1
|
Münz C, Campbell GR, Esclatine A, Faure M, Labonte P, Lussignol M, Orvedahl A, Altan-Bonnet N, Bartenschlager R, Beale R, Cirone M, Espert L, Jung J, Leib D, Reggiori F, Sanyal S, Spector SA, Thiel V, Viret C, Wei Y, Wileman T, Wodrich H. Autophagy machinery as exploited by viruses. AUTOPHAGY REPORTS 2025; 4:27694127.2025.2464986. [PMID: 40201908 PMCID: PMC11921968 DOI: 10.1080/27694127.2025.2464986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/17/2025] [Accepted: 01/27/2025] [Indexed: 04/10/2025]
Abstract
Viruses adapt and modulate cellular pathways to allow their replication in host cells. The catabolic pathway of macroautophagy, for simplicity referred to as autophagy, is no exception. In this review, we discuss anti-viral functions of both autophagy and select components of the autophagy machinery, and how viruses have evaded them. Some viruses use the membrane remodeling ability of the autophagy machinery to build their replication compartments in the cytosol or efficiently egress from cells in a non-lytic fashion. Some of the autophagy machinery components and their remodeled membranes can even be found in viral particles as envelopes or single membranes around virus packages that protect them during spreading and transmission. Therefore, studies on autophagy regulation by viral infections can reveal functions of the autophagy machinery beyond lysosomal degradation of cytosolic constituents. Furthermore, they can also pinpoint molecular interactions with which the autophagy machinery can most efficiently be manipulated, and this may be relevant to develop effective disease treatments based on autophagy modulation.
Collapse
Affiliation(s)
- Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich Switzerland
| | - Grant R Campbell
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of SD, Vermillion, SD, USA
| | - Audrey Esclatine
- Université Paris-Saclay, CEA, CNRS, 10 Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Mathias Faure
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Universite Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| | - Patrick Labonte
- eINRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Canada
| | - Marion Lussignol
- Université Paris-Saclay, CEA, CNRS, 10 Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Anthony Orvedahl
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO, USA
| | - Nihal Altan-Bonnet
- Laboratory of Host-Pathogen Dynamics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ralf Bartenschlager
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Heidelberg, Germany
- German Cancer Research Center (DKFZ), Division Virus-Associated Carcinogenesis, Heidelberg, Germany
- German Centre for Infection Research, Heidelberg partner site, Heidelberg, Germany
| | - Rupert Beale
- Cell Biology of Infection Laboratory, The Francis Crick Institute, London, UK
- Division of Medicine, University College London, London, UK
| | - Mara Cirone
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Lucile Espert
- University of Montpellier, Montpellier, France
- CNRS, Institut de Recherche enInfectiologie deMontpellier (IRIM), Montpellier, France
| | - Jae Jung
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - David Leib
- Guarini School of Graduate and Advanced Studies at Dartmouth, Hanover, NH, USA
| | - Fulvio Reggiori
- Department of Biomedicine, Aarhus University, Ole Worms Allé 4, Aarhus C, Denmark
| | - Sumana Sanyal
- Sir William Dunn School of Pathology, South Parks Road, University of Oxford, Oxford, UK
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Stephen A. Spector
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Rady Children’s Hospital, San Diego, CA, USA
| | - Volker Thiel
- Institute of Virology and Immunology, Bern and Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland, and Multidisciplinary Center for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Christophe Viret
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Universite Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| | - Yu Wei
- Institut Pasteur-Theravectys Joint Laboratory, Department of Virology, Institut Pasteur, Université Paris Cité, Paris, France
| | - Thomas Wileman
- Norwich Medical School, University of East Anglia
- Quadram Institute Bioscience, Norwich Research Park, Norfolk, UK
| | - Harald Wodrich
- sLaboratoire de Microbiologie Fondamentale et Pathogénicité, MFP CNRS UMR, Université de Bordeaux, Bordeaux, France
| |
Collapse
|
2
|
Malik JA, Zafar MA, Singh S, Nanda S, Bashir H, Das DK, Lamba T, Khan MA, Kaur G, Agrewala JN. From defense to dysfunction: Autophagy's dual role in disease pathophysiology. Eur J Pharmacol 2024; 981:176856. [PMID: 39068979 DOI: 10.1016/j.ejphar.2024.176856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/16/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Autophagy is a fundamental pillar of cellular resilience, indispensable for maintaining cellular health and vitality. It coordinates the meticulous breakdown of cytoplasmic macromolecules as a guardian of cell metabolism, genomic integrity, and survival. In the complex play of biological warfare, autophagy emerges as a firm defender, bravely confronting various pathogenic, infectious, and cancerous adversaries. Nevertheless, its role transcends mere defense, wielding both protective and harmful effects in the complex landscape of disease pathogenesis. From the onslaught of infectious outbreaks to the devious progression of chronic lifestyle disorders, autophagy emerges as a central protagonist, convolutedly shaping the trajectory of cellular health and disease progression. In this article, we embark on a journey into the complicated web of molecular and immunological mechanisms that govern autophagy's profound influence over disease. Our focus sharpens on dissecting the impact of various autophagy-associated proteins on the kaleidoscope of immune responses, spanning the spectrum from infectious outbreaks to chronic lifestyle ailments. Through this voyage of discovery, we unveil the vast potential of autophagy as a therapeutic linchpin, offering tantalizing prospects for targeted interventions and innovative treatment modalities that promise to transform the landscape of disease management.
Collapse
Affiliation(s)
- Jonaid Ahmad Malik
- Immunology Laboratory, Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, 140001, India
| | - Mohammad Adeel Zafar
- Immunology Laboratory, Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, 140001, India; Division of Immunology, Boston Children's Hospital Harvard Medical School Boston, MA, 02115, USA; Department of Pediatrics, Harvard Medical School Boston, MA, 02115, USA
| | - Sanpreet Singh
- Immunology Laboratory, Institute of Microbial Technology, Chandigarh, 160016, India; Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Sidhanta Nanda
- Immunology Laboratory, Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, 140001, India
| | - Hilal Bashir
- Immunology Laboratory, Institute of Microbial Technology, Chandigarh, 160016, India
| | - Deepjyoti Kumar Das
- Immunology Laboratory, Institute of Microbial Technology, Chandigarh, 160016, India
| | - Taruna Lamba
- Immunology Laboratory, Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, 140001, India
| | - Mohammad Affan Khan
- Immunology Laboratory, Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, 140001, India
| | - Gurpreet Kaur
- Department of Biotechnology, Chandigarh Group of Colleges, Landran, Mohali, Punjab, 140055, India
| | - Javed N Agrewala
- Immunology Laboratory, Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, 140001, India.
| |
Collapse
|
3
|
Hanson T, Constantine E, Nobles Z, Butler E, Renteria KM, Teoh CM, Koh GY. Supplementation of Vitamin D 3 and Fructooligosaccharides Downregulates Intestinal Defensins and Reduces the Species Abundance of Romboutsia ilealis in C57BL/6J Mice. Nutrients 2024; 16:2236. [PMID: 39064679 PMCID: PMC11280458 DOI: 10.3390/nu16142236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
The activation of the vitamin D receptor (VDR) in the ileum has been shown to regulate Paneth cell-specific defensins, a large family of antimicrobial peptides; hence, this may serve as a potential mechanism to maintain intestinal homeostasis. Previously, we have demonstrated that a combination of vitamin D3 (VD) and fructooligosaccharides (FOSs) upregulates colonic Vdr in mice. Here, we aim to examine the effect of VD, alone or in combination with FOSs, on intestinal barrier integrity and the secretion of antimicrobial peptides, as well as the gut microbial community. Male and female C57BL/6J mice at 6 weeks old were randomized into three groups to receive the following dietary regimens (n = 10/sex/group) for 8 weeks: (1) standard AIN-93G control diet (CTR), (2) CTR + 5000 IU vitamin D3 (VD), and (3) VD + 5% fructooligosaccharides (VF). VD and VF differentially regulated the mRNA expressions of tight junction proteins in the colon and ileum. VF suppressed the upregulation of colonic ZO-1 and occludin, which was induced by VD supplementation alone. In the ileum, occludin but not ZO-1 was upregulated 20-fold in the VF-treated mice. While VD did not alter the mRNA expressions of Vdr and defensins in the ileum, these targets were downregulated by VF. Microbial analysis further reveals a shift of microbial beta diversity and a reduction in Romboutsia ilealis, a pathobiont, in VF-treated mice. Though the implications of these phenotypical and microbial changes remain to be determined, the administration of FOSs in the presence of VD may serve as an effective dietary intervention for maintaining intestinal homeostasis.
Collapse
Affiliation(s)
- Tyler Hanson
- Nutrition and Foods Program, School of Family and Consumer Sciences, Texas State University, San Marcos, TX 78666, USA; (T.H.); (Z.N.); (E.B.); (K.M.R.); (C.M.T.)
| | - Ethan Constantine
- Department of Biology, College of Science and Engineering, Texas State University, San Marcos, TX 78666, USA;
| | - Zack Nobles
- Nutrition and Foods Program, School of Family and Consumer Sciences, Texas State University, San Marcos, TX 78666, USA; (T.H.); (Z.N.); (E.B.); (K.M.R.); (C.M.T.)
| | - Emily Butler
- Nutrition and Foods Program, School of Family and Consumer Sciences, Texas State University, San Marcos, TX 78666, USA; (T.H.); (Z.N.); (E.B.); (K.M.R.); (C.M.T.)
| | - Karisa M. Renteria
- Nutrition and Foods Program, School of Family and Consumer Sciences, Texas State University, San Marcos, TX 78666, USA; (T.H.); (Z.N.); (E.B.); (K.M.R.); (C.M.T.)
| | - Chin May Teoh
- Nutrition and Foods Program, School of Family and Consumer Sciences, Texas State University, San Marcos, TX 78666, USA; (T.H.); (Z.N.); (E.B.); (K.M.R.); (C.M.T.)
| | - Gar Yee Koh
- Nutrition and Foods Program, School of Family and Consumer Sciences, Texas State University, San Marcos, TX 78666, USA; (T.H.); (Z.N.); (E.B.); (K.M.R.); (C.M.T.)
| |
Collapse
|
4
|
Hernández-Sarmiento LJ, Valdés-López JF, Urcuqui-Inchima S. Zika virus infection suppresses CYP24A1 and CAMP expression in human monocytes. Arch Virol 2024; 169:135. [PMID: 38839691 PMCID: PMC11153301 DOI: 10.1007/s00705-024-06050-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/27/2024] [Indexed: 06/07/2024]
Abstract
Monocytes are the primary targets of Zika virus (ZIKV) and are associated with ZIKV pathogenesis. Currently, there is no effective treatment for ZIKV infection. It is known that 1,25-dihydroxy vitamin D3 (VitD3) has strong antiviral activity in dengue virus-infected macrophages, but it is unknown whether VitD3 inhibits ZIKV infection in monocytes. We investigated the relationship between ZIKV infection and the expression of genes of the VitD3 pathway, as well as the inflammatory response of infected monocytes in vitro. ZIKV replication was evaluated using a plaque assay, and VitD3 pathway gene expression was analyzed by RT-qPCR. Pro-inflammatory cytokines/chemokines were quantified using ELISA. We found that VitD3 did not suppress ZIKV replication. The results showed a significant decrease in the expression of vitamin D3 receptor (VDR), cytochrome P450 family 24 subfamily A member 1 (CYP24A1), and cathelicidin antimicrobial peptide (CAMP) genes upon ZIKV infection. Treatment with VitD3 was unable to down-modulate production of pro-inflammatory cytokines, except TNF-α, and chemokines. This suggests that ZIKV infection inhibits the expression of VitD3 pathway genes, thereby preventing VitD3-dependent inhibition of viral replication and the inflammatory response. This is the first study to examine the effects of VitD3 in the context of ZIKV infection, and it has important implications for the role of VitD3 in the control of viral replication and inflammatory responses during monocyte infection.
Collapse
Affiliation(s)
| | - Juan Felipe Valdés-López
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Silvio Urcuqui-Inchima
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.
| |
Collapse
|
5
|
Kalia V, Sarkar S. Vitamin D and antiviral immunity. FELDMAN AND PIKE'S VITAMIN D 2024:1011-1034. [DOI: 10.1016/b978-0-323-91338-6.00045-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
6
|
Salamaikina S, Korchagin V, Kulabukhova E, Mironov K, Zimina V, Kravtchenko A, Akimkin V. Association of Toll-Like Receptor Gene Polymorphisms with Tuberculosis in HIV-Positive Participants. EPIGENOMES 2023; 7:15. [PMID: 37606452 PMCID: PMC10443360 DOI: 10.3390/epigenomes7030015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/23/2023] Open
Abstract
Genetic factors in the HIV-background may play a significant role in the susceptibility to secondary diseases, like tuberculosis, which is the leading cause in mortality of HIV-positive people. Toll-like receptors (TLRs) are considered to be receptors for adaptive immunity, and polymorphisms in TLR genes can influence the activity of the immune response to infection. We conducted a case-control study of the association of TLR gene polymorphisms with the risk of tuberculosis coinfection in a multi-country sample of HIV-positive participants. Our study revealed certain associations between TLR4 and TLR6 polymorphisms and HIV-tuberculosis coinfection. We also found that the analyzed TLR1 and TLR4 polymorphisms were linked with the decline in CD4+ cell count, which is a predictor of disease progression in HIV-infected individuals. Our findings confirm that TLR gene polymorphisms are factors that may contribute to development of HIV-tuberculosis coinfection. However, the essence of the observed associations remains unclear, since it can also include both environmental factors and epigenetic mechanisms of gene expression regulation.
Collapse
Affiliation(s)
- Svetlana Salamaikina
- Central Research Institute of Epidemiology Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing Russian Federation, Novogireevskaya Str. 3a, 111123 Moscow, Russia
| | - Vitaly Korchagin
- Central Research Institute of Epidemiology Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing Russian Federation, Novogireevskaya Str. 3a, 111123 Moscow, Russia
| | - Ekaterina Kulabukhova
- Central Research Institute of Epidemiology Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing Russian Federation, Novogireevskaya Str. 3a, 111123 Moscow, Russia
- Medical Institute, The Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya Str. 6, 117198 Moscow, Russia
| | - Konstantin Mironov
- Central Research Institute of Epidemiology Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing Russian Federation, Novogireevskaya Str. 3a, 111123 Moscow, Russia
| | - Vera Zimina
- Medical Institute, The Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya Str. 6, 117198 Moscow, Russia
| | - Alexey Kravtchenko
- Central Research Institute of Epidemiology Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing Russian Federation, Novogireevskaya Str. 3a, 111123 Moscow, Russia
| | - Vasily Akimkin
- Central Research Institute of Epidemiology Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing Russian Federation, Novogireevskaya Str. 3a, 111123 Moscow, Russia
| |
Collapse
|
7
|
Campbell GR, Rawat P, Teodorof-Diedrich C, Spector SA. IRAK1 inhibition blocks the HIV-1 RNA mediated pro-inflammatory cytokine response from microglia. J Gen Virol 2023; 104:001858. [PMID: 37256770 PMCID: PMC10336426 DOI: 10.1099/jgv.0.001858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/10/2023] [Indexed: 06/02/2023] Open
Abstract
Human immunodeficiency virus (HIV)-associated neurocognitive disorders (HAND) are a common source of morbidity in people living with HIV (PLWH). Although antiretroviral therapy (ART) has lessened the severity of neurocognitive disorders, cognitive impairment still occurs in PLWH receiving ART. The pathogenesis of HAND is likely multifaceted, but common factors include the persistence of HIV transcription within the central nervous system, higher levels of pro-inflammatory cytokines in the cerebrospinal fluid, and the presence of activated microglia. Toll-like receptor (TLR) 7 and TLR8 are innate pathogen recognition receptors located in microglia and other immune and non-immune cells that can recognise HIV RNA and trigger pro-inflammatory responses. IL-1 receptor-associated kinase (IRAK) 1 is key to these signalling pathways. Here, we show that IRAK1 inhibition inhibits the TLR7 and TLR8-dependent pro-inflammatory response to HIV RNA. Using genetic and pharmacological inhibition, we demonstrate that inhibition of IRAK1 prevents IRAK1 phosphorylation and ubiquitination, and the subsequent recruitment of TRAF6 and the TAK1 complex to IRAK1, resulting in the inhibition of downstream signalling and the suppression of pro-inflammatory cytokine and chemokine release.
Collapse
Affiliation(s)
- Grant R. Campbell
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA
| | - Pratima Rawat
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Present address: Microbiologics Inc, San Diego, CA, USA
| | - Carmen Teodorof-Diedrich
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Stephen A. Spector
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Rady Children’s Hospital, San Diego, CA, USA
| |
Collapse
|
8
|
Vitamin D as a Shield against Aging. Int J Mol Sci 2023; 24:ijms24054546. [PMID: 36901976 PMCID: PMC10002864 DOI: 10.3390/ijms24054546] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Aging can be seen as a physiological progression of biomolecular damage and the accumulation of defective cellular components, which trigger and amplify the process, toward whole-body function weakening. Senescence initiates at the cellular level and consists in an inability to maintain homeostasis, characterized by the overexpression/aberrant expression of inflammatory/immune/stress responses. Aging is associated with significant modifications in immune system cells, toward a decline in immunosurveillance, which, in turn, leads to chronic elevation of inflammation/oxidative stress, increasing the risk of (co)morbidities. Albeit aging is a natural and unavoidable process, it can be regulated by some factors, like lifestyle and diet. Nutrition, indeed, tackles the mechanisms underlying molecular/cellular aging. Many micronutrients, i.e., vitamins and elements, can impact cell function. This review focuses on the role exerted by vitamin D in geroprotection, based on its ability to shape cellular/intracellular processes and drive the immune response toward immune protection against infections and age-related diseases. To this aim, the main biomolecular paths underlying immunosenescence and inflammaging are identified as biotargets of vitamin D. Topics such as heart and skeletal muscle cell function/dysfunction, depending on vitamin D status, are addressed, with comments on hypovitaminosis D correction by food and supplementation. Albeit research has progressed, still limitations exist in translating knowledge into clinical practice, making it necessary to focus attention on the role of vitamin D in aging, especially considering the growing number of older individuals.
Collapse
|
9
|
Valdés-López JF, Velilla P, Urcuqui-Inchima S. Vitamin D modulates the expression of Toll-like receptors and pro-inflammatory cytokines without affecting Chikungunya virus replication, in monocytes and macrophages. Acta Trop 2022; 232:106497. [PMID: 35508271 DOI: 10.1016/j.actatropica.2022.106497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/12/2022] [Accepted: 04/30/2022] [Indexed: 11/30/2022]
Abstract
Chikungunya virus (CHIKV) is a zoonotic arthropod-borne virus that causes Chikungunya fever (CHIKF), a self-limiting disease characterized by myalgia and acute or chronic arthralgia. CHIKF pathogenesis has an important immunological component since higher levels of pro-inflammatory factors, including cytokines and chemokines, are detected in CHIKV-infected patients. In vitro studies, using monocytes and macrophages have shown that CHIKV infection promotes elevated production of pro-inflammatory cytokines and antiviral response factors. Vitamin D3 (VD3) has been described as an important modulator of immune response and as an antiviral factor for several viruses. Here, we aimed to study the effects of VD3 treatment on viral replication and pro-inflammatory response in CHIKV-infected human monocytes (VD3-Mon) and monocyte-derived macrophages differentiated in the absence (MDMs) or the presence of VD3 (VD3-MDMs). We found that VD3 treatment did not suppress CHIKV replication in either VD3-Mon or VD3-MDMs. However, the expression of VDR, CAMP and CYP24A1 mRNAs was altered by CHIKV infection. Furthermore, VD3 treatment alters TLRs mRNA expression and production of pro-inflammatory cytokines, including TNFα and CXCL8/IL8, but not IL1β and IL6, in response to CHIKV infection in both VD3-Mon and VD3-MDMs. While a significant decrease in CXCL8/IL8 production was observed in CHIKV-infected VD3-Mon, significantly higher production of CXCL8/IL8 was observed in CHIKV-infected VD3-MDM at 24 hpi. Altogether, our results suggest that vitamin D3 may play an important role in ameliorating pro-inflammatory response during CHIKV infection in human Mon, but not in MDMs. Although further studies are needed to evaluate the efficacy of VD3; nevertheless, this study provides novel insights into its benefits in modulating the inflammatory response elicited by CHIKV infection in humans.
Collapse
Affiliation(s)
- Juan Felipe Valdés-López
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.
| | - Paula Velilla
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.
| | - Silvio Urcuqui-Inchima
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.
| |
Collapse
|
10
|
Ke PY. Autophagy and antiviral defense. IUBMB Life 2022; 74:317-338. [PMID: 34859938 DOI: 10.1002/iub.2582] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/04/2021] [Accepted: 11/15/2021] [Indexed: 12/14/2022]
Abstract
Targeting intracellular components for lysosomal degradation by autophagy not only maintains cellular homeostasis but also counteracts the effects of external stimuli, including invading pathogens. Among various kinds of pathogens, viruses have been extensively shown to induce autophagy to benefit viral growth in infected cells and to modulate host defense responses, such as innate antiviral immunity. Recently, numerous lines of evidence have implied that virus-induced autophagy triggers multilayer mechanisms to regulate the innate antiviral response of host cells, thus promoting a balance in virus-host cell interactions. In this review, the detailed mechanisms underlying autophagy and the innate antiviral immune response are first described. Then, I summarize the current information regarding the diverse functional role(s) of autophagy in the control of antiviral defenses against different types of viral infections. Moreover, the physiological significance of autophagy-regulated antiviral responses on the viral life cycle and the potential autophagy alterations induced by virus-associated antiviral signaling is further discussed.
Collapse
Affiliation(s)
- Po-Yuan Ke
- Department of Biochemistry & Molecular Biology and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan, ROC
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan, ROC
| |
Collapse
|
11
|
Golabi S, Adelipour M, Mobarak S, Piri M, Seyedtabib M, Bagheri R, Suzuki K, Ashtary-Larky D, Maghsoudi F, Naghashpour M. The Association between Vitamin D and Zinc Status and the Progression of Clinical Symptoms among Outpatients Infected with SARS-CoV-2 and Potentially Non-Infected Participants: A Cross-Sectional Study. Nutrients 2021; 13:nu13103368. [PMID: 34684369 PMCID: PMC8537338 DOI: 10.3390/nu13103368] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/19/2021] [Accepted: 09/21/2021] [Indexed: 12/12/2022] Open
Abstract
Vitamin D and zinc are important components of nutritional immunity. This study compared the serum concentrations of 25-hydroxyvitamin D (25(OH)D) and zinc in COVID-19 outpatients with those of potentially non-infected participants. The association of clinical symptoms with vitamin D and zinc status was also examined. A checklist and laboratory examination were applied to collect data in a cross-sectional study conducted on 53 infected outpatients with COVID-19 and 53 potentially non-infected participants. Serum concentration of 25(OH)D were not significantly lower in patients with moderate illness (19 ± 12 ng/mL) than patients with asymptomatic or mild illness (29 ± 18 ng/mL), with a trend noted for a lower serum concentration of 25(OH)D in moderate than asymptomatic or mild illness patients (p = 0.054). Infected patients (101 ± 18 µg/dL) showed a lower serum concentration of zinc than potentially non-infected participants (114 ± 13 µg/dL) (p = 0.01). Patients with normal (odds ratio (OR), 0.19; p ≤ 0.001) and insufficient (OR, 0.3; p = 0.007) vitamin D status at the second to seventh days of disease had decreased OR of general symptoms compared to patients with vitamin D deficiency. This study revealed the importance of 25(OH)D measurement to predict the progression of general and pulmonary symptoms and showed that infected patients had significantly lower zinc concentrations than potentially non-infected participants.
Collapse
Affiliation(s)
- Sahar Golabi
- Department of Medical Physiology, School of Medicine, Abadan University of Medical Sciences, Abadan 6313833177, Iran;
| | - Maryam Adelipour
- Department of Clinical Biochemistry, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6135715794, Iran;
| | - Sara Mobarak
- Department of Infectious Diseases, School of Medicine, Abadan University of Medical Sciences, Abadan 6313833177, Iran;
| | - Maghsud Piri
- Vice Chancellor for Health, Abadan University of Medical Sciences, Abadan 6313833177, Iran;
| | - Maryam Seyedtabib
- Department of Biostatistics and Epidemiology, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6135715794, Iran;
| | - Reza Bagheri
- Department of Exercise Physiology, University of Isfahan, Isfahan 8174673441, Iran;
| | - Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa 359-1192, Japan;
| | - Damoon Ashtary-Larky
- Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6135715794, Iran;
| | - Fatemeh Maghsoudi
- Department of Public Health, School of Health, Abadan University of Medical Sciences, Abadan 6313833177, Iran;
| | - Mahshid Naghashpour
- Department of Nutrition, School of Medicine, Abadan University of Medical Sciences, Abadan 6313833177, Iran
- Correspondence: ; Tel.: +98-9166157338
| |
Collapse
|
12
|
Ul Afshan F, Nissar B, Chowdri NA, Ganai BA. Relevance of vitamin D 3 in COVID-19 infection. GENE REPORTS 2021; 24:101270. [PMID: 34250314 PMCID: PMC8260490 DOI: 10.1016/j.genrep.2021.101270] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/28/2021] [Accepted: 07/01/2021] [Indexed: 12/15/2022]
Abstract
SARS-CoV-2 virus, the main culprit for COVID-19 disaster, has triggered a gust of curiosity both in the mechanism of action of this infection as well as potential risk factors for disease generation and regimentation. The prime focus of the present review, which is basically a narrative one, is in utilizing the current concepts of vitamin D3 as an agent with myriad functions, one of them being immunocompetence and a promising weapon for both innate and adaptive immunity against COVID-19 infection. Some of the manifestations of SARS-CoV-2 virus such as Acute Respiratory Distress Syndrome (ARDS) overlap with the pathophysiological effects that are overcome due to already established role of vitamin D3 e.g., amelioration of cytokine outburst. Additionally, the cardiovascular complications due to COVID-19 infection may also be connected to vitamin D3 levels and the activity of its active forms. Eventually, we summarise the clinical, observational and epidemiological data of the respiratory diseases including COVID-19 disease and try to bring its association with the potential role of vitamin D3, in particular, the activity of its active forms, circulating levels and its supplementation, against dissemination of this disease.
Collapse
Affiliation(s)
- Falaque Ul Afshan
- Department of Biochemistry, University of Kashmir, Hazratbal, Srinagar, J&K 190006, India
| | - Bushra Nissar
- Department of Biochemistry, University of Kashmir, Hazratbal, Srinagar, J&K 190006, India
| | | | - Bashir Ahmad Ganai
- Centre For Research and Development, University of Kashmir, Hazratbal, Srinagar, J&K 190006, India
| |
Collapse
|
13
|
Bhutia SK. Vitamin D in autophagy signaling for health and diseases: Insights on potential mechanisms and future perspectives. J Nutr Biochem 2021; 99:108841. [PMID: 34403722 DOI: 10.1016/j.jnutbio.2021.108841] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 06/08/2021] [Accepted: 08/10/2021] [Indexed: 02/07/2023]
Abstract
Vitamin D regulates the pleiotropic effect to maintain cellular homeostasis and epidemiological evidence establishes an association between vitamin D deficiency and various human diseases. Here, the role of autophagy, the cellular self-degradation process, in vitamin D-dependent function is documented in different cellular settings and discussed the molecular aspects for treating chronic inflammatory, infectious diseases, and cancer. Vitamin D activates autophagy through a genomic and non-genomic signaling pathway to influence a wide variety of physiological functions of different body organs along with bone health and calcium metabolism. Moreover, it induces autophagy as a protective mechanism to inhibit oxidative stress and apoptosis to regulate cell proliferation, differentiation, and immune modulation. Furthermore, vitamin D and its receptor regulate autophagy signaling to control inflammation and host immunity by activating antimicrobial defense mechanisms. Vitamin D has been revealed as a potent anticancer agent and induces autophagy to increase the response to radiation and chemotherapeutic drugs for potential cancer therapy. Increasing vitamin D levels in the human body through timely exposure to sunlight or vitamin D supplements could activate autophagy as part of the homeostasis mechanism to prevent multiple human diseases and aging-associated dysfunctions.
Collapse
Affiliation(s)
- Sujit Kumar Bhutia
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, 769008, India.
| |
Collapse
|
14
|
Pietrobon AJ, Yoshikawa FSY, Oliveira LM, Pereira NZ, Matozo T, de Alencar BC, Duarte AJS, Sato MN. Antiviral Response Induced by TLR7/TLR8 Activation Inhibits HIV-1 Infection in Cord Blood Macrophages. J Infect Dis 2021; 225:510-519. [PMID: 34355765 DOI: 10.1093/infdis/jiab389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 07/26/2021] [Indexed: 02/01/2023] Open
Abstract
Vertical transmission is the main mechanism of HIV-1 infection in infants, who may develop high viremia and rapidly progress to AIDS. Innate immunity agonists can control HIV-1 replication in vitro, but the protective effect in the neonatal period remains unknown. Herein, we evaluated the immunomodulatory and antiviral effects of IFN-I adjuvants on cord blood monocyte-derived macrophages upon HIV-1 infection. Despite the phenotypic and transcriptional similarities between cord blood and adult macrophages, cord blood cells were prone to viral replication when infected with HIV-1. However, treatment with CL097 efficiently promoted the antiviral and inflammatory responses and inhibited HIV-1 replication in cord blood cells in an NF-κB and autophagy activation-independent manner. Our data suggest that cord blood macrophages are able to establish antiviral responses induced by IFN-I adjuvants similar to those of their adult counterparts, revealing a potential adjuvant candidate to enhance the neonatal immune response.
Collapse
Affiliation(s)
- Anna J Pietrobon
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, Tropical Medicine Institute of São Paulo, University of São Paulo Medical School, Brazil.,Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Fábio S Y Yoshikawa
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, Tropical Medicine Institute of São Paulo, University of São Paulo Medical School, Brazil
| | - Luana M Oliveira
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, Tropical Medicine Institute of São Paulo, University of São Paulo Medical School, Brazil
| | - Natalli Z Pereira
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, Tropical Medicine Institute of São Paulo, University of São Paulo Medical School, Brazil
| | - Tais Matozo
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Bruna C de Alencar
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Alberto J S Duarte
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, Tropical Medicine Institute of São Paulo, University of São Paulo Medical School, Brazil
| | - Maria N Sato
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, Tropical Medicine Institute of São Paulo, University of São Paulo Medical School, Brazil
| |
Collapse
|
15
|
Campbell GR, Spector SA. Induction of Autophagy to Achieve a Human Immunodeficiency Virus Type 1 Cure. Cells 2021; 10:cells10071798. [PMID: 34359967 PMCID: PMC8307643 DOI: 10.3390/cells10071798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 02/06/2023] Open
Abstract
Effective antiretroviral therapy has led to significant human immunodeficiency virus type 1 (HIV-1) suppression and improvement in immune function. However, the persistence of integrated proviral DNA in latently infected reservoir cells, which drive viral rebound post-interruption of antiretroviral therapy, remains the major roadblock to a cure. Therefore, the targeted elimination or permanent silencing of this latently infected reservoir is a major focus of HIV-1 research. The most studied approach in the development of a cure is the activation of HIV-1 expression to expose latently infected cells for immune clearance while inducing HIV-1 cytotoxicity—the “kick and kill” approach. However, the complex and highly heterogeneous nature of the latent reservoir, combined with the failure of clinical trials to reduce the reservoir size casts doubt on the feasibility of this approach. This concern that total elimination of HIV-1 from the body may not be possible has led to increased emphasis on a “functional cure” where the virus remains but is unable to reactivate which presents the challenge of permanently silencing transcription of HIV-1 for prolonged drug-free remission—a “block and lock” approach. In this review, we discuss the interaction of HIV-1 and autophagy, and the exploitation of autophagy to kill selectively HIV-1 latently infected cells as part of a cure strategy. The cure strategy proposed has the advantage of significantly decreasing the size of the HIV-1 reservoir that can contribute to a functional cure and when optimised has the potential to eradicate completely HIV-1.
Collapse
Affiliation(s)
- Grant R. Campbell
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA;
- Correspondence: ; Tel.: +1-858-534-7477
| | - Stephen A. Spector
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA;
- Rady Children’s Hospital, San Diego, CA 92123, USA
| |
Collapse
|
16
|
Cabrera-Rodríguez R, Pérez-Yanes S, Estévez-Herrera J, Márquez-Arce D, Cabrera C, Espert L, Blanco J, Valenzuela-Fernández A. The Interplay of HIV and Autophagy in Early Infection. Front Microbiol 2021; 12:661446. [PMID: 33995324 PMCID: PMC8113651 DOI: 10.3389/fmicb.2021.661446] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/31/2021] [Indexed: 12/11/2022] Open
Abstract
HIV/AIDS is still a global threat despite the notable efforts made by the scientific and health communities to understand viral infection, to design new drugs or to improve existing ones, as well as to develop advanced therapies and vaccine designs for functional cure and viral eradication. The identification and analysis of HIV-1 positive individuals that naturally control viral replication in the absence of antiretroviral treatment has provided clues about cellular processes that could interact with viral proteins and RNA and define subsequent viral replication and clinical progression. This is the case of autophagy, a degradative process that not only maintains cell homeostasis by recycling misfolded/old cellular elements to obtain nutrients, but is also relevant in the innate and adaptive immunity against viruses, such as HIV-1. Several studies suggest that early steps of HIV-1 infection, such as virus binding to CD4 or membrane fusion, allow the virus to modulate autophagy pathways preparing cells to be permissive for viral infection. Confirming this interplay, strategies based on autophagy modulation are able to inhibit early steps of HIV-1 infection. Moreover, autophagy dysregulation in late steps of the HIV-1 replication cycle may promote autophagic cell-death of CD4+ T cells or control of HIV-1 latency, likely contributing to disease progression and HIV persistence in infected individuals. In this scenario, understanding the molecular mechanisms underlying HIV/autophagy interplay may contribute to the development of new strategies to control HIV-1 replication. Therefore, the aim of this review is to summarize the knowledge of the interplay between autophagy and the early events of HIV-1 infection, and how autophagy modulation could impair or benefit HIV-1 infection and persistence, impacting viral pathogenesis, immune control of viral replication, and clinical progression of HIV-1 infected patients.
Collapse
Affiliation(s)
- Romina Cabrera-Rodríguez
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, e IUETSPC de la Universidad de La Laguna, Campus de Ofra s/n, Tenerife, Spain
| | - Silvia Pérez-Yanes
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, e IUETSPC de la Universidad de La Laguna, Campus de Ofra s/n, Tenerife, Spain
| | - Judith Estévez-Herrera
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, e IUETSPC de la Universidad de La Laguna, Campus de Ofra s/n, Tenerife, Spain
| | - Daniel Márquez-Arce
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, e IUETSPC de la Universidad de La Laguna, Campus de Ofra s/n, Tenerife, Spain
| | - Cecilia Cabrera
- AIDS Research Institute IrsiCaixa, Institut de Recerca en Ciències de la Salut Germans Trias i Pujol (IGTP), Barcelona, Spain
| | - Lucile Espert
- Institut de Recherche en Infectiologie de Montpellier, Université de Montpellier, CNRS, Montpellier, France
| | - Julià Blanco
- AIDS Research Institute IrsiCaixa, Institut de Recerca en Ciències de la Salut Germans Trias i Pujol (IGTP), Barcelona, Spain.,Universitat de Vic-Central de Catalunya (UVIC-UCC), Catalonia, Spain
| | - Agustín Valenzuela-Fernández
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, e IUETSPC de la Universidad de La Laguna, Campus de Ofra s/n, Tenerife, Spain
| |
Collapse
|
17
|
Campbell GR, To RK, Hanna J, Spector SA. SARS-CoV-2, SARS-CoV-1, and HIV-1 derived ssRNA sequences activate the NLRP3 inflammasome in human macrophages through a non-classical pathway. iScience 2021; 24:102295. [PMID: 33718825 PMCID: PMC7939994 DOI: 10.1016/j.isci.2021.102295] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/11/2021] [Accepted: 03/05/2021] [Indexed: 12/29/2022] Open
Abstract
Macrophages promote an early host response to infection by releasing pro-inflammatory cytokines such as interleukin-1β (IL-1β), TNF, and IL-6. The bioactivity of IL-1β is classically dependent on NLRP3 inflammasome activation, which culminates in caspase-1 activation and pyroptosis. Recent studies suggest a role for NLRP3 inflammasome activation in lung inflammation and fibrosis in both COVID-19 and SARS, and there is evidence of NLRP3 involvement in HIV-1 disease. Here, we show that GU-rich single-stranded RNA (GU-rich RNA) derived from SARS-CoV-2, SARS-CoV-1, and HIV-1 trigger a TLR8-dependent pro-inflammatory cytokine response from human macrophages in the absence of pyroptosis, with GU-rich RNA from the SARS-CoV-2 spike protein triggering the greatest inflammatory response. Using genetic and pharmacological inhibition, we show that the induction of mature IL-1β is through a non-classical pathway dependent on caspase-1, caspase-8, the NLRP3 inflammasome, potassium efflux, and autophagy while being independent of TRIF (TICAM1), vitamin D3, and pyroptosis.
Collapse
Affiliation(s)
- Grant R. Campbell
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Rachel K. To
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Jonathan Hanna
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Stephen A. Spector
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
- Rady Children's Hospital, San Diego, CA 92123, USA
| |
Collapse
|
18
|
Brandão CMÁ, Chiamolera MI, Biscolla RPM, Lima JV, De Francischi Ferrer CM, Prieto WH, de Sá Tavares Russo P, de Sá J, Dos Santos Lazari C, Granato CFH, Vieira JGH. No association between vitamin D status and COVID-19 infection in São Paulo, Brazil. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2021; 65:381-385. [PMID: 33740339 PMCID: PMC10065340 DOI: 10.20945/2359-3997000000343] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In recent years the immunomodulatory actions of vitamin D, a steroid hormone, have been extensively studied. In 2020, due to the COVID-19 pandemic, the question arose as to 25(OH)D status would be related to susceptibility to SARS-CoV-2 infection, since several studies pointed out a higher prevalence and severity of the disease in populations with low levels of 25(OH)D. Thus, we investigated the 25(OH)D levels in adults "Detected" positive for SARS CoV-2 by RT-PCR (reverse transcriptase polymerase chain reaction) test, and in negative controls, "not Detected", using the Fleury Group's examination database, in Sao Paulo, Brazil. Of a total of 14.692 people with recent assessments of 25(OH)D and RT-PCR tests for COVID-19, 2.345 were positive and 11.585 were negative for the infection. The groups did not differ in the percentage of men and women, or in the age distribution. There were no differences in the distribution of 25(OH)D between the two groups (p = 0.08); mean 25(OH)D of 28.8 ± 21.4 ng/mL and 29.6 ± 18.1 ng/mL, respectively. In the specific population studied, clinical, environmental, socioeconomic and cultural factors should have greater relevance than 25(OH)D in determining the susceptibility to COVID-19.
Collapse
|
19
|
Mado H, Reichman-Warmusz E, Dudek D, Warmusz O. Is Vitamin D Supplementation Protective against Coronavirus Disease 2019 (COVID-19)? ELECTRONIC JOURNAL OF GENERAL MEDICINE 2021. [DOI: 10.29333/ejgm/9762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
20
|
Human TRIM5α: Autophagy Connects Cell-Intrinsic HIV-1 Restriction and Innate Immune Sensor Functioning. Viruses 2021; 13:v13020320. [PMID: 33669846 PMCID: PMC7923229 DOI: 10.3390/v13020320] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/12/2021] [Accepted: 02/13/2021] [Indexed: 12/12/2022] Open
Abstract
Human immunodeficiency virus-1 (HIV-1) persists as a global health concern, with an incidence rate of approximately 2 million, and estimated global prevalence of over 35 million. Combination antiretroviral treatment is highly effective, but HIV-1 patients that have been treated still suffer from chronic inflammation and residual viral replication. It is therefore paramount to identify therapeutically efficacious strategies to eradicate viral reservoirs and ultimately develop a cure for HIV-1. It has been long accepted that the restriction factor tripartite motif protein 5 isoform alpha (TRIM5α) restricts HIV-1 infection in a species-specific manner, with rhesus macaque TRIM5α strongly restricting HIV-1, and human TRIM5α having a minimal restriction capacity. However, several recent studies underscore human TRIM5α as a cell-dependent HIV-1 restriction factor. Here, we present an overview of the latest research on human TRIM5α and propose a novel conceptualization of TRIM5α as a restriction factor with a varied portfolio of antiviral functions, including mediating HIV-1 degradation through autophagy- and proteasome-mediated mechanisms, and acting as a viral sensor and effector of antiviral signaling. We have also expanded on the protective antiviral roles of autophagy and outline the therapeutic potential of autophagy modulation to intervene in chronic HIV-1 infection.
Collapse
|
21
|
L Bishop E, Ismailova A, Dimeloe S, Hewison M, White JH. Vitamin D and Immune Regulation: Antibacterial, Antiviral, Anti-Inflammatory. JBMR Plus 2021; 5:e10405. [PMID: 32904944 PMCID: PMC7461279 DOI: 10.1002/jbm4.10405] [Citation(s) in RCA: 166] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/05/2020] [Indexed: 02/06/2023] Open
Abstract
Regulation of immune function continues to be one of the most well-recognized extraskeletal actions of vitamin D. This stemmed initially from the discovery that antigen presenting cells such as macrophages could actively metabolize precursor 25-hydroxyvitamin D (25D) to active 1,25-dihydroxyvitamin D (1,25D). Parallel observation that activated cells from the immune system expressed the intracellular vitamin D receptor (VDR) for 1,25D suggested a potential role for vitamin D as a localized endogenous modulator of immune function. Subsequent studies have expanded our understanding of how vitamin D exerts effects on both the innate and adaptive arms of the immune system. At an innate level, intracrine synthesis of 1,25D by macrophages and dendritic cells stimulates expression of antimicrobial proteins such as cathelicidin, as well as lowering intracellular iron concentrations via suppression of hepcidin. By potently enhancing autophagy, 1,25D may also play an important role in combatting intracellular pathogens such as M. tuberculosis and viral infections. Local synthesis of 1,25D by macrophages and dendritic cells also appears to play a pivotal role in mediating T-cell responses to vitamin D, leading to suppression of inflammatory T helper (Th)1 and Th17 cells, and concomitant induction of immunotolerogenic T-regulatory responses. The aim of this review is to provide an update on our current understanding of these prominent immune actions of vitamin D, as well as highlighting new, less well-recognized immune effects of vitamin D. The review also aims to place this mechanistic basis for the link between vitamin D and immunity with studies in vivo that have explored a role for vitamin D supplementation as a strategy for improved immune health. This has gained prominence in recent months with the global coronavirus disease 2019 health crisis and highlights important new objectives for future studies of vitamin D and immune function. © 2020 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Emma L Bishop
- Institute of Immunology and ImmunotherapyUniversity of BirminghamBirminghamUK
| | - Aiten Ismailova
- Department of PhysiologyMcGill UniversityMontrealQuebecCanada
| | - Sarah Dimeloe
- Institute of Immunology and ImmunotherapyUniversity of BirminghamBirminghamUK
- Metabolism and Systems ResearchUniversity of BirminghamBirminghamUK
| | - Martin Hewison
- Metabolism and Systems ResearchUniversity of BirminghamBirminghamUK
| | - John H White
- Department of PhysiologyMcGill UniversityMontrealQuebecCanada
- Department of MedicineMcGill UniversityMontrealQuebecCanada
| |
Collapse
|
22
|
Silwal P, Paik S, Kim JK, Yoshimori T, Jo EK. Regulatory Mechanisms of Autophagy-Targeted Antimicrobial Therapeutics Against Mycobacterial Infection. Front Cell Infect Microbiol 2021; 11:633360. [PMID: 33828998 PMCID: PMC8019938 DOI: 10.3389/fcimb.2021.633360] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/08/2021] [Indexed: 01/25/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) is an intracellular pathogen causing human tuberculosis, an infectious disease that still remains as a global health problem. Autophagy, a lysosomal degradative process, has emerged as a critical pathway to restrict intracellular Mtb growth through enhancement of phagosomal maturation. Indeed, several autophagy-modulating agents show promise as host-directed therapeutics for Mtb infection. In this Review, we discuss recent progress in our understanding the molecular mechanisms underlying the action of autophagy-modulating agents to overcome the immune escape strategies mediated by Mtb. The factors and pathways that govern such mechanisms include adenosine 5'-monophosphate-activated protein kinase, Akt/mammalian TOR kinase, Wnt signaling, transcription factor EB, cathelicidins, inflammation, endoplasmic reticulum stress, and autophagy-related genes. A further understanding of these mechanisms will facilitate the development of host-directed therapies against tuberculosis as well as infections with other intracellular bacteria targeted by autophagic degradation.
Collapse
Affiliation(s)
- Prashanta Silwal
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Seungwha Paik
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Jin Kyung Kim
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Tamotsu Yoshimori
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
- Department of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea
- *Correspondence: Eun-Kyeong Jo,
| |
Collapse
|
23
|
Malaguarnera L. Vitamin D3 as Potential Treatment Adjuncts for COVID-19. Nutrients 2020; 12:E3512. [PMID: 33202670 PMCID: PMC7697253 DOI: 10.3390/nu12113512] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 02/07/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus type (SARS-CoV2, also known as COVID-19), which is the latest pandemic infectious disease, constitutes a serious risk to human health. SARS-CoV2 infection causes immune activation and systemic hyperinflammation which can lead to respiratory distress syndrome (ARDS). ARDS victims are characterized by a significant increase in IL-6 and IL-1. Macrophage activation, associated with the "cytokine storm", promotes the dysregulation of the innate immunity. So far, without vaccines or specific therapy, all efforts to design drugs or clinical trials are worthwhile. Vitamin D and its receptor vitamin D receptor (VDR) exert a critical role in infections due to their remarkable impact on both innate and adaptive immune responses and on the suppression of the inflammatory process. The protective properties of vitamin D supplementation have been supported by numerous observational studies and by meta-analysis of clinical trials for prevention of viral acute respiratory infection. In this review, we compare the mechanisms of the host immune response to SARS-CoV2 infection and the immunomodulatory actions that vitamin D exerts in order to consider the preventive effect of vitamin D supplementation on SARS-CoV2 viral infection.
Collapse
Affiliation(s)
- Lucia Malaguarnera
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania, Italy
| |
Collapse
|
24
|
The Role of Toll-Like Receptors in Retroviral Infection. Microorganisms 2020; 8:microorganisms8111787. [PMID: 33202596 PMCID: PMC7697840 DOI: 10.3390/microorganisms8111787] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 02/07/2023] Open
Abstract
Toll-like receptors (TLRs) are key pathogen sensing receptors that respond to diverse microbial ligands, and trigger both innate and adaptive immune responses to infection. Since their discovery, a growing body of evidence has pointed to an important role for TLRs in retroviral infection and pathogenesis. These data suggest that multiple TLRs contribute to the anti-retroviral response, and that TLR engagement by retroviruses can have complex and divergent outcomes for infection. Despite this progress, numerous questions remain about the role of TLRs in retroviral infection. In this review, I summarize existing evidence for TLR-retrovirus interactions and the functional roles these receptors play in immunity and pathogenesis, with particular focus on human immunodeficiency virus (HIV).
Collapse
|
25
|
Bilezikian JP, Bikle D, Hewison M, Lazaretti-Castro M, Formenti AM, Gupta A, Madhavan MV, Nair N, Babalyan V, Hutchings N, Napoli N, Accili D, Binkley N, Landry DW, Giustina A. MECHANISMS IN ENDOCRINOLOGY: Vitamin D and COVID-19. Eur J Endocrinol 2020; 183:R133-R147. [PMID: 32755992 PMCID: PMC9494342 DOI: 10.1530/eje-20-0665] [Citation(s) in RCA: 256] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/27/2020] [Accepted: 08/04/2020] [Indexed: 12/18/2022]
Abstract
The SARS-CoV-2 virus responsible for the COVID-19 pandemic has generated an explosion of interest both in the mechanisms of infection leading to dissemination and expression of this disease, and in potential risk factors that may have a mechanistic basis for disease propagation or control. Vitamin D has emerged as a factor that may be involved in these two areas. The focus of this article is to apply our current understanding of vitamin D as a facilitator of immunocompetence both with regard to innate and adaptive immunity and to consider how this may relate to COVID-19 disease. There are also intriguing potential links to vitamin D as a factor in the cytokine storm that portends some of the most serious consequences of SARS-CoV-2 infection, such as the acute respiratory distress syndrome. Moreover, cardiac and coagulopathic features of COVID-19 disease deserve attention as they may also be related to vitamin D. Finally, we review the current clinical data associating vitamin D with SARS-CoV-2 infection, a putative clinical link that at this time must still be considered hypothetical.
Collapse
Affiliation(s)
- John P Bilezikian
- Endocrinology Division, Department of Medicine, New York-Presbyterian Hospital/Columbia University Irving Medical Center, New York, New York, USA
| | - Daniel Bikle
- Endocrine Unit, Veterans Affairs Medical Center, University of California, San Francisco, California, USA
| | - Martin Hewison
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - Marise Lazaretti-Castro
- Division of Endocrinology, Escola Paulista de Medicina – Universidade Federal de Sao Paulo (EPM-UNIFESP), Sao Paulo, Brazil
| | - Anna Maria Formenti
- Institute of Endocrine and Metabolic Sciences, San Raffaele, Vita-Salute University and IRCCS Hospital, Milano, Italy
| | - Aakriti Gupta
- Division of Cardiology, Department of Medicine, NewYork-Presbyterian Hospital/Columbia University Irving Medical Center, New York, New York, USA
- Clinical Trials Center, Cardiovascular Research Foundation, New York, New York, USA
- Center for Outcomes Research and Evaluation, Yale New Haven Hospital, New Haven, Connecticut, USA
| | - Mahesh V Madhavan
- Division of Cardiology, Department of Medicine, NewYork-Presbyterian Hospital/Columbia University Irving Medical Center, New York, New York, USA
- Clinical Trials Center, Cardiovascular Research Foundation, New York, New York, USA
| | - Nandini Nair
- Endocrinology Division, Department of Medicine, New York-Presbyterian Hospital/Columbia University Irving Medical Center, New York, New York, USA
| | | | | | - Nicola Napoli
- Unit of Endocrinology and Diabetes, Campus Bio-Medico University of Rome, Rome, Italy
- Division of Bone and Mineral Diseases, Washington University in St Louis, St Louis, Missouri, USA
| | - Domenico Accili
- Endocrinology Division, Department of Medicine, New York-Presbyterian Hospital/Columbia University Irving Medical Center, New York, New York, USA
| | - Neil Binkley
- University of Wisconsin, Madison, Wisconsin, USA
| | - Donald W Landry
- Division of Nephrology, Department of Medicine, NewYork-Presbyterian Hospital/Columbia University Irving Medical Center, New York, New York, USA
| | - Andrea Giustina
- Institute of Endocrine and Metabolic Sciences, San Raffaele, Vita-Salute University and IRCCS Hospital, Milano, Italy
| |
Collapse
|
26
|
CD4 + T Cell-Mimicking Nanoparticles Broadly Neutralize HIV-1 and Suppress Viral Replication through Autophagy. mBio 2020; 11:mBio.00903-20. [PMID: 32934078 PMCID: PMC7492730 DOI: 10.1128/mbio.00903-20] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
HIV-1 is a major global health challenge. The development of an effective vaccine and/or a therapeutic cure is a top priority. The creation of vaccines that focus an antibody response toward a particular epitope of a protein has shown promise, but the genetic diversity of HIV-1 hinders this progress. Here we developed an approach using nanoengineered CD4+ T cell membrane-coated nanoparticles (TNP). Not only do TNP effectively neutralize all strains of HIV-1, but they also selectively bind to infected cells and decrease the release of HIV-1 particles through an autophagy-dependent mechanism with no drug-induced off-target or cytotoxic effects on bystander cells. Therapeutic strategies that provide effective and broad‐spectrum neutralization against HIV-1 infection are highly desirable. Here, we investigate the potential of nanoengineered CD4+ T cell membrane-coated nanoparticles (TNP) to neutralize a broad range of HIV-1 strains. TNP displayed outstanding neutralizing breadth and potency; they neutralized all 125 HIV-1-pseudotyped viruses tested, including global subtypes/recombinant forms, and transmitted/founder viruses, with a geometric mean 80% inhibitory concentration (IC80) of 819 μg ml−1 (range, 72 to 8,570 μg ml−1). TNP also selectively bound to and induced autophagy in HIV-1-infected CD4+ T cells and macrophages, while having no effect on uninfected cells. This TNP-mediated autophagy inhibited viral release and reduced cell-associated HIV-1 in a dose- and phospholipase D1-dependent manner. Genetic or pharmacological inhibition of autophagy ablated this effect. Thus, we can use TNP as therapeutic agents to neutralize cell-free HIV-1 and to target HIV-1 gp120-expressing cells to decrease the HIV-1 reservoir.
Collapse
|
27
|
Nuclear Receptors as Autophagy-Based Antimicrobial Therapeutics. Cells 2020; 9:cells9091979. [PMID: 32867365 PMCID: PMC7563212 DOI: 10.3390/cells9091979] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/21/2020] [Accepted: 08/26/2020] [Indexed: 12/13/2022] Open
Abstract
Autophagy is an intracellular process that targets intracellular pathogens for lysosomal degradation. Autophagy is tightly controlled at transcriptional and post-translational levels. Nuclear receptors (NRs) are a family of transcriptional factors that regulate the expression of gene sets involved in, for example, metabolic and immune homeostasis. Several NRs show promise as host-directed anti-infectives through the modulation of autophagy activities by their natural ligands or small molecules (agonists/antagonists). Here, we review the roles and mechanisms of NRs (vitamin D receptors, estrogen receptors, estrogen-related receptors, and peroxisome proliferator-activated receptors) in linking immunity and autophagy during infection. We also discuss the potential of emerging NRs (REV-ERBs, retinoic acid receptors, retinoic acid-related orphan receptors, liver X receptors, farnesoid X receptors, and thyroid hormone receptors) as candidate antimicrobials. The identification of novel roles and mechanisms for NRs will enable the development of autophagy-adjunctive therapeutics for emerging and re-emerging infectious diseases.
Collapse
|
28
|
Yazdani Z, Rafiei A, Yazdani M, Valadan R. Design an Efficient Multi-Epitope Peptide Vaccine Candidate Against SARS-CoV-2: An in silico Analysis. Infect Drug Resist 2020; 13:3007-3022. [PMID: 32943888 PMCID: PMC7459237 DOI: 10.2147/idr.s264573] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/28/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND To date, no specific vaccine or drug has been proven to be effective against SARS-CoV-2 infection. Therefore, we implemented an immunoinformatic approach to design an efficient multi-epitopes vaccine against SARS-CoV-2. RESULTS The designed-vaccine construct consists of several immunodominant epitopes from structural proteins of spike, nucleocapsid, membrane, and envelope. These peptides promote cellular and humoral immunity and interferon-gamma responses. Also, these epitopes have a high antigenic capacity and are not likely to cause allergies. To enhance the vaccine immunogenicity, we used three potent adjuvants: Flagellin of Salmonella enterica subsp. enterica serovar Dublin, a driven peptide from high mobility group box 1 as HP-91, and human beta-defensin 3 protein. The physicochemical and immunological properties of the vaccine structure were evaluated. The tertiary structure of the vaccine protein was predicted and refined by Phyre2 and Galaxi refine and validated using RAMPAGE and ERRAT. Results of ElliPro showed 246 sresidues from vaccine might be conformational B-cell epitopes. Docking of the vaccine with toll-like receptors (TLR) 3, 5, 8, and angiotensin-converting enzyme 2 approved an appropriate interaction between the vaccine and receptors. Prediction of mRNA secondary structure and in silico cloning demonstrated that the vaccine can be efficiently expressed in Escherichia coli. CONCLUSION Our results demonstrated that the multi-epitope vaccine might be potentially antigenic and induce humoral and cellular immune responses against SARS-CoV-2. This vaccine can interact appropriately with the TLR3, 5, and 8. Also, it has a high-quality structure and suitable characteristics such as high stability and potential for expression in Escherichia coli .
Collapse
Affiliation(s)
- Zahra Yazdani
- Department of Immunology, Molecular and Cell Biology Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Alireza Rafiei
- Department of Immunology, Molecular and Cell Biology Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammadreza Yazdani
- Department of Chemistry, Isfahan University of Technology, Isfahan84156-83111, Iran
| | - Reza Valadan
- Department of Immunology, Molecular and Cell Biology Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
29
|
Rawat P, Hon S, Teodorof-Diedrich C, Spector SA. Trehalose Inhibits Human Immunodeficiency Virus Type 1 Infection in Primary Human Macrophages and CD4 + T Lymphocytes through Two Distinct Mechanisms. J Virol 2020; 94:e00237-20. [PMID: 32554696 PMCID: PMC7431788 DOI: 10.1128/jvi.00237-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 06/12/2020] [Indexed: 12/11/2022] Open
Abstract
Autophagy is a highly conserved recycling pathway that promotes cell survival during periods of stress. We previously reported that induction of autophagy through the inhibition of the mechanistic target of rapamycin (MTOR) inhibits HIV replication in human macrophages and CD4+ T lymphocytes (T cells). However, the inhibition of MTOR has modulatory effects beyond autophagy that might affect viral replication. Here, we examined the effect on HIV replication of trehalose, a nontoxic, nonreducing disaccharide that induces autophagy through an MTOR-independent mechanism. Treatment of HIV-infected macrophages and T cells with trehalose inhibited infection in a dose-dependent manner. Uninfected and HIV-infected macrophages and T cells treated with trehalose exhibited increased markers of autophagy, including LC3B lipidation with further accumulation following bafilomycin A1 treatment, and increased levels of LAMP1, LAMP2, and RAB7 proteins required for lysosomal biogenesis and fusion. Moreover, the inhibition of HIV by trehalose was significantly reduced by knockdown of ATG5 Additionally, trehalose downregulated the expression of C-C motif chemokine receptor 5 (CCR5) in T cells and CD4 in both T cells and macrophages, which reduced HIV entry in these cells. Our data demonstrate that the naturally occurring sugar trehalose at doses safely achieved in humans inhibits HIV through two mechanisms: (i) decreased entry through the downregulation of CCR5 in T cells and decreased CD4 expression in both T cells and macrophages and (ii) degradation of intracellular HIV through the induction of MTOR-independent autophagy. These findings demonstrate that cellular mechanisms can be modulated to inhibit HIV entry and intracellular replication using a naturally occurring, nontoxic sugar.IMPORTANCE Induction of autophagy through inhibition of MTOR has been shown to inhibit HIV replication. However, inhibition of the mechanistic target of rapamycin (MTOR) has cellular effects that may alter HIV infection through other mechanisms. Here, we examined the HIV-inhibitory effects of the MTOR-independent inducer of autophagy, trehalose. Of note, we identified that in addition to the inhibition of the intracellular replication of HIV by autophagy, trehalose decreased viral entry in human primary macrophages and CD4+ T cells through the downregulation of C-C motif chemokine receptor 5 (CCR5) in T cells and CD4 in both T cells and macrophages. Thus, we showed that trehalose uniquely inhibits HIV replication through inhibition of viral entry and intracellular degradation in the two most important target cells for HIV infection.
Collapse
Affiliation(s)
- Pratima Rawat
- Department of Pediatrics, Division of Infectious Diseases, University of California San Diego, La Jolla, California, USA
| | - Simson Hon
- Department of Pediatrics, Division of Infectious Diseases, University of California San Diego, La Jolla, California, USA
| | - Carmen Teodorof-Diedrich
- Department of Pediatrics, Division of Infectious Diseases, University of California San Diego, La Jolla, California, USA
| | - Stephen A Spector
- Department of Pediatrics, Division of Infectious Diseases, University of California San Diego, La Jolla, California, USA
- Rady Children's Hospital, San Diego, California, USA
| |
Collapse
|
30
|
Schrumpf JA, van der Does AM, Hiemstra PS. Impact of the Local Inflammatory Environment on Mucosal Vitamin D Metabolism and Signaling in Chronic Inflammatory Lung Diseases. Front Immunol 2020; 11:1433. [PMID: 32754156 PMCID: PMC7366846 DOI: 10.3389/fimmu.2020.01433] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 06/03/2020] [Indexed: 02/06/2023] Open
Abstract
Vitamin D plays an active role in the modulation of innate and adaptive immune responses as well as in the protection against respiratory pathogens. Evidence for this immunomodulatory and protective role is derived from observational studies showing an association between vitamin D deficiency, chronic airway diseases and respiratory infections, and is supported by a range of experimental studies using cell culture and animal models. Furthermore, recent intervention studies have now shown that vitamin D supplementation reduces exacerbation rates in vitamin D-deficient patients with chronic obstructive pulmonary disease (COPD) or asthma and decreases the incidence of acute respiratory tract infections. The active vitamin D metabolite, 1,25-dihydroxy-vitamin D (1,25(OH)2D), is known to contribute to the integrity of the mucosal barrier, promote killing of pathogens (via the induction of antimicrobial peptides), and to modulate inflammation and immune responses. These mechanisms may partly explain its protective role against infections and exacerbations in COPD and asthma patients. The respiratory mucosa is an important site of local 1,25(OH)2D synthesis, degradation and signaling, a process that can be affected by exposure to inflammatory mediators. As a consequence, mucosal inflammation and other disease-associated factors, as observed in e.g., COPD and asthma, may modulate the protective actions of 1,25(OH)2D. Here, we discuss the potential consequences of various disease-associated processes such as inflammation and exposure to pathogens and inhaled toxicants on vitamin D metabolism and local responses to 1,25(OH)2D in both immune- and epithelial cells. We furthermore discuss potential consequences of disturbed local levels of 25(OH)D and 1,25(OH)2D for chronic lung diseases. Additional insight into the relationship between disease-associated mechanisms and local effects of 1,25(OH)2D is expected to contribute to the design of future strategies aimed at improving local levels of 1,25(OH)2D and signaling in chronic inflammatory lung diseases.
Collapse
Affiliation(s)
- Jasmijn A Schrumpf
- Department of Pulmonology, Leiden University Medical Center, Leiden, Netherlands
| | - Anne M van der Does
- Department of Pulmonology, Leiden University Medical Center, Leiden, Netherlands
| | - Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
31
|
Razdan K, Singh K, Singh D. Vitamin D Levels and COVID-19 Susceptibility: Is there any Correlation? MEDICINE IN DRUG DISCOVERY 2020; 7:100051. [PMID: 32835212 PMCID: PMC7266578 DOI: 10.1016/j.medidd.2020.100051] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 05/26/2020] [Accepted: 05/26/2020] [Indexed: 12/29/2022] Open
Abstract
Coronavirus disease (COVID-19) is a major pandemic and now a leading cause of death worldwide. Currently, no drugs/vaccine is available for the treatment of this disease. Future preventions and social distancing are the only ways to prevent this disease from community transmission. Vitamin D is an important micronutrient and has been reported to improve immunity and protect against respiratory illness. This short review highlights the important scientific link between Vitamin D levels and susceptibility to COVID-19 in patients. This review also discusses recommendations for Vitamin D dose required for healthy as well as COVID-19 susceptible patients for protection and prevention. COVID-19 is a pandemic outbreak affecting people globally. Vitamin D supplementation could increase the immunity and decrease the COVID-19 susceptibility The mechanisms linking Vitamin D levels and immune system have been described in this review
Collapse
Affiliation(s)
- Karan Razdan
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Kuldeep Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University Patiala, India
| | - Dilpreet Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|
32
|
Lee C. Controversial Effects of Vitamin D and Related Genes on Viral Infections, Pathogenesis, and Treatment Outcomes. Nutrients 2020; 12:nu12040962. [PMID: 32235600 PMCID: PMC7230640 DOI: 10.3390/nu12040962] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/23/2020] [Accepted: 03/26/2020] [Indexed: 12/11/2022] Open
Abstract
Vitamin D (VD) plays an essential role in mineral homeostasis and bone remodeling. A number of different VD-related genes (VDRG) are required for the metabolic activation of VD and the subsequent induction of its target genes. They include a set of genes that encode for VD-binding protein, metabolic enzymes, and the VD receptor. In addition to its well-characterized skeletal function, the immunoregulatory activities of VD and the related polymorphisms of VDRG have been reported and linked to its therapeutic and preventive actions for the control of several viral diseases. However, in regards to their roles in the progression of viral diseases, inconsistent and, in some cases, contradictory results also exist. To resolve this discrepancy, I conducted an extensive literature search by using relevant keywords on the PubMed website. Based on the volume of hit papers related to a certain viral infection, I summarized and compared the effects of VD and VDRG polymorphism on the infection, pathogenesis, and treatment outcomes of clinically important viral diseases. They include viral hepatitis, respiratory viral infections, acquired immunodeficiency syndrome (AIDS), and other viral diseases, which are caused by herpesviruses, dengue virus, rotavirus, and human papillomavirus. This review will provide the most current information on the nutritional and clinical utilization of VD and VDRG in the management of the key viral diseases. This information should be valuable not only to nutritionists but also to clinicians who wish to provide evidence-based recommendations on the use of VD to virally infected patients.
Collapse
Affiliation(s)
- Choongho Lee
- College of Pharmacy, Dongguk University, Goyang 10326, Korea
| |
Collapse
|
33
|
Chung C, Silwal P, Kim I, Modlin RL, Jo EK. Vitamin D-Cathelicidin Axis: at the Crossroads between Protective Immunity and Pathological Inflammation during Infection. Immune Netw 2020; 20:e12. [PMID: 32395364 PMCID: PMC7192829 DOI: 10.4110/in.2020.20.e12] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 01/28/2020] [Accepted: 01/30/2020] [Indexed: 02/06/2023] Open
Abstract
Vitamin D signaling plays an essential role in innate defense against intracellular microorganisms via the generation of the antimicrobial protein cathelicidin. In addition to directly binding to and killing a range of pathogens, cathelicidin acts as a secondary messenger driving vitamin D-mediated inflammation during infection. Recent studies have elucidated the biological and clinical functions of cathelicidin in the context of vitamin D signaling. The vitamin D-cathelicidin axis is involved in the activation of autophagy, which enhances antimicrobial effects against diverse pathogens. Vitamin D studies have also revealed positive and negative regulatory effects of cathelicidin on inflammatory responses to pathogenic stimuli. Diverse innate and adaptive immune signals crosstalk with functional vitamin D receptor signals to enhance the role of cathelicidin action in cell-autonomous effector systems. In this review, we discuss recent findings that demonstrate how the vitamin D-cathelicidin pathway regulates autophagy machinery, protective immune defenses, and inflammation, and contributes to immune cooperation between innate and adaptive immunity. Understanding how the vitamin D-cathelicidin axis operates in the host response to infection will create opportunities for the development of new therapeutic approaches against a variety of infectious diseases.
Collapse
Affiliation(s)
- Chaeuk Chung
- Division of Pulmonary and Critical Care, Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Prashanta Silwal
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon 35015, Korea.,Department of Microbiology, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Insoo Kim
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon 35015, Korea.,Department of Microbiology, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Robert L Modlin
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA 90095, USA.,Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Eun-Kyeong Jo
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon 35015, Korea.,Department of Microbiology, Chungnam National University School of Medicine, Daejeon 35015, Korea.,Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea
| |
Collapse
|
34
|
Aguilar-Jimenez W, Zapata W, Rivero-Juárez A, Pineda JA, Laplana M, Taborda NA, Biasin M, Clerici M, Caruz A, Fibla J, Rugeles MT. Genetic associations of the vitamin D and antiviral pathways with natural resistance to HIV-1 infection are influenced by interpopulation variability. INFECTION GENETICS AND EVOLUTION 2019; 73:276-286. [PMID: 31103723 DOI: 10.1016/j.meegid.2019.05.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 01/06/2023]
Abstract
Vitamin D (VitD) may modulate anti-HIV-1 responses modifying the risk to acquire the HIV-1-infection. We performed a nested case-control exploratory study involving 413 individuals; HIV-1-exposed seropositives (cases) and seronegatives (HESN) (controls) from three cohorts: sexually-exposed from Colombia and Italy and parenterally-exposed from Spain. The association and interactions of 139 variants in 9 VitD pathway genes, and in 14 antiviral genes with resistance/susceptibility (R/S) to HIV-1 infection was evaluated. Associations between variants and mRNA levels were also analyzed in the Colombian samples. Variants and haplotypes in genes of VitD and antiviral pathways were associated with R/S, but specific associations were not reproduced in all cohorts. Allelic heterogeneity could explain such inconsistency since the associations found in all cohorts were consistently in the same genes: VDR and RXRA of the VitD pathway genes and in TLR2 and RNASE4. Remarkably, the multi-locus genotypes (interacting variants) observed in genes of VitD and antiviral pathways were present in most HESNs of all cohorts. Finally, HESNs carrying resistance-associated variants had higher levels of VitD in plasma, of VDR mRNA in blood cells, and of ELAFIN and defensins mRNA in the oral mucosa. In conclusion, despite allelic heterogeneity, most likely due to differences in the genetic history of the populations, the associations were locus dependent suggesting that genes of the VitD pathway might act in concert with antiviral genes modulating the resistance phenotype of the HESNs. Although these associations were significant after permutation test, only haplotype results remained statistically significant after Bonferroni test, requiring further replications in larger cohorts and functional analyzes to validate these conclusions.
Collapse
Affiliation(s)
- Wbeimar Aguilar-Jimenez
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, 050010 Medellín, Colombia.
| | - Wildeman Zapata
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, 050010 Medellín, Colombia; Grupo Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, 050012 Medellín, Colombia
| | - Antonio Rivero-Juárez
- Unidad Clínica de Enfermedades Infecciosas, Instituto Maimonides para la Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofia, 14004 Córdoba, Spain
| | - Juan A Pineda
- Unidad Clínica de Enfermedades Infecciosas y Microbiología, Hospital Universitario de Valme, 41014 Seville, Spain
| | - Marina Laplana
- Unitat de Genètica Humana, Departament de Ciències Mèdiques Bàsiques, IRBLleida, Universitat de Lleida, 25198 Lleida, Spain
| | - Natalia A Taborda
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, 050010 Medellín, Colombia; Grupo de Investigaciones Biomédicas UniRemington, Facultad de Medicina, Corporación Universitaria Remington, 050010 Medellín, Colombia
| | - Mara Biasin
- Dipartimento di Scienze Biomediche e Cliniche-L. Sacco, Università Degli Studi di Milano, 20157 Milan, Italy.
| | - Mario Clerici
- Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, 20100 Milan, Italy; Fondazione Don C, Gnocchi IRCCS, 20100 Milan, Italy.
| | - Antonio Caruz
- Unidad de Inmunogenética, Departamento de Biología Experimental, Facultad de Ciencias Experimentales, Universidad de Jaén, 23071 Jaén, Spain.
| | - Joan Fibla
- Unitat de Genètica Humana, Departament de Ciències Mèdiques Bàsiques, IRBLleida, Universitat de Lleida, 25198 Lleida, Spain.
| | - María T Rugeles
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, 050010 Medellín, Colombia.
| |
Collapse
|
35
|
Daily Nutritional Supplementation with Vitamin D₃ and Phenylbutyrate to Treatment-Naïve HIV Patients Tested in a Randomized Placebo-Controlled Trial. Nutrients 2019; 11:nu11010133. [PMID: 30634590 PMCID: PMC6356462 DOI: 10.3390/nu11010133] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/26/2018] [Accepted: 01/04/2019] [Indexed: 11/17/2022] Open
Abstract
Poor nutritional status is common among human immunodeficiency virus (HIV)-infected patients including vitamin D (vitD₃) deficiency. We conducted a double-blinded, randomized, and placebo-controlled trial in Addis Ababa, Ethiopia, to investigate if daily nutritional supplementation with vitD₃ (5000 IU) and phenylbutyrate (PBA, 2 × 500 mg) could mediate beneficial effects in treatment-naïve HIV patients. Primary endpoint: the change in plasma HIV-1 comparing week 0 to 16 using modified intention-to-treat (mITT, n = 197) and per-protocol (n = 173) analyses. Secondary endpoints: longitudinal HIV viral load, T cell counts, body mass index (BMI), middle-upper-arm circumference (MUAC), and 25(OH)D₃ levels in plasma. Baseline characteristics were detectable viral loads (median 7897 copies/mL), low CD4⁺ (median 410 cells/µL), and elevated CD8⁺ (median 930 cells/µL) T cell counts. Most subjects were vitD₃ deficient at enrolment, but a gradual and significant improvement of vitD₃ status was demonstrated in the vitD₃ + PBA group compared with placebo (p < 0.0001) from week 0 to 16 (median 37.5 versus 115.5 nmol/L). No significant changes in HIV viral load, CD4⁺ or CD8⁺ T cell counts, BMI or MUAC could be detected. Clinical adverse events were similar in both groups. Daily vitD₃ + PBA for 16 weeks was well-tolerated and effectively improved vitD₃ status but did not reduce viral load, restore peripheral T cell counts or improve BMI or MUAC in HIV patients with slow progressive disease. Clinicaltrials.gov NCT01702974.
Collapse
|
36
|
Teymoori-Rad M, Shokri F, Salimi V, Marashi SM. The interplay between vitamin D and viral infections. Rev Med Virol 2019; 29:e2032. [PMID: 30614127 DOI: 10.1002/rmv.2032] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/28/2018] [Accepted: 12/03/2018] [Indexed: 02/06/2023]
Abstract
The pleiotropic role of vitamin D has been explored over the past decades and there is compelling evidence for an epidemiological association between poor vitamin D status and a variety of diseases. While the potential anti-viral effect of vitamin D has recently been described, the underlying mechanisms by which vitamin D deficiency could contribute to viral disease development remain poorly understood. The possible interactions between viral infections and vitamin D appear to be more complex than previously thought. Recent findings indicate a complex interplay between viral infections and vitamin D, including the induction of anti-viral state, functional immunoregulatory features, interaction with cellular and viral factors, induction of autophagy and apoptosis, and genetic and epigenetic alterations. While crosstalk between vitamin D and intracellular signalling pathways may provide an essential modulatory effect on viral gene transcription, the immunomodulatory effect of vitamin D on viral infections appears to be transient. The interplay between viral infections and vitamin D remains an intriguing concept, and the global imprint that vitamin D can have on the immune signature in the context of viral infections is an area of growing interest.
Collapse
Affiliation(s)
- Majid Teymoori-Rad
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Fazel Shokri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahid Salimi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sayed Mahdi Marashi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
37
|
Rawat P, Teodorof-Diedrich C, Spector SA. Human immunodeficiency virus Type-1 single-stranded RNA activates the NLRP3 inflammasome and impairs autophagic clearance of damaged mitochondria in human microglia. Glia 2018; 67:802-824. [PMID: 30582668 DOI: 10.1002/glia.23568] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 12/20/2022]
Abstract
Despite the availability of antiretroviral therapy (ART) that fully suppresses human immunodeficiency virus type-1 (HIV), markers of inflammation and minor neurocognitive impairment are frequently identified in HIV-infected persons. Increasing data support that low-level replication defective viral RNA is made by infected cells despite the absence of infectious virus. Specific GU-rich single-stranded RNA from the HIV long terminal repeat region (ssRNA40) signaling through toll-like receptor (TLR)-7 and -8 has been shown to induce the secretion of interleukin-1β (IL-1β) in primary monocytes. Here, we examined the activation of microglial cells by HIV ssRNA40 and the potential subsequent neurotoxicity. Our findings show that exposure of human primary microglia to ssRNA40 activates the NLR family pyrin domain containing 3 (NLRP3) inflammasome. Following exposure to ssRNA40, pro-inflammatory cytokines IL-1β, IL-18, and neurotoxic cytokines TNF-α, IL-1α, and C1q expression and extracellular secretion are increased. The released cytokines are functional since culture supernatants from ssRNA40 exposed microglia-induced toxicity of human primary neurons. Moreover, inflammasome activation of microglia increased ROS generation with a loss of mitochondrial membrane potential and mitochondrial integrity. Treatment with ssRNA40 resulted in a blockade of autophagy/mitophagy mediated negative regulation of NLRP3 inflammasome activity with the release of inflammatory cytokines, caspase-1 activation, and pyroptotic microglial cell death. Thus, HIV ssRNA mediated activation of microglial cells can contribute to neurotoxicity and neurodegeneration via secretion of inflammatory and neurotoxic cytokines. These findings provide a potential mechanism that explains the frequent minor cognitive deficits and chronic inflammation that persist in HIV-infected persons despite treatment with suppressive ART.
Collapse
Affiliation(s)
- Pratima Rawat
- Department of Pediatrics, Division of Infectious Diseases, University of California San Diego, La Jolla, California
| | - Carmen Teodorof-Diedrich
- Department of Pediatrics, Division of Infectious Diseases, University of California San Diego, La Jolla, California
| | - Stephen A Spector
- Department of Pediatrics, Division of Infectious Diseases, University of California San Diego, La Jolla, California.,Rady Children's Hospital, San Diego, California
| |
Collapse
|
38
|
Viret C, Rozières A, Faure M. Autophagy during Early Virus–Host Cell Interactions. J Mol Biol 2018; 430:1696-1713. [DOI: 10.1016/j.jmb.2018.04.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 04/15/2018] [Accepted: 04/17/2018] [Indexed: 01/04/2023]
|
39
|
Du K, Liu J, Broering R, Zhang X, Yang D, Dittmer U, Lu M. Recent advances in the discovery and development of TLR ligands as novel therapeutics for chronic HBV and HIV infections. Expert Opin Drug Discov 2018; 13:661-670. [PMID: 29772941 DOI: 10.1080/17460441.2018.1473372] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Toll-like receptor (TLR) ligands remain as promising antiviral drug candidates for the treatment of chronic viral infections. Basic research on the mechanisms of antiviral activity of TLR ligands in preclinical animal models and clinical testing of drug candidates have been carried out in recent years. Areas covered: This review provides an overview of the preclinical and clinical testing of TLR ligands in two major viral infections: hepatitis B virus (HBV) and human immunodeficiency virus (HIV). Recent results have further demonstrated the potent antiviral activity of various TLR ligands . A TLR7 agonist is in clinical trials for the treatment of chronic HBV infection while a HBV vaccine using a TLR9 ligand as an adjuvant has proven to be superior to conventional HBV vaccines and has been approved for clinical use. Generally, TLR activation may achieve viral control mainly by promoting adaptive immunity to viral proteins. Expert opinion: Recent research in this field indicates that TLR ligands could be developed as clinically effective drugs if the obstacles concerning toxicity and application routes are overcome. TLR-mediated promotion of adaptive immunity is a major issue for future studies and will determine the future development of TLR ligands as drugs for immunomodulation.
Collapse
Affiliation(s)
- Keye Du
- a Department of Infectious Disease , Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Jia Liu
- a Department of Infectious Disease , Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Ruth Broering
- b Department of Gastroenterology and Hepatology , University Hospital Essen, University of Duisburg-Essen , Essen , Germany
| | - Xiaoyong Zhang
- c Hepatology Unit and Department of Infectious Diseases , Nanfang Hospital, Southern Medical University , Guangzhou , China
| | - Dongliang Yang
- a Department of Infectious Disease , Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Ulf Dittmer
- d Institute of Virology , University Hospital Essen, University of Duisburg-Essen , Essen , Germany
| | - Mengji Lu
- d Institute of Virology , University Hospital Essen, University of Duisburg-Essen , Essen , Germany
| |
Collapse
|
40
|
Esmail H, Riou C, Bruyn ED, Lai RPJ, Harley YXR, Meintjes G, Wilkinson KA, Wilkinson RJ. The Immune Response to Mycobacterium tuberculosis in HIV-1-Coinfected Persons. Annu Rev Immunol 2018; 36:603-638. [PMID: 29490165 DOI: 10.1146/annurev-immunol-042617-053420] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Globally, about 36.7 million people were living with HIV infection at the end of 2015. The most frequent infection co-occurring with HIV-1 is Mycobacterium tuberculosis-374,000 deaths per annum are attributable to HIV-tuberculosis, 75% of those occurring in Africa. HIV-1 infection increases the risk of tuberculosis by a factor of up to 26 and alters its clinical presentation, complicates diagnosis and treatment, and worsens outcome. Although HIV-1-induced depletion of CD4+ T cells underlies all these effects, more widespread immune deficits also contribute to susceptibility and pathogenesis. These defects present a challenge to understand and ameliorate, but also an opportunity to learn and optimize mechanisms that normally protect people against tuberculosis. The most effective means to prevent and ameliorate tuberculosis in HIV-1-infected people is antiretroviral therapy, but this may be complicated by pathological immune deterioration that in turn requires more effective host-directed anti-inflammatory therapies to be derived.
Collapse
Affiliation(s)
- Hanif Esmail
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, and Department of Medicine, University of Cape Town, Cape Town 7925, Republic of South Africa; .,Department of Medicine, Imperial College London, London W2 1PG, United Kingdom.,Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Catherine Riou
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, and Department of Medicine, University of Cape Town, Cape Town 7925, Republic of South Africa;
| | - Elsa du Bruyn
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, and Department of Medicine, University of Cape Town, Cape Town 7925, Republic of South Africa;
| | | | - Yolande X R Harley
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, and Department of Medicine, University of Cape Town, Cape Town 7925, Republic of South Africa;
| | - Graeme Meintjes
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, and Department of Medicine, University of Cape Town, Cape Town 7925, Republic of South Africa;
| | - Katalin A Wilkinson
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, and Department of Medicine, University of Cape Town, Cape Town 7925, Republic of South Africa; .,The Francis Crick Institute, London NW1 2AT, United Kingdom
| | - Robert J Wilkinson
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, and Department of Medicine, University of Cape Town, Cape Town 7925, Republic of South Africa; .,Department of Medicine, Imperial College London, London W2 1PG, United Kingdom.,The Francis Crick Institute, London NW1 2AT, United Kingdom
| |
Collapse
|
41
|
Arababadi MK, Nosratabadi R, Asadikaram G. Vitamin D and toll like receptors. Life Sci 2018; 203:105-111. [PMID: 29596922 DOI: 10.1016/j.lfs.2018.03.040] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 03/10/2018] [Accepted: 03/20/2018] [Indexed: 12/17/2022]
Abstract
It has been demonstrated that vitamin D (VD) significantly modulates immune responses. Toll like receptors (TLRs) are the main innate immunity receptors which are expressed on the cell membrane and intracellular vesicles and recognize several pathogen associated molecular patterns (PAMPs) and damage associated molecular patterns (DAMPs) to induce immune responses. Based on the important roles played by TLRs in physiologic and pathologic functions of immune responses and due to the immunomodulatory functions of VD, it has been hypothesized that VD may present its immunomodulatory functions via modulation of TLRs. This review article collates recent studies regarding the interactions between VD and TLRs and discussed the controversial investigations.
Collapse
Affiliation(s)
- Mohammad Kazemi Arababadi
- Department of Immunology, Faculty of Medicine, Immunology of Infectious Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Reza Nosratabadi
- Department of Immunology, Faculty of Medicine, Immunology of Infectious Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Gholamreza Asadikaram
- Neuroscience Research Center, Institute of Neuropharmacology and Department of Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
42
|
Jiménez-Sousa MÁ, Martínez I, Medrano LM, Fernández-Rodríguez A, Resino S. Vitamin D in Human Immunodeficiency Virus Infection: Influence on Immunity and Disease. Front Immunol 2018; 9:458. [PMID: 29593721 PMCID: PMC5857570 DOI: 10.3389/fimmu.2018.00458] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/20/2018] [Indexed: 12/19/2022] Open
Abstract
People living with human immunodeficiency virus (HIV) infection typically have hypovitaminosis D, which is linked to a large number of pathologies, including immune disorders and infectious diseases. Vitamin D (VitD) is a key regulator of host defense against infections by activating genes and pathways that enhance innate and adaptive immunity. VitD mediates its biological effects by binding to the Vitamin D receptor (VDR), and activating and regulating multiple cellular pathways. Single nucleotide polymorphisms in genes from those pathways have been associated with protection from HIV-1 infection. High levels of VitD and VDR expression are also associated with natural resistance to HIV-1 infection. Conversely, VitD deficiency is linked to more inflammation and immune activation, low peripheral blood CD4+ T-cells, faster progression of HIV disease, and shorter survival time in HIV-infected patients. VitD supplementation and restoration to normal values in HIV-infected patients may improve immunologic recovery during combination antiretroviral therapy, reduce levels of inflammation and immune activation, and increase immunity against pathogens. Additionally, VitD may protect against the development of immune reconstitution inflammatory syndrome events, pulmonary tuberculosis, and mortality among HIV-infected patients. In summary, this review suggests that VitD deficiency may contribute to the pathogenesis of HIV infection. Also, VitD supplementation seems to reverse some alterations of the immune system, supporting the use of VitD supplementation as prophylaxis, especially in individuals with more severe VitD deficiency.
Collapse
Affiliation(s)
- María Ángeles Jiménez-Sousa
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Spain
| | - Isidoro Martínez
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Spain
| | - Luz María Medrano
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Spain
| | - Amanda Fernández-Rodríguez
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Spain
| | - Salvador Resino
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Spain
| |
Collapse
|
43
|
Campbell GR, Bruckman RS, Herns SD, Joshi S, Durden DL, Spector SA. Induction of autophagy by PI3K/MTOR and PI3K/MTOR/BRD4 inhibitors suppresses HIV-1 replication. J Biol Chem 2018; 293:5808-5820. [PMID: 29475942 DOI: 10.1074/jbc.ra118.002353] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 02/21/2018] [Indexed: 12/20/2022] Open
Abstract
In this study, we investigated the effects of the dual phosphatidylinositol 3-kinase/mechanistic target of rapamycin (PI3K/MTOR) inhibitor dactolisib (NVP-BEZ235), the PI3K/MTOR/bromodomain-containing protein 4 (BRD4) inhibitor SF2523, and the bromodomain and extra terminal domain inhibitor JQ1 on the productive infection of primary macrophages with human immunodeficiency type-1 (HIV). These inhibitors did not alter the initial susceptibility of macrophages to HIV infection. However, dactolisib, JQ1, and SF2523 all decreased HIV replication in macrophages in a dose-dependent manner via degradation of intracellular HIV through autophagy. Macrophages treated with dactolisib, JQ1, or SF2523 displayed an increase in LC3B lipidation combined with SQSTM1 degradation without inducing increased cell death. LC3B-II levels were further increased in the presence of pepstatin A suggesting that these inhibitors induce autophagic flux. RNA interference for ATG5 and ATG7 and pharmacological inhibitors of autophagosome-lysosome fusion and of lysosomal hydrolases all blocked the inhibition of HIV. Thus, we demonstrate that the mechanism of PI3K/MTOR and PI3K/MTOR/BRD4 inhibitor suppression of HIV requires the formation of autophagosomes, as well as their subsequent maturation into autolysosomes. These data provide further evidence in support of a role for autophagy in the control of HIV infection and open new avenues for the use of this class of drugs in HIV therapy.
Collapse
Affiliation(s)
- Grant R Campbell
- From the Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, California 92093-0672
| | - Rachel S Bruckman
- From the Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, California 92093-0672
| | - Shayna D Herns
- From the Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, California 92093-0672
| | - Shweta Joshi
- the Division of Pediatric Hematology-Oncology, Department of Pediatrics, University of California San Diego, La Jolla, California 92093-0819.,the Rady Children's Hospital, San Diego, California 92123, and
| | - Donald L Durden
- the Division of Pediatric Hematology-Oncology, Department of Pediatrics, University of California San Diego, La Jolla, California 92093-0819.,the Rady Children's Hospital, San Diego, California 92123, and.,SignalRx Pharmaceuticals, Inc., San Diego, California 92130
| | - Stephen A Spector
- From the Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, California 92093-0672, .,the Rady Children's Hospital, San Diego, California 92123, and
| |
Collapse
|
44
|
Canonical and Non-Canonical Autophagy in HIV-1 Replication Cycle. Viruses 2017; 9:v9100270. [PMID: 28946621 PMCID: PMC5691622 DOI: 10.3390/v9100270] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 09/19/2017] [Accepted: 09/21/2017] [Indexed: 12/11/2022] Open
Abstract
Autophagy is a lysosomal-dependent degradative process essential for maintaining cellular homeostasis, and is a key player in innate and adaptive immune responses to intracellular pathogens such as human immunodeficiency virus type 1 (HIV-1). In HIV-1 target cells, autophagy mechanisms can (i) selectively direct viral proteins and viruses for degradation; (ii) participate in the processing and presentation of viral-derived antigens through major histocompatibility complexes; and (iii) contribute to interferon production in response to HIV-1 infection. As a consequence, HIV-1 has evolved different strategies to finely regulate the autophagy pathway to favor its replication and dissemination. HIV-1 notably encodes accessory genes encoding Tat, Nef and Vpu proteins, which are able to perturb and hijack canonical and non-canonical autophagy mechanisms. This review outlines the current knowledge on the complex interplay between autophagy and HIV-1 replication cycle, providing an overview of the autophagy-mediated molecular processes deployed both by infected cells to combat the virus and by HIV-1 to evade antiviral response.
Collapse
|
45
|
Mouse Bone Marrow Sca-1 + CD44 + Mesenchymal Stem Cells Kill Avirulent Mycobacteria but Not Mycobacterium tuberculosis through Modulation of Cathelicidin Expression via the p38 Mitogen-Activated Protein Kinase-Dependent Pathway. Infect Immun 2017; 85:IAI.00471-17. [PMID: 28739828 DOI: 10.1128/iai.00471-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 07/17/2017] [Indexed: 01/08/2023] Open
Abstract
Mycobacterium tuberculosis primarily infects lung macrophages. However, a recent study showed that M. tuberculosis also infects and persists in a dormant form inside bone marrow mesenchymal stem cells (BM-MSCs) even after successful antibiotic therapy. However, the mechanism(s) by which M. tuberculosis survives in BM-MSCs is still not known. Like macrophages, BM-MSCs do not contain a well-defined endocytic pathway, which is known to play a central role in the clearance of internalized mycobacteria. Here, we studied the fate of virulent and avirulent mycobacteria in Sca-1+ CD44+ BM-MSCs. We found that BM-MSCs were able to kill avirulent Mycobacterium smegmatis and Mycobacterium bovis BCG but not the pathogenic species M. tuberculosis Further mechanistic studies revealed that pathogenic M. tuberculosis dampens the antibacterial response of BM-MSCs by downregulating the expression of the cationic antimicrobial peptide cathelicidin. In contrast, avirulent mycobacteria were effectively killed by inducing the Toll-like receptor 2/4 (TLR2/4) pathway-dependent expression of cathelicidin, while small interfering RNA (siRNA)-mediated cathelicidin silencing increased the survival of M. bovis BCG in BM-MSCs. We also showed that M. bovis BCG infection caused increased expression levels of MyD88, phospho-interleukin-1 receptor-associated kinase 4 (pIRAK-4), and the p38 mitogen-activated protein kinase (MAPK) signaling pathway. Further downstream investigations demonstrated that IRAK-4-p38 activation increased the nuclear translocation of NF-κB, which subsequently induced the expression of cathelicidin and the cytokine interleukin-1β (IL-1β), resulting in the decreased survival of M. bovis BCG. On the other hand, inhibition of TLR2/4, pIRAK-4, p38, and NF-κB nuclear translocation decreased cathelicidin and IL-1β expression levels and therefore increased the survival of avirulent mycobacteria. This is the first report that demonstrates that virulent mycobacteria manipulate the TLR2/4-MyD88-IRAK-4-p38-NF-κB-Camp-IL-1β pathway to survive inside bone marrow stem cells.
Collapse
|
46
|
Schrumpf JA, Amatngalim GD, Veldkamp JB, Verhoosel RM, Ninaber DK, Ordonez SR, van der Does AM, Haagsman HP, Hiemstra PS. Proinflammatory Cytokines Impair Vitamin D-Induced Host Defense in Cultured Airway Epithelial Cells. Am J Respir Cell Mol Biol 2017; 56:749-761. [PMID: 28231019 DOI: 10.1165/rcmb.2016-0289oc] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Vitamin D is a regulator of host defense against infections and induces expression of the antimicrobial peptide hCAP18/LL-37. Vitamin D deficiency is associated with chronic inflammatory lung diseases and respiratory infections. However, it is incompletely understood if and how (chronic) airway inflammation affects vitamin D metabolism and action. We hypothesized that long-term exposure of primary bronchial epithelial cells to proinflammatory cytokines alters their vitamin D metabolism, antibacterial activity, and expression of hCAP18/LL-37. To investigate this, primary bronchial epithelial cells were differentiated at the air-liquid interface for 14 days in the presence of the proinflammatory cytokines, TNF-α and IL-1β (TNF-α/IL-1β), and subsequently exposed to vitamin D (inactive 25(OH)D3 and active 1,25(OH)2D3). Expression of hCAP18/LL-37, vitamin D receptor, and enzymes involved in vitamin D metabolism (CYP24A1 and CYP27B1) was determined using quantitative PCR, Western blot, and immunofluorescence staining. Furthermore, vitamin D-mediated antibacterial activity was assessed using nontypeable Haemophilus influenzae. We found that TNF-α/IL-1β treatment reduced vitamin D-induced expression of hCAP18/LL-37 and killing of nontypeable H. influenzae. In addition, CYP24A1 (a vitamin D-degrading enzyme) was increased by TNF-α/IL-1β, whereas CYP27B1 (that converts 25(OH)D3 to its active form) and vitamin D receptor expression remained unaffected. Furthermore, we have demonstrated that the TNF-α/IL-1β-mediated induction of CYP24A1 was, at least in part, mediated by the transcription factor specific protein 1, and the epidermal growth factor receptor-mitogen-activated protein kinase pathway. These findings indicate that TNF-α/IL-1β decreases vitamin D-mediated antibacterial activity and hCAP18/LL-37 expression via induction of CYP24A1 and suggest that chronic inflammation impairs protective responses induced by vitamin D.
Collapse
Affiliation(s)
- Jasmijn A Schrumpf
- 1 Department of Pulmonology, Leiden University Medical Center, Leiden, the Netherlands; and
| | - Gimano D Amatngalim
- 1 Department of Pulmonology, Leiden University Medical Center, Leiden, the Netherlands; and
| | - Joris B Veldkamp
- 1 Department of Pulmonology, Leiden University Medical Center, Leiden, the Netherlands; and
| | - Renate M Verhoosel
- 1 Department of Pulmonology, Leiden University Medical Center, Leiden, the Netherlands; and
| | - Dennis K Ninaber
- 1 Department of Pulmonology, Leiden University Medical Center, Leiden, the Netherlands; and
| | - Soledad R Ordonez
- 2 Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, the Netherlands
| | - Anne M van der Does
- 1 Department of Pulmonology, Leiden University Medical Center, Leiden, the Netherlands; and
| | - Henk P Haagsman
- 2 Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, the Netherlands
| | - Pieter S Hiemstra
- 1 Department of Pulmonology, Leiden University Medical Center, Leiden, the Netherlands; and
| |
Collapse
|
47
|
Abstract
The modulation of tuberculosis (TB)-induced immunopathology caused by human immunodeficiency virus (HIV)-1 coinfection remains incompletely understood but underlies the change seen in the natural history, presentation, and prognosis of TB in such patients. The deleterious combination of these two pathogens has been dubbed a "deadly syndemic," with each favoring the replication of the other and thereby contributing to accelerated disease morbidity and mortality. HIV-1 is the best-recognized risk factor for the development of active TB and accounts for 13% of cases globally. The advent of combination antiretroviral therapy (ART) has considerably mitigated this risk. Rapid roll-out of ART globally and the recent recommendation by the World Health Organization (WHO) to initiate ART for everyone living with HIV at any CD4 cell count should lead to further reductions in HIV-1-associated TB incidence because susceptibility to TB is inversely proportional to CD4 count. However, it is important to note that even after successful ART, patients with HIV-1 are still at increased risk for TB. Indeed, in settings of high TB incidence, the occurrence of TB often remains the first presentation of, and thereby the entry into, HIV care. As advantageous as ART-induced immune recovery is, it may also give rise to immunopathology, especially in the lower-CD4-count strata in the form of the immune reconstitution inflammatory syndrome. TB-immune reconstitution inflammatory syndrome will continue to impact the HIV-TB syndemic.
Collapse
|
48
|
Counter-intuitive plasma vitamin D and zinc status in HIV-1-infected adults with persistent low-level viraemia after treatment initiation: a pilot case-control study. Eur J Clin Microbiol Infect Dis 2017. [PMID: 28647858 DOI: 10.1007/s10096-017-3028-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Determinants of persistent low-level viraemia [PLLV, a viral load (VL) of between 50 and 500 copies/mL] have not been elucidated. In a case-control study, we evaluated the influence of micronutrients on PLLV in a population of 454 HIV-1 adults having initiated antiretroviral therapy (ART) between January 2007 and December 2011. Plasma levels of retinol (vitamin A), 25-OH vitamin D2 + D3, vitamin E and zinc were measured at ART initiation in cases (PLLV after 6 months of ART) and in controls (VL <50 copies/mL after 6 months). Cases and controls were matched for the CD4 cell count (±50/mm3) and ethnic origin. Intergroup differences in demographic, biological and treatment parameters and sunshine intensity at ART initiation were adjusted using a propensity score. A receiver operating characteristic (ROC) curve was used to assess intergroup differences in plasma micronutrient levels. Thirty-three of the 454 patients (7.3%) displayed PLLV (median VL: 92 copies/mL). Patients were predominantly male (89%), Caucasian (64%) and CDC stage C (25%). The median age was 38 years, the median initial VL was 5.2 log10 copies/mL and the median CD4 count was 74/mm3. The 22 cases and matched controls were balanced in these respects, and had similar vitamin A/E levels. Two cases (9%) and 9 controls (41%) had a vitamin D level <10.3 ng/mL (p = 0.0015), and 2 cases (9%) and 10 controls (48%) had a zinc level <74.6 μg/dL (p = 0.04). Our results support in vitro studies suggesting that vitamin D favours HIV-1 replication and that HIV-1 is zinc-dependent. Wide-scale, prospective studies are required.
Collapse
|
49
|
Abstract
BACKGROUND Although the anti-HIV-1 effects of vitamin D (VitD) have been reported, mechanisms behind such protection remain largely unexplored. METHODS The effects of two precursor forms (cholecalciferol/calciol at 0.01, 1 and 100 nM and calcidiol at 100 and 250 nM) on HIV-1 infection, immune activation, and gene expression were analyzed in vitro in cells of Colombian and Italian healthy donors. We quantified levels of released p24 by enzyme-linked immunosorbent assay, of intracellular p24 and cell-surface expression of CD38 and HLA-DR by flow cytometry, and mRNA expression of antiviral and immunoregulatory genes by real-time reverse transcription-polymerase chain reaction. RESULTS Cholecalciferol decreased the frequency of HIV-1-infected p24CD4 T cells and levels of p24 in supernatants in a dose-dependent manner. Moreover, the CD4CD38HLA-DR and CD4CD38HLA-DR subpopulations were more susceptible to infection but displayed the greatest cholecalciferol-induced decreases in infection rate by an X4-tropic strain. Likewise, cholecalciferol at its highest concentration decreased the frequency of CD38HLA-DR but not of CD38HLA-DR T-cell subsets. Analyzing the effects of calcidiol, the main VitD source for immune cells and an R5-tropic strain as the most frequently transmitted virus, a reduction in HIV-1 productive infection was also observed. In addition, an increase in mRNA expression of APOBEC3G and PI3 and a reduction of TRIM22 and CCR5 expression, this latter positively correlated with p24 levels, was noted. CONCLUSIONS VitD reduces HIV-1 infection in T cells possibly by inducing antiviral gene expression, reducing the viral co-receptor CCR5 and, at least at the highest cholecalciferol concentration, by promoting an HIV-1-restrictive CD38HLA-DR immunophenotype.
Collapse
|
50
|
Nardacci R, Ciccosanti F, Marsella C, Ippolito G, Piacentini M, Fimia GM. Role of autophagy in HIV infection and pathogenesis. J Intern Med 2017; 281:422-432. [PMID: 28139864 DOI: 10.1111/joim.12596] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The aim of autophagy is to re-establish homeostasis in response to a variety of stress conditions. By forming double-membrane vesicles, autophagy engulfs damaged or superfluous cytoplasmic material and recycles degradation products for new synthesis or energy production. Of note, the same mechanism is used to capture pathogens and has important implications in both innate and adaptive immunity. To establish a chronic infection, pathogens have therefore evolved multiple mechanisms to evade autophagy-mediated degradation. HIV infection represents one of the best characterized systems in which autophagy is disarmed by a virus using multiple strategies to prevent the sequestration and degradation of its proteins and to establish a chronic infection. HIV alters autophagy at various stages of the process in both infected and bystander cells. In particular, the HIV proteins TAT, NEF and ENV are involved in this regulation by either blocking or stimulating autophagy through direct interaction with autophagy proteins and/or modulation of the mTOR pathway. Although the roles of autophagy during HIV infection are multiple and vary amongst the different cell types, several lines of evidence point to a potential beneficial effect of stimulating autophagy-mediated lysosomal degradation to potentiate the immune response to HIV. Characterization of the molecular mechanisms regulating selective autophagy is expected to be valuable for developing new drugs able to specifically enhance the anti-HIV response.
Collapse
Affiliation(s)
- R Nardacci
- National Institute for Infectious Diseases 'L. Spallanzani', IRCCS, Rome, Italy
| | - F Ciccosanti
- National Institute for Infectious Diseases 'L. Spallanzani', IRCCS, Rome, Italy
| | - C Marsella
- National Institute for Infectious Diseases 'L. Spallanzani', IRCCS, Rome, Italy
| | - G Ippolito
- National Institute for Infectious Diseases 'L. Spallanzani', IRCCS, Rome, Italy
| | - M Piacentini
- National Institute for Infectious Diseases 'L. Spallanzani', IRCCS, Rome, Italy.,Department of Biology, University of Rome 'Tor Vergata', Rome, Italy
| | - G M Fimia
- National Institute for Infectious Diseases 'L. Spallanzani', IRCCS, Rome, Italy.,Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| |
Collapse
|