus evades CD8 T-cell responses. The definition of MHC class I molecules in different NHP species provides new animal models to study SIV immunopathogenesis. T follicular helper cells have gained major interest in characterizing humoral immune responses in SIV infection and AIDS vaccine strategies. The ability of natural hosts to remain disease-free despite ongoing replication of SIV is continuing to puzzle the field. SUMMARY The HIV research field continues to realize the immense complexity of the host virus interaction. NHP present an invaluable tool to make progress towards an effective AIDS vaccine.
Collapse
|
16
|
Abstract
Host genetic factors are a major contributing factor to the inter-individual variation observed in response to human immunodeficiency virus (HIV) infection and are linked to resistance to HIV infection among exposed individuals, as well as rate of disease progression and the likelihood of viral transmission. Of the genetic variants that have been shown to affect the natural history of HIV infection, the human leukocyte antigen (HLA) class I genes exhibit the strongest and most consistent association, underscoring a central role for CD8(+) T cells in resistance to the virus. HLA proteins play important roles in T-cell-mediated adaptive immunity by presenting immunodominant HIV epitopes to cytotoxic T lymphocytes (CTLs) and CD4(+) T cells. Genetic and functional data also indicate a function for HLA in natural killer cell-mediated innate immunity against HIV by interacting with killer cell immunoglobulin-like receptors (KIR). We review the HLA and KIR associations with HIV disease and discuss the mechanisms underlying these associations.
Collapse
Affiliation(s)
- Maureen P. Martin
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland, USA
| | - Mary Carrington
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland, USA
- Ragon Institute of MGH, MIT, and Harvard, Boston, Massachusetts, USA
| |
Collapse
|
17
|
Expression patterns of killer cell immunoglobulin-like receptors (KIR) of NK-cell and T-cell subsets in Old World monkeys. PLoS One 2013; 8:e64936. [PMID: 23717676 PMCID: PMC3661512 DOI: 10.1371/journal.pone.0064936] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 04/23/2013] [Indexed: 02/04/2023] Open
Abstract
The expression of killer cell immunoglobulin-like receptors (KIR) on lymphocytes of rhesus macaques and other Old World monkeys was unknown so far. We used our recently established monoclonal anti-rhesus macaque KIR antibodies in multicolour flow cytometry for phenotypic characterization of KIR protein expression on natural killer (NK) cells and T cell subsets of rhesus macaques, cynomolgus macaques, hamadryas baboons, and African green monkeys. Similar to human KIR, we found clonal expression patterns of KIR on NK and T cell subsets in rhesus macaques and differences between individuals using pan-KIR3D antibody 1C7 and antibodies specific for single KIR. Similar results were obtained with lymphocytes from the other studied species. Notably, African green monkeys show only a low frequency of KIR3D expressed on CD8+ αβT cells. Contrasting human NK cells are KIR-positive CD56bright NK cells and frequencies of KIR-expressing NK cells that are independent of the presence of their cognate MHC class I ligands in rhesus macaques. Interestingly, the frequency of KIR-expressing cells and the expression strength of KIR3D are correlated in γδ T cells of rhesus macaques and CD8+ αβT cells of baboons.
Collapse
|
18
|
Hellmann I, Letvin NL, Schmitz JE. KIR2DL4 copy number variation is associated with CD4+ T-cell depletion and function of cytokine-producing NK cell subsets in SIV-infected Mamu-A*01-negative rhesus macaques. J Virol 2013; 87:5305-10. [PMID: 23449795 PMCID: PMC3624297 DOI: 10.1128/jvi.02949-12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 02/19/2013] [Indexed: 12/17/2022] Open
Abstract
Here, we demonstrate that KIR2DL4 copy number variation (CNV) is associated with CD4(+) T-cell decline and functionality of cytokine-producing NK cells during primary simian immunodeficiency virus (SIV) infection in Mamu-A*01(-) Indian-origin rhesus macaques, with higher KIR2DL4 copy numbers being associated with a better preservation of CD4(+) T cells and an increased gamma interferon (IFN-γ) production from stimulated cytokine-producing NK cell subsets during acute SIVmac251 infection. These findings underscore the crucial role of activating killer-cell immunoglobulin-like receptors (KIRs) in NK cell-mediated SIV responses during early SIV infection.
Collapse
Affiliation(s)
- Ina Hellmann
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | | | | |
Collapse
|
19
|
Abstract
Natural killer (NK) cells are functionally tuned by education via killer cell immunoglobulin receptors (KIRs) interacting with HLA class I molecules. We examined the effect of KIR gene copy number variation on the education of human NK cells. The frequency of NK cells expressing a given KIR correlated with the copy number of that gene. However, coexpression of multiple copies from a single locus, or duplicated loci, was infrequent, which is in line with independent transcriptional regulation of each allele or copy. Intriguingly, coexpression of 2 KIR alleles, resulting in higher surface expression, did not lead to enhanced functional responses in vitro or to selective advantages during in vivo responses to cytomegalovirus infection, suggesting that receptor density does not influence NK education at the single cell level. However, individuals with multiple KIR gene copies had higher frequencies of responding cells, consistent with heightened overall responsiveness.
Collapse
|
20
|
Abstract
Natural killer (NK) cells are effector cells of the innate immune system and are important in the control of viral infections. Their relevance is reflected by the multiple mechanisms evolved by viruses to evade NK cell-mediated immune responses. Over recent years, our understanding of the interplay between NK cell immunity and viral pathogenesis has improved significantly. Here, we review the role of NK cells in the control of four important viral infections in humans: cytomegalovirus, influenza virus, HIV-1, and hepatitis C virus.
Collapse
Affiliation(s)
- Stephanie Jost
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts 02129, USA.
| | | |
Collapse
|
21
|
Activating KIR copy number variation is associated with granzyme B release by NK cells during primary simian immunodeficiency virus infection in rhesus monkeys. J Virol 2012; 86:13103-7. [PMID: 23015705 DOI: 10.1128/jvi.00325-12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here we show that the number of activating killer cell immunoglobulin-like receptor (KIR) copies in rhesus monkeys is associated with the extent of release of cytotoxic granules by cytolytic NK cells during primary simian immunodeficiency virus SIVmac251 infection. These findings suggest that NK cells expressing high levels of activating KIRs efficiently kill SIVmac251-infected cells, and this efficient killing contributes to the NK cell-mediated control of replication of this virus during early infection.
Collapse
|