1
|
Sgroi G, D’Auria LJ, Lucibelli MG, Mancusi A, Proroga YTR, Esposito M, Rea S, Signorelli D, Gargano F, D’Alessio N, Manoj RRS, Khademi P, Rofrano G. Bees on the run: Nosema spp. (Microsporidia) in Apis mellifera and related products, Italy. Front Vet Sci 2025; 11:1530169. [PMID: 39834918 PMCID: PMC11743364 DOI: 10.3389/fvets.2024.1530169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 12/16/2024] [Indexed: 01/22/2025] Open
Abstract
Introduction The decline of the European/western honeybee (Apis mellifera) population is on account of a plethora of microorganisms, such as Nosema apis and Nosema ceranae, two microsporidian fungi responsible of nosemosis that affects welfare and production of the bee industry. Accordingly, this study aimed to investigate the presence of both pathogens in bees, pollen and honey from apiaries in Southwestern Italy. Methods From March to July 2022 and 2023, apiaries (n = 10) were selected and classified as High Impact Areas (HIAs, n = 5) and Low Impact Areas (LIAs, n = 5) according to a 5-point environmental risk index based on factors affecting bee health sand related productions. Bee, pollen and honey samples, were collected and tested for Nosema spp. DNA by specific PCR protocols targeting the 16S rRNA gene. Signs/symptoms of nosemosis were monitored and collected by the cooperation of beekeepers. Results Out of 10 apiaries, 6 (i.e., 60%, 95% CI: 31.3-83.2) tested positive for at least one sample to Nosema spp. DNA, being 2 positives for N. apis, 2 for N. ceranae and 2 co-infected (i.e., 20%, 5.7-51.0). Based on the biological samples, honey was positive for N. apis in one apiary, pollen for N. ceranae in two apiaries, and bees for N. apis in 3 apiaries, N. ceranae in 1 apiary, and both species in 1 apiary. In all the apiaries positive to N. apis and N. ceranae, high mortality and low honey production were observed. A higher risk of infection was observed in apiaries from HIAs (OR = 6.00). The sequences of N. apis and N. ceranae had 99.5-100% homology with those in the GenBank database. Whereas all sequences of N. apis were identical to each other, four sequences types of N. ceranae characterized by single nucleotide polymorphisms (SNPs) were identified. The computation of polymorphisms revealed high haplotype diversity (i.e., Hd = 1.000) and low nucleotide diversity (i.e., Pi = 0.00913) of N. ceranae sequence types. Discussion This study reveals a high circulation of N. apis and N. ceranae in Southwestern Italy, indicating the need for improved monitoring of these microsporidia to protect bee welfare and bee industry.
Collapse
Affiliation(s)
- Giovanni Sgroi
- Experimental Zooprophylactic Institute of Southern Italy, Portici, Naples, Italy
| | - Luigi Jacopo D’Auria
- Experimental Zooprophylactic Institute of Southern Italy, Portici, Naples, Italy
- Centro di Referenza Nazionale per l’analisi e lo studio delle correlazioni tra ambiente, animali e uomini, Portici, Naples, Italy
| | | | - Andrea Mancusi
- Experimental Zooprophylactic Institute of Southern Italy, Portici, Naples, Italy
| | | | - Mauro Esposito
- Experimental Zooprophylactic Institute of Southern Italy, Portici, Naples, Italy
- Centro di Referenza Nazionale per l’analisi e lo studio delle correlazioni tra ambiente, animali e uomini, Portici, Naples, Italy
| | - Simona Rea
- Experimental Zooprophylactic Institute of Southern Italy, Portici, Naples, Italy
| | - Daniel Signorelli
- Department of Cultural Heritage Sciences, University of Salerno, Salerno, Italy
| | - Federica Gargano
- Experimental Zooprophylactic Institute of Southern Italy, Portici, Naples, Italy
| | - Nicola D’Alessio
- Experimental Zooprophylactic Institute of Southern Italy, Portici, Naples, Italy
| | | | - Peyman Khademi
- Department of Microbiology and Food Hygiene, University of Lorestan, Khorramabad, Iran
| | - Giuseppe Rofrano
- Experimental Zooprophylactic Institute of Southern Italy, Portici, Naples, Italy
- Centro di Referenza Nazionale per l’analisi e lo studio delle correlazioni tra ambiente, animali e uomini, Portici, Naples, Italy
| |
Collapse
|
2
|
Gang SS, Lažetić V. Microsporidia: Pervasive natural pathogens of Caenorhabditis elegans and related nematodes. J Eukaryot Microbiol 2024; 71:e13027. [PMID: 38702921 DOI: 10.1111/jeu.13027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 02/02/2024] [Indexed: 05/06/2024]
Abstract
The nematode Caenorhabditis elegans is an invaluable host model for studying infections caused by various pathogens, including microsporidia. Microsporidia represent the first natural pathogens identified in C. elegans, revealing the previously unknown Nematocida genus of microsporidia. Following this discovery, the utilization of nematodes as a model host has rapidly expanded our understanding of microsporidia biology and has provided key insights into the cell and molecular mechanisms of antimicrosporidia defenses. Here, we first review the isolation history, morphological characteristics, life cycles, tissue tropism, genetics, and host immune responses for the four most well-characterized Nematocida species that infect C. elegans. We then highlight additional examples of microsporidia that infect related terrestrial and aquatic nematodes, including parasitic nematodes. To conclude, we assess exciting potential applications of the nematode-microsporidia system while addressing the technical advances necessary to facilitate future growth in this field.
Collapse
Affiliation(s)
- Spencer S Gang
- Molecular Biology Department, Colorado College, Colorado Springs, Colorado, USA
| | - Vladimir Lažetić
- Department of Biological Sciences, Columbian College of Arts & Sciences, The George Washington University, Washington, District of Columbia, USA
| |
Collapse
|
3
|
Gómez-Romano MT, Rodríguez-Iglesias MA, Galán-Sánchez F. Molecular Detection of Cryptosporidium spp. and Microsporidia in Human and Animal Stool Samples. Microorganisms 2024; 12:918. [PMID: 38792745 PMCID: PMC11123919 DOI: 10.3390/microorganisms12050918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
Cryptosporidium spp. and Microsporidia are opportunistic microorganisms with remarkable zoonotic transmission potential due to their capacity to infect humans and animals. The aim of this study was to evaluate the prevalence of these microorganisms in stool samples of animal and human origin. In total, 369 stool samples (205 from human patients with diarrhea and 164 of animal origin) were included in the study. Cryptosporidium spp. and Microsporidia presence were determined by using multiplex nested PCR. Positive results were analyzed by using Sanger sequencing of the amplicon, utilizing BLASTN and ClustalX software to confirm identification. Cryptosporidium spp. were found in 0.97% and 4.26% of human and animal samples, respectively. Enterocytozoon bieneusi was detected in human and animal stools in 6.82% and 3.05% of the samples, respectively. No associations were found when analyzing the presence of Cryptosporidium spp. and E. bieneusi and the demographic and clinical variables of patients and animals. This study demonstrates the presence of these microorganisms in human and animal samples from different species, and the most interesting findings are the detection of Cryptosporidium spp. in pets (e.g., rodents) that are not usually included in this type of study, and the identification of E. bieneusi in patients with diarrhea without underlying disease.
Collapse
Affiliation(s)
| | - Manuel Antonio Rodríguez-Iglesias
- Servicio de Microbiología, Hospital Universitario Puerta del Mar, 11009 Cádiz, Spain;
- Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz (INiBICA), 11009 Cádiz, Spain
- Facultad de Medicina, Universidad de Cádiz, 11003 Cádiz, Spain
| | - Fátima Galán-Sánchez
- Servicio de Microbiología, Hospital Universitario Puerta del Mar, 11009 Cádiz, Spain;
- Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz (INiBICA), 11009 Cádiz, Spain
| |
Collapse
|
4
|
Caravello G, Franchet A, Niehus S, Ferrandon D. Phagocytosis Is the Sole Arm of Drosophila melanogaster Known Host Defenses That Provides Some Protection Against Microsporidia Infection. Front Immunol 2022; 13:858360. [PMID: 35493511 PMCID: PMC9043853 DOI: 10.3389/fimmu.2022.858360] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
Microsporidia are obligate intracellular parasites able to infest specifically a large range of species, including insects. The knowledge about the biology of microsporidial infections remains confined to mostly descriptive studies, including molecular approaches such as transcriptomics or proteomics. Thus, functional data to understand insect host defenses are currently lacking. Here, we have undertaken a genetic analysis of known host defenses of the Drosophila melanogaster using an infection model whereby Tubulinosema ratisbonensis spores are directly injected in this insect. We find that phagocytosis does confer some protection in this infection model. In contrast, the systemic immune response, extracellular reactive oxygen species, thioester proteins, xenophagy, and intracellular antiviral response pathways do not appear to be involved in the resistance against this parasite. Unexpectedly, several genes such as PGRP-LE seem to promote this infection. The prophenol oxidases that mediate melanization have different functions; PPO1 presents a phenotype similar to that of PGRP-LE whereas that of PPO2 suggests a function in the resilience to infection. Similarly, eiger and Unpaired3, which encode two cytokines secreted by hemocytes display a resilience phenotype with a strong susceptibility to T. ratisbonensis.
Collapse
Affiliation(s)
| | | | | | - Dominique Ferrandon
- UPR9022, University of Strasbourg, Institut de Biologie Moléculaire et Cellulaire (IBMC), Modèles Insectes D’Immunité Innée (M3I) Unité Propre Recherche (UPR) 9022 du Centre National de la Recherche Scientifique (CNRS), Strasbourg, France
| |
Collapse
|
5
|
Moretto MM, Khan IA. Immune Response to Microsporidia. EXPERIENTIA SUPPLEMENTUM (2012) 2022; 114:373-388. [PMID: 35544009 DOI: 10.1007/978-3-030-93306-7_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Microsporidia are a group of pathogens, which can pose severe risks to the immunocompromised population, such as HIV-infected individuals or organ transplant recipients. Adaptive immunity has been reported to be critical for protection, and mice depleted of T cells are unable to control these infections. In a mouse model of infection, CD8 T cells have been found to be the primary effector cells and are responsible for protecting the infected host. Also, as infection is acquired via a peroral route, CD8 T cells in the gut compartment act as a first line of defense against these pathogens. Thus, generation of a robust CD8 T-cell response exhibiting polyfunctional ability is critical for host survival. In this chapter, we describe the effector CD8 T cells generated during microsporidia infection and the factors that may be essential for generating protective immunity against these understudied but significant pathogens. Overall, this chapter will highlight the necessity for a better understanding of the development of CD8 T-cell responses in gut-associated lymphoid tissue (GALT) and provide some insights into therapies that may be used to restore defective CD8 T-cell functionality in an immunocompromised situation.
Collapse
Affiliation(s)
- Magali M Moretto
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington, DC, USA
| | - Imtiaz A Khan
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington, DC, USA.
| |
Collapse
|
6
|
Rivero-Juárez A, Dashti A, Santín M, Köster PC, López-López P, Risalde MA, García-Bocanegra I, Gómez-Villamandos JC, Caballero-Gómez J, Frías M, Bailo B, Ortega S, Muadica AS, Calero-Bernal R, González-Barrio D, Rivero A, Briz V, Carmena D. Diarrhoea-causing enteric protist species in intensively and extensively raised pigs (Sus scrofa domesticus) in Southern Spain. Part II: Association with Hepatitis E virus susceptibility. Transbound Emerg Dis 2021; 69:e1172-e1178. [PMID: 34850588 DOI: 10.1111/tbed.14408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/03/2021] [Accepted: 11/17/2021] [Indexed: 11/28/2022]
Abstract
Enteropathogenic parasites can infect a wide range of mammals, including humans, supposing an important zoonotic risk. Hepatitis E virus (HEV) is an emerging foodborne pathogen of increasing public health relevance, affecting both humans and animal populations. Because both microorganisms share faecal-oral transmission route they may constitute an excellent model to evaluate the interplay between them. Thus, we aim to evaluate the viral-parasite interactions at the enteric interface in swine. We included pigs of two different breeds farming in South Spain under different production systems. We compared the HEV prevalence by the presence of Giardia duodenalis, Cryptosporidium spp., Balantioides coli, Blastocystis sp. and Enterocytozoon bieneusi in faecal samples. The HEV prevalence was 13.1 (62 out 475, 95% CI: 10.2-16.4). Those pigs infected with Cryptosporidium spp. showed a higher prevalence of HEV (30.8 vs. 12%; p = .012). In the same way, animals bearing E. bieneusi seem to have a higher rate of HEV infection (24.2 vs. 12.2%; p = .06). According to their location in the gut, animals bearing intracellular enteroparasites showed a higher HEV prevalence than those uninfected (29.6 vs. 12.7%; p = .038), meanwhile those carrying extracellular enteroparasites had a lower likelihood to be infected by HEV than those uninfected (12.1 vs. 23.1%; p = .071). Those animals bearing both types of enteroparasites showed a similar prevalence of HEV infection than those exhibiting negative for both (20.8 vs. 26.1%; p = .763). Our study provides evidence that intracellular and extracellular enteroparasites modulate the susceptibility to HEV infection in pigs. Meanwhile, the presence of extracellular enteroparasites shows a protective effect on the risk of HEV acquisition in swine, whereas intracellular enteroparasites seems to have the opposite effect, favouring the HEV infection.
Collapse
Affiliation(s)
- Antonio Rivero-Juárez
- Infectious Diseases Unit, Maimonides Institute for Biomedical Research (IMIBIC), University Hospital Reina Sofía, University of Córdoba, Córdoba, Spain
| | - Alejandro Dashti
- Parasitology Reference and Research Laboratory, National Centre for Microbiology, Majadahonda, Madrid, Spain
| | - Mónica Santín
- Environmental Microbial and Food Safety Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, Maryland, USA
| | - Pamela C Köster
- Parasitology Reference and Research Laboratory, National Centre for Microbiology, Majadahonda, Madrid, Spain
| | - Pedro López-López
- Infectious Diseases Unit, Maimonides Institute for Biomedical Research (IMIBIC), University Hospital Reina Sofía, University of Córdoba, Córdoba, Spain
| | - María A Risalde
- Infectious Diseases Unit, Maimonides Institute for Biomedical Research (IMIBIC), University Hospital Reina Sofía, University of Córdoba, Córdoba, Spain.,Animal Health and Zoonoses Research Group (GISAZ), Animal Pathology and Toxicology Department, Faculty of Veterinary, Univeristy of Córdoba, Córdoba, Spain
| | - Ignacio García-Bocanegra
- Animal Health and Zoonoses Research Group (GISAZ), Animal Health Department, Faculty of Veterinary, University of Córdoba, Córdoba, Spain
| | - José Carlos Gómez-Villamandos
- Animal Health and Zoonoses Research Group (GISAZ), Animal Pathology and Toxicology Department, Faculty of Veterinary, Univeristy of Córdoba, Córdoba, Spain
| | - Javier Caballero-Gómez
- Infectious Diseases Unit, Maimonides Institute for Biomedical Research (IMIBIC), University Hospital Reina Sofía, University of Córdoba, Córdoba, Spain.,Animal Health and Zoonoses Research Group (GISAZ), Animal Health Department, Faculty of Veterinary, University of Córdoba, Córdoba, Spain
| | - Mario Frías
- Infectious Diseases Unit, Maimonides Institute for Biomedical Research (IMIBIC), University Hospital Reina Sofía, University of Córdoba, Córdoba, Spain
| | - Begoña Bailo
- Parasitology Reference and Research Laboratory, National Centre for Microbiology, Majadahonda, Madrid, Spain
| | - Sheila Ortega
- Parasitology Reference and Research Laboratory, National Centre for Microbiology, Majadahonda, Madrid, Spain
| | - Aly Salimo Muadica
- Parasitology Reference and Research Laboratory, National Centre for Microbiology, Majadahonda, Madrid, Spain.,Departamento de Ciências e Tecnologia, Universidade Licungo, Quelimane, Zambézia, Mozambique
| | - Rafael Calero-Bernal
- SALUVET, Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
| | - David González-Barrio
- Parasitology Reference and Research Laboratory, National Centre for Microbiology, Majadahonda, Madrid, Spain.,Viral Hepatitis Reference and Research Laboratory, National Centre for Microbiology, Majadahonda, Madrid, Spain
| | - Antonio Rivero
- Infectious Diseases Unit, Maimonides Institute for Biomedical Research (IMIBIC), University Hospital Reina Sofía, University of Córdoba, Córdoba, Spain
| | - Verónica Briz
- Viral Hepatitis Reference and Research Laboratory, National Centre for Microbiology, Majadahonda, Madrid, Spain
| | - David Carmena
- Parasitology Reference and Research Laboratory, National Centre for Microbiology, Majadahonda, Madrid, Spain
| |
Collapse
|
7
|
Zhang Y, Su M, Wang L, Huang S, Su S, Huang WF. Vairimorpha ( Nosema) ceranae Infection Alters Honey Bee Microbiota Composition and Sustains the Survival of Adult Honey Bees. BIOLOGY 2021; 10:biology10090905. [PMID: 34571782 PMCID: PMC8464679 DOI: 10.3390/biology10090905] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/02/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary The gut microbiota, in addition to the hosts and the pathogens, has become the third factor involved in gut disease developments, including honey bees. Interestingly, various studies reported positive associations between the gut bacteria and the most commonly found microsporidian pathogen instead of negative associations. To investigate the positive associations, a prebiotic that also exists in honey was added in the trials. Bees fed the prebiotics have slightly higher pathogen counts but lower mortalities. Microbiota analyses suggested that bees with the infection have a microbiota composition similar to that of bees with a longer lifespan, and the prebiotic seemed to enhance the similarities. Since microsporidia typically cause chronic infections, the positive associations may serve to sustain the host lifespans which is the optimal outcome for the pathogen that the survived bees can withstand pathogen proliferation and transmit the pathogens. Although the mechanisms underlying the associations were not revealed, this study indicated that nosema disease management in bees through changes in microbiota may shorten the lifespans or enhance both the infection and the bee population. Such results have appeared in recent field studies. More studies will be needed for the disease management using bee gut microbiota. Abstract Vairimorpha (Nosema) ceranae is the most common eukaryotic gut pathogen in honey bees. Infection is typically chronic but may result in mortality. Gut microbiota is a factor that was recently noted for gut infectious disease development. Interestingly, studies identified positive, instead of negative, associations between core bacteria of honey bee microbiota and V. ceranae infection. To investigate the effects of the positive associations, we added isomaltooligosaccharide (IMO), a prebiotic sugar also found in honey, to enhance the positive associations, and we then investigated the infection and the gut microbiota alterations using qPCR and 16S rRNA gene sequencing. We found that infected bees fed IMO had significantly higher V. ceranae spore counts but lower mortalities. In microbiota comparisons, V. ceranae infections alone significantly enhanced the overall microbiota population in the honey bee hindgut and feces; all monitored core bacteria significantly increased in the quantities but not all in the population ratios. The microbiota alterations caused by the infection were enhanced with IMO, and these alterations were similar to the differences found in bees that naturally have longer lifespans. Although our results did not clarify the causations of the positive associations between the infections and microbiota, the associations seemed to sustain the host survival and benefit the pathogen. Enhancing indigenous gut microbe to control nosema disease may result in an increment of bee populations but not the control of the pathogen. This interaction between the pathogen and microbiota potentially enhances disease transmission and avoids the social immune responses that diseased bees die prematurely to curb the disease from spreading within colonies.
Collapse
Affiliation(s)
- Yakun Zhang
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (M.S.); (L.W.); (S.H.); (S.S.)
| | - Meiling Su
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (M.S.); (L.W.); (S.H.); (S.S.)
| | - Long Wang
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (M.S.); (L.W.); (S.H.); (S.S.)
| | - Shaokang Huang
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (M.S.); (L.W.); (S.H.); (S.S.)
- Fujian Honey Bee Biology Observation Station, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
| | - Songkun Su
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (M.S.); (L.W.); (S.H.); (S.S.)
| | - Wei-Fone Huang
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (M.S.); (L.W.); (S.H.); (S.S.)
- Fujian Honey Bee Biology Observation Station, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
- Correspondence:
| |
Collapse
|
8
|
Abstract
Microsporidia are obligate intracellular pathogens identified ∼150 years ago as the cause of pébrine, an economically important infection in silkworms. There are about 220 genera and 1,700 species of microsporidia, which are classified based on their ultrastructural features, developmental cycle, host-parasite relationship, and molecular analysis. Phylogenetic analysis suggests that microsporidia are related to the fungi, being grouped with the Cryptomycota as a basal branch or sister group to the fungi. Microsporidia can be transmitted by food and water and are likely zoonotic, as they parasitize a wide range of invertebrate and vertebrate hosts. Infection in humans occurs in both immunocompetent and immunodeficient hosts, e.g., in patients with organ transplantation, patients with advanced human immunodeficiency virus (HIV) infection, and patients receiving immune modulatory therapy such as anti-tumor necrosis factor alpha antibody. Clusters of infections due to latent infection in transplanted organs have also been demonstrated. Gastrointestinal infection is the most common manifestation; however, microsporidia can infect virtually any organ system, and infection has resulted in keratitis, myositis, cholecystitis, sinusitis, and encephalitis. Both albendazole and fumagillin have efficacy for the treatment of various species of microsporidia; however, albendazole has limited efficacy for the treatment of Enterocytozoon bieneusi. In addition, immune restoration can lead to resolution of infection. While the prevalence rate of microsporidiosis in patients with AIDS has fallen in the United States, due to the widespread use of combination antiretroviral therapy (cART), infection continues to occur throughout the world and is still seen in the United States in the setting of cART if a low CD4 count persists.
Collapse
|
9
|
Messaoud M, Abbes S, Gnaien M, Rebai Y, Kallel A, Jemel S, Cherif G, Skhairia MA, Marouen S, Fakhfekh N, Mardassi H, Belhadj S, Znaidi S, Kallel K. High Frequency of Enterocytozoon bieneusi Genotype WL12 Occurrence among Immunocompromised Patients with Intestinal Microsporidiosis. J Fungi (Basel) 2021; 7:jof7030161. [PMID: 33668221 PMCID: PMC7996336 DOI: 10.3390/jof7030161] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 02/08/2021] [Accepted: 02/11/2021] [Indexed: 11/25/2022] Open
Abstract
Microsporidiosis is an emerging opportunistic infection causing severe digestive disorders in immunocompromised patients. The aim of this study was to investigate the prevalence of intestinal microsporidia carriage among immunocompromised patients hospitalized at a major hospital complex in the Tunis capital area, Tunisia (North Africa), and perform molecular epidemiology and population structure analyses of Enterocytozoon bieneusi, which is an emerging fungal pathogen. We screened 250 stool samples for the presence of intestinal microsporidia from 171 patients, including 81 organ transplant recipients, 73 Human Immunodeficiency Virus (HIV)-positive patients, and 17 patients with unspecified immunodeficiency. Using a nested PCR-based diagnostic approach for the detection of E. bieneusi and Encephalitozoon spp., we identified 18 microsporidia-positive patients out of 171 (10.5%), among which 17 were infected with E. bieneusi. Microsporidia-positive cases displayed chronic diarrhea (17 out of 18), which was associated more with HIV rather than with immunosuppression other than HIV (12 out of 73 versus 6 out of 98, respectively, p = 0.02) and correlated with extended hospital stays compared to microsporidia-negative cases (60 versus 19 days on average, respectively; p = 0.001). Strikingly, internal transcribed spacer (ITS)-based genotyping of E. bieneusi strains revealed high-frequency occurrence of ITS sequences that were identical (n = 10) or similar (with one single polymorphic site, n = 3) to rare genotype WL12. Minimum-spanning tree analyses segregated the 17 E. bieneusi infection cases into four distinct genotypic clusters and confirmed the high prevalence of genotype WL12 in our patient population. Phylogenetic analyses allowed the mapping of all 17 E. bieneusi strains to zoonotic group 1 (subgroups 1a and 1b/1c), indicating loose host specificity and raising public health concern. Our study suggests a probable common source of E. bieneusi genotype WL12 transmission and prompts the implementation of a wider epidemiological investigation.
Collapse
Affiliation(s)
- Mariem Messaoud
- Laboratoire de Parasitologie et Mycologie, UR17SP03, La Rabta Hospital, Tunis 1007, Tunisia; (M.M.); (S.A.); (A.K.); (S.J.); (G.C.); (S.M.); (N.F.); (S.B.)
| | - Salma Abbes
- Laboratoire de Parasitologie et Mycologie, UR17SP03, La Rabta Hospital, Tunis 1007, Tunisia; (M.M.); (S.A.); (A.K.); (S.J.); (G.C.); (S.M.); (N.F.); (S.B.)
| | - Mayssa Gnaien
- Institut Pasteur de Tunis, University of Tunis El Manar, Laboratoire de Microbiologie Moléculaire, Vaccinologie et Développement Biotechnologique, Tunis 1002, Tunisia; (M.G.); (Y.R.); (M.A.S.); (H.M.)
| | - Yasmine Rebai
- Institut Pasteur de Tunis, University of Tunis El Manar, Laboratoire de Microbiologie Moléculaire, Vaccinologie et Développement Biotechnologique, Tunis 1002, Tunisia; (M.G.); (Y.R.); (M.A.S.); (H.M.)
| | - Aicha Kallel
- Laboratoire de Parasitologie et Mycologie, UR17SP03, La Rabta Hospital, Tunis 1007, Tunisia; (M.M.); (S.A.); (A.K.); (S.J.); (G.C.); (S.M.); (N.F.); (S.B.)
- Institut Pasteur de Tunis, University of Tunis El Manar, Laboratoire de Microbiologie Moléculaire, Vaccinologie et Développement Biotechnologique, Tunis 1002, Tunisia; (M.G.); (Y.R.); (M.A.S.); (H.M.)
| | - Sana Jemel
- Laboratoire de Parasitologie et Mycologie, UR17SP03, La Rabta Hospital, Tunis 1007, Tunisia; (M.M.); (S.A.); (A.K.); (S.J.); (G.C.); (S.M.); (N.F.); (S.B.)
| | - Ghaya Cherif
- Laboratoire de Parasitologie et Mycologie, UR17SP03, La Rabta Hospital, Tunis 1007, Tunisia; (M.M.); (S.A.); (A.K.); (S.J.); (G.C.); (S.M.); (N.F.); (S.B.)
| | - Mohamed Amine Skhairia
- Institut Pasteur de Tunis, University of Tunis El Manar, Laboratoire de Microbiologie Moléculaire, Vaccinologie et Développement Biotechnologique, Tunis 1002, Tunisia; (M.G.); (Y.R.); (M.A.S.); (H.M.)
| | - Sonia Marouen
- Laboratoire de Parasitologie et Mycologie, UR17SP03, La Rabta Hospital, Tunis 1007, Tunisia; (M.M.); (S.A.); (A.K.); (S.J.); (G.C.); (S.M.); (N.F.); (S.B.)
| | - Najla Fakhfekh
- Laboratoire de Parasitologie et Mycologie, UR17SP03, La Rabta Hospital, Tunis 1007, Tunisia; (M.M.); (S.A.); (A.K.); (S.J.); (G.C.); (S.M.); (N.F.); (S.B.)
| | - Helmi Mardassi
- Institut Pasteur de Tunis, University of Tunis El Manar, Laboratoire de Microbiologie Moléculaire, Vaccinologie et Développement Biotechnologique, Tunis 1002, Tunisia; (M.G.); (Y.R.); (M.A.S.); (H.M.)
| | - Slaheddine Belhadj
- Laboratoire de Parasitologie et Mycologie, UR17SP03, La Rabta Hospital, Tunis 1007, Tunisia; (M.M.); (S.A.); (A.K.); (S.J.); (G.C.); (S.M.); (N.F.); (S.B.)
| | - Sadri Znaidi
- Institut Pasteur de Tunis, University of Tunis El Manar, Laboratoire de Microbiologie Moléculaire, Vaccinologie et Développement Biotechnologique, Tunis 1002, Tunisia; (M.G.); (Y.R.); (M.A.S.); (H.M.)
- Institut Pasteur, INRA, Département Mycologie, Unité Biologie et Pathogénicité Fongiques, 75015 Paris, France
- Correspondence: (S.Z.); (K.K.)
| | - Kalthoum Kallel
- Laboratoire de Parasitologie et Mycologie, UR17SP03, La Rabta Hospital, Tunis 1007, Tunisia; (M.M.); (S.A.); (A.K.); (S.J.); (G.C.); (S.M.); (N.F.); (S.B.)
- Correspondence: (S.Z.); (K.K.)
| |
Collapse
|
10
|
Han Y, Gao H, Xu J, Luo J, Han B, Bao J, Pan G, Li T, Zhou Z. Innate and Adaptive Immune Responses Against Microsporidia Infection in Mammals. Front Microbiol 2020; 11:1468. [PMID: 32670257 PMCID: PMC7332555 DOI: 10.3389/fmicb.2020.01468] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 06/04/2020] [Indexed: 12/22/2022] Open
Abstract
Microsporidia are obligate intracellular and eukaryotic pathogens that can infect immunocompromised and immunocompetent mammals, including humans. Both innate and adaptive immune systems play important roles against microsporidian infection. The innate immune system can partially eliminate the infection by immune cells, such as gamma delta T cell, natural killer cells (NKs), macrophages and dendritic cells (DCs), and present the pathogens to lymphocytes. The innate immune cells can also prime and enhance the adaptive immune response via surface molecules and secreted cytokines. The adaptive immune system is critical to eliminate microsporidian infection by activating cytotoxic T lymphocyte (CTL) and humoral immune responses, and feedback regulation of the innate immune mechanism. In this review, we will discuss the cellular and molecular responses and functions of innate and adaptive immune systems against microsporidian infection.
Collapse
Affiliation(s)
- Yinze Han
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Hailong Gao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Jinzhi Xu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Jian Luo
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Bing Han
- Department of Pathology, Albert Einstein College of Medicine, The Bronx, NY, United States
| | - Jialing Bao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Guoqing Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Tian Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Zeyang Zhou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China.,College of Life Sciences, Chongqing Normal University, Chongqing, China
| |
Collapse
|
11
|
Dávila-Martínez C, Castillo-Velázquez U, Soto-Domínguez A, Nevárez-Garza AM, Arce-Mendoza AY, Hernandez-Vidal G, Zamora-Avila DE, Rodriguez-Tovar LE. Immunohistochemical localization of TNF-α and IL-4 in granulomas of immunocompetent and immunosuppressed New Zealand white rabbits infected with Encephalitozoon cuniculi. Cytokine 2020; 130:155055. [PMID: 32182455 DOI: 10.1016/j.cyto.2020.155055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/14/2020] [Accepted: 02/27/2020] [Indexed: 11/21/2022]
Abstract
Encephalitozoon cuniculi is a fungi-related, obligate, zoonotic, spore-forming intracellular eukaryotic microorganism. This emerging pathogen causes granulomas to form in the brain and kidneys of infected individuals. The objective of the current study was to detect the distribution of TNF-α- and IL-4-positive cells using immunohistochemistry within these granulomas in both infected immunocompetent (group A) and immunosuppressed (group B) New Zealand white rabbits. In the brain, labeled TNF-α immune cells were mainly located in the granuloma peripheries in group B. Granulomas examined in the kidneys of groups A and B were TNF-α positive, but were significantly different (p < 0.001) when compared with the brain. IL-4-producing immune cells in the brain and kidneys were disseminated within granulomas in groups A and B; however, no significant difference (p > 0.05), was observed. IL-4 positive cells were more numerous in brain sections of group B and differed significantly (p < 0.05) when compared with kidneys. Granulomas were not observed in control animals (groups C and D). In conclusion, we identified TNF-α positive cells in both the brain and kidneys of immunocompetent and immunosuppressed animals; IL-4 positive cells were numerous in the brains of immunosuppressed rabbits; however, in terms of percentage were numerous in the brains of immunocompetent rabbits. Immunosuppression appeared to stimulate a change in the cellular phenotype of Th1- to Th2-like granulomas in the brain and kidneys via an unknown mechanism. Expression of pro- and pre-inflammatory cytokines in microsporidian granulomas suggests a mechanism by which E. cuniculi evades the immune response, causing more severe disease. These results increase our understanding of TNF-α and IL-4-positive cells within the E. cuniculi granuloma microenvironment.
Collapse
Affiliation(s)
- C Dávila-Martínez
- Cuerpo Académico de Zoonosis y Enfermedades Emergentes, Facultad de Medicina Veterinaria y Zootecnia, UANL, General Escobedo, N. L. C.P. 66050, Mexico
| | - U Castillo-Velázquez
- Cuerpo Académico de Zoonosis y Enfermedades Emergentes, Facultad de Medicina Veterinaria y Zootecnia, UANL, General Escobedo, N. L. C.P. 66050, Mexico
| | - A Soto-Domínguez
- Departamento de Histología, Facultad de Medicina, UANL, Monterrey, N. L. C.P. 64460, Mexico
| | - A M Nevárez-Garza
- Cuerpo Académico de Zoonosis y Enfermedades Emergentes, Facultad de Medicina Veterinaria y Zootecnia, UANL, General Escobedo, N. L. C.P. 66050, Mexico
| | - A Y Arce-Mendoza
- Cuerpo Académico de Inmunología Clínica y Dermatología, Facultad de Medicina, UANL, Col. Mitras Centro, Monterrey, N. L. C.P. 64460, Mexico
| | - G Hernandez-Vidal
- Cuerpo Académico de Patobiología, Facultad de Medicina Veterinaria y Zootecnia, UANL, General Escobedo, N. L. C.P. 66050, Mexico
| | - D E Zamora-Avila
- Cuerpo Académico de Epidemiologia Veterinaria, Facultad de Medicina Veterinaria y Zootecnia, UANL, General Escobedo, N. L. C.P. 66050, Mexico
| | - L E Rodriguez-Tovar
- Cuerpo Académico de Zoonosis y Enfermedades Emergentes, Facultad de Medicina Veterinaria y Zootecnia, UANL, General Escobedo, N. L. C.P. 66050, Mexico.
| |
Collapse
|
12
|
de Moura MLC, Alvares-Saraiva AM, Pérez EC, Xavier JG, Spadacci-Morena DD, Moysés CRS, Rocha PRD, Lallo MA. Cyclophosphamide Treatment Mimics Sub-Lethal Infections With Encephalitozoon intestinalis in Immunocompromised Individuals. Front Microbiol 2019; 10:2205. [PMID: 31608035 PMCID: PMC6773878 DOI: 10.3389/fmicb.2019.02205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/09/2019] [Indexed: 01/31/2023] Open
Abstract
Microsporidia, including Encephalitozoon intestinalis, are emerging pathogens which cause opportunistic infections in immunocompromised patients, such as those with AIDS, cancer, the elderly and people on immunosuppressive drugs. Intestinal mucosa (IM) is crucial for developing an efficient adaptive immune response against pathogenic micro-organisms, thereby preventing their colonization and subsequent infection. As immunosuppressive drugs affect the intestinal immune response is little known. In the present study, we investigated the immune response to E. intestinalis infection in the IM and gut-associated lymphoid tissue (GALT) in cyclophosphamide (Cy) immunosuppressed mice, to mimic an immunocompromised condition. Histopathology revealed lymphoplasmacytic enteritis at 7 and 14 days-post-infection (dpi) in all infected groups, however, inflammation diminished at 21 and 28 dpi. Cy treatment also led to a higher number of E. intestinalis spores and lesions, which reduced at 28 dpi. In addition, flow cytometry analysis demonstrated CD4+ and CD8+ T cells to be predominant immune cells, with up-regulation in both Th1 and Th2 cytokines at 7 and 14 dpi, as demonstrated by histopathology. In conclusion, Cy treatment reduced GALT (Peyer’s plaques and mesenteric lymph nodes) and peritoneum populations but increased the T-cell population in the intestinal mucosa and the production of pro-and anti-inflammatory cytokines, which were able to eliminate this opportunistic fungus and reduced the E. intestinalis infection.
Collapse
Affiliation(s)
- Maria Lucia Costa de Moura
- Programa de Pós-Graduação em Patologia Ambiental e Experimental, Universidade Paulista (UNIP), São Paulo, Brazil
| | | | - Elizabeth Cristina Pérez
- Programa de Pós-Graduação em Patologia Ambiental e Experimental, Universidade Paulista (UNIP), São Paulo, Brazil
| | - José Guilherme Xavier
- Programa de Pós-Graduação em Patologia Ambiental e Experimental, Universidade Paulista (UNIP), São Paulo, Brazil
| | | | | | | | - Maria Anete Lallo
- Programa de Pós-Graduação em Patologia Ambiental e Experimental, Universidade Paulista (UNIP), São Paulo, Brazil
| |
Collapse
|
13
|
Duzlu O, Yildirim A, Onder Z, Ciloglu A, Yetismis G, Inci A. Prevalence and Genotyping of Microsporidian Parasites in Dogs in Turkey: Zoonotic Concerns. J Eukaryot Microbiol 2019; 66:771-777. [PMID: 30849216 DOI: 10.1111/jeu.12725] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/19/2019] [Accepted: 03/02/2019] [Indexed: 01/30/2023]
Abstract
Microsporidia are opportunistic pathogens that infect a wide range of invertebrates and vertebrates. To assess the potential role of dogs in the transmission of these zoonotic pathogens, a total of 282 fecal samples from dogs in the Central Anatolia Region of Turkey were analyzed by utilizing species specific polymerase chain reaction for the four most frequent human microsporidia. Two microsporidia species were recognized in 41 samples (14.5%). Encephalitozoon intestinalis was detected in 35 samples (12.4%) and it was the most common microsporidium. The second microsporidium, E. cuniculi, was identified in six (2.1%) of the samples. Sequence analysis of the intergenic spacer of the ribosomal ribonucleic acid (RNA) internal transcribed spacer (ITS) gene revealed the presence of three E. intestinalis haplotypes closely associated with each other. No polymorphic region was found among the ITS sequences of E. cuniculi isolates and they were characterized as genotype III. This study provides the first data on the zoonotic microsporidia species from dogs in Turkey.
Collapse
Affiliation(s)
- Onder Duzlu
- Department of Parasitology, Faculty of Veterinary Medicine, Erciyes University, 38280, Kayseri, Turkey.,Vectors and Vector-Borne Diseases Implementation and Research Center, Erciyes University, 38280, Kayseri, Turkey
| | - Alparslan Yildirim
- Department of Parasitology, Faculty of Veterinary Medicine, Erciyes University, 38280, Kayseri, Turkey.,Vectors and Vector-Borne Diseases Implementation and Research Center, Erciyes University, 38280, Kayseri, Turkey
| | - Zuhal Onder
- Department of Parasitology, Faculty of Veterinary Medicine, Erciyes University, 38280, Kayseri, Turkey.,Vectors and Vector-Borne Diseases Implementation and Research Center, Erciyes University, 38280, Kayseri, Turkey
| | - Arif Ciloglu
- Department of Parasitology, Faculty of Veterinary Medicine, Erciyes University, 38280, Kayseri, Turkey.,Vectors and Vector-Borne Diseases Implementation and Research Center, Erciyes University, 38280, Kayseri, Turkey
| | - Gamze Yetismis
- Department of Parasitology, Faculty of Veterinary Medicine, Erciyes University, 38280, Kayseri, Turkey
| | - Abdullah Inci
- Department of Parasitology, Faculty of Veterinary Medicine, Erciyes University, 38280, Kayseri, Turkey.,Vectors and Vector-Borne Diseases Implementation and Research Center, Erciyes University, 38280, Kayseri, Turkey
| |
Collapse
|
14
|
Abstract
Microsporidia are obligate intracellular pathogens related to Fungi. These organisms have a unique invasion organelle, the polar tube, which upon appropriate environmental stimulation rapidly discharges out of the spore, pierces a host cell's membrane, and serves as a conduit for sporoplasm passage into the host cell. Phylogenetic analysis suggests that microsporidia are related to the Fungi, being either a basal branch or sister group. Despite the description of microsporidia over 150 years ago, we still lack an understanding of the mechanism of invasion, including the role of various polar tube proteins, spore wall proteins, and host cell proteins in the formation and function of the invasion synapse. Recent advances in ultrastructural techniques are helping to better define the formation and functioning of the invasion synapse. Over the past 2 decades, proteomic approaches have helped define polar tube proteins and spore wall proteins as well as the importance of posttranslational modifications such as glycosylation in the functioning of these proteins, but the absence of genetic techniques for the manipulation of microsporidia has hampered research on the function of these various proteins. The study of the mechanism of invasion should provide fundamental insights into the biology of these ubiquitous intracellular pathogens that can be integrated into studies aimed at treating or controlling microsporidiosis.
Collapse
|
15
|
Weber R. Intestinal Coccidia and Microsporidia. Infect Dis (Lond) 2017. [DOI: 10.1016/b978-0-7020-6285-8.00192-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
16
|
Bernal CE, Zorro MM, Sierra J, Gilchrist K, Botero JH, Baena A, Ramirez-Pineda JR. Encephalitozoon intestinalis Inhibits Dendritic Cell Differentiation through an IL-6-Dependent Mechanism. Front Cell Infect Microbiol 2016; 6:4. [PMID: 26870700 PMCID: PMC4735406 DOI: 10.3389/fcimb.2016.00004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 01/12/2016] [Indexed: 01/03/2023] Open
Abstract
Microsporidia are a group of intracellular pathogens causing self-limited and severe diseases in immunocompetent and immunocompromised individuals, respectively. A cellular type 1 adaptive response, mediated by IL-12, IFNγ, CD4+, and CD8+ T cells has been shown to be essential for host resistance, and dendritic cells (DC) play a key role at eliciting anti-microsporidial immunity. We investigated the in vitro response of DC and DC precursors/progenitors to infection with Encephalitozoon intestinalis (Ei), a common agent of human microsporidosis. Ei-exposed DC cultures up-regulated the surface expression of MHC class II and the costimulatory molecules CD86 and CD40, only when high loads of spores were used. A vigorous secretion of IL-6 but not of IL-1β or IL-12p70 was also observed in these cultures. Ei-exposed DC cultures consisted of immature infected and mature bystander DC, as assessed by MHC class II and costimulatory molecules expression, suggesting that intracellular Ei spores deliver inhibitory signals in DC. Moreover, Ei selectively inhibited the secretion of IL-12p70 in LPS-stimulated DC. Whereas Ei-exposed DC promoted allogeneic naïve T cell proliferation and IL-2 and IFNγ secretion in DC-CD4+ T cell co-cultures, separated co-cultures with bystander or infected DCs showed stimulation or inhibition of IFNγ secretion, respectively. When DC precursors/progenitors were exposed to Ei spores, a significant inhibition of DC differentiation was observed without shifting the development toward cells phenotypically or functionally compatible with myeloid-derived suppressor cells. Neutralization experiments demonstrated that this inhibitory effect is IL-6-dependent. Altogether this investigation reveals a novel potential mechanism of immune escape of microsporidian parasites through the modulation of DC differentiation and maturation.
Collapse
Affiliation(s)
- Carmen E Bernal
- Grupo Inmunomodulación, Universidad de AntioquiaMedellín, Colombia; Grupo de Parasitología, Universidad de AntioquiaMedellín, Colombia
| | - Maria M Zorro
- Grupo Inmunomodulación, Universidad de Antioquia Medellín, Colombia
| | - Jelver Sierra
- Grupo Inmunomodulación, Universidad de Antioquia Medellín, Colombia
| | | | - Jorge H Botero
- Grupo de Parasitología, Universidad de Antioquia Medellín, Colombia
| | - Andres Baena
- Grupo de Inmunología Celular e Inmunogenética, Universidad de AntioquiaMedellín, Colombia; Departamento de Microbiología y Parasitología, Universidad de AntioquiaMedellín, Colombia
| | - Jose R Ramirez-Pineda
- Grupo Inmunomodulación, Universidad de AntioquiaMedellín, Colombia; Corporación Académica para el Estudio de Patologías Tropicales, Facultad de Medicina, Universidad de AntioquiaMedellín, Colombia
| |
Collapse
|
17
|
Bakowski MA, Desjardins CA, Smelkinson MG, Dunbar TA, Lopez-Moyado IF, Rifkin SA, Cuomo CA, Troemel ER. Ubiquitin-mediated response to microsporidia and virus infection in C. elegans. PLoS Pathog 2014; 10:e1004200. [PMID: 24945527 PMCID: PMC4063957 DOI: 10.1371/journal.ppat.1004200] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 05/07/2014] [Indexed: 11/18/2022] Open
Abstract
Microsporidia comprise a phylum of over 1400 species of obligate intracellular pathogens that can infect almost all animals, but little is known about the host response to these parasites. Here we use the whole-animal host C. elegans to show an in vivo role for ubiquitin-mediated response to the microsporidian species Nematocida parisii, as well to the Orsay virus, another natural intracellular pathogen of C. elegans. We analyze gene expression of C. elegans in response to N. parisii, and find that it is similar to response to viral infection. Notably, we find an upregulation of SCF ubiquitin ligase components, such as the cullin ortholog cul-6, which we show is important for ubiquitin targeting of N. parisii cells in the intestine. We show that ubiquitylation components, the proteasome, and the autophagy pathway are all important for defense against N. parisii infection. We also find that SCF ligase components like cul-6 promote defense against viral infection, where they have a more robust role than against N. parisii infection. This difference may be due to suppression of the host ubiquitylation system by N. parisii: when N. parisii is crippled by anti-microsporidia drugs, the host can more effectively target pathogen cells for ubiquitylation. Intriguingly, inhibition of the ubiquitin-proteasome system (UPS) increases expression of infection-upregulated SCF ligase components, indicating that a trigger for transcriptional response to intracellular infection by N. parisii and virus may be perturbation of the UPS. Altogether, our results demonstrate an in vivo role for ubiquitin-mediated defense against microsporidian and viral infections in C. elegans.
Collapse
Affiliation(s)
- Malina A. Bakowski
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California, United States of America
| | | | - Margery G. Smelkinson
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California, United States of America
| | - Tiffany A. Dunbar
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California, United States of America
| | - Isaac F. Lopez-Moyado
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, California, United States of America
| | - Scott A. Rifkin
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, California, United States of America
- Division of Biological Sciences, Section of Ecology, Behavior, and Evolution University of California San Diego, La Jolla, California, United States of America
| | - Christina A. Cuomo
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Emily R. Troemel
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|