1
|
Zhu H, Zhou T, Guan J, Li Z, Yang X, Li Y, Sun J, Xu Q, Xuan YH. Precise genome editing of Dense and Erect Panicle 1 promotes rice sheath blight resistance and yield production in japonica rice. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:1832-1846. [PMID: 40035150 PMCID: PMC12018817 DOI: 10.1111/pbi.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/23/2025] [Accepted: 02/04/2025] [Indexed: 03/05/2025]
Abstract
The primary goals of crop breeding are to enhance yield and improve disease resistance. However, the "trade-off" mechanism, in which signalling pathways for resistance and yield are antagonistically regulated, poses challenges for achieving both simultaneously. Previously, we demonstrated that knock-out mutants of the Dense and Erect Panicle 1 (DEP1) gene can significantly enhance rice resistance to sheath blight (ShB), and we mapped DEP1's association with panicle length. In this study, we discovered that dep1 mutants significantly reduced rice yield. Nonetheless, truncated DEP1 was able to achieve both ShB resistance and yield increase in japonica rice. To further explore the function of truncated DEP1 in promoting yield and ShB resistance, we generated CRISPR/Cas9-mediated genome editing mutants, including a full-length deletion mutant of DEP1, named dep1, and a truncated version, dep1-cys. Upon inoculation with Rhizoctonia solani, the dep1-cys mutant demonstrated stronger ShB resistance than the dep1 mutant. Additionally, dep1-cys increased yield per plant, whereas dep1 reduced it. Compared to the full DEP1 protein, the truncated DEP1 (dep1-cys) demonstrated a decreased interaction affinity with IDD14 and increased affinity with IDD10, which are known to positively and negatively regulate ShB resistance through the activation of PIN1a and ETR2, respectively. The dep1-cys mutant exhibited higher PIN1a and lower ETR2 expression than wild-type plants, suggesting that dep1-cys modulated IDD14 and IDD10 interactions to regulate PIN1a and ETR2, thereby enhancing ShB resistance. Overall, these data indicate that precise genome editing of DEP1 could simultaneously improve both ShB resistance and yield, effectively mitigating trade-off regulation in rice.
Collapse
Affiliation(s)
- Hongyao Zhu
- State Key Laboratory of Elemento‐Organic Chemistry and Department of Plant Protection, National Pesticide Engineering Research Center (Tianjin)Nankai UniversityTianjinChina
- College of Plant Protection, Shenyang Agricultural UniversityShenyangChina
| | - Tiange Zhou
- State Key Laboratory of Elemento‐Organic Chemistry and Department of Plant Protection, National Pesticide Engineering Research Center (Tianjin)Nankai UniversityTianjinChina
- College of Plant Protection, Shenyang Agricultural UniversityShenyangChina
| | | | - Zhuo Li
- State Key Laboratory of Elemento‐Organic Chemistry and Department of Plant Protection, National Pesticide Engineering Research Center (Tianjin)Nankai UniversityTianjinChina
- College of Plant Protection, Shenyang Agricultural UniversityShenyangChina
| | - Xiurong Yang
- Institute of Plant Protection, Tianjin Academy of Agricultural SciencesTianjinChina
| | - Yuejiao Li
- Institute of Plant Protection, Tianjin Academy of Agricultural SciencesTianjinChina
| | - Jian Sun
- Rice Research Institute, Shenyang Agricultural UniversityShenyangChina
- Yazhouwan National LaboratorySanya CityHainan ProvinceChina
| | - Quan Xu
- Rice Research Institute, Shenyang Agricultural UniversityShenyangChina
| | - Yuan Hu Xuan
- State Key Laboratory of Elemento‐Organic Chemistry and Department of Plant Protection, National Pesticide Engineering Research Center (Tianjin)Nankai UniversityTianjinChina
| |
Collapse
|
2
|
Sedlov IA, Sluchanko NN. The Big, Mysterious World of Plant 14-3-3 Proteins. BIOCHEMISTRY. BIOKHIMIIA 2025; 90:S1-S35. [PMID: 40164151 DOI: 10.1134/s0006297924603319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/06/2024] [Accepted: 09/20/2024] [Indexed: 04/02/2025]
Abstract
14-3-3 is a family of small regulatory proteins found exclusively in eukaryotic organisms. They selectively bind to phosphorylated molecules of partner proteins and regulate their functions. 14-3-3 proteins were first characterized in the mammalian brain approximately 60 years ago and then found in plants, 30 years later. The multifunctionality of 14-3-3 proteins is exemplified by their involvement in coordination of protein kinase cascades in animal brain and regulation of flowering, growth, metabolism, and immunity in plants. Despite extensive studies of this diverse and complex world of plant 14-3-3 proteins, our understanding of functions of these enigmatic molecules is fragmentary and unsystematic. The results of studies are often contradictory and many questions remain unanswered, including biochemical properties of 14-3-3 isoforms, structure of protein-protein complexes, and direct mechanisms by which 14-3-3 proteins influence the functions of their partners in plants. Although many plant genes coding for 14-3-3 proteins have been identified, the isoforms for in vivo and in vitro studies are often selected at random. This rather limited approach is partly due to an exceptionally large number and variety of 14-3-3 homologs in plants and erroneous a priori assumptions on the equivalence of certain isoforms. The accumulated results provide an extensive but rather fragmentary picture, which poses serious challenges for making global generalizations. This review is aimed to demonstrate the diversity and scope of studies of the functions of plant 14-3-3 proteins, as well as to identify areas that require further systematic investigation and close scientific attention.
Collapse
Affiliation(s)
- Ilya A Sedlov
- Bach Institute of Biochemistry, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Nikolai N Sluchanko
- Bach Institute of Biochemistry, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia.
| |
Collapse
|
3
|
Sheikh AH, Zacharia I, Tabassum N, Hirt H, Ntoukakis V. 14-3-3 proteins as a major hub for plant immunity. TRENDS IN PLANT SCIENCE 2024; 29:1245-1253. [PMID: 38955584 DOI: 10.1016/j.tplants.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/07/2024] [Accepted: 06/06/2024] [Indexed: 07/04/2024]
Abstract
14-3-3 proteins, ubiquitously present in eukaryotic cells, are regulatory proteins involved in a plethora of cellular processes. In plants, they have been studied in the context of metabolism, development, and stress responses. Recent studies have highlighted the pivotal role of 14-3-3 proteins in regulating plant immunity. The ability of 14-3-3 proteins to modulate immune responses is primarily attributed to their function as interaction hubs, mediating protein-protein interactions and thereby regulating the activity and overall function of their binding partners. Here, we shed light on how 14-3-3 proteins contribute to plant defense mechanisms, the implications of their interactions with components of plant immunity cascades, and the potential for leveraging this knowledge for crop improvement strategies.
Collapse
Affiliation(s)
- Arsheed H Sheikh
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.
| | - Iosif Zacharia
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Naheed Tabassum
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Heribert Hirt
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Vardis Ntoukakis
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|
4
|
Goto Y, Kadota Y, Mbengue M, Lewis JD, Matsui H, Maki N, Ngou BPM, Sklenar J, Derbyshire P, Shibata A, Ichihashi Y, Guttman DS, Nakagami H, Suzuki T, Menke FLH, Robatzek S, Desveaux D, Zipfel C, Shirasu K. The leucine-rich repeat receptor kinase QSK1 regulates PRR-RBOHD complexes targeted by the bacterial effector HopF2Pto. THE PLANT CELL 2024; 36:koae267. [PMID: 39431742 PMCID: PMC11641854 DOI: 10.1093/plcell/koae267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/20/2024] [Indexed: 10/22/2024]
Abstract
Plants detect pathogens using cell-surface pattern recognition receptors (PRRs) such as ELONGATION Factor-TU (EF-TU) RECEPTOR (EFR) and FLAGELLIN SENSING 2 (FLS2), which recognize bacterial EF-Tu and flagellin, respectively. These PRRs belong to the leucine-rich repeat receptor kinase (LRR-RK) family and activate the production of reactive oxygen species via the NADPH oxidase RESPIRATORY BURST OXIDASE HOMOLOG D (RBOHD). The PRR-RBOHD complex is tightly regulated to prevent unwarranted or exaggerated immune responses. However, certain pathogen effectors can subvert these regulatory mechanisms, thereby suppressing plant immunity. To elucidate the intricate dynamics of the PRR-RBOHD complex, we conducted a comparative coimmunoprecipitation analysis using EFR, FLS2, and RBOHD in Arabidopsis thaliana. We identified QIAN SHOU KINASE 1 (QSK1), an LRR-RK, as a PRR-RBOHD complex-associated protein. QSK1 downregulated FLS2 and EFR abundance, functioning as a negative regulator of PRR-triggered immunity (PTI). QSK1 was targeted by the bacterial effector HopF2Pto, a mono-ADP ribosyltransferase, reducing FLS2 and EFR levels through both transcriptional and transcription-independent pathways, thereby inhibiting PTI. Furthermore, HopF2Pto transcriptionally downregulated PROSCOOP genes encoding important stress-regulated phytocytokines and their receptor MALE DISCOVERER 1-INTERACTING RECEPTOR-LIKE KINASE 2. Importantly, HopF2Pto requires QSK1 for its accumulation and virulence functions within plants. In summary, our results provide insights into the mechanism by which HopF2Pto employs QSK1 to desensitize plants to pathogen attack.
Collapse
Affiliation(s)
- Yukihisa Goto
- Plant Immunity Research Group, RIKEN Center for Sustainable Resource Science (CSRS), Yokohama, Kanagawa 230-0045, Japan
- Graduate School of Science, The University of Tokyo, Tokyo 113-8654, Japan
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich CH-8008, Switzerland
| | - Yasuhiro Kadota
- Plant Immunity Research Group, RIKEN Center for Sustainable Resource Science (CSRS), Yokohama, Kanagawa 230-0045, Japan
| | - Malick Mbengue
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse INP, Castanet-Tolosan 31326, France
| | - Jennifer D Lewis
- Department of Cell and System Biology, Centre for the Analysis of Genome Function and Evolution, University of Toronto, Toronto, ON, Canada M5S 3B2
- Plant Gene Expression, United States Department of Agriculture, Agricultural Research Service, Albany, CA 94710, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Hidenori Matsui
- Plant Proteomics Research Unit, RIKEN CSRS, Yokohama 230-0045, Japan
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| | - Noriko Maki
- Plant Immunity Research Group, RIKEN Center for Sustainable Resource Science (CSRS), Yokohama, Kanagawa 230-0045, Japan
| | - Bruno Pok Man Ngou
- Plant Immunity Research Group, RIKEN Center for Sustainable Resource Science (CSRS), Yokohama, Kanagawa 230-0045, Japan
| | - Jan Sklenar
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Paul Derbyshire
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Arisa Shibata
- Plant Immunity Research Group, RIKEN Center for Sustainable Resource Science (CSRS), Yokohama, Kanagawa 230-0045, Japan
| | - Yasunori Ichihashi
- Plant Immunity Research Group, RIKEN Center for Sustainable Resource Science (CSRS), Yokohama, Kanagawa 230-0045, Japan
- Plant-Microbe Symbiosis Research and Development Team, RIKEN BioResource Research Center, Tsukuba, Ibaraki 305-0074, Japan
| | - David S Guttman
- Department of Cell and System Biology, Centre for the Analysis of Genome Function and Evolution, University of Toronto, Toronto, ON, Canada M5S 3B2
| | - Hirofumi Nakagami
- Plant Proteomics Research Unit, RIKEN CSRS, Yokohama 230-0045, Japan
- Protein Mass Spectrometry, Max Planck Institute for Plant Breeding Research, Cologne 50829, Germany
| | - Takamasa Suzuki
- College of Bioscience and Biotechnology, Chubu University, Kasugai 487-0027, Japan
| | - Frank L H Menke
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Silke Robatzek
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
- LMU Biocentre, Ludwig-Maximilian-University of Munich, 82152 Martinsried, Germany
| | - Darrell Desveaux
- Department of Cell and System Biology, Centre for the Analysis of Genome Function and Evolution, University of Toronto, Toronto, ON, Canada M5S 3B2
| | - Cyril Zipfel
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich CH-8008, Switzerland
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Ken Shirasu
- Plant Immunity Research Group, RIKEN Center for Sustainable Resource Science (CSRS), Yokohama, Kanagawa 230-0045, Japan
- Graduate School of Science, The University of Tokyo, Tokyo 113-8654, Japan
| |
Collapse
|
5
|
Shang S, He Y, Hu Q, Fang Y, Cheng S, Zhang CJ. Fusarium graminearum effector FgEC1 targets wheat TaGF14b protein to suppress TaRBOHD-mediated ROS production and promote infection. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:2288-2303. [PMID: 39109951 DOI: 10.1111/jipb.13752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/19/2024] [Accepted: 07/11/2024] [Indexed: 10/19/2024]
Abstract
Fusarium head blight (FHB), caused by Fusarium graminearum, is a devastating disease of wheat globally. However, the molecular mechanisms underlying the interactions between F. graminearum and wheat remain unclear. Here, we identified a secreted effector protein, FgEC1, that is induced during wheat infection and is required for F. graminearum virulence. FgEC1 suppressed flg22- and chitin-induced callose deposition and reactive oxygen species (ROS) burst in Nicotiana benthamiana. FgEC1 directly interacts with TaGF14b, which is upregulated in wheat heads during F. graminearum infection. Overexpression of TaGF14b increases FHB resistance in wheat without compromising yield. TaGF14b interacts with NADPH oxidase respiratory burst oxidase homolog D (TaRBOHD) and protects it against degradation by the 26S proteasome. FgEC1 inhibited the interaction of TaGF14b with TaRBOHD and promoted TaRBOHD degradation, thereby reducing TaRBOHD-mediated ROS production. Our findings reveal a novel pathogenic mechanism in which a fungal pathogen acts via an effector to reduce TaRBOHD-mediated ROS production.
Collapse
Affiliation(s)
- Shengping Shang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Yuhan He
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Qianyong Hu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Ying Fang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shifeng Cheng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Cui-Jun Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| |
Collapse
|
6
|
Zhou M, Zhang J, Zhao Z, Liu W, Wu Z, Huang L. Pseudomonas syringae pv. actinidiae Unique Effector HopZ5 Interacts with GF14C to Trigger Plant Immunity. PHYTOPATHOLOGY 2024; 114:2322-2330. [PMID: 39102501 DOI: 10.1094/phyto-09-23-0330-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
The bacterial canker of kiwifruit caused by Pseudomonas syringae pv. actinidiae (Psa) is the most devastating disease threatening the global kiwifruit production. This pathogen delivers multiple effector proteins into plant cells to resist plant immune responses and facilitate their survival. Here, we focused on the unique effector HopZ5 in Psa, which previously has been reported to have virulence functions. In this study, our results showed that HopZ5 could cause macroscopic cell death and trigger a serious immune response by agroinfiltration in Nicotiana benthamiana, along with upregulated expression of immunity-related genes and significant accumulation of reactive oxygen species and callose. Subsequently, we confirmed that HopZ5 interacted with the phosphoserine-binding protein GF14C in both the nonhost plant N. benthamiana (NbGF14C) and the host plant kiwifruit (AcGF14C), and silencing of NbGF14C compromised HopZ5-mediated cell death, suggesting that GF14C plays a crucial role in the detection of HopZ5. Further studies showed that overexpression of NbGF14C both markedly reduced the infection of Sclerotinia sclerotiorum and Phytophthora capsica in N. benthamiana, and overexpression of AcGF14C significantly enhanced the resistance of kiwifruit against Psa, indicating that GF14C positively regulates plant immunity. Collectively, our results revealed that the virulence effector HopZ5 could be recognized by plants and interact with GF14C to activate plant immunity.
Collapse
Affiliation(s)
- Mingxia Zhou
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling 712100, Shaanxi, China
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jinglong Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling 712100, Shaanxi, China
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhibo Zhao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling 712100, Shaanxi, China
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang 550025, Guizhou, China
| | - Wei Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling 712100, Shaanxi, China
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhiran Wu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling 712100, Shaanxi, China
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Lili Huang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling 712100, Shaanxi, China
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
7
|
Fang L, Geng C, Wei XY, Dong CC, Pang JP, Yan ZY, Jiang J, Tian YP, Li XD. Potato virus Y viral protein 6K1 inhibits the interaction between defense proteins during virus infection. PLANT PHYSIOLOGY 2024; 194:1447-1466. [PMID: 37962935 PMCID: PMC10904343 DOI: 10.1093/plphys/kiad612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/26/2023] [Accepted: 09/26/2023] [Indexed: 11/15/2023]
Abstract
14-3-3 proteins play vital roles in plant defense against various pathogen invasions. To date, how 14-3-3 affects virus infections in plants remains largely unclear. In this study, we found that Nicotiana benthamiana 14-3-3h interacts with TRANSLATIONALLY CONTROLLED TUMOR PROTEIN (TCTP), a susceptibility factor of potato virus Y (PVY). Silencing of Nb14-3-3h facilitates PVY accumulation, whereas overexpression of Nb14-3-3h inhibits PVY replication. The antiviral activities of 3 Nb14-3-3h dimerization defective mutants are significantly decreased, indicating that dimerization of Nb14-3-3h is indispensable for restricting PVY infection. Our results also showed that the mutant Nb14-3-3hE16A, which is capable of dimerizing but not interacting with NbTCTP, has reduced anti-PVY activity; the mutant NbTCTPI65A, which is unable to interact with Nb14-3-3h, facilitates PVY replication compared with the wild-type NbTCTP, indicating that dimeric Nb14-3-3h restricts PVY infection by interacting with NbTCTP and preventing its proviral function. As a counter-defense, PVY 6K1 interferes with the interaction between Nb14-3-3h and NbTCTP by competitively binding to Nb14-3-3h and rescues NbTCTP to promote PVY infection. Our results provide insights into the arms race between plants and potyviruses.
Collapse
Affiliation(s)
- Le Fang
- Shandong Provincial Key Laboratory of Agricultural Microbiology, Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai’an, Shandong 271018, China
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250131, China
| | - Chao Geng
- Shandong Provincial Key Laboratory of Agricultural Microbiology, Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Xin-Yu Wei
- Shandong Provincial Key Laboratory of Agricultural Microbiology, Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Chen-Chen Dong
- Shandong Provincial Key Laboratory of Agricultural Microbiology, Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Ju-Ping Pang
- Shandong Provincial Key Laboratory of Agricultural Microbiology, Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Zhi-Yong Yan
- Shandong Provincial Key Laboratory of Agricultural Microbiology, Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Jun Jiang
- Shandong Provincial Key Laboratory of Agricultural Microbiology, Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Yan-Ping Tian
- Shandong Provincial Key Laboratory of Agricultural Microbiology, Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Xiang-Dong Li
- Shandong Provincial Key Laboratory of Agricultural Microbiology, Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai’an, Shandong 271018, China
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250131, China
| |
Collapse
|
8
|
Purkait D, Ilyas M, Atmakuri K. Protein-Protein Interactions: Bimolecular Fluorescence Complementation and Cytology Two Hybrid. Methods Mol Biol 2024; 2715:247-257. [PMID: 37930533 DOI: 10.1007/978-1-0716-3445-5_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Identifying protein-protein interactions between machine components of bacterial secretion systems and their cognate substrates is central to delineating how the machines operate to translocate their substrates. Further, establishing which among the machine components and their substrates interact with each other facilitates (i) advancement in our understanding of the architecture and assembly of the machines, (ii) understanding the substrates' translocation routes and mechanisms, and (iii) how the machines and the substrates talk to each other. Currently, though diverse biochemical methods exist in identifying direct and indirect protein-protein interactions, they primarily remain in vitro and can be quite labor intensive. They also may capture/exhibit false-positive interactions because of barrier breakdowns as part of methodology. Thus, adopting novel genetic approaches to help visualize the same in vivo can yield quick, advantageous, reliable, and informative protein-protein interactions data. Here, we describe the easily adoptable bimolecular fluorescence complementation and cytology-based two-hybrid assays to understand the bacterial secretions systems.
Collapse
Affiliation(s)
- Dyuti Purkait
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Mohd Ilyas
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Krishnamohan Atmakuri
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India.
| |
Collapse
|
9
|
Sobol G, Majhi BB, Pasmanik-Chor M, Zhang N, Roberts HM, Martin GB, Sessa G. Tomato receptor-like cytoplasmic kinase Fir1 is involved in flagellin signaling and preinvasion immunity. PLANT PHYSIOLOGY 2023; 192:565-581. [PMID: 36511947 PMCID: PMC10152693 DOI: 10.1093/plphys/kiac577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 11/15/2022] [Accepted: 11/25/2022] [Indexed: 05/03/2023]
Abstract
Detection of bacterial flagellin by the tomato (Solanum lycopersicum) receptors Flagellin sensing 2 (Fls2) and Fls3 triggers activation of pattern-triggered immunity (PTI). We identified the tomato Fls2/Fls3-interacting receptor-like cytoplasmic kinase 1 (Fir1) protein that is involved in PTI triggered by flagellin perception. Fir1 localized to the plasma membrane and interacted with Fls2 and Fls3 in yeast (Saccharomyces cerevisiae) and in planta. CRISPR/Cas9-generated tomato fir1 mutants were impaired in several immune responses induced by the flagellin-derived peptides flg22 and flgII-28, including resistance to Pseudomonas syringae pv. tomato (Pst) DC3000, production of reactive oxygen species, and enhanced PATHOGENESIS-RELATED 1b (PR1b) gene expression, but not MAP kinase phosphorylation. Remarkably, fir1 mutants developed larger Pst DC3000 populations than wild-type plants, whereas no differences were observed in wild-type and fir1 mutant plants infected with the flagellin deficient Pst DC3000ΔfliC. fir1 mutants failed to close stomata when infected with Pst DC3000 and Pseudomonas fluorescens and were more susceptible to Pst DC3000 than wild-type plants when inoculated by dipping, but not by vacuum-infiltration, indicating involvement of Fir1 in preinvasion immunity. RNA-seq analysis detected fewer differentially expressed genes in fir1 mutants and altered expression of jasmonic acid (JA)-related genes. In support of JA response deregulation in fir1 mutants, these plants were similarly susceptible to Pst DC3000 and to the coronatine-deficient Pst DC3118 strain, and more resistant to the necrotrophic fungus Botrytis cinerea following PTI activation. These results indicate that tomato Fir1 is required for a subset of flagellin-triggered PTI responses and support a model in which Fir1 negatively regulates JA signaling during PTI activation.
Collapse
Affiliation(s)
- Guy Sobol
- School of Plant Sciences and Food Security, Tel-Aviv University, 69978 Tel-Aviv, Israel
| | - Bharat Bhusan Majhi
- School of Plant Sciences and Food Security, Tel-Aviv University, 69978 Tel-Aviv, Israel
| | - Metsada Pasmanik-Chor
- Bioinformatics Unit, G.S. Wise Faculty of Life Science, Tel-Aviv University, 69978 Tel- Aviv, Israel
| | - Ning Zhang
- Boyce Thompson Institute for Plant Research and Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853, USA
| | - Holly M Roberts
- Boyce Thompson Institute for Plant Research and Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853, USA
| | - Gregory B Martin
- Boyce Thompson Institute for Plant Research and Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853, USA
| | - Guido Sessa
- School of Plant Sciences and Food Security, Tel-Aviv University, 69978 Tel-Aviv, Israel
| |
Collapse
|
10
|
Seo YE, Yan X, Choi D, Mang H. Phytophthora infestans RxLR Effector PITG06478 Hijacks 14-3-3 to Suppress PMA Activity Leading to Necrotrophic Cell Death. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:150-158. [PMID: 36413345 DOI: 10.1094/mpmi-06-22-0135-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Pathogens often induce cell death for their successful proliferation in the host plant. Plasma membrane H+-ATPases (PMAs) are targeted by either pathogens or plant immune receptors in immune response regulation. Although PMAs play pivotal roles in host cell death, the molecular mechanism of effector-mediated regulation of PMA activity has not been described. Here, we report that the Phytophthora infestans RxLR effector PITG06478 can induce cell death in Nicotiana benthamiana but the induced cell death is inhibited by fusicoccin (FC), an irreversible PMA activator. PITG06478, which is localized at the plasma membrane, is not directly associated with the PMA but is associated with Nb14-3-3s, a PMA activator. Immunoblot analyses revealed that the interaction between PITG06478 and Nb14-3-3s was disrupted by FC. PMA activity in PITG06478-expressing plants was eventually inhibited, and cell death likely occurred because the 14-3-3 protein was hijacked. Our results further confirm the significance of PMA activity in host cell death and provide new insight into how pathogens utilize essential host components to sustain their life cycle. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Ye-Eun Seo
- Plant Immunity Research Center, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Xin Yan
- Plant Immunity Research Center, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Doil Choi
- Plant Immunity Research Center, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyunggon Mang
- Plant Immunity Research Center, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Southern Area Crop Science, National Institute of Crop Science (NICS), RDA, Miryang, Republic of Korea
| |
Collapse
|
11
|
Jia C, Guo B, Wang B, Li X, Yang T, Li N, Wang J, Yu Q. Genome-Wide Identification and Expression Analysis of the 14-3-3 (TFT) Gene Family in Tomato, and the Role of SlTFT4 in Salt Stress. PLANTS (BASEL, SWITZERLAND) 2022; 11:3491. [PMID: 36559607 PMCID: PMC9781835 DOI: 10.3390/plants11243491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/05/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
The 14-3-3 proteins, which are ubiquitous and highly conserved in eukaryotic cells, play an essential role in various areas of plant growth, development, and physiological processes. The tomato is one of the most valuable vegetable crops on the planet. The main objective of the present study was to perform genome-wide identification and analysis of the tomato 14-3-3 (SlTFT) family to investigate its response to different abiotic stresses and phytohormone treatments in order to provide valuable information for variety improvement. Here, 13 SlTFTs were identified using bioinformatics methods. Characterization showed that they were categorized into ε and non-ε groups with five and eight members, accounting for 38.5% and 61.5%, respectively. All the SlTFTs were hydrophilic, and most of them did not contain transmembrane structural domains. Meanwhile, the phylogeny of the SlTFTs had a strong correlation with the gene structure, conserved domains, and motifs. The SlTFTs showed non-random chromosomal distribution, and the promoter region contained more cis-acting elements related to abiotic stress tolerance and phytohormone responses. The results of the evolutionary analysis showed that the SlTFTs underwent negative purifying selection during evolution. Transcriptional profiling and gene expression pattern analysis showed that the expression levels of the SlTFTs varied considerably in different tissues and periods, and they played a specific role under various abiotic stresses and phytohormone treatments. Meanwhile, the constructed protein-based interaction network systematically broadens our understanding of SlTFTs. Finally, the virus-induced gene silencing of SlTFT4 affected the antioxidant and reactive oxygen species defense systems, increased the degree of cellular damage, and reduced salt resistance in tomatoes.
Collapse
Affiliation(s)
- Chunping Jia
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi 830091, China
- College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Urumqi 830091, China
| | - Bin Guo
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi 830091, China
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Urumqi 830091, China
- College of Computer and Information Engineering, Xinjiang Agricultural University, Urumqi 830052, China
| | - Baike Wang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi 830091, China
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Urumqi 830091, China
| | - Xin Li
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi 830091, China
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Urumqi 830091, China
- College of Computer and Information Engineering, Xinjiang Agricultural University, Urumqi 830052, China
| | - Tao Yang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi 830091, China
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Urumqi 830091, China
| | - Ning Li
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi 830091, China
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Urumqi 830091, China
| | - Juan Wang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi 830091, China
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Urumqi 830091, China
| | - Qinghui Yu
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi 830091, China
- College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Urumqi 830091, China
| |
Collapse
|
12
|
Shu X, Xu D, Jiang Y, Liang J, Xiang T, Wang Y, Zhang W, Han X, Jiao C, Zheng A, Li P, Yin D, Wang A. Functional Analyses of a Small Secreted Cysteine-Rich Protein ThSCSP_14 in Tilletia horrida. Int J Mol Sci 2022; 23:ijms232315042. [PMID: 36499367 PMCID: PMC9736875 DOI: 10.3390/ijms232315042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/17/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Tilletia horrida is a biotrophic basidiomycete fungus that causes rice kernel smut, one of the most significant diseases in hybrid rice-growing areas worldwide. Little is known about the pathogenic mechanisms and functions of effectors in T. horrida. Here, we performed functional studies of the effectors in T. horrida and found that, of six putative effectors tested, only ThSCSP_14 caused the cell death phenotype in epidermal cells of Nicotiana benthamiana leaves. ThSCSP_14 was upregulated early on during the infection process, and the encoded protein was secreted. The predicted signal peptide (SP) of ThSCSP_14 was required for its ability to induce the necrosis phenotype. Furthermore, the ability of ThSCSP_14 to trigger cell death in N. benthamiana depended on suppressing the G2 allele of Skp1 (SGT1), required for Mla12 resistance (RAR1), heat-shock protein 90 (HSP90), and somatic embryogenesis receptor-like kinase (SERK3). It is important to note that ThSCSP_14 induced a plant defense response in N. benthamiana leaves. Hence, these results demonstrate that ThSCSP_14 is a possible effector that plays an essential role in T. horrida-host interactions.
Collapse
Affiliation(s)
- Xinyue Shu
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Deze Xu
- Food Crop Research Institute, Hubei Academy of Agriculture Sciences, Wuhan 430064, China
| | - Yuqi Jiang
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Juan Liang
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Ting Xiang
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuxuan Wang
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Weike Zhang
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Xue Han
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Chunhai Jiao
- Food Crop Research Institute, Hubei Academy of Agriculture Sciences, Wuhan 430064, China
| | - Aiping Zheng
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Ping Li
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Desuo Yin
- Food Crop Research Institute, Hubei Academy of Agriculture Sciences, Wuhan 430064, China
- Correspondence: (D.Y.); (A.W.)
| | - Aijun Wang
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: (D.Y.); (A.W.)
| |
Collapse
|
13
|
ThSCSP_12: Novel Effector in Tilletia horrida That Induces Cell Death and Defense Responses in Non-Host Plants. Int J Mol Sci 2022; 23:ijms232314752. [PMID: 36499087 PMCID: PMC9736266 DOI: 10.3390/ijms232314752] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/17/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
The basidiomycete fungus Tilletia horrida causes rice kernel smut (RKS), a crucial disease afflicting hybrid-rice-growing areas worldwide, which results in significant economic losses. However, few studies have investigated the pathogenic mechanisms and functions of effectors in T. horrida. In this study, we found that the candidate effector ThSCSP_12 caused cell necrosis in the leaves of Nicotiana benthamiana. The predicted signal peptide (SP) of this protein has a secreting function, which is required for ThSCSP_12 to induce cell death. The 1- 189 amino acid (aa) sequences of ThSCSP_12 are sufficient to confer it the ability to trigger cell death in N. benthamiana. The expression of ThSCSP_12 was induced and up-regulated during T. horrida infection. In addition, we also found that ThSCSP_12 localized in both the cytoplasm and nucleus of plant cells and that nuclear localization of this protein is required to induce cell death. Furthermore, the ability of ThSCSP_12 to trigger cell death in N. benthamiana depends on the (RAR1) protein required for Mla12 resistance but not on the suppressor of the G2 allele of Skp1 (SGT1), heat shock protein 90 (HSP90), or somatic embryogenesis receptor-like kinase (SERK3). Crucially, however, ThSCSP_12 induced a defense response in N. benthamiana leaves; yet, the expression of multiple defense-related genes was suppressed in response to heterologous expression in host plants. To sum up, these results strongly suggest that ThSCSP_12 operates as an effector in T. horrida-host interactions.
Collapse
|
14
|
Overexpression of OsGF14f Enhances Quantitative Leaf Blast and Bacterial Blight Resistance in Rice. Int J Mol Sci 2022; 23:ijms23137440. [PMID: 35806444 PMCID: PMC9266906 DOI: 10.3390/ijms23137440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 06/29/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022] Open
Abstract
Although it is known that rice 14-3-3 family genes are involved in various defense responses, the functions of OsGF14f in response to diseases have not been reported. Here, we showed that the transcription of OsGF14f was significantly induced by leaf blast infection, and the overexpression of OsGF14f quantitatively enhanced resistance to leaf blast and bacterial blight in rice. Further analysis showed that the expression levels of salicylic acid (SA) pathway-associated genes (PAL1, NH1, PR1a and PR10) in the OsGF14f-overexpressing plants, were higher than those in wild-type plants after inoculation with the blast isolate (Magnaporthe oryzae Barr). In addition, the expression level of OsGF14f was significantly induced after SA treatment, and higher endogenous SA levels were observed in the OsGF14f-overexpressing plants compared with that in wild-type plants, especially after blast challenge. Taken together, these results suggest that OsGF14f positively regulates leaf blast and bacterial blight resistance in rice via the SA-dependent signaling pathway.
Collapse
|
15
|
Gao Z, Zhang D, Wang X, Zhang X, Wen Z, Zhang Q, Li D, Dinesh-Kumar SP, Zhang Y. Coat proteins of necroviruses target 14-3-3a to subvert MAPKKKα-mediated antiviral immunity in plants. Nat Commun 2022; 13:716. [PMID: 35132090 PMCID: PMC8821596 DOI: 10.1038/s41467-022-28395-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 01/17/2022] [Indexed: 02/07/2023] Open
Abstract
Mitogen-activated protein kinase (MAPK) cascades play an important role in innate immunity against various pathogens in plants and animals. However, we know very little about the importance of MAPK cascades in plant defense against viral pathogens. Here, we used a positive-strand RNA necrovirus, beet black scorch virus (BBSV), as a model to investigate the relationship between MAPK signaling and virus infection. Our findings showed that BBSV infection activates MAPK signaling, whereas viral coat protein (CP) counteracts MAPKKKα-mediated antiviral defense. CP does not directly target MAPKKKα, instead it competitively interferes with the binding of 14-3-3a to MAPKKKα in a dose-dependent manner. This results in the instability of MAPKKKα and subversion of MAPKKKα-mediated antiviral defense. Considering the conservation of 14-3-3-binding sites in the CPs of diverse plant viruses, we provide evidence that 14-3-3-MAPKKKα defense signaling module is a target of viral effectors in the ongoing arms race of defense and viral counter-defense.
Collapse
Affiliation(s)
- Zongyu Gao
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Dingliang Zhang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Xiaoling Wang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Xin Zhang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Zhiyan Wen
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Qianshen Zhang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Dawei Li
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Savithramma P Dinesh-Kumar
- Department of Plant Biology and The Genome Center, College of Biological Sciences, University of California, Davis, Davis, CA, 95616, USA
| | - Yongliang Zhang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, 100193, Beijing, China.
| |
Collapse
|
16
|
Jaiswal N, Liao CJ, Mengesha B, Han H, Lee S, Sharon A, Zhou Y, Mengiste T. Regulation of plant immunity and growth by tomato receptor-like cytoplasmic kinase TRK1. THE NEW PHYTOLOGIST 2022; 233:458-478. [PMID: 34655240 DOI: 10.1111/nph.17801] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 10/11/2021] [Indexed: 05/27/2023]
Abstract
The molecular mechanisms of quantitative resistance (QR) to fungal pathogens and their relationships with growth pathways are poorly understood. We identified tomato TRK1 (TPK1b Related Kinase1) and determined its functions in tomato QR and plant growth. TRK1 is a receptor-like cytoplasmic kinase that complexes with tomato LysM Receptor Kinase (SlLYK1). SlLYK1 and TRK1 are required for chitin-induced fungal resistance, accumulation of reactive oxygen species, and expression of immune response genes. Notably, TRK1 and SlLYK1 regulate SlMYC2, a major transcriptional regulator of jasmonic acid (JA) responses and fungal resistance, at transcriptional and post-transcriptional levels. Further, TRK1 is also required for maintenance of proper meristem growth, as revealed by the ectopic meristematic activity, enhanced branching, and altered floral structures in TRK1 RNAi plants. Consistently, TRK1 interacts with SlCLV1 and SlWUS, and TRK1 RNAi plants show increased expression of SlCLV3 and SlWUS in shoot apices. Interestingly, TRK1 suppresses chitin-induced gene expression in meristems but promotes expression of the same genes in leaves. SlCLV1 and TRK1 perform contrasting functions in defense but similar functions in plant growth. Overall, through molecular and biochemical interactions with critical regulators, TRK1 links upstream defense and growth signals to downstream factor in fungal resistance and growth homeostasis response regulators.
Collapse
Affiliation(s)
- Namrata Jaiswal
- Department of Botany and Plant Pathology, Purdue University, 915 W. State Street, West Lafayette, IN, 47907, USA
| | - Chao-Jan Liao
- Department of Botany and Plant Pathology, Purdue University, 915 W. State Street, West Lafayette, IN, 47907, USA
| | - Bemnet Mengesha
- Department of Botany and Plant Pathology, Purdue University, 915 W. State Street, West Lafayette, IN, 47907, USA
| | - Han Han
- Department of Botany and Plant Pathology, Purdue University, 915 W. State Street, West Lafayette, IN, 47907, USA
| | - Sanghun Lee
- Department of Botany and Plant Pathology, Purdue University, 915 W. State Street, West Lafayette, IN, 47907, USA
| | - Amir Sharon
- Department of Molecular Biology and Ecology of Plants, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Yun Zhou
- Department of Botany and Plant Pathology, Purdue University, 915 W. State Street, West Lafayette, IN, 47907, USA
| | - Tesfaye Mengiste
- Department of Botany and Plant Pathology, Purdue University, 915 W. State Street, West Lafayette, IN, 47907, USA
| |
Collapse
|
17
|
Yokotani N, Hasegawa Y, Sato M, Hirakawa H, Kouzai Y, Nishizawa Y, Yamamoto E, Naito Y, Isobe S. Transcriptome analysis of Clavibacter michiganensis subsp. michiganensis-infected tomatoes: a role of salicylic acid in the host response. BMC PLANT BIOLOGY 2021; 21:476. [PMID: 34666675 PMCID: PMC8524973 DOI: 10.1186/s12870-021-03251-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 10/05/2021] [Indexed: 05/05/2023]
Abstract
Bacterial canker of tomato (Solanum lycopersicon) caused by the Gram-positive bacterium Clavibacter michiganensis subsp. michiganensis (Cmm) is an economically important disease. To understand the host defense response to Cmm infection, transcriptome sequences in tomato cotyledons were analyzed by RNA-seq. Overall, 1788 and 540 genes were upregulated and downregulated upon infection, respectively. Gene Ontology enrichment analysis revealed that genes involved in the defense response, phosphorylation, and hormone signaling were over-represented by the infection. Induced expression of defense-associated genes suggested that the tomato response to Cmm showed similarities to common plant disease responses. After infection, many resistance gene analogs (RGAs) were transcriptionally upregulated, including the expressions of some receptor-like kinases (RLKs) involved in pattern-triggered immunity. The expressions of WRKYs, NACs, HSFs, and CBP60s encoding transcription factors (TFs) reported to regulate defense-associated genes were induced after infection with Cmm. Tomato genes orthologous to Arabidopsis EDS1, EDS5/SID1, and PAD4/EDS9, which are causal genes of salicylic acid (SA)-deficient mutants, were upregulated after infection with Cmm. Furthermore, Cmm infection drastically stimulated SA accumulation in tomato cotyledons. Genes involved in the phenylalanine ammonia lyase pathway were upregulated, whereas metabolic enzyme gene expression in the isochorismate synthase pathway remained unchanged. Exogenously applied SA suppressed bacterial growth and induced the expression of WRKYs, suggesting that some Cmm-responsive genes are regulated by SA signaling, and SA signaling activation should improve tomato immunity against Cmm.
Collapse
Affiliation(s)
- Naoki Yokotani
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba, 292-0818, Japan.
| | - Yoshinori Hasegawa
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba, 292-0818, Japan
| | - Masaru Sato
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba, 292-0818, Japan
| | - Hideki Hirakawa
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba, 292-0818, Japan
| | - Yusuke Kouzai
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602, Japan
- Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
| | - Yoko Nishizawa
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602, Japan
| | - Eiji Yamamoto
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba, 292-0818, Japan
| | - Yoshiki Naito
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba, 292-0818, Japan
| | - Sachiko Isobe
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba, 292-0818, Japan
| |
Collapse
|
18
|
Abrahamian P, Klein-Gordon JM, Jones JB, Vallad GE. Epidemiology, diversity, and management of bacterial spot of tomato caused by Xanthomonas perforans. Appl Microbiol Biotechnol 2021; 105:6143-6158. [PMID: 34342710 DOI: 10.1007/s00253-021-11459-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/05/2021] [Accepted: 07/09/2021] [Indexed: 11/28/2022]
Abstract
Tomato is an important crop grown worldwide. Various plant diseases cause massive losses in tomato plants due to diverse biotic agents. Bacterial spot of tomato (BST) is a worldwide disease that results in high losses in processed and fresh tomato. Xanthomonas perforans, an aerobic, single-flagellated, rod-shaped, Gram-negative plant pathogenic bacterium, is one of the leading causes of BST. Over the past three decades, X. perforans has increasingly been reported from tomato-growing regions and became a major bacterial disease. X. perforans thrives under high humidity and high temperature, which is commonplace in tropical and subtropical climates. Distinguishing symptoms of BST are necrotic lesions that can coalesce and cause a shot-hole appearance. X. perforans can occasionally cause fruit symptoms depending on disease pressure during fruit development. Short-distance movement in the field is mainly dependent on wind-driven rain, whereas long distance movement occurs through contaminated seed or plant material. X. perforans harbors a suite of effectors that increase pathogen virulence, fitness, and dissemination. BST management mainly relies on copper-based compounds; however, resistance is widespread. Alternative compounds, such as nanomaterials, are currently being evaluated and show high potential for BST management. Resistance breeding remains difficult to attain due to limited resistant germplasm. While the increased genetic diversity and gain and loss of effectors in X. perforans limits the success of single-gene resistance, the adoption of effector-specific transgenes and quantitative resistance may lead to durable host resistance. However, further research that aims to more effectively implement novel management tools is required to curb disease spread. KEY POINTS: • Xanthomonas perforans causes bacterial spot on tomato epidemics through infected seedlings and movement of plant material. • Genetic diversity plays a major role in shaping populations which is evident in loss and gain of effectors. • Management relies on copper sprays, but nanoparticles are a promising alternative to reduce copper toxicity.
Collapse
Affiliation(s)
- Peter Abrahamian
- Beltsville Agricultural Research Center, Molecular Plant Pathology Laboratory, USDA-ARS, Beltsville, MD, 20705, USA.
| | | | - Jeffrey B Jones
- Department of Plant Pathology, University of Florida, Gainesville, FL, 32611, USA
| | - Gary E Vallad
- Gulf Coast Research and Education Center, University of Florida, Wimauma, FL, 33598, USA.
| |
Collapse
|
19
|
Zhao X, Li F, Li K. The 14-3-3 proteins: regulators of plant metabolism and stress responses. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23:531-539. [PMID: 33811408 DOI: 10.1111/plb.13268] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
The 14-3-3 proteins bind to and modulate the activity of phosphorylated proteins that regulate a variety of metabolic processes in plants. Over the past decade interest in the plant 14-3-3 field has increased dramatically, mainly due to the vast number of mechanisms by which 14-3-3 proteins regulate metabolism. As this field develops, it is essential to understand the role of these proteins in metabolic and stress responses. This review summarizes current knowledge about 14-3-3 proteins in plants, including their molecular structure and function, regulatory mechanism and roles in carbon and nitrogen metabolism and stress responses. We begin with a molecular structural analysis of 14-3-3 proteins, which describes the basic principles of 14-3-3 function, and then discuss the regulatory mechanisms and roles in carbon and nitrogen metabolism of 14-3-3 proteins. We conclude with a summary of the 14-3-3 response to biotic stress and abiotic stress.
Collapse
Affiliation(s)
- X Zhao
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - F Li
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - K Li
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
20
|
Schreiber KJ, Chau-Ly IJ, Lewis JD. What the Wild Things Do: Mechanisms of Plant Host Manipulation by Bacterial Type III-Secreted Effector Proteins. Microorganisms 2021; 9:1029. [PMID: 34064647 PMCID: PMC8150971 DOI: 10.3390/microorganisms9051029] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 01/05/2023] Open
Abstract
Phytopathogenic bacteria possess an arsenal of effector proteins that enable them to subvert host recognition and manipulate the host to promote pathogen fitness. The type III secretion system (T3SS) delivers type III-secreted effector proteins (T3SEs) from bacterial pathogens such as Pseudomonas syringae, Ralstonia solanacearum, and various Xanthomonas species. These T3SEs interact with and modify a range of intracellular host targets to alter their activity and thereby attenuate host immune signaling. Pathogens have evolved T3SEs with diverse biochemical activities, which can be difficult to predict in the absence of structural data. Interestingly, several T3SEs are activated following injection into the host cell. Here, we review T3SEs with documented enzymatic activities, as well as T3SEs that facilitate virulence-promoting processes either indirectly or through non-enzymatic mechanisms. We discuss the mechanisms by which T3SEs are activated in the cell, as well as how T3SEs modify host targets to promote virulence or trigger immunity. These mechanisms may suggest common enzymatic activities and convergent targets that could be manipulated to protect crop plants from infection.
Collapse
Affiliation(s)
- Karl J. Schreiber
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA; (K.J.S.); (I.J.C.-L.)
| | - Ilea J. Chau-Ly
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA; (K.J.S.); (I.J.C.-L.)
| | - Jennifer D. Lewis
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA; (K.J.S.); (I.J.C.-L.)
- Plant Gene Expression Center, United States Department of Agriculture, University of California, Berkeley, CA 94710, USA
| |
Collapse
|
21
|
Secrete or perish: The role of secretion systems in Xanthomonas biology. Comput Struct Biotechnol J 2020; 19:279-302. [PMID: 33425257 PMCID: PMC7777525 DOI: 10.1016/j.csbj.2020.12.020] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/13/2020] [Accepted: 12/13/2020] [Indexed: 12/22/2022] Open
Abstract
Bacteria of the Xanthomonas genus are mainly phytopathogens of a large variety of crops of economic importance worldwide. Xanthomonas spp. rely on an arsenal of protein effectors, toxins and adhesins to adapt to the environment, compete with other microorganisms and colonize plant hosts, often causing disease. These protein effectors are mainly delivered to their targets by the action of bacterial secretion systems, dedicated multiprotein complexes that translocate proteins to the extracellular environment or directly into eukaryotic and prokaryotic cells. Type I to type VI secretion systems have been identified in Xanthomonas genomes. Recent studies have unravelled the diverse roles played by the distinct types of secretion systems in adaptation and virulence in xanthomonads, unveiling new aspects of their biology. In addition, genome sequence information from a wide range of Xanthomonas species and pathovars have become available recently, uncovering a heterogeneous distribution of the distinct families of secretion systems within the genus. In this review, we describe the architecture and mode of action of bacterial type I to type VI secretion systems and the distribution and functions associated with these important nanoweapons within the Xanthomonas genus.
Collapse
|
22
|
Mondal KK, Soni M, Verma G, Kulshreshtha A, Mrutyunjaya S, Kumar R. Xanthomonas axonopodis pv. punicae depends on multiple non-TAL (Xop) T3SS effectors for its coveted growth inside the pomegranate plant through repressing the immune responses during bacterial blight development. Microbiol Res 2020; 240:126560. [PMID: 32721820 DOI: 10.1016/j.micres.2020.126560] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 07/17/2020] [Accepted: 07/18/2020] [Indexed: 01/08/2023]
Abstract
Xanthomonas axonopodis pv. punicae (Xap), the bacterial blight pathogen of pomegranate, incurs substantial loss to yield and reduces export quality of this economically important fruit crop. During infection, the bacterium secretes six non-TAL (Xop) effectors into the pomegranate cells through a specialized type three secretion system (T3SS). Previously, we demonstrated the role of two key effectors, XopL and XopN in pathogenesis. Here, we investigate the role of rest effectors (XopC2, XopE1, XopQ and XopZ) on disease development. We generated null mutants for each individual effector and mutant bacterial suspension was infiltrated into pomegranate leaves. Compared to Xap wild, the mutant bacterial growth was reduced by 2.7-11.5 folds. The mutants produced lesser water-soaked lesions when infiltrated on leaves by 1.13-2.21 folds. Among the four effectors, XopC2 contributes highest for in planta bacterial growth and disease development. XopC2 efficiently suppressed the defense responses like callose deposition, reactive oxygen species (ROS) and the activation of immune responsive genes. Being a major contributor, we further characterize XopC2 for its subcellular localization, its protein structure and networking. XopC2 is localized to the plasma membrane of Nicotiana benthamiana like XopL and XopN. XopC2 is a 661 amino acids protein having 15 alpha and 17 beta helix. Our STRING and I-TASSER based analysis hinted that XopC2 interacts with multiple membrane localized plant proteins including transcription regulator of CCR4-NOT family, TTN of maintenance of chromosome family and serine/threonine-protein phosphatase 2A (PP2A) isoform. Based on the interaction it is predicted that XopC2 might involve in diverse functions like nuclear-transcribed mRNA catabolic process, maintenance of chromosome, hormone signaling and protein dephosphorylation activities and thereby suppress the plant immunity. Altogether, our study suggests that Xap largely depends on three non-TAL (Xop) effectors, including XopC2, XopL and XopN, to modulate pomegranate PTI for its unrestricted proliferation during bacterial blight development.
Collapse
Affiliation(s)
- Kalyan K Mondal
- Plant Bacteriology Lab, Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi 110012, India.
| | - Madhvi Soni
- Plant Bacteriology Lab, Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi 110012, India
| | - Geeta Verma
- Plant Bacteriology Lab, Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi 110012, India
| | - Aditya Kulshreshtha
- Plant Bacteriology Lab, Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi 110012, India
| | - S Mrutyunjaya
- Plant Bacteriology Lab, Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi 110012, India
| | - Rishikesh Kumar
- ICAR-Indian Institute of Pulses Research, Kanpur, Uttar Pradesh 208024, India
| |
Collapse
|
23
|
Wang L, Ding Y, He L, Zhang G, Zhu JK, Lozano-Duran R. A virus-encoded protein suppresses methylation of the viral genome through its interaction with AGO4 in the Cajal body. eLife 2020; 9:e55542. [PMID: 33064077 PMCID: PMC7567605 DOI: 10.7554/elife.55542] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 09/23/2020] [Indexed: 12/11/2022] Open
Abstract
In plants, establishment of de novo DNA methylation is regulated by the RNA-directed DNA methylation (RdDM) pathway. RdDM machinery is known to concentrate in the Cajal body, but the biological significance of this localization has remained elusive. Here, we show that the antiviral methylation of the Tomato yellow leaf curl virus (TYLCV) genome requires the Cajal body in Nicotiana benthamiana cells. Methylation of the viral genome is countered by a virus-encoded protein, V2, which interacts with the central RdDM component AGO4, interfering with its binding to the viral DNA; Cajal body localization of the V2-AGO4 interaction is necessary for the viral protein to exert this function. Taken together, our results draw a long sought-after functional connection between RdDM, the Cajal body, and antiviral DNA methylation, paving the way for a deeper understanding of DNA methylation and antiviral defences in plants.
Collapse
Affiliation(s)
- Liping Wang
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of SciencesBeijingChina
- University of the Chinese Academy of SciencesBeijingChina
| | - Yi Ding
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of SciencesBeijingChina
- University of the Chinese Academy of SciencesBeijingChina
| | - Li He
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of SciencesBeijingChina
| | - Guiping Zhang
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of SciencesBeijingChina
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of SciencesBeijingChina
| | - Rosa Lozano-Duran
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of SciencesBeijingChina
| |
Collapse
|
24
|
Mo X, Zhang L, Liu Y, Wang X, Bai J, Lu K, Zou S, Dong H, Chen L. Three Proteins (Hpa2, HrpF and XopN) Are Concomitant Type III Translocators in Bacterial Blight Pathogen of Rice. Front Microbiol 2020; 11:1601. [PMID: 32793141 PMCID: PMC7390958 DOI: 10.3389/fmicb.2020.01601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/18/2020] [Indexed: 12/31/2022] Open
Abstract
Type III (T3) proteic effectors occupy most of the virulence determinants in eukaryote-pathogenic Gram-negative bacteria. During infection, bacteria may deploy a nanomachinery called translocon to deliver T3 effectors into host cells, wherein the effectors fulfill their pathological functions. T3 translocon is hypothetically assembled by bacterial translocators, which have been identified as one hydrophilic and two hydrophobic proteins in animal-pathogenic bacteria but remain unclear in plant pathogens. Now we characterize Hpa2, HrpF, and XopN proteins as concomitant T3 translocators in rice bacterial blight pathogen by analyzing pathological consequences of single, double, and triple gene knockout or genetic complementation. Based on these genetic analyses, Hpa2, HrpF, and XopN accordingly contribute to 46.9, 60.3, and 69.8% proportions of bacterial virulence on a susceptible rice variety. Virulence performances of Hpa2, HrpF, and XopN were attributed to their functions in essentially mediating from-bacteria-into-rice-cell translocation of PthXo1, the bacterial T3 effector characteristic of transcription factors targeting plant genes. On average, 61, 62, and 71% of PthXo1 translocation are provided correspondingly by Hpa2, HrpF, and XopN, while they cooperate to support PthXo1 translocation at a greater-than-95% extent. As a result, rice disease-susceptibility gene SWEET11, which is the regulatory target of PthXo1, is activated to confer bacterial virulence and induce the leaf blight disease in rice. Furthermore, the three translocators also undergo translocation, but only XopN is highly translocated to suppress rice defense responses, suggesting that different components of a T3 translocon deploy distinct virulence mechanisms in addition to the common function in mediating bacterial effector translocation.
Collapse
Affiliation(s)
- Xuyan Mo
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Liyuan Zhang
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
- Crop Molecular Biology Research Group, State Key Laboratory of Crop Biology, Tai’an, China
| | - Yan Liu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Xuan Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Jiaqi Bai
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Kai Lu
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Shenshen Zou
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
- Crop Molecular Biology Research Group, State Key Laboratory of Crop Biology, Tai’an, China
| | - Hansong Dong
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
- Crop Molecular Biology Research Group, State Key Laboratory of Crop Biology, Tai’an, China
| | - Lei Chen
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
- Crop Molecular Biology Research Group, State Key Laboratory of Crop Biology, Tai’an, China
| |
Collapse
|
25
|
Guzman AR, Kim JG, Taylor KW, Lanver D, Mudgett MB. Tomato Atypical Receptor Kinase1 Is Involved in the Regulation of Preinvasion Defense. PLANT PHYSIOLOGY 2020; 183:1306-1318. [PMID: 32385090 PMCID: PMC7333691 DOI: 10.1104/pp.19.01400] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 04/29/2020] [Indexed: 05/19/2023]
Abstract
Tomato Atypical Receptor Kinase 1 (TARK1) is a pseudokinase required for postinvasion immunity. TARK1 was originally identified as a target of the Xanthomonas euvesicatoria effector protein Xanthomonas outer protein N (XopN), a suppressor of early defense signaling. How TARK1 participates in immune signal transduction is not well understood. To gain insight into TARK1's role in tomato (Solanum lycopersicum) immunity, we used a proteomics approach to isolate and identify TARK1-associated immune complexes formed during infection. We found that TARK1 interacts with proteins predicted to be associated with stomatal movement. TARK1 CRISPR mutants and overexpression (OE) lines did not display differences in light-induced stomatal opening or abscisic acid-induced stomatal closure; however, they did show altered stomatal movement responses to bacteria and biotic elicitors. Notably, we found that TARK1 CRISPR plants were resistant to Pseudomonas syringae pathovar tomato strain DC3000-induced stomatal reopening, and TARK1 OE plants were insensitive to P syringae pathovar tomato strain DC3118 (coronatine deficit)-induced stomatal closure. We also found that TARK1 OE in leaves resulted in increased susceptibility to bacterial invasion. Collectively, our results indicate that TARK1 functions in stomatal movement only in response to biotic elicitors and support a model in which TARK1 regulates stomatal opening postelicitation.
Collapse
Affiliation(s)
- Andrew R Guzman
- Department of Biology, Stanford University, Stanford, California 94305-5020
| | - Jung-Gun Kim
- Department of Biology, Stanford University, Stanford, California 94305-5020
| | - Kyle W Taylor
- Department of Biology, Stanford University, Stanford, California 94305-5020
| | - Daniel Lanver
- Department of Biology, Stanford University, Stanford, California 94305-5020
| | - Mary Beth Mudgett
- Department of Biology, Stanford University, Stanford, California 94305-5020
| |
Collapse
|
26
|
Wei M, Wang A, Liu Y, Ma L, Niu X, Zheng A. Identification of the Novel Effector RsIA_NP8 in Rhizoctonia solani AG1 IA That Induces Cell Death and Triggers Defense Responses in Non-Host Plants. Front Microbiol 2020; 11:1115. [PMID: 32595615 PMCID: PMC7303267 DOI: 10.3389/fmicb.2020.01115] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/04/2020] [Indexed: 11/26/2022] Open
Abstract
Rhizoctonia solani AG1 IA is a necrotrophic fungus that causes rice sheath blight, one of the most significant rice diseases in the world. However, little is known about the pathogenic mechanisms and functions of effectors in R. solani AG1 IA. We performed functional studies on effectors in R. solani AG1 IA and found that, of 11 putative effectors tested, only RsIA_NP8 caused necrosis in the leaves of Nicotiana benthamiana. The predicted signal peptide of this protein was required to induce cell death, whereas predicted N-glycosylation sites were not required. RsIA_NP8 was upregulated during early infection, and the encoded protein was secreted. Furthermore, the ability of RsIA_NP8 to trigger cell death in N. benthamiana depended on suppressor of G2 allele of Skp1 (SGT1) and heat shock protein 90 (HSP90), but not on Mla12 resistance (RAR1) and somatic embryogenesis receptor-like kinase (SERK3). A natural variation that prevents the triggering of cell death in N. benthamiana was found in RsIA_NP8 in 25 R. solani AG1 IA strains. It is important to note that RsIA_NP8 induced the immune response in N. benthamiana leaves. Collectively, these results show that RsIA_NP8 is a possible effector that plays a key role in R. solani AG1 IA–host interactions.
Collapse
Affiliation(s)
- Miaomiao Wei
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China.,Rice Research Institute of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Chengdu, China
| | - Aijun Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China.,Rice Research Institute of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Chengdu, China
| | - Yao Liu
- Rice Research Institute of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Chengdu, China
| | - Li Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China.,Rice Research Institute of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Chengdu, China
| | - Xianyu Niu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China.,Rice Research Institute of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Chengdu, China
| | - Aiping Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China.,Rice Research Institute of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
27
|
Kim JH, Castroverde CDM. Diversity, Function and Regulation of Cell Surface and Intracellular Immune Receptors in Solanaceae. PLANTS 2020; 9:plants9040434. [PMID: 32244634 PMCID: PMC7238418 DOI: 10.3390/plants9040434] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/14/2020] [Accepted: 03/23/2020] [Indexed: 12/29/2022]
Abstract
The first layer of the plant immune system comprises plasma membrane-localized receptor proteins and intracellular receptors of the nucleotide-binding leucine-rich repeat protein superfamily. Together, these immune receptors act as a network of surveillance machines in recognizing extracellular and intracellular pathogen invasion-derived molecules, ranging from conserved structural epitopes to virulence-promoting effectors. Successful pathogen recognition leads to physiological and molecular changes in the host plants, which are critical for counteracting and defending against biotic attack. A breadth of significant insights and conceptual advances have been derived from decades of research in various model plant species regarding the structural complexity, functional diversity, and regulatory mechanisms of these plant immune receptors. In this article, we review the current state-of-the-art of how these host surveillance proteins function and how they are regulated. We will focus on the latest progress made in plant species belonging to the Solanaceae family, because of their tremendous importance as model organisms and agriculturally valuable crops.
Collapse
Affiliation(s)
- Jong Hum Kim
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Howard Hughes Medical Institute, Michigan State University, East Lansing, MI 48824, USA
- Correspondence: (J.H.K.); (C.D.M.C.)
| | | |
Collapse
|
28
|
Topalović O, Bredenbruch S, Schleker ASS, Heuer H. Microbes Attaching to Endoparasitic Phytonematodes in Soil Trigger Plant Defense Upon Root Penetration by the Nematode. FRONTIERS IN PLANT SCIENCE 2020; 11:138. [PMID: 32161610 PMCID: PMC7052486 DOI: 10.3389/fpls.2020.00138] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/29/2020] [Indexed: 05/26/2023]
Abstract
Root-knot nematodes (Meloidogyne spp.) are among the most aggressive phytonematodes. While moving through soil to reach the roots of their host, specific microbes attach to the cuticle of the infective second-stage juveniles (J2). Reportedly, the attached microorganisms affect nematodes and reduce their performance on the host plants. We have previously shown that some non-parasitic bacterial strains isolated from the cuticle of Meloidogyne hapla in different soils affected J2 mortality, motility, hatching, and root invasion. Here we tested whether cuticle-attached microbes trigger plant defenses upon penetration of J2. In in vitro assays, M. hapla J2-attached microbes from a suppressive soil induced pathogen-associated molecular pattern-triggered immunity (PTI) in tomato roots. All tested PTI-responsive defense genes were upregulated after root invasion of J2 with attached microbes, compared to surface-sterilized J2, particularly the jasmonic acid-mediated PTI marker genes TFT1 and GRAS4.1. The strain Microbacterium sp. K6, that was isolated from the cuticle, significantly reduced root invasion when attached to the J2. Attached K6 cells supported plant defense and counteracted suppression of plant basal defense in roots by invaded J2. The plant response to the J2-attached K6 cells was stronger in leaves than in roots, and it increased from 1 to 3 days post inoculation (dpi). At 1 dpi, the plant responded to J2-attached K6 cells by ameliorating the J2-triggered down-regulation of defense genes mostly in roots, while at 3 dpi this response was systemic and more pronounced in leaves. In a reactive oxygen species (ROS) assay, the compounds released from J2 with attached K6 cells triggered a stronger ROS burst in tomato roots than the compounds from nematodes without K6, or the metabolites released from strain K6 alone. Leaves showed a 100 times more sensitive response than roots, and the metabolites of K6 with or without J2 induced strong ROS bursts. In conclusion, our results suggest the importance of microorganisms that attach to M. hapla in suppressive soil, inducing early basal defenses in plants and suppressing nematode performance in roots.
Collapse
Affiliation(s)
- Olivera Topalović
- Department of Epidemiology and Pathogen Diagnostics, Julius Kühn-Institut—Federal Research Centre for Cultivated Plants, Braunschweig, Germany
| | - Sandra Bredenbruch
- Rheinische Friedrich-Wilhelms-University of Bonn, INRES—Molecular Phytomedicine, Bonn, Germany
| | - A. Sylvia S. Schleker
- Rheinische Friedrich-Wilhelms-University of Bonn, INRES—Molecular Phytomedicine, Bonn, Germany
| | - Holger Heuer
- Department of Epidemiology and Pathogen Diagnostics, Julius Kühn-Institut—Federal Research Centre for Cultivated Plants, Braunschweig, Germany
| |
Collapse
|
29
|
Type III effectors xopN and avrBS2 contribute to the virulence of Xanthomonas oryzae pv. oryzicola strain GX01. Res Microbiol 2019; 171:102-106. [PMID: 31669369 DOI: 10.1016/j.resmic.2019.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 10/03/2019] [Accepted: 10/03/2019] [Indexed: 11/20/2022]
Abstract
Xanthomonas oryzae pv. oryzicola (Xoc) depends on its type III secretion system (T3SS) to translocate type III secreted effectors (T3SEs), including transcription activator-like effectors (TALEs) and non-transcription activator-like effectors (non-TALEs), into host cells. T3SEs can promote the colonization of Xoc and contribute to virulence by manipulating host cell physiology. We annotated 25 genes encoding non-TALEs in Xoc strain GX01, an isolate from Guangxi in the South China's rice growing region. Through systematic mutagenesis of non-TALEs, we found that xopN, the virulence contribution of which was previously unknown for Xoc, significantly contributes to the virulence of Xoc GX01, as does avrBs2.
Collapse
|
30
|
Deb S, Gupta MK, Patel HK, Sonti RV. Xanthomonas oryzae pv. oryzae XopQ protein suppresses rice immune responses through interaction with two 14-3-3 proteins but its phospho-null mutant induces rice immune responses and interacts with another 14-3-3 protein. MOLECULAR PLANT PATHOLOGY 2019; 20:976-989. [PMID: 31094082 PMCID: PMC6856769 DOI: 10.1111/mpp.12807] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Many bacterial phytopathogens employ effectors secreted through the type-III secretion system to suppress plant innate immune responses. The Xanthomonas type-III secreted non-TAL effector protein Xanthomonas outer protein Q (XopQ) exhibits homology to nucleoside hydrolases. Previous work indicated that mutations which affect the biochemical activity of XopQ fail to affect its ability to suppress rice innate immune responses, suggesting that the effector might be acting through some other pathway or mechanism. In this study, we show that XopQ interacts in yeast and in planta with two rice 14-3-3 proteins, Gf14f and Gf14g. A serine to alanine mutation (S65A) of a 14-3-3 interaction motif in XopQ abolishes the ability of XopQ to interact with the two 14-3-3 proteins and to suppress innate immunity. Surprisingly, the S65A mutant gains the ability to interact with a third 14-3-3 protein that is a negative regulator of innate immunity. The XopQS65A mutant is an inducer of rice immune responses and this property is dominant over the wild-type function of XopQ. Taken together, these results suggest that XopQ targets the rice 14-3-3 mediated immune response pathway and that its differential phosphorylation might enable interaction with alternative 14-3-3 proteins.
Collapse
Affiliation(s)
- Sohini Deb
- CSIR‐Centre for Cellular and Molecular Biology (CSIR‐CCMB)Hyderabad500007India
| | - Mahesh K. Gupta
- CSIR‐Centre for Cellular and Molecular Biology (CSIR‐CCMB)Hyderabad500007India
- Present address:
Metahelix Life Sciences Ltd.Bangalore560099India
| | - Hitendra K. Patel
- CSIR‐Centre for Cellular and Molecular Biology (CSIR‐CCMB)Hyderabad500007India
| | - Ramesh V. Sonti
- CSIR‐Centre for Cellular and Molecular Biology (CSIR‐CCMB)Hyderabad500007India
- National Institute of Plant Genome ResearchNew Delhi110067India
| |
Collapse
|
31
|
Dubrow Z, Sunitha S, Kim JG, Aakre CD, Girija AM, Sobol G, Teper D, Chen YC, Ozbaki-Yagan N, Vance H, Sessa G, Mudgett MB. Tomato 14-3-3 Proteins Are Required for Xv3 Disease Resistance and Interact with a Subset of Xanthomonas euvesicatoria Effectors. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:1301-1311. [PMID: 29947282 DOI: 10.1094/mpmi-02-18-0048-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The 14-3-3 phospho-binding proteins with scaffolding activity play central roles in the regulation of enzymes and signaling complexes in eukaryotes. In plants, 14-3-3 isoforms are required for disease resistance and key targets of pathogen effectors. Here, we examined the requirement of the tomato (Solanum lycopersicum) 14-3-3 isoform (TFT) protein family for Xv3 disease resistance in response to the bacterial pathogen Xanthomonas euvesicatoria. In addition, we determined whether TFT proteins interact with the repertoire of X. euvesicatoria type III secretion effector proteins, including AvrXv3, the elicitor of Xv3 resistance. We show that multiple TFT contribute to Xv3 resistance. We also show that one or more TFT proteins physically interact with multiple effectors (AvrXv3, XopE1, XopE2, XopN, XopO, XopQ, and XopAU). Genetic analyses indicate that none of the identified effectors interfere with AvrXv3-elicited resistance into Xv3 tomato leaves; however, XopE1, XopE2, and XopO are required to suppress symptom development in susceptible tomato leaves. Phospho-peptide mapping revealed that XopE2 is phosphorylated at multiple residues in planta and residues T66, T131, and S334 are required for maximal binding to TFT10. Together, our data support the hypothesis that multiple TFT proteins are involved in immune signaling during X. euvesicatoria infection.
Collapse
Affiliation(s)
- Zoe Dubrow
- 1 Department of Biology, Stanford University, Stanford, CA 94305-5020, U.S.A.; and
| | - Sukumaran Sunitha
- 2 School of Plant Sciences and Food Security, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Jung-Gun Kim
- 1 Department of Biology, Stanford University, Stanford, CA 94305-5020, U.S.A.; and
| | - Chris D Aakre
- 1 Department of Biology, Stanford University, Stanford, CA 94305-5020, U.S.A.; and
| | | | - Guy Sobol
- 2 School of Plant Sciences and Food Security, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Doron Teper
- 2 School of Plant Sciences and Food Security, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Yun Chu Chen
- 1 Department of Biology, Stanford University, Stanford, CA 94305-5020, U.S.A.; and
| | - Nejla Ozbaki-Yagan
- 1 Department of Biology, Stanford University, Stanford, CA 94305-5020, U.S.A.; and
| | - Hillary Vance
- 1 Department of Biology, Stanford University, Stanford, CA 94305-5020, U.S.A.; and
| | - Guido Sessa
- 2 School of Plant Sciences and Food Security, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Mary Beth Mudgett
- 1 Department of Biology, Stanford University, Stanford, CA 94305-5020, U.S.A.; and
| |
Collapse
|
32
|
Xu S, Liao CJ, Jaiswal N, Lee S, Yun DJ, Lee SY, Garvey M, Kaplan I, Mengiste T. Tomato PEPR1 ORTHOLOG RECEPTOR-LIKE KINASE1 Regulates Responses to Systemin, Necrotrophic Fungi, and Insect Herbivory. THE PLANT CELL 2018; 30:2214-2229. [PMID: 30131419 PMCID: PMC6181013 DOI: 10.1105/tpc.17.00908] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 07/23/2018] [Accepted: 08/15/2018] [Indexed: 05/20/2023]
Abstract
Endogenous peptides regulate plant immunity and growth. Systemin, a peptide specific to the Solanaceae, is known for its functions in plant responses to insect herbivory and pathogen infections. Here, we describe the identification of the tomato (Solanum lycopersicum) PEPR1/2 ORTHOLOG RECEPTOR-LIKE KINASE1 (PORK1) as the TOMATO PROTEIN KINASE1b (TPK1b) interacting protein and demonstrate its biological functions in systemin signaling and tomato immune responses. Tomato PORK1 RNA interference (RNAi) plants with significantly reduced PORK1 expression showed increased susceptibility to tobacco hornworm (Manduca sexta), reduced seedling growth sensitivity to the systemin peptide, and compromised systemin-mediated resistance to Botrytis cinerea. Systemin-induced expression of Proteinase Inhibitor II (PI-II), a classical marker for systemin signaling, was abrogated in PORK1 RNAi plants. Similarly, in response to systemin and wounding, the expression of jasmonate pathway genes was attenuated in PORK1 RNAi plants. TPK1b, a key regulator of tomato defense against B. cinerea and M. sexta, was phosphorylated by PORK1. Interestingly, wounding- and systemin-induced phosphorylation of TPK1b was attenuated when PORK1 expression was suppressed. Our data suggest that resistance to B. cinerea and M. sexta is dependent on PORK1-mediated responses to systemin and subsequent phosphorylation of TPK1b. Altogether, PORK1 regulates tomato systemin, wounding, and immune responses.
Collapse
Affiliation(s)
- Siming Xu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907
| | - Chao-Jan Liao
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907
| | - Namrata Jaiswal
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907
| | - Sanghun Lee
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907
| | - Dae-Jin Yun
- Department of Biomedical Science and Engineering, Konkuk University, Gwangjin-gu, Seoul 05029, South Korea
| | - Sang Yeol Lee
- Division of Applied Life Sciences (BK 21 Program), Gyeongsang National University, Jinju City 660-701, Korea
| | - Michael Garvey
- Department of Entomology, Smith Hall, Purdue University, West Lafayette, Indiana 47907-2089
| | - Ian Kaplan
- Department of Biomedical Science and Engineering, Konkuk University, Gwangjin-gu, Seoul 05029, South Korea
| | - Tesfaye Mengiste
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
33
|
Abstract
Identifying protein-protein interactions between the machine components of bacterial secretion systems and their cognate substrates is essential. Establishing which component and substrate interactions are direct or indirect further facilitates (1) advancing the architecture and assembly of the machines and (2) understanding the substrates' translocation mechanistics. Currently, though biochemical means exist for identifying such direct interactions, they primarily remain in vitro and are quite labor intensive. Thus, adopting genetic approaches to help visualize these interactions in vivo is quick and advantageous. Here I describe bimolecular fluorescence complementation and cytology-based two-hybrid assays that could easily be adopted to understand the bacterial secretions systems.
Collapse
|
34
|
Medina CA, Reyes PA, Trujillo CA, Gonzalez JL, Bejarano DA, Montenegro NA, Jacobs JM, Joe A, Restrepo S, Alfano JR, Bernal A. The role of type III effectors from Xanthomonas axonopodis pv. manihotis in virulence and suppression of plant immunity. MOLECULAR PLANT PATHOLOGY 2018; 19:593-606. [PMID: 28218447 PMCID: PMC6638086 DOI: 10.1111/mpp.12545] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 01/25/2017] [Accepted: 02/15/2017] [Indexed: 05/29/2023]
Abstract
Xanthomonas axonopodis pv. manihotis (Xam) causes cassava bacterial blight, the most important bacterial disease of cassava. Xam, like other Xanthomonas species, requires type III effectors (T3Es) for maximal virulence. Xam strain CIO151 possesses 17 predicted T3Es belonging to the Xanthomonas outer protein (Xop) class. This work aimed to characterize nine Xop effectors present in Xam CIO151 for their role in virulence and modulation of plant immunity. Our findings demonstrate the importance of XopZ, XopX, XopAO1 and AvrBs2 for full virulence, as well as a redundant function in virulence between XopN and XopQ in susceptible cassava plants. We tested their role in pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity (ETI) using heterologous systems. AvrBs2, XopR and XopAO1 are capable of suppressing PTI. ETI suppression activity was only detected for XopE4 and XopAO1. These results demonstrate the overall importance and diversity in functions of major virulence effectors AvrBs2 and XopAO1 in Xam during cassava infection.
Collapse
Affiliation(s)
- Cesar Augusto Medina
- Universidad de los Andes, Laboratorio de Micología y Fitopatología de la Universidad de los Andes111711 BogotáColombia
| | - Paola Andrea Reyes
- Universidad de los Andes, Laboratorio de Micología y Fitopatología de la Universidad de los Andes111711 BogotáColombia
| | - Cesar Augusto Trujillo
- Universidad de los Andes, Laboratorio de Micología y Fitopatología de la Universidad de los Andes111711 BogotáColombia
| | - Juan Luis Gonzalez
- Universidad de los Andes, Laboratorio de Micología y Fitopatología de la Universidad de los Andes111711 BogotáColombia
| | - David Alejandro Bejarano
- Universidad de los Andes, Laboratorio de Micología y Fitopatología de la Universidad de los Andes111711 BogotáColombia
| | - Nathaly Andrea Montenegro
- Universidad de los Andes, Laboratorio de Micología y Fitopatología de la Universidad de los Andes111711 BogotáColombia
| | - Jonathan M. Jacobs
- Institut de Recherche pour le De´veloppement (IRD), CiradUniversite´ Montpellier, Interactions Plantes Microorganismes Environnement (IPME), 34394MontpellierFrance
| | - Anna Joe
- Center for Plant Science InnovationUniversity of NebraskaLincolnNE68588‐0660USA
- Department of Plant PathologyUniversity of NebraskaLincolnNE68588‐0722USA
- Present address:
Department of Plant Pathology and the Genome CenterUniversity of California, Davis, CA 95616, USA, and Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National LaboratoryBerkeleyCA94720USA
| | - Silvia Restrepo
- Universidad de los Andes, Laboratorio de Micología y Fitopatología de la Universidad de los Andes111711 BogotáColombia
| | - James R. Alfano
- Center for Plant Science InnovationUniversity of NebraskaLincolnNE68588‐0660USA
- Department of Plant PathologyUniversity of NebraskaLincolnNE68588‐0722USA
| | - Adriana Bernal
- Universidad de los Andes, Laboratorio de Micología y Fitopatología de la Universidad de los Andes111711 BogotáColombia
- Present address:
Novozymes, Inc., DavisCA95618USA
| |
Collapse
|
35
|
Büttner D. Behind the lines-actions of bacterial type III effector proteins in plant cells. FEMS Microbiol Rev 2018; 40:894-937. [PMID: 28201715 PMCID: PMC5091034 DOI: 10.1093/femsre/fuw026] [Citation(s) in RCA: 187] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/31/2016] [Accepted: 07/03/2016] [Indexed: 01/30/2023] Open
Abstract
Pathogenicity of most Gram-negative plant-pathogenic bacteria depends on the type III secretion (T3S) system, which translocates bacterial effector proteins into plant cells. Type III effectors modulate plant cellular pathways to the benefit of the pathogen and promote bacterial multiplication. One major virulence function of type III effectors is the suppression of plant innate immunity, which is triggered upon recognition of pathogen-derived molecular patterns by plant receptor proteins. Type III effectors also interfere with additional plant cellular processes including proteasome-dependent protein degradation, phytohormone signaling, the formation of the cytoskeleton, vesicle transport and gene expression. This review summarizes our current knowledge on the molecular functions of type III effector proteins with known plant target molecules. Furthermore, plant defense strategies for the detection of effector protein activities or effector-triggered alterations in plant targets are discussed.
Collapse
Affiliation(s)
- Daniela Büttner
- Genetics Department, Institute of Biology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
36
|
Teper D, Girija AM, Bosis E, Popov G, Savidor A, Sessa G. The Xanthomonas euvesicatoria type III effector XopAU is an active protein kinase that manipulates plant MAP kinase signaling. PLoS Pathog 2018; 14:e1006880. [PMID: 29377937 PMCID: PMC5805367 DOI: 10.1371/journal.ppat.1006880] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 02/08/2018] [Accepted: 01/15/2018] [Indexed: 11/19/2022] Open
Abstract
The Gram-negative bacterium Xanthomonas euvesicatoria (Xe) is the causal agent of bacterial spot disease of pepper and tomato. Xe delivers effector proteins into host cells through the type III secretion system to promote disease. Here, we show that the Xe effector XopAU, which is conserved in numerous Xanthomonas species, is a catalytically active protein kinase and contributes to the development of disease symptoms in pepper plants. Agrobacterium-mediated expression of XopAU in host and non-host plants activated typical defense responses, including MAP kinase phosphorylation, accumulation of pathogenesis-related (PR) proteins and elicitation of cell death, that were dependent on the kinase activity of the effector. XopAU-mediated cell death was not dependent on early signaling components of effector-triggered immunity and was also observed when the effector was delivered into pepper leaves by Xanthomonas campestris pv. campestris, but not by Xe. Protein-protein interaction studies in yeast and in planta revealed that XopAU physically interacts with components of plant immunity-associated MAP kinase cascades. Remarkably, XopAU directly phosphorylated MKK2 in vitro and enhanced its phosphorylation at multiple sites in planta. Consistent with the notion that MKK2 is a target of XopAU, silencing of the MKK2 homolog or overexpression of the catalytically inactive mutant MKK2K99R in N. benthamiana plants reduced XopAU-mediated cell death and MAPK phosphorylation. Furthermore, yeast co-expressing XopAU and MKK2 displayed reduced growth and this phenotype was dependent on the kinase activity of both proteins. Together, our results support the conclusion that XopAU contributes to Xe disease symptoms in pepper plants and manipulates host MAPK signaling through phosphorylation and activation of MKK2.
Collapse
Affiliation(s)
- Doron Teper
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | | | - Eran Bosis
- Department of Biotechnology Engineering, ORT Braude College, Karmiel, Israel
| | - Georgy Popov
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Alon Savidor
- The Nancy & Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Guido Sessa
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
37
|
Mukhtar M, McCormack M, Argueso C, Pajerowska-Mukhtar K. Pathogen Tactics to Manipulate Plant Cell Death. Curr Biol 2016; 26:R608-R619. [DOI: 10.1016/j.cub.2016.02.051] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
38
|
Müller OA, Grau J, Thieme S, Prochaska H, Adlung N, Sorgatz A, Bonas U. Genome-Wide Identification and Validation of Reference Genes in Infected Tomato Leaves for Quantitative RT-PCR Analyses. PLoS One 2015; 10:e0136499. [PMID: 26313760 PMCID: PMC4552032 DOI: 10.1371/journal.pone.0136499] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 08/04/2015] [Indexed: 11/18/2022] Open
Abstract
The Gram-negative bacterium Xanthomonas campestris pv. vesicatoria (Xcv) causes bacterial spot disease of pepper and tomato by direct translocation of type III effector proteins into the plant cell cytosol. Once in the plant cell the effectors interfere with host cell processes and manipulate the plant transcriptome. Quantitative RT-PCR (qRT-PCR) is usually the method of choice to analyze transcriptional changes of selected plant genes. Reliable results depend, however, on measuring stably expressed reference genes that serve as internal normalization controls. We identified the most stably expressed tomato genes based on microarray analyses of Xcv-infected tomato leaves and evaluated the reliability of 11 genes for qRT-PCR studies in comparison to four traditionally employed reference genes. Three different statistical algorithms, geNorm, NormFinder and BestKeeper, concordantly determined the superiority of the newly identified reference genes. The most suitable reference genes encode proteins with homology to PHD finger family proteins and the U6 snRNA-associated protein LSm7. In addition, we identified pepper orthologs and validated several genes as reliable normalization controls for qRT-PCR analysis of Xcv-infected pepper plants. The newly identified reference genes will be beneficial for future qRT-PCR studies of the Xcv-tomato and Xcv-pepper pathosystems, as well as for the identification of suitable normalization controls for qRT-PCR studies of other plant-pathogen interactions, especially, if related plant species are used in combination with bacterial pathogens.
Collapse
Affiliation(s)
- Oliver A. Müller
- Institute for Biology, Department of Genetics, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Jan Grau
- Institute for Informatics, Department of Bioinformatics, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Sabine Thieme
- Institute for Biology, Department of Genetics, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Heike Prochaska
- Institute for Biology, Department of Genetics, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Norman Adlung
- Institute for Biology, Department of Genetics, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Anika Sorgatz
- Institute for Biology, Department of Genetics, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Ulla Bonas
- Institute for Biology, Department of Genetics, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- * E-mail:
| |
Collapse
|
39
|
Hurley B, Subramaniam R, Guttman DS, Desveaux D. Proteomics of effector-triggered immunity (ETI) in plants. Virulence 2015; 5:752-60. [PMID: 25513776 PMCID: PMC4189881 DOI: 10.4161/viru.36329] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Effector-triggered immunity (ETI) was originally termed gene-for-gene resistance and dates back to fundamental observations of flax resistance to rust fungi by Harold Henry Flor in the 1940s. Since then, genetic and biochemical approaches have defined our current understanding of how plant “resistance” proteins recognize microbial effectors. More recently, proteomic approaches have expanded our view of the protein landscape during ETI and contributed significant advances to our mechanistic understanding of ETI signaling. Here we provide an overview of proteomic techniques that have been used to study plant ETI including both global and targeted approaches. We discuss the challenges associated with ETI proteomics and highlight specific examples from the literature, which demonstrate how proteomics is advancing the ETI research field.
Collapse
Affiliation(s)
- Brenden Hurley
- a Department of Cell & Systems Biology; University of Toronto; Toronto, ON Canada
| | | | | | | |
Collapse
|
40
|
Manosalva P, Manohar M, von Reuss SH, Chen S, Koch A, Kaplan F, Choe A, Micikas RJ, Wang X, Kogel KH, Sternberg PW, Williamson VM, Schroeder FC, Klessig DF. Conserved nematode signalling molecules elicit plant defenses and pathogen resistance. Nat Commun 2015; 6:7795. [PMID: 26203561 PMCID: PMC4525156 DOI: 10.1038/ncomms8795] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 06/10/2015] [Indexed: 01/27/2023] Open
Abstract
Plant-defense responses are triggered by perception of conserved microbe-associated molecular patterns (MAMPs), for example, flagellin or peptidoglycan. However, it remained unknown whether plants can detect conserved molecular patterns derived from plant-parasitic animals, including nematodes. Here we show that several genera of plant-parasitic nematodes produce small molecules called ascarosides, an evolutionarily conserved family of nematode pheromones. Picomolar to micromolar concentrations of ascr#18, the major ascaroside in plant-parasitic nematodes, induce hallmark defense responses including the expression of genes associated with MAMP-triggered immunity, activation of mitogen-activated protein kinases, as well as salicylic acid- and jasmonic acid-mediated defense signalling pathways. Ascr#18 perception increases resistance in Arabidopsis, tomato, potato and barley to viral, bacterial, oomycete, fungal and nematode infections. These results indicate that plants recognize ascarosides as a conserved molecular signature of nematodes. Using small-molecule signals such as ascarosides to activate plant immune responses has potential utility to improve economic and environmental sustainability of agriculture.
Collapse
Affiliation(s)
- Patricia Manosalva
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853, USA
- Department of Plant Pathology and Microbiology, University of California Riverside, Riverside, California 92521, USA
| | - Murli Manohar
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853, USA
| | | | - Shiyan Chen
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York 14853, USA
| | - Aline Koch
- Research Centre for BioSystems, Land Use, and Nutrition, Justus Liebig University, Giessen D-35392, Germany
| | - Fatma Kaplan
- Kaplan Schiller Research, LLC, Gainesville, Florida 32604, USA
| | - Andrea Choe
- Howard Hughes Medical Institute and Biology Division, California Institute of Technology, Pasadena, California 91125, USA
| | - Robert J. Micikas
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853, USA
| | - Xiaohong Wang
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York 14853, USA
- Robert W. Holley Center for Agriculture and Health, US Department of Agricultural Research Service, Ithaca, New York 14853, USA
| | - Karl-Heinz Kogel
- Research Centre for BioSystems, Land Use, and Nutrition, Justus Liebig University, Giessen D-35392, Germany
| | - Paul W. Sternberg
- Howard Hughes Medical Institute and Biology Division, California Institute of Technology, Pasadena, California 91125, USA
| | - Valerie M. Williamson
- Department of Plant Pathology, University of California, Davis, California 95616, USA
| | - Frank C. Schroeder
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853, USA
| | - Daniel F. Klessig
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853, USA
| |
Collapse
|
41
|
Manosalva P, Manohar M, von Reuss SH, Chen S, Koch A, Kaplan F, Choe A, Micikas RJ, Wang X, Kogel KH, Sternberg PW, Williamson VM, Schroeder FC, Klessig DF. Conserved nematode signalling molecules elicit plant defenses and pathogen resistance. Nat Commun 2015. [PMID: 26203561 DOI: 10.1038/ncomss8795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
Plant-defense responses are triggered by perception of conserved microbe-associated molecular patterns (MAMPs), for example, flagellin or peptidoglycan. However, it remained unknown whether plants can detect conserved molecular patterns derived from plant-parasitic animals, including nematodes. Here we show that several genera of plant-parasitic nematodes produce small molecules called ascarosides, an evolutionarily conserved family of nematode pheromones. Picomolar to micromolar concentrations of ascr#18, the major ascaroside in plant-parasitic nematodes, induce hallmark defense responses including the expression of genes associated with MAMP-triggered immunity, activation of mitogen-activated protein kinases, as well as salicylic acid- and jasmonic acid-mediated defense signalling pathways. Ascr#18 perception increases resistance in Arabidopsis, tomato, potato and barley to viral, bacterial, oomycete, fungal and nematode infections. These results indicate that plants recognize ascarosides as a conserved molecular signature of nematodes. Using small-molecule signals such as ascarosides to activate plant immune responses has potential utility to improve economic and environmental sustainability of agriculture.
Collapse
Affiliation(s)
- Patricia Manosalva
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853, USA
- Department of Plant Pathology and Microbiology, University of California Riverside, Riverside, California 92521, USA
| | - Murli Manohar
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853, USA
| | | | - Shiyan Chen
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York 14853, USA
| | - Aline Koch
- Research Centre for BioSystems, Land Use, and Nutrition, Justus Liebig University, Giessen D-35392, Germany
| | - Fatma Kaplan
- Kaplan Schiller Research, LLC, Gainesville, Florida 32604, USA
| | - Andrea Choe
- Howard Hughes Medical Institute and Biology Division, California Institute of Technology, Pasadena, California 91125, USA
| | - Robert J Micikas
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853, USA
| | - Xiaohong Wang
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York 14853, USA
- Robert W. Holley Center for Agriculture and Health, US Department of Agricultural Research Service, Ithaca, New York 14853, USA
| | - Karl-Heinz Kogel
- Research Centre for BioSystems, Land Use, and Nutrition, Justus Liebig University, Giessen D-35392, Germany
| | - Paul W Sternberg
- Howard Hughes Medical Institute and Biology Division, California Institute of Technology, Pasadena, California 91125, USA
| | - Valerie M Williamson
- Department of Plant Pathology, University of California, Davis, California 95616, USA
| | - Frank C Schroeder
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853, USA
| | - Daniel F Klessig
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853, USA
| |
Collapse
|
42
|
Lozano-Durán R, Robatzek S. 14-3-3 proteins in plant-pathogen interactions. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:511-8. [PMID: 25584723 DOI: 10.1094/mpmi-10-14-0322-cr] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
14-3-3 proteins define a eukaryotic-specific protein family with a general role in signal transduction. Primarily, 14-3-3 proteins act as phosphosensors, binding phosphorylated client proteins and modulating their functions. Since phosphorylation regulates a plethora of different physiological responses in plants, 14-3-3 proteins play roles in multiple signaling pathways, including those controlling metabolism, hormone signaling, cell division, and responses to abiotic and biotic stimuli. Increasing evidence supports a prominent role of 14-3-3 proteins in regulating plant immunity against pathogens at various levels. In this review, potential links between 14-3-3 function and the regulation of plant-pathogen interactions are discussed, with a special focus on the regulation of 14-3-3 proteins in response to pathogen perception, interactions between 14-3-3 proteins and defense-related proteins, and 14-3-3 proteins as targets of pathogen effectors.
Collapse
Affiliation(s)
- Rosa Lozano-Durán
- 1The Sainsbury Laboratory, Norwich Research Park, NR4 7UH Norwich, U.K
- 2Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, 3888 Chenhua Rd, Shanghai 201602, China
| | - Silke Robatzek
- 1The Sainsbury Laboratory, Norwich Research Park, NR4 7UH Norwich, U.K
| |
Collapse
|
43
|
Bigeard J, Colcombet J, Hirt H. Signaling mechanisms in pattern-triggered immunity (PTI). MOLECULAR PLANT 2015; 8:521-39. [PMID: 25744358 DOI: 10.1016/j.molp.2014.12.022] [Citation(s) in RCA: 574] [Impact Index Per Article: 57.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 12/17/2014] [Accepted: 12/30/2014] [Indexed: 05/20/2023]
Abstract
In nature, plants constantly have to face pathogen attacks. However, plant disease rarely occurs due to efficient immune systems possessed by the host plants. Pathogens are perceived by two different recognition systems that initiate the so-called pattern-triggered immunity (PTI) and effector-triggered immunity (ETI), both of which are accompanied by a set of induced defenses that usually repel pathogen attacks. Here we discuss the complex network of signaling pathways occurring during PTI, focusing on the involvement of mitogen-activated protein kinases.
Collapse
Affiliation(s)
- Jean Bigeard
- Unité de Recherche en Génomique Végétale (URGV), UMR INRA/CNRS/Université d'Evry Val d'Essonne/Saclay Plant Sciences, 2 rue Gaston Crémieux, 91057 Evry, France
| | - Jean Colcombet
- Unité de Recherche en Génomique Végétale (URGV), UMR INRA/CNRS/Université d'Evry Val d'Essonne/Saclay Plant Sciences, 2 rue Gaston Crémieux, 91057 Evry, France
| | - Heribert Hirt
- Center for Desert Agriculture, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.
| |
Collapse
|
44
|
Targeting of plant pattern recognition receptor-triggered immunity by bacterial type-III secretion system effectors. Curr Opin Microbiol 2015; 23:14-22. [DOI: 10.1016/j.mib.2014.10.009] [Citation(s) in RCA: 190] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 10/16/2014] [Accepted: 10/24/2014] [Indexed: 01/08/2023]
|
45
|
Li X, Zhang H, Tian L, Huang L, Liu S, Li D, Song F. Tomato SlRbohB, a member of the NADPH oxidase family, is required for disease resistance against Botrytis cinerea and tolerance to drought stress. FRONTIERS IN PLANT SCIENCE 2015; 235:14-24. [PMID: 26157450 DOI: 10.1016/j.plantsci.2015.02.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 02/21/2015] [Accepted: 02/21/2015] [Indexed: 05/13/2023]
Abstract
NADPH oxidases (also known as respiratory burst oxidase homologs, Rbohs) are key enzymes that catalyze the generation of reactive oxygen species (ROS) in plants. In the present study, eight SlRboh genes were identified in tomato and their possible involvement in resistance to Botrytis cinerea and drought tolerance was examined. Expression of SlRbohs was induced by B. cinerea and Pseudomonas syringae pv. tomato but displayed distinct patterns. Virus-induced gene silencing based silencing of SlRbohB resulted in reduced resistance to B. cinerea but silencing of other SlRbohs did not affect the resistance. Compared to non-silenced plants, the SlRbohB-silenced plants accumulated more ROS and displayed attenuated expression of defense genes after infection with B. cinerea. Silencing of SlRbohB also suppressed flg22-induced ROS burst and the expression of SlLrr22, a marker gene related to PAMP-triggered immunity (PTI). Transient expression of SlRbohB in Nicotiana benthamiana led to enhanced resistance to B. cinerea. Furthermore, silencing of SlRbohB resulted in decreased drought tolerance, accelerated water loss in leaves and the altered expression of drought-responsive genes. Our data demonstrate that SlRbohB positively regulates the resistance to B. cinerea, flg22-induced PTI, and drought tolerance in tomato.
Collapse
Affiliation(s)
- Xiaohui Li
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou China
| | - Huijuan Zhang
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou China
| | - Limei Tian
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou China
| | - Lei Huang
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou China
| | - Shixia Liu
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou China
| | - Dayong Li
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou China
| | - Fengming Song
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou China
| |
Collapse
|
46
|
Li X, Zhang H, Tian L, Huang L, Liu S, Li D, Song F. Tomato SlRbohB, a member of the NADPH oxidase family, is required for disease resistance against Botrytis cinerea and tolerance to drought stress. FRONTIERS IN PLANT SCIENCE 2015; 6:463. [PMID: 26157450 PMCID: PMC4477072 DOI: 10.3389/fpls.2015.00463] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 06/11/2015] [Indexed: 05/19/2023]
Abstract
NADPH oxidases (also known as respiratory burst oxidase homologs, Rbohs) are key enzymes that catalyze the generation of reactive oxygen species (ROS) in plants. In the present study, eight SlRboh genes were identified in tomato and their possible involvement in resistance to Botrytis cinerea and drought tolerance was examined. Expression of SlRbohs was induced by B. cinerea and Pseudomonas syringae pv. tomato but displayed distinct patterns. Virus-induced gene silencing based silencing of SlRbohB resulted in reduced resistance to B. cinerea but silencing of other SlRbohs did not affect the resistance. Compared to non-silenced plants, the SlRbohB-silenced plants accumulated more ROS and displayed attenuated expression of defense genes after infection with B. cinerea. Silencing of SlRbohB also suppressed flg22-induced ROS burst and the expression of SlLrr22, a marker gene related to PAMP-triggered immunity (PTI). Transient expression of SlRbohB in Nicotiana benthamiana led to enhanced resistance to B. cinerea. Furthermore, silencing of SlRbohB resulted in decreased drought tolerance, accelerated water loss in leaves and the altered expression of drought-responsive genes. Our data demonstrate that SlRbohB positively regulates the resistance to B. cinerea, flg22-induced PTI, and drought tolerance in tomato.
Collapse
Affiliation(s)
| | | | | | | | | | - Dayong Li
- *Correspondence: Dayong Li, National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China,
| | | |
Collapse
|
47
|
Mesarich CH, Bowen JK, Hamiaux C, Templeton MD. Repeat-containing protein effectors of plant-associated organisms. FRONTIERS IN PLANT SCIENCE 2015; 6:872. [PMID: 26557126 PMCID: PMC4617103 DOI: 10.3389/fpls.2015.00872] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 10/01/2015] [Indexed: 05/10/2023]
Abstract
Many plant-associated organisms, including microbes, nematodes, and insects, deliver effector proteins into the apoplast, vascular tissue, or cell cytoplasm of their prospective hosts. These effectors function to promote colonization, typically by altering host physiology or by modulating host immune responses. The same effectors however, can also trigger host immunity in the presence of cognate host immune receptor proteins, and thus prevent colonization. To circumvent effector-triggered immunity, or to further enhance host colonization, plant-associated organisms often rely on adaptive effector evolution. In recent years, it has become increasingly apparent that several effectors of plant-associated organisms are repeat-containing proteins (RCPs) that carry tandem or non-tandem arrays of an amino acid sequence or structural motif. In this review, we highlight the diverse roles that these repeat domains play in RCP effector function. We also draw attention to the potential role of these repeat domains in adaptive evolution with regards to RCP effector function and the evasion of effector-triggered immunity. The aim of this review is to increase the profile of RCP effectors from plant-associated organisms.
Collapse
Affiliation(s)
- Carl H. Mesarich
- School of Biological Sciences, The University of AucklandAuckland, New Zealand
- Host–Microbe Interactions, Bioprotection, The New Zealand Institute for Plant & Food Research LtdAuckland, New Zealand
- *Correspondence: Carl H. Mesarich
| | - Joanna K. Bowen
- Host–Microbe Interactions, Bioprotection, The New Zealand Institute for Plant & Food Research LtdAuckland, New Zealand
| | - Cyril Hamiaux
- Human Responses, The New Zealand Institute for Plant & Food Research LimitedAuckland, New Zealand
| | - Matthew D. Templeton
- School of Biological Sciences, The University of AucklandAuckland, New Zealand
- Host–Microbe Interactions, Bioprotection, The New Zealand Institute for Plant & Food Research LtdAuckland, New Zealand
| |
Collapse
|
48
|
Li X, Huang L, Hong Y, Zhang Y, Liu S, Li D, Zhang H, Song F. Co-silencing of tomato S-adenosylhomocysteine hydrolase genes confers increased immunity against Pseudomonas syringae pv. tomato DC3000 and enhanced tolerance to drought stress. FRONTIERS IN PLANT SCIENCE 2015; 6:717. [PMID: 26442031 PMCID: PMC4561804 DOI: 10.3389/fpls.2015.00717] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 08/27/2015] [Indexed: 05/08/2023]
Abstract
S-adenosylhomocysteine hydrolase (SAHH), catalyzing the reversible hydrolysis of S-adenosylhomocysteine (SAH) to adenosine and homocysteine, is a key enzyme that maintain the cellular methylation potential in all organisms. We report here the biological functions of tomato SlSAHHs in stress response. The tomato genome contains three SlSAHH genes that encode SlSAHH proteins with high level of sequence identity. qRT-PCR analysis revealed that SlSAHHs responded with distinct expression induction patterns to Pseudomonas syringae pv. tomato (Pst) DC3000 and Botrytis cinerea as well as to defense signaling hormones such as salicylic acid, jasmonic acid and a precursor of ethylene. Virus-induced gene silencing-based knockdown of individual SlSAHH gene did not affect the growth performance and the response to Pst DC3000. However, co-silencing of three SlSAHH genes using a conserved sequence led to significant inhibition of vegetable growth. The SlSAHH-co-silenced plants displayed increased resistance to Pst DC3000 but did not alter the resistance to B. cinerea. Co-silencing of SlSAHHs resulted in constitutively activated defense responses including elevated SA level, upregulated expression of defense-related and PAMP-triggered immunity marker genes and increased callose deposition and H2O2 accumulation. Furthermore, the SlSAHH-co-silenced plants also exhibited enhanced drought stress tolerance although they had relatively small roots. These data demonstrate that, in addition to the functions in growth and development, SAHHs also play important roles in regulating biotic and abiotic stress responses in plants.
Collapse
Affiliation(s)
- Xiaohui Li
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University Hangzhou, China
| | - Lei Huang
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University Hangzhou, China
| | - Yongbo Hong
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University Hangzhou, China
| | - Yafen Zhang
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University Hangzhou, China
| | - Shixia Liu
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University Hangzhou, China
| | - Dayong Li
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University Hangzhou, China
| | - Huijuan Zhang
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University Hangzhou, China
| | - Fengming Song
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University Hangzhou, China
| |
Collapse
|
49
|
Bekešová S, Komis G, Křenek P, Vyplelová P, Ovečka M, Luptovčiak I, Illés P, Kuchařová A, Šamaj J. Monitoring protein phosphorylation by acrylamide pendant Phos-Tag™ in various plants. FRONTIERS IN PLANT SCIENCE 2015; 6:336. [PMID: 26029234 PMCID: PMC4429547 DOI: 10.3389/fpls.2015.00336] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 04/28/2015] [Indexed: 05/20/2023]
Abstract
The aim of the present study is to rationalize acrylamide pendant Phos-Tag™ in-gel discrimination of phosphorylated and non-phosphorylated plant protein species with standard immunoblot analysis, and optimize sample preparation, efficient electrophoretic separation and transfer. We tested variants of the method including extraction buffers suitable for preservation of phosphorylated protein species in crude extracts from plants and we addressed the importance of the cation (Mn(2+) or Zn(2+)) used in the gel recipe for efficient transfer to PVDF membranes for further immunoblot analysis. We demonstrate the monitoring of Medicago sativa stress-induced mitogen activated protein kinase (SIMK) in stress-treated wild type plants and transgenic SIMKK RNAi line. We further show the hyperosmotically-induced phosphorylation of the previously uncharacterized HvMPK4 of barley. The method is validated using inducible phosphorylation of barley and wheat α-tubulin and of Arabidopsis MPK6. Acrylamide pendant Phos-Tag™offers a flexible tool for studying protein phosphorylation in crops and Arabidopsis circumventing radioactive labeling and the use of phosphorylation specific antibodies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jozef Šamaj
- *Correspondence: Jozef Šamaj, Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Šlechtitelů 27, Olomouc 783 71, Czech Republic
| |
Collapse
|
50
|
Lozano-Durán R, Bourdais G, He SY, Robatzek S. The bacterial effector HopM1 suppresses PAMP-triggered oxidative burst and stomatal immunity. THE NEW PHYTOLOGIST 2014; 202:259-269. [PMID: 24372399 DOI: 10.1111/nph.12651] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 11/08/2013] [Indexed: 05/19/2023]
Abstract
Successful pathogens counter immunity at multiple levels, mostly through the action of effectors. Pseudomonas syringae secretes c. 30 effectors, some of which have been shown to inhibit plant immunity triggered upon perception of conserved pathogen-associated molecular patterns (PAMPs). One of these is HopM1, which impairs late immune responses through targeting the vesicle trafficking-related AtMIN7 for degradation. Here, we report that in planta expressed HopM1 suppresses two early PAMP-triggered responses, the oxidative burst and stomatal immunity, both of which seem to require proteasomal function but are independent of AtMIN7. Notably, a 14-3-3 protein, GRF8/AtMIN10, was found previously to be a target of HopM1 in vivo, and expression of HopM1 mimics the effect of chemically and genetically disrupting 14-3-3 function. Our data further show that the function of 14-3-3 proteins is required for PAMP-triggered oxidative burst and stomatal immunity, and chemical-mediated disruption of the 14-3-3 interactions with their client proteins restores virulence of a HopM1-deficient P. syringae mutant, providing a link between HopM1 and the involvement of 14-3-3 proteins in plant immunity. Taken together, these results unveil the impact of HopM1 on the PAMP-triggered oxidative burst and stomatal immunity in an AtMIN7-independent manner, most likely acting at the function of (a) 14-3-3 protein(s).
Collapse
Affiliation(s)
- Rosa Lozano-Durán
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Gildas Bourdais
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Sheng Yang He
- Department of Energy Plant Research Laboratory, Howard Hughes Medical Institute-Gordon and Betty Moore Foundation, Michigan State University, East Lansing, MI, 48824, USA
| | - Silke Robatzek
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK
| |
Collapse
|