1
|
Hagos B, Brasov I, Branscome H, Rashid S, Bradford R, Leonelli J, Kashanchi F, Ben Mamoun C, Molestina RE. Activation of macrophages by extracellular vesicles derived from Babesia-infected red blood cells. Infect Immun 2025; 93:e0033324. [PMID: 40172538 PMCID: PMC12070731 DOI: 10.1128/iai.00333-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 02/24/2025] [Indexed: 04/04/2025] Open
Abstract
Babesia microti is the primary cause of human babesiosis in North America. Despite the emergence of the disease in recent years, the pathogenesis and immune response to B. microti infection remain poorly understood. Studies in laboratory mice have shown a critical role for macrophages in the elimination of parasites and infected red blood cells (iRBCs). Importantly, the underlying mechanisms that activate macrophages are still unknown. Recent evidence identified the release of extracellular vesicles (EVs) from Babesia iRBCs. EVs are spherical particles released from cell membranes under natural or pathological conditions that have been suggested to play roles in host-pathogen interactions among diseases caused by protozoan parasites. The present study examined whether EVs released from cultured Babesia iRBCs could activate macrophages and alter cytokine secretion. An analysis of vesicle size in EV fractions from Babesia iRBCs showed diverse populations in the <100 nm size range compared to EVs from uninfected RBCs. In co-culture experiments, EVs released by B. microti iRBCs appeared to be associated with macrophage membranes and cytoplasm, indicating uptake of these vesicles in vitro. Interestingly, the incubation of macrophages with EVs isolated from Babesia iRBC culture supernatants resulted in the activation of NF-κB and modulation of pro-inflammatory cytokines. These results support a role for Babesia-derived EVs in macrophage activation and provide new insights into the mechanisms involved in the induction of the innate immune response during babesiosis.
Collapse
Affiliation(s)
- Biniam Hagos
- American Type Culture Collection, Manassas, Virginia, USA
| | - Ioana Brasov
- American Type Culture Collection, Manassas, Virginia, USA
| | | | - Sujatha Rashid
- American Type Culture Collection, Manassas, Virginia, USA
| | | | | | - Fatah Kashanchi
- School of Systems Biology, George Mason University, Manassas, Virginia, USA
| | - Choukri Ben Mamoun
- Section of Infectious Disease, Yale University School of Medicine, New Haven, Connecticut, USA
| | | |
Collapse
|
2
|
Beri D, Rodriguez M, Singh M, McLaughlin D, Liu Y, Zhong H, Mendelson A, An X, Manwani D, Yazdanbakhsh K, Lobo CA. Babesiosis and sickle red blood cells: loss of deformability, altered osmotic fragility, and hypervesiculation. Blood 2025; 145:2202-2213. [PMID: 39869831 PMCID: PMC12105723 DOI: 10.1182/blood.2024027602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/27/2024] [Accepted: 01/13/2025] [Indexed: 01/29/2025] Open
Abstract
ABSTRACT Babesiosis in sickle cell disease (SCD) is marked by severe anemia but the underlying red blood cell (RBC) rheologic parameters remain largely undefined. Here, we describe altered RBC deformability from both primary (host RBC sickle hemoglobin mediated) and secondary changes (Babesia parasite infection mediated) to the RBC membrane using wild-type AA, sickle trait AS, and sickle SS RBCs. Our ektacytometry analysis demonstrates that the changes in the host RBC biomechanical properties, before and after Babesia infection, reside on a spectrum of severity, with wild-type infected AA cells, despite showing a significant reduction of deformability under both shear and osmolarity gradients, exhibiting only a mild phenotype, compared with infected AS RBCs that show median changes in deformability and infected SS RBCs that exhibit the most dramatic impact of infection on cellular rheology, including an increase in point of sickling values. Furthermore, using ImageStream cytometric technology to quantify changes in cellular shape and area along with a tunable resistive pulse sensor to measure release of extracellular vesicles from these host RBCs, before and after infection, we offer a potential mechanistic basis for this extreme SS RBC rheologic profile, which include enhanced sickling rates and altered osmotic fragility, loss of RBC surface area, and hypervesiculation in infected SS host RBCs. These results underline the importance of understanding the impact of intraerythrocytic parasitic infections of SCD RBCs, especially on their cellular membranes and studying the mechanisms that lead to hyperhemolysis and extreme anemia in patients with SCD.
Collapse
Affiliation(s)
- Divya Beri
- Department of Blood-Borne Parasites, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY
| | - Marilis Rodriguez
- Department of Blood-Borne Parasites, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY
| | - Manpreet Singh
- Department of Blood-Borne Parasites, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY
| | - Daniel McLaughlin
- iPSC Project Operations, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY
| | - Yunfeng Liu
- Department of Complement Biology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY
| | - Hui Zhong
- Department of Immune Regulation, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY
| | - Avital Mendelson
- Laboratory of Stem Cell Biology and Engineering Research, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY
| | - Xiuli An
- Department of Membrane Biology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY
| | - Deepa Manwani
- Division of Hematology, Department of Medicine, Montefiore Health Center, Albert Einstein College of Medicine, Bronx, NY
| | - Karina Yazdanbakhsh
- Department of Complement Biology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY
| | - Cheryl A. Lobo
- Department of Blood-Borne Parasites, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY
| |
Collapse
|
3
|
Mordue DG, Katseff AS, Galeota AJ, Hale SJ, Rezaee S, Schwartz I, Sambir M, Arnaboldi PM. Tumor Necrosis Factor Receptors and C-C Chemokine Receptor-2 Positive Cells Play an Important Role in the Intraerythrocytic Death and Clearance of Babesia microti. Pathogens 2024; 13:858. [PMID: 39452729 PMCID: PMC11510159 DOI: 10.3390/pathogens13100858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
Babesia microti is an Apicomplexan parasite that infects erythrocytes and causes the tick-transmitted infection, babesiosis. B. microti can cause a wide variety of clinical manifestations ranging from asymptomatic to severe infection and death. Some risk factors for severe disease are well-defined, an immune compromised state, age greater than 50, and asplenia. However, increasing cases of severe disease and hospitalization in otherwise healthy individuals suggests that there are unknown risk factors. The immunopathology of babesiosis is poorly described. CD4+ T cells and the spleen both play a critical role in parasite clearance, but few other factors have been found that significantly impact the course of disease. Here, we evaluated the role of several immune mediators in B. microti infection. Mice lacking TNF receptors 1 and 2, the receptors for TNFα and LTα, had a higher peak parasitemia, reduced parasite killing in infected red blood cells (iRBCs), and delayed parasite clearance compared to control mice. Mice lacking CCR2, a chemokine receptor involved in the recruitment of inflammatory monocytes, and mice lacking NADPH oxidase, which generates superoxide radicals, demonstrated reduced parasite killing but had little effect on the course of parasitemia. These results suggest that TNFR-mediated responses play an important role in limiting parasite growth, the death of parasites in iRBCs, and the clearance of iRBCs, and that the parasite killing in iRBCs is being primarily mediated by ROS and inflammatory monocytes/macrophages. By identifying factors involved in parasite killing and clearance, we can begin to identify additional risk factors for severe infection and newer therapeutic interventions.
Collapse
MESH Headings
- Animals
- Babesia microti/immunology
- Mice
- Babesiosis/immunology
- Babesiosis/parasitology
- Erythrocytes/parasitology
- Erythrocytes/metabolism
- Erythrocytes/immunology
- Receptors, CCR2/metabolism
- Receptors, CCR2/genetics
- Mice, Knockout
- Receptors, Tumor Necrosis Factor, Type I/genetics
- Receptors, Tumor Necrosis Factor, Type I/metabolism
- Mice, Inbred C57BL
- Receptors, Tumor Necrosis Factor, Type II/metabolism
- Receptors, Tumor Necrosis Factor, Type II/genetics
- Parasitemia/immunology
- Parasitemia/parasitology
Collapse
Affiliation(s)
- Dana G. Mordue
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, NY 10595, USA (A.J.G.); (I.S.)
| | - Adiya S. Katseff
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, NY 10595, USA (A.J.G.); (I.S.)
| | - Andrew J. Galeota
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, NY 10595, USA (A.J.G.); (I.S.)
| | - Synthia J. Hale
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, NY 10595, USA (A.J.G.); (I.S.)
| | - Shaaf Rezaee
- Touro College of Dental Medicine, Hawthorne, NY 10532, USA
| | - Ilana Schwartz
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, NY 10595, USA (A.J.G.); (I.S.)
| | - Mariya Sambir
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, NY 10595, USA (A.J.G.); (I.S.)
- Biopeptides Corp, Ridgefield, CT 06877, USA
| | - Paul M. Arnaboldi
- Biopeptides Corp, Ridgefield, CT 06877, USA
- Lovelace Biomedical Research Institute, Albuquerque, NM 87108, USA
| |
Collapse
|
4
|
Hanada T, Empitu MA, Mines GI, Ma Q, Omorodion IL, Link A, Schwake CJ, Krueger RM, DaRosa NS, Levin AE, Vannier E, Chishti AH. Identification of Babesia microti immunoreactive antigens by phage display cDNA screen. Infect Immun 2024; 92:e0021524. [PMID: 38884473 PMCID: PMC11238553 DOI: 10.1128/iai.00215-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 06/18/2024] Open
Abstract
Human babesiosis is a malaria-like illness caused by protozoan parasites of the genus Babesia. Babesia microti is responsible for most cases of human babesiosis in the United States, particularly in the Northeast and the Upper Midwest. Babesia microti is primarily transmitted to humans through the bite of infected deer ticks but also through the transfusion of blood components, particularly red blood cells. There is a high risk of severe and even fatal disease in immunocompromised patients. To date, serology testing relies on an indirect immunofluorescence assay that uses the whole Babesia microti antigen. Here, we report the construction of phage display cDNA libraries from Babesia microti-infected erythrocytes as well as human reticulocytes obtained from donors with hereditary hemochromatosis. Plasma samples were obtained from patients who were or had been infected with Babesia microti. The non-specific antibody reactivity of these plasma samples was minimized by pre-exposure to the human reticulocyte library. Using this novel experimental strategy, immunoreactive segments were identified in three Babesia microti antigens termed BmSA1 (also called BMN1-9; BmGPI12), BMN1-20 (BMN1-17; Bm32), and BM4.12 (N1-15). Moreover, our findings indicate that the major immunoreactive segment of BmSA1 does not overlap with the segment that mediates BmSA1 binding to mature erythrocytes. When used in combination, the three immunoreactive segments form the basis of a sensitive and comprehensive diagnostic immunoassay for human babesiosis, with implications for vaccine development.
Collapse
Affiliation(s)
- Toshihiko Hanada
- Department of Developmental, Molecular, and Chemical Biology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Maulana A. Empitu
- Department of Developmental, Molecular, and Chemical Biology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
- Program in Pharmacology and Drug Development, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Gregory I. Mines
- Department of Developmental, Molecular, and Chemical Biology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Qianni Ma
- Department of Developmental, Molecular, and Chemical Biology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
- Program in Pharmacology and Drug Development, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Iziegbe L. Omorodion
- Department of Developmental, Molecular, and Chemical Biology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
- Program in Pharmacology and Drug Development, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Ansel Link
- Department of Developmental, Molecular, and Chemical Biology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Christopher J. Schwake
- Department of Developmental, Molecular, and Chemical Biology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
- Cellular, Molecular and Developmental Biology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Rachel M. Krueger
- Department of Developmental, Molecular, and Chemical Biology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Nicholas S. DaRosa
- Department of Developmental, Molecular, and Chemical Biology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
| | | | - Edouard Vannier
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center, Boston, Massachusetts, USA
| | - Athar H. Chishti
- Department of Developmental, Molecular, and Chemical Biology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
- Program in Pharmacology and Drug Development, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
- Cellular, Molecular and Developmental Biology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
- Molecular Microbiology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Zafar I, Taniguchi T, Baghdadi HB, Kondoh D, Rizk MA, Galon EM, Ji S, El-Sayed SAES, Do T, Li H, Amer MM, Zhuowei M, Yihong M, Zhou J, Inoue N, Xuan X. Babesia microti alleviates disease manifestations caused by Plasmodium berghei ANKA in murine co-infection model of complicated malaria. Front Cell Infect Microbiol 2023; 13:1226088. [PMID: 37492527 PMCID: PMC10364126 DOI: 10.3389/fcimb.2023.1226088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 06/20/2023] [Indexed: 07/27/2023] Open
Abstract
Malaria remains one of the most significant health issues worldwide, accounting for 2.6% of the total global disease burden, and efforts to eliminate this threat continue. The key focus is to develop an efficient and long-term immunity to this disease via vaccination or therapeutic approach, and innovative strategies would enable us to achieve this target. Previously, using a mouse co-infection disease model, cross-protection was illustrated between Babesia microti and Plasmodium chabaudi. Hence, this study was planned to elucidate the impact of acute B. microti Peabody mjr and Plasmodium berghei ANKA co-infection on the consequence of complicated malaria in the C57BL/6J mouse model of malaria. Furthermore, immune response and pathological features were analyzed, and the course of the disease was compared among experimental groups. Our study established that acute B. microti infection activated immunity which was otherwise suppressed by P. berghei. The immunosuppressive tissue microenvironment was counteracted as evidenced by the enhanced immune cell population in co-infected mice, in contrast to P. berghei-infected control mice. Parasite sequestration in the brain, liver, lung, and spleen of co-infected mice was significantly decreased and tissue injury was ameliorated. Meanwhile, the serum levels of IFN-γ, TNF-α, and IL-12p70 were reduced while the secretion of IL-10 was promoted in co-infected mice. Eventually, co-infected mice showed an extended rate of survival. Hereby, the principal cytokines associated with the severity of malaria by P. berghei infection were TNF-α, IFN-γ, and IL-12p70. Moreover, it was evident from our flow cytometry results that innate immunity is crucial and macrophages are at the frontline of immunity against P. berghei infection. Our study recommended further investigations to shed light on the effects of babesiosis in suppressing malaria with the goal of developing Babesia-based therapy against malaria.
Collapse
Affiliation(s)
- Iqra Zafar
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
- Livestock and Dairy Development Department, Veterinary Research Institute, Lahore, Punjab, Pakistan
| | - Tomoyo Taniguchi
- Department of Immunology and Parasitology, Graduate School of Medicine University of the Ryukyus, Nishihara Cho, Japan
| | - Hanadi B. Baghdadi
- Biology Department, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
- Basic and Applied Scientific Research Center (BASRC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Daisuke Kondoh
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Mohamed Abdo Rizk
- Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Eloiza May Galon
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
- College of Veterinary Medicine and Biomedical Sciences, Cavite State University, Indang, Cavite, Philippines
| | - Shengwei Ji
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Shimaa Abd El-Salam El-Sayed
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Thom Do
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Hang Li
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Moaz M. Amer
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Ma Zhuowei
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Ma Yihong
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Jinlin Zhou
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Noboru Inoue
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Xuenan Xuan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| |
Collapse
|
6
|
Beri D, Rodriguez M, Singh M, Liu Y, Rasquinha G, An X, Yazdanbakhsh K, Lobo CA. Identification and characterization of extracellular vesicles from red cells infected with Babesia divergens and Babesia microti. Front Cell Infect Microbiol 2022; 12:962944. [PMID: 36275032 PMCID: PMC9585353 DOI: 10.3389/fcimb.2022.962944] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/05/2022] [Indexed: 11/21/2022] Open
Abstract
Babesiosis is a zoonosis and an important blood-borne human parasitic infection that has gained attention because of its growing infection rate in humans by transfer from animal reservoirs. Babesia represents a potential threat to the blood supply because asymptomatic infections in man are common, and blood from such donors can cause severe disease in certain recipients. Extracellular vesicles (EVs) are vesicles released by cells that contain a complex mixture of proteins, lipids, glycans, and genetic information that have been shown to play important roles in disease pathogenesis and susceptibility, as well as cell–cell communication and immune responses. In this article, we report on the identification and characterization of EVs released from red blood cells (RBCs) infected by two major human Babesia species—Babesia divergens from in vitro culture and those from an in vivo B. microti mouse infection. Using nanoparticle tracking analysis, we show that there is a range of vesicle sizes from 30 to 1,000 nm, emanating from the Babesia-infected RBC. The study of these EVs in the context of hemoparasite infection is complicated by the fact that both the parasite and the host RBC make and release vesicles into the extracellular environment. However, the EV frequency is 2- to 10-fold higher in Babesia-infected RBCs than uninfected RBCs, depending on levels of parasitemia. Using parasite-specific markers, we were able to show that ~50%–60% of all EVs contained parasite-specific markers on their surface and thus may represent the specific proportion of EVs released by infected RBCs within the EV population. Western blot analysis on purified EVs from both in vivo and in vitro infections revealed several parasite proteins that were targets of the host immune response. In addition, microRNA analysis showed that infected RBC EVs have different microRNA signature from uninfected RBC EVs, indicating a potential role as disease biomarkers. Finally, EVs were internalized by other RBCs in culture, implicating a potential role for these vesicles in cellular communication. Overall, our study points to the multiple functional implications of EVs in Babesia–host interactions and support the potential that EVs have as agents in disease pathogenesis.
Collapse
Affiliation(s)
- Divya Beri
- Department of Blood-Borne Parasites, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, United States
| | - Marilis Rodriguez
- Department of Blood-Borne Parasites, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, United States
| | - Manpreet Singh
- Department of Blood-Borne Parasites, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, United States
| | - Yunfeng Liu
- Department of Complement Biology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, United States
| | - Giselle Rasquinha
- Department of Biology, Georgetown University, Washington, DC, United States
| | - Xiuli An
- Department of Membrane Biology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, United States
| | - Karina Yazdanbakhsh
- Department of Complement Biology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, United States
| | - Cheryl A. Lobo
- Department of Blood-Borne Parasites, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, United States
- *Correspondence: Cheryl A. Lobo,
| |
Collapse
|
7
|
Gagnon J, Timalsina S, Choi JY, Chand M, Singh P, Lamba P, Gaur G, Pal AC, Mootien S, Marcos LA, Ben Mamoun C, Ledizet M. Specific and Sensitive Diagnosis of Babesia microti Active Infection Using Monoclonal Antibodies to the Immunodominant Antigen BmGPI12. J Clin Microbiol 2022; 60:e0092522. [PMID: 36040206 PMCID: PMC9491189 DOI: 10.1128/jcm.00925-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The apicomplexan pathogen Babesia microti is responsible for most cases of human babesiosis worldwide. The disease, which presents as a malaria-like illness, is potentially fatal in immunocompromised or elderly patients, making the need for its accurate and early diagnosis an urgent public health concern. B. microti is transmitted primarily by Ixodes ticks but can also be transmitted via blood transfusion. The parasite completes its asexual reproduction in the host red blood cell, where each invading merozoite develops and multiplies to produce four daughter parasites. While various techniques, such as microscopy, PCR, and indirect fluorescence, have been used over the years for babesiosis diagnosis, detection of the secreted B. microti immunodominant antigen BmGPI12 using specific polyclonal antibodies was found to be the most effective method for the diagnosis of active infection and for evaluation of clearance following drug treatment. Here, we report the development of a panel of 16 monoclonal antibodies against BmGPI12. These antibodies detected secreted BmGPI12 in the plasma of infected humans. Antigen capture assays identified a combination of two monoclonal antibodies, 4C8 and 1E11, as a basis for a monoclonal antibody-based BmGPI12 capture assay (mGPAC) to detect active B. microti infection. Using a collection of 105 previously characterized human plasma samples, the mGPAC assay showed 97.1% correlation with RNA-based PCR (transcription-mediated amplification [TMA]) for positive and negative samples. The mGPAC assay also detected BmGPI12 in the plasma of six babesiosis patients at the time of diagnosis but not in three matched posttreatment samples. The mGPAC assay could thus be used alone or in combination with other assays for accurate detection of active B. microti infection.
Collapse
Affiliation(s)
| | | | - Jae-Yeon Choi
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicinegrid.471390.8, New Haven, Connecticut, USA
| | - Meenal Chand
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicinegrid.471390.8, New Haven, Connecticut, USA
| | - Pallavi Singh
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicinegrid.471390.8, New Haven, Connecticut, USA
| | - Pooja Lamba
- Department of Medicine (Division of Infectious Diseases), Stony Brook University Renaissance School of Medicine, Stony Brook, New York, USA
- Department of Microbiology and Immunology, Stony Brook University Renaissance School of Medicine, Stony Brook, New York, USA
| | - Gauri Gaur
- L2 Diagnostics, LLC, New Haven, Connecticut, USA
| | - Anasuya C. Pal
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicinegrid.471390.8, New Haven, Connecticut, USA
| | - Sara Mootien
- L2 Diagnostics, LLC, New Haven, Connecticut, USA
| | - Luis A. Marcos
- Department of Medicine (Division of Infectious Diseases), Stony Brook University Renaissance School of Medicine, Stony Brook, New York, USA
- Department of Microbiology and Immunology, Stony Brook University Renaissance School of Medicine, Stony Brook, New York, USA
| | - Choukri Ben Mamoun
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicinegrid.471390.8, New Haven, Connecticut, USA
| | | |
Collapse
|
8
|
Zafar I, Galon EM, Kondoh D, Efstratiou A, Li J, Ji S, Liu M, Li Y, Hasegawa Y, Zhou J, Xuan X. The Cross-Species Immunity During Acute Babesia Co-Infection in Mice. Front Cell Infect Microbiol 2022; 12:885985. [PMID: 35719355 PMCID: PMC9198632 DOI: 10.3389/fcimb.2022.885985] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/27/2022] [Indexed: 11/16/2022] Open
Abstract
Babesiosis causes high morbidity and mortality in immunocompromised individuals. An earlier study suggested that lethal Babesia rodhaini infection in murine can be evaded by Babesia microti primary infection via activated macrophage-based immune response during the chronic stage of infection. However, whether the same immune dynamics occur during acute B. microti co-infection is not known. Hence, we used the mouse model to investigate the host immunity during simultaneous acute disease caused by two Babesia species of different pathogenicity. Results showed that B. microti primary infection attenuated parasitemia and conferred immunity in challenge-infected mice as early as day 4 post-primary infection. Likewise, acute Babesia co-infection undermined the splenic immune response, characterized by the significant decrease in splenic B and T cells leading to the reduction in antibody levels and decline in humoral immunity. Interestingly, increased macrophage and natural killer splenic cell populations were observed, depicting their subtle role in the protection. Pro-inflammatory cytokines (i.e. IFN-γ, TNF-α) were downregulated, while the anti-inflammatory cytokine IL-10 was upregulated in mouse sera during the acute phase of Babesia co-infection. Herein, the major cytokines implicated in the lethality caused by B. rodhaini infection were IFN- γ and IL-10. Surprisingly, significant differences in the levels of serum IFN- γ and IL-10 between co-infected survival groups (day 4 and 6 challenge) indicated that even a two-day delay in challenge infection was crucial for the resulting pathology. Additionally, oxidative stress in the form of reactive oxygen species contributed to the severity of pathology during acute babesiosis. Histopathological examination of the spleen showed that the erosion of the marginal zone was more pronounced during B. rodhaini infection, while the loss of cellularity of the marginal zone was less evident during co-infection. Future research warrants investigation of the roles of various immune cell subtypes in the mechanism involved in the protection of Babesia co-infected hosts.
Collapse
Affiliation(s)
- Iqra Zafar
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan.,Livestock and Dairy Development Department, Veterinary Research Institute, Lahore, Pakistan
| | - Eloiza May Galon
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Daisuke Kondoh
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | | | - Jixu Li
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan.,College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| | - Shengwei Ji
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Mingming Liu
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan.,Department of Microbiology and Immunology, School of Basic Medicine, Hubei University of Arts and Science, Xiangyang, China
| | - Yongchang Li
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan.,Parasitology Laboratory, Veterinary College, Xinjiang Agricultural University, Urumqi, China
| | - Yae Hasegawa
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Jinlin Zhou
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Xuenan Xuan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| |
Collapse
|
9
|
Maggi R, Breitschwerdt EB, Qurollo B, Miller JC. Development of a Multiplex Droplet Digital PCR Assay for the Detection of Babesia, Bartonella, and Borrelia Species. Pathogens 2021; 10:pathogens10111462. [PMID: 34832618 PMCID: PMC8620149 DOI: 10.3390/pathogens10111462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 11/16/2022] Open
Abstract
We describe the development, optimization, and validation of a multiplex droplet digital PCR (ddPCR) assay for the simultaneous detection of Babesia, Bartonella, and Borrelia spp. DNA from several sample matrices, including clinical blood samples from animals and humans, vectors, in-vitro infected human and animal cell lines, and tissues obtained from animal models (infected with Bartonella and/or B. burgdorferi). The multiplex ddPCR assay was able to detect 31 Bartonella, 13 Borrelia, and 24 Babesia species, including Theileria equi, T. cervi, and Cytauxzoon felis. No amplification of Treponema or Leptospira spp. was observed. Sensitivity of 0.2-5 genome equivalent DNA copies per microliter was achieved for different members of the Bartonella and Borrelia genus, depending on the species or matrix type (water or spiked blood DNA) tested. The ddPCR assay facilitated the simultaneous detection of co-infections with two and three vector-borne pathogens comprising four different genera (Babesia, Bartonella, Borrelia, and Theileria) from clinical and other sample sources.
Collapse
Affiliation(s)
- Ricardo Maggi
- Department of Clinical Sciences, The Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607, USA; (E.B.B.); (B.Q.)
- Galaxy Diagnostics, Inc., 6 Davis Drive, Suite 201, Research Triangle Park, NC 27709, USA;
- Correspondence:
| | - Edward B. Breitschwerdt
- Department of Clinical Sciences, The Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607, USA; (E.B.B.); (B.Q.)
- Galaxy Diagnostics, Inc., 6 Davis Drive, Suite 201, Research Triangle Park, NC 27709, USA;
| | - Barbara Qurollo
- Department of Clinical Sciences, The Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607, USA; (E.B.B.); (B.Q.)
| | - Jennifer C. Miller
- Galaxy Diagnostics, Inc., 6 Davis Drive, Suite 201, Research Triangle Park, NC 27709, USA;
| |
Collapse
|
10
|
Sickle Cell Anemia and Babesia Infection. Pathogens 2021; 10:pathogens10111435. [PMID: 34832591 PMCID: PMC8618680 DOI: 10.3390/pathogens10111435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/28/2021] [Accepted: 11/01/2021] [Indexed: 02/02/2023] Open
Abstract
Babesia is an intraerythrocytic, obligate Apicomplexan parasite that has, in the last century, been implicated in human infections via zoonosis and is now widespread, especially in parts of the USA and Europe. It is naturally transmitted by the bite of a tick, but transfused blood from infected donors has also proven to be a major source of transmission. When infected, most humans are clinically asymptomatic, but the parasite can prove to be lethal when it infects immunocompromised individuals. Hemolysis and anemia are two common symptoms that accompany many infectious diseases, and this is particularly true of parasitic diseases that target red cells. Clinically, this becomes an acute problem for subjects who are prone to hemolysis and depend on frequent transfusions, like patients with sickle cell anemia or thalassemia. Little is known about Babesia's pathogenesis in these hemoglobinopathies, and most parallels are drawn from its evolutionarily related Plasmodium parasite which shares the same environmental niche, the RBCs, in the human host. In vitro as well as in vivo Babesia-infected mouse sickle cell disease (SCD) models support the inhibition of intra-erythrocytic parasite proliferation, but mechanisms driving the protection of such hemoglobinopathies against infection are not fully studied. This review provides an overview of our current knowledge of Babesia infection and hemoglobinopathies, focusing on possible mechanisms behind this parasite resistance and the clinical repercussions faced by Babesia-infected human hosts harboring mutations in their globin gene.
Collapse
|
11
|
Plasmepsin-like Aspartyl Proteases in Babesia. Pathogens 2021; 10:pathogens10101241. [PMID: 34684190 PMCID: PMC8540915 DOI: 10.3390/pathogens10101241] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/17/2021] [Accepted: 09/22/2021] [Indexed: 12/30/2022] Open
Abstract
Apicomplexan genomes encode multiple pepsin-family aspartyl proteases (APs) that phylogenetically cluster to six independent clades (A to F). Such diversification has been powered by the function-driven evolution of the ancestral apicomplexan AP gene and is associated with the adaptation of various apicomplexan species to different strategies of host infection and transmission through various invertebrate vectors. To estimate the potential roles of Babesia APs, we performed qRT-PCR-based expressional profiling of Babesia microti APs (BmASP2, 3, 5, 6), which revealed the dynamically changing mRNA levels and indicated the specific roles of individual BmASP isoenzymes throughout the life cycle of this parasite. To expand on the current knowledge on piroplasmid APs, we searched the EuPathDB and NCBI GenBank databases to identify and phylogenetically analyse the complete sets of APs encoded by the genomes of selected Babesia and Theileria species. Our results clearly determine the potential roles of identified APs by their phylogenetic relation to their homologues of known function—Plasmodium falciparum plasmepsins (PfPM I–X) and Toxoplasma gondii aspartyl proteases (TgASP1–7). Due to the analogies with plasmodial plasmepsins, piroplasmid APs represent valuable enzymatic targets that are druggable by small molecule inhibitors—candidate molecules for the yet-missing specific therapy for babesiosis.
Collapse
|
12
|
Kopsco HL, Duhaime RJ, Mather TN. Assessing Public Tick Identification Ability and Tick Bite Riskiness Using Passive Photograph-Based Crowdsourced Tick Surveillance. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:837-846. [PMID: 33146378 DOI: 10.1093/jme/tjaa196] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Indexed: 06/11/2023]
Abstract
Tick identification is critical for assessing disease risk from a tick bite and for determining requisite treatment. Data from the University of Rhode Island's TickEncounter Resource Center's photo-based surveillance system, TickSpotters, indicate that users incorrectly identified their submitted specimen 83% of the time. Of the top four most commonly submitted tick species, western blacklegged ticks (Ixodes pacificus Cooley & Kohls [Ixodida: Ixodidae]) had the largest proportion of unidentified or misidentified submissions (87.7% incorrectly identified to species), followed by lone star ticks (Amblyomma americanum Linneaus [Ixodida: Ixodidae]; 86.8% incorrect), American dog ticks (Dermacentor variabilis Say [Ixodida: Ixodidae]; 80.7% incorrect), and blacklegged ticks (Ixodes scapularis Say [Ixodida: Ixodidae]; 77.1% incorrect). More than one quarter of participants (26.3%) submitted photographs of ticks that had been feeding for at least 2.5 d, suggesting heightened risk. Logistic regression generalized linear models suggested that participants were significantly more likely to misidentify nymph-stage ticks than adult ticks (odds ratio [OR] = 0.40, 95% confidence interval [CI]: 0.23, 0.68, P < 0.001). Ticks reported on pets were more likely to be identified correctly than those found on humans (OR = 1.07, 95% CI: 1.01-2.04, P < 0.001), and ticks feeding for 2.5 d or longer were more likely to be misidentified than those having fed for one day or less (OR = 0.43, 95% CI: 0.29-0.65, P < 0.001). State and region of residence and season of submission did not contribute significantly to the optimal model. These findings provide targets for future educational efforts and underscore the value of photograph-based tick surveillance to elucidate these knowledge gaps.
Collapse
Affiliation(s)
- Heather L Kopsco
- Department of Plant Sciences and Entomology, University of Rhode Island, Kingston, RI
- URI TickEncounter Resource Center, University of Rhode Island, Kingston, RI
| | - Roland J Duhaime
- URI TickEncounter Resource Center, University of Rhode Island, Kingston, RI
- Environmental Data Center, University of Rhode Island, Kingston, RI
| | - Thomas N Mather
- Department of Plant Sciences and Entomology, University of Rhode Island, Kingston, RI
- URI TickEncounter Resource Center, University of Rhode Island, Kingston, RI
| |
Collapse
|
13
|
Fürnkranz U, Walochnik J. Nosocomial Infections: Do Not Forget the Parasites! Pathogens 2021; 10:238. [PMID: 33669761 PMCID: PMC7923136 DOI: 10.3390/pathogens10020238] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/08/2021] [Accepted: 02/17/2021] [Indexed: 01/03/2023] Open
Abstract
Nosocomial infections (NIs) pose an increasing threat to public health. The majority of NIs are bacterial, fungal, and viral infections; however, parasites also play a considerable role in NIs, particularly in our increasingly complex healthcare environment with a growing proportion of immunocompromised patients. Moreover, parasitic infections acquired via blood transfusion or organ transplantation are more likely to have severe or fatal disease outcomes compared with the normal route of infection. Many of these infections are preventable and most are treatable, but as the awareness for parasitic NIs is low, diagnosis and treatment are often delayed, resulting not only in higher health care costs but, importantly, also in prolonged courses of disease for the patients. For this article, we searched online databases and printed literature to give an overview of the causative agents of parasitic NIs, including the possible routes of infection and the diseases caused. Our review covers a broad spectrum of cases, ranging from widely known parasitic NIs, like blood transfusion malaria or water-borne cryptosporidiosis, to less well-known NIs, such as the transmission of Strongyloides stercoralis by solid organ transplantation or nosocomial myiasis. In addition, emerging NIs, such as babesiosis by blood transfusion or person-to-person transmitted scabies, are described.
Collapse
Affiliation(s)
- Ursula Fürnkranz
- Institute for Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Kinderspitalgasse 15, 1090 Vienna, Austria;
| | | |
Collapse
|
14
|
Xue X, Ren S, Yang X, Masoudi A, Hu Y, Wang X, Li H, Zhang X, Wang M, Wang H, Liu J. Protein regulation strategies of the mouse spleen in response to Babesia microti infection. Parasit Vectors 2021; 14:61. [PMID: 33468223 PMCID: PMC7814643 DOI: 10.1186/s13071-020-04574-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/29/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Babesia is a protozoan parasite that infects red blood cells in some vertebrates. Some species of Babesia can induce zoonoses and cause considerable harm. As the largest immune organ in mammals, the spleen plays an important role in defending against Babesia infection. When infected with Babesia, the spleen is seriously injured but still actively initiates immunomodulatory responses. METHODS To explore the molecular mechanisms underlying the immune regulation and self-repair of the spleen in response to infection, this study used data-independent acquisition (DIA) quantitative proteomics to analyse changes in expression levels of global proteins and in phosphorylation modification in spleen tissue after Babesia microti infection in mice. RESULTS After mice were infected with B. microti, their spleens were seriously damaged. Using bioinformatics methods to analyse dynamic changes in a large number of proteins, we found that the spleen still initiated immune responses to combat the infection, with immune-related proteins playing an important role, including cathepsin D (CTSD), interferon-induced protein 44 (IFI44), interleukin-2 enhancer-binding factor 2 (ILF2), interleukin enhancer-binding factor 3 (ILF3) and signal transducer and activator of transcription 5A (STAT5A). In addition, some proteins related to iron metabolism were also involved in the repair of the spleen after B. microti infection, including serotransferrin, lactoferrin, transferrin receptor protein 1 (TfR1) and glutamate-cysteine ligase (GCL). At the same time, the expression and phosphorylation of proteins related to the growth and development of the spleen also changed, including protein kinase C-δ (PKC-δ), mitogen-activated protein kinase (MAPK) 3/1, growth factor receptor-bound protein 2 (Grb2) and P21-activated kinase 2 (PAK2). CONCLUSIONS Immune-related proteins, iron metabolism-related proteins and growth and development-related proteins play an important role in the regulation of spleen injury and maintenance of homeostasis. This study provides an important basis for the diagnosis and treatment of babesiosis.
Collapse
Affiliation(s)
- Xiaomin Xue
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, People's Republic of China
| | - Shuguang Ren
- The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei, People's Republic of China
| | - Xiaohong Yang
- Department of Pathogenic Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang, 050017, Hebei, People's Republic of China
| | - Abolfazl Masoudi
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, People's Republic of China
| | - Yuhong Hu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, People's Republic of China.,Instrumental Analysis Center, Hebei Normal University, Shijiazhuang, 050024, Hebei, People's Republic of China
| | - Xiaoshuang Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, People's Republic of China
| | - Hongxia Li
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, People's Republic of China
| | - Xiaojing Zhang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, People's Republic of China
| | - Minjing Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, People's Republic of China
| | - Hui Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, People's Republic of China.
| | - Jingze Liu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, People's Republic of China.
| |
Collapse
|
15
|
Wang X, Ren S, Yang X, Masoudi A, Xue X, Li M, Li H, Zhang X, Wang H, Liu J. Exploration of Serum Marker Proteins in Mice Induced by Babesia microti Infection Using a Quantitative Proteomic Approach. Protein J 2021; 40:119-130. [PMID: 33387247 DOI: 10.1007/s10930-020-09952-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2020] [Indexed: 11/29/2022]
Abstract
Babesia microti is a protozoan that mainly parasitizes rodent and human erythrocytes. B. microti infection can result in changes in the expression levels of various proteins in the host serum. To explore the mechanism underlying the regulation of serum proteins by the host during B. microti infection, this study used a data-independent acquisition (DIA) quantitative proteomic approach to perform comprehensive quantitative proteomic analysis on the serum of B. microti-infected mice. We identified and analysed 333 serum proteins during the infectious stage and recovery stage within 30 days of infection by B. microti in mice. Through quantitative analysis, we found 57 proteins differentially expressed in the infection stage and 69 proteins differentially expressed in the recovery stage. Bioinformatics analysis revealed that these differentially expressed proteins were mainly concentrated in organelles, cell parts, and extracellular regions that are mainly involved in immune system, metabolic, and cellular processes. Additionally, the differentially expressed proteins mainly had catalytic activity. Kyoto Encyclopedia of Genes and Genome (KEGG) pathway analysis showed that many of the differentially expressed proteins participate in the complement and coagulation cascade reaction, including complement C3, complement FP, and coagulation factor XII. The results of this study can provide more information for the selection of biomarkers for the early clinical monitoring of babesiosis and help in the treatment of babesiosis.
Collapse
Affiliation(s)
- Xiaoshuang Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, People's Republic of China
| | - Shuguang Ren
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, People's Republic of China.,The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei, People's Republic of China
| | - Xiaohong Yang
- Department of Pathogenic Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang, 050017, Hebei, People's Republic of China.,State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, People's Republic of China
| | - Abolfazl Masoudi
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, People's Republic of China
| | - Xiaomin Xue
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, People's Republic of China
| | - Mengxue Li
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, People's Republic of China
| | - Hongxia Li
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, People's Republic of China
| | - Xiaojing Zhang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, People's Republic of China
| | - Hui Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, People's Republic of China. .,Hebei Normal University, 20 nanerhuan east road, Shijiazhuang, Hebei, People's Republic of China.
| | - Jingze Liu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, People's Republic of China. .,Hebei Normal University, 20 nanerhuan east road, Shijiazhuang, Hebei, People's Republic of China.
| |
Collapse
|
16
|
Quantitative proteomics and phosphoproteomic analyses of mouse livers after tick-borne Babesia microti infection. Int J Parasitol 2020; 51:167-182. [PMID: 33242464 DOI: 10.1016/j.ijpara.2020.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 12/15/2022]
Abstract
Babesia microti is a tick-borne protozoan parasite that infects the red blood cells of mice, humans, and other mammals. The liver tissues of BALB/c mice infected with B. microti exhibit severe injury. To further investigate the molecular mechanisms underlying liver injury and liver self-repair after B. microti infection, data-independent acquisition (DIA) quantitative proteomics was used to analyse changes in the expression and phosphorylation of proteins in liver tissues of BALB/c mice during a B. microti infection period and a recovery period. The expression of FABP1 and ACBP, which are related to fatty acid transport in the liver, was downregulated after infection with B. microti, as was the expression of Acox1, Ehhadh and Acaa1a, which are crucial rate-limiting enzymes in the process of fatty acid β oxidation. The phosphorylation levels of AMP-activated protein kinase (AMPK) and Hormone-sensitive lipase (HSL) were also downregulated. In addition, the expression of PSMB9, CTSC, and other immune-related proteins was increased, reflecting an active immune regulation mechanism in the mice. The weights of mice infected with B. microti were significantly reduced, and the phosphorylation levels of IRS-1, c-Raf, mTOR, and other proteins related to growth and development were downregulated.
Collapse
|
17
|
Miller MJ, McVoy L, Rapkiewicz A. Educational Case: Babesiosis and Transfusion-Transmitted Infections. Acad Pathol 2020; 7:2374289520935591. [PMID: 32733991 PMCID: PMC7370331 DOI: 10.1177/2374289520935591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 02/14/2020] [Accepted: 05/09/2020] [Indexed: 11/16/2022] Open
Abstract
The following fictional case is intended as a learning tool within the Pathology Competencies for Medical Education (PCME), a set of national standards for teaching pathology. These are divided into three basic competencies: Disease Mechanisms and Processes, Organ System Pathology, and Diagnostic Medicine and Therapeutic Pathology. For additional information, and a full list of learning objectives for all three competencies, seehttp://journals.sagepub.com/doi/10.1177/2374289517715040.1
Collapse
Affiliation(s)
- Maureen J Miller
- Department of Pathology & Laboratory Medicine, Center for Transfusion & Cellular Therapies, Emory School of Medicine, Atlanta, GA, USA
| | - Lauren McVoy
- Department of Pathology, NYU Langone Health, New York, NY, USA
| | - Amy Rapkiewicz
- Department of Pathology, NYU Winthrop Hospital, Mineola, NY, USA
| |
Collapse
|
18
|
Magni R, Luchini A, Liotta L, Molestina RE. Proteomic analysis reveals pathogen-derived biomarkers of acute babesiosis in erythrocytes, plasma, and urine of infected hamsters. Parasitol Res 2020; 119:2227-2235. [PMID: 32435898 DOI: 10.1007/s00436-020-06712-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 05/07/2020] [Indexed: 12/11/2022]
Abstract
Babesiosis among humans is on the rise in North America. Current diagnostic assays for the screening of babesiosis require blood collection by venipuncture, which is an invasive method. Urine on the other hand is a desirable biospecimen for biomarker analysis of Babesia microti infections because it can be collected periodically and non-invasively. Our group uses a new class of biomarker harvesting nanocage technology, which, when combined with mass spectrometry (MS), can determine the presence of parasite proteins shed in different bodily fluids of mammalian hosts, including urine. Using the hamster model of babesiosis, our nanoparticle-MS approach identified several B. microti proteins in erythrocytes, plasma, and urine samples. Surface and secreted antigens previously shown to elicit host immune responses against the parasite were particularly abundant in erythrocytes and plasma compared to other proteins. Two of these antigens, BmSA1 and BMR1_03g00947, showed different localization patterns by immunofluorescence of infected erythrocytes. Hamster urine samples from parasitemic animals harbored lower numbers of B. microti proteins compared to erythrocytes and plasma, with glycolytic enzymes, cytoskeletal components, and chaperones being the most frequently detected proteins. By applying novel nanoparticle-MS methods, a high level of analytical sensitivity can be achieved to detect multiple B. microti proteins in blood and urine. This is generally difficult to obtain with other techniques due to the masking of parasite biomarkers by the complex biomolecular matrix of bodily fluids from the host.
Collapse
Affiliation(s)
- Ruben Magni
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Alessandra Luchini
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Lance Liotta
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Robert E Molestina
- Protistology Laboratory, American Type Culture Collection, Manassas, VA, USA.
| |
Collapse
|
19
|
Young KM, Corrin T, Wilhelm B, Uhland C, Greig J, Mascarenhas M, Waddell LA. Zoonotic Babesia: A scoping review of the global evidence. PLoS One 2019; 14:e0226781. [PMID: 31887120 PMCID: PMC6936817 DOI: 10.1371/journal.pone.0226781] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 12/03/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Babesiosis is a parasitic vector-borne disease of increasing public health importance. Since the first human case was reported in 1957, zoonotic species have been reported on nearly every continent. Zoonotic Babesia is vectored by Ixodes ticks and is commonly transmitted in North America by Ixodes scapularis, the tick species responsible for transmitting the pathogens that also cause Lyme disease, Powassan virus, and anaplasmosis in humans. Predicted climate change is expected to impact the spread of vectors, which is likely to affect the distribution of vector-borne diseases including human babesiosis. METHODS A scoping review has been executed to characterize the global evidence on zoonotic babesiosis. Articles were compiled through a comprehensive search of relevant bibliographic databases and targeted government websites. Two reviewers screened titles and abstracts for relevance and characterized full-text articles using a relevance screening and data characterization tool developed a priori. RESULTS This review included 1394 articles relevant to human babesiosis and/or zoonotic Babesia species. The main zoonotic species were B. microti, B. divergens, B. duncani and B. venatorum. Articles described a variety of study designs used to study babesiosis in humans and/or zoonotic Babesia species in vectors, animal hosts, and in vitro cell cultures. Topics of study included: pathogenesis (680 articles), epidemiology (480), parasite characterization (243), diagnostic test accuracy (98), mitigation (94), treatment (65), transmission (54), surveillance (29), economic analysis (7), and societal knowledge (1). No articles reported predictive models investigating the impact of climate change on Babesia species. CONCLUSION Knowledge gaps in the current evidence include research on the economic burden associated with babesiosis, societal knowledge studies, surveillance of Babesia species in vectors and animal hosts, and predictive models on the impact of climate change. The scoping review results describe the current knowledge and knowledge gaps on zoonotic Babesia which can be used to inform future policy and decision making.
Collapse
Affiliation(s)
- Kaitlin M. Young
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - Tricia Corrin
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, Guelph, Ontario, Canada
| | | | - Carl Uhland
- Independent Consultant, St-Hyacinthe, Quebec, Canada
| | - Judy Greig
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - Mariola Mascarenhas
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - Lisa A. Waddell
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, Guelph, Ontario, Canada
| |
Collapse
|
20
|
Sousa V, Gomes ATPC, Freitas A, Faustino MAF, Neves MGPMS, Almeida A. Photodynamic Inactivation of Candida albicans in Blood Plasma and Whole Blood. Antibiotics (Basel) 2019; 8:antibiotics8040221. [PMID: 31766190 PMCID: PMC6963715 DOI: 10.3390/antibiotics8040221] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/10/2019] [Accepted: 11/11/2019] [Indexed: 11/17/2022] Open
Abstract
The few approved disinfection techniques for blood derivatives promote damage in the blood components, representing risks for the transfusion receptor. Antimicrobial photodynamic therapy (aPDT) seems to be a promising approach for the photoinactivation of pathogens in blood, but only three photosensitizers (PSs) have been approved, methylene blue (MB) for plasma and riboflavin and amotosalen for plasma and platelets. In this study, the efficiency of the porphyrinic photosensitizer Tri-Py(+)-Me and of the porphyrinic formulation FORM was studied in the photoinactivation of Candida albicans in plasma and in whole blood and the results were compared to the ones obtained with the already approved PS MB. The results show that FORM and Tri-Py(+)-Me are promising PSs to inactivate C. albicans in plasma. Although in whole blood the inactivation rates obtained were higher than the ones obtained with MB, further improvements are required. None of these PSs had promoted hemolysis at the isotonic conditions when hemolysis was evaluated in whole blood and after the addition of treated plasma with these PSs to concentrates of red blood cells.
Collapse
Affiliation(s)
- Vera Sousa
- Department of Biology & CESAM, University of Aveiro, Aveiro 3810-193, Portugal;
| | - Ana T. P. C. Gomes
- Department of Biology & CESAM, University of Aveiro, Aveiro 3810-193, Portugal;
- Correspondence: (A.T.P.C.G.); (M.A.F.F.); (A.A.)
| | - Américo Freitas
- Clinical Analysis Laboratory Avelab, Rua Cerâmica do Vouga, Aveiro 3800-011, Portugal;
| | - Maria A. F. Faustino
- Department of Chemistry & QOPNA and LAQV-REQUIMTE, University of Aveiro, Aveiro 3810-193, Portugal;
- Correspondence: (A.T.P.C.G.); (M.A.F.F.); (A.A.)
| | - Maria G. P. M. S. Neves
- Department of Chemistry & QOPNA and LAQV-REQUIMTE, University of Aveiro, Aveiro 3810-193, Portugal;
| | - Adelaide Almeida
- Department of Biology & CESAM, University of Aveiro, Aveiro 3810-193, Portugal;
- Correspondence: (A.T.P.C.G.); (M.A.F.F.); (A.A.)
| |
Collapse
|
21
|
Debierre-Grockiego F, Smith TK, Delbecq S, Ducournau C, Lantier L, Schmidt J, Brès V, Dimier-Poisson I, Schwarz RT, Cornillot E. Babesia divergens glycosylphosphatidylinositols modulate blood coagulation and induce Th2-biased cytokine profiles in antigen presenting cells. Biochimie 2019; 167:135-144. [PMID: 31585151 PMCID: PMC7079338 DOI: 10.1016/j.biochi.2019.09.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 01/29/2019] [Indexed: 01/08/2023]
Abstract
Glycosylphosphatidylinositols (GPIs) are glycolipids described as toxins of protozoan parasites due to their inflammatory properties in mammalian hosts characterized by the production of interleukin (IL)-1, IL-12 and tumor necrosis factor (TNF)-α. In the present work, we studied the cytokines produced by antigen presenting cells in response to ten different GPI species extracted from Babesia divergens, responsible for babesiosis. Interestingly, B. divergens GPIs induced the production of anti-inflammatory cytokines (IL-2, IL-5) and of the regulatory cytokine IL-10 by macrophages and dendritic cells. In contrast to all protozoan GPIs studied until now, GPIs from B. divergens did not stimulate the production of TNF-α and IL-12, leading to a unique Th1/Th2 profile. Analysis of the carbohydrate composition of the B. divergens GPIs indicated that the di-mannose structure was different from the evolutionary conserved tri-mannose structure, which might explain the particular cytokine profile they induce. Expression of major histocompatibility complex (MHC) molecules on dendritic cells and apoptosis of mouse peritoneal cells were also analysed. B. divergens GPIs did not change expression of MHC class I, but decreased expression of MHC class II at the cell surface, while GPIs slightly increased the percentages of apoptotic cells. During pathogenesis of babesiosis, the inflammation-coagulation auto-amplification loop can lead to thrombosis and the effect of GPIs on coagulation parameters was investigated. Incubation of B. divergens GPIs with rat plasma ex vivo led to increase of fibrinogen levels and to prolonged activated partial thromboplastin time, suggesting a direct modulation of the extrinsic coagulation pathway by GPIs.
Collapse
Affiliation(s)
| | - Terry K Smith
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews, Fife, Scotland, KY16 9ST, UK
| | - Stéphane Delbecq
- Vaccination Antiparasitaire, Université de Montpellier, 34093, Montpellier, France
| | | | | | - Jörg Schmidt
- Institut für Virologie, AG Parasitologie, Philipps-Universität Marburg, 35043, Marburg, Germany
| | - Virginie Brès
- Vaccination Antiparasitaire, Université de Montpellier, 34093, Montpellier, France
| | | | - Ralph T Schwarz
- Institut für Virologie, AG Parasitologie, Philipps-Universität Marburg, 35043, Marburg, Germany; Univ. Lille, CNRS, UMR 8576, Unité de Glycobiologie Structurale et Fonctionnelle, 59655, Villeneuve d'Ascq, France
| | - Emmanuel Cornillot
- Institut de Biologie Computationnelle, 34095, Montpellier, France; Institut de Recherche en Cancérologie de Montpellier (IRCM - INSERM U1194), Institut Régional du Cancer de Montpellier (ICM), Université de Montpellier, 34095, Montpellier, France
| |
Collapse
|
22
|
Schwake C, Baldwin MR, Bachovchin W, Hegde S, Schiemer J, Okure C, Levin AE, Vannier E, Hanada T, Chishti AH. HIV protease inhibitors block parasite signal peptide peptidases and prevent growth of Babesia microti parasites in erythrocytes. Biochem Biophys Res Commun 2019; 517:125-131. [PMID: 31311649 PMCID: PMC6707064 DOI: 10.1016/j.bbrc.2019.07.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 07/09/2019] [Indexed: 12/11/2022]
Abstract
Malaria and babesiosis are bloodborne protozoan infections for which the emergence of drug-resistant strains poses a threat. Our previous phage display cDNA screens established the essentiality of Plasmodium falciparum signal peptide peptidase (SPP) in asexual development at the blood stage of malaria infection. Given the structural similarities between SPP inhibitors and HIV protease inhibitors, we screened ten HIV protease inhibitors and selected Lopinavir and Atazanavir for their ability to inhibit PfSPP activity. Using a transcription-based assay, we observed that Lopinavir inhibits both parasite-and host-derived SPP activities whereas Atazanavir inhibited only parasite derived SPP activity. Consistent with their inhibitory effect on Plasmodium growth, both Lopinavir and Atazanavir strongly inhibited intraerythrocytic Babesia microti growth ex vivo. Moreover, Lopinavir prevented the steep rise in Babesia microti parasitemia typically observed in rag1-deficient mice. Our data provide first evidence that inhibition of parasite-derived SPPs by HIV protease inhibitors offers a promising therapeutic avenue for the treatment of severe babesiosis and infections caused by other Apicomplexa parasites.
Collapse
Affiliation(s)
- Christopher Schwake
- Graduate Program in Cellular, Molecular, and Developmental Biology, USA; Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Michael R Baldwin
- Graduate Program in Cellular and, Molecular Physiology, USA; Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - William Bachovchin
- Graduate Program in Pharmacology and Experimental Therapeutics, USA; Department of Developmental, Molecular and Chemical Biology, USA; Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Shreeya Hegde
- Graduate Program in Pharmacology and Experimental Therapeutics, USA; Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - James Schiemer
- Graduate Program in Cellular and, Molecular Physiology, USA; Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Carolyn Okure
- Graduate Program in Pharmacology and Experimental Therapeutics, USA; Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, 02111, USA
| | | | - Edouard Vannier
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center, Boston, MA, 02111, USA
| | - Toshihiko Hanada
- Department of Developmental, Molecular and Chemical Biology, USA
| | - Athar H Chishti
- Graduate Program in Cellular, Molecular, and Developmental Biology, USA; Graduate Program in Cellular and, Molecular Physiology, USA; Graduate Program in Pharmacology and Experimental Therapeutics, USA; Department of Developmental, Molecular and Chemical Biology, USA; Graduate Program in Molecular Microbiology, USA; Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, 02111, USA.
| |
Collapse
|
23
|
McCormack KA, Alhaboubi A, Pollard DA, Fuller L, Holman PJ. In vitro cultivation of Babesia duncani (Apicomplexa: Babesiidae), a zoonotic hemoprotozoan, using infected blood from Syrian hamsters (Mesocricetus auratus). Parasitol Res 2019; 118:2409-2417. [PMID: 31197543 DOI: 10.1007/s00436-019-06372-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 06/05/2019] [Indexed: 11/24/2022]
Abstract
Human babesiosis, a tick-borne disease similar to malaria, is most often caused by the hemoprotozoans Babesia divergens in Europe, and Babesia microti and Babesia duncani in North America. Babesia microti is the best documented and causes more cases of human babesiosis annually than all other agents combined. Although the agents that cause human babesiosis are considered high-risk pathogens in transfusion medicine, federally licensed diagnostics are lacking for B. duncani in both the USA and Canada. Thus, there has been a need to develop and validate diagnostics specifically for this pathogen. In this study, B. duncani (WA1 isolate) was cultivated in vitro from Syrian hamster (Mesocricetus auratus) infected blood. We hypothesized HL-1 media with supplements would result in B. duncani propagating at higher levels in culture than supplemented M199 similar to the medium the parasite was originally cultivated with in 1994. We were unable to recreate Thomford's cultivation results with the M199 medium but supplemented HL-1 medium was able to successfully establish continuous culture. We further hypothesized that RBC from species other than hamsters would support B. duncani in vitro. However, rat, mouse, horse, and cow RBC did not support continuous culture of the parasite. Culture stocks of B. duncani were deposited at BEI Resources and are now commercially available to the scientific community to further research. The cultured parasite developed in this study was instrumental in the adaptation of B. duncani continuous culture to human RBC.
Collapse
Affiliation(s)
- Kimberly A McCormack
- Comparative Medicine Program, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843-4473, USA.
- Department of Comparative Medicine, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Boulevard Room 203, Oklahoma City, OK, 73104, USA.
| | - Amer Alhaboubi
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843-4467, USA
- Department of Parasitology, College of Veterinary Medicine, University of Baghdad, Baghdad, 10001-10090, Iraq
| | - Dana A Pollard
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843-4467, USA
- Health Resources and Services Administration, U.S. Department of Health and Human Services, 5 Skip Bertman Drive, Baton Rouge, LA, 70803, USA
| | - Lee Fuller
- Fuller Laboratories, 1312 East Valencia Drive, Fullerton, CA, 92831, USA
| | - Patricia J Holman
- Department of Comparative Medicine, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Boulevard Room 203, Oklahoma City, OK, 73104, USA
| |
Collapse
|
24
|
Debierre-Grockiego F, Smith TK, Delbecq S, Ducournau C, Lantier L, Schmidt J, Brès V, Dimier-Poisson I, Schwarz RT, Cornillot E. WITHDRAWN: Babesia divergens glycosylphosphatidylinositols modulate blood coagulation and induce Th2-biased cytokine profiles in antigen presenting cells. BIOCHIMIE OPEN 2019. [DOI: 10.1016/j.biopen.2019.100059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
25
|
Rego ROM, Trentelman JJA, Anguita J, Nijhof AM, Sprong H, Klempa B, Hajdusek O, Tomás-Cortázar J, Azagi T, Strnad M, Knorr S, Sima R, Jalovecka M, Fumačová Havlíková S, Ličková M, Sláviková M, Kopacek P, Grubhoffer L, Hovius JW. Counterattacking the tick bite: towards a rational design of anti-tick vaccines targeting pathogen transmission. Parasit Vectors 2019; 12:229. [PMID: 31088506 PMCID: PMC6518728 DOI: 10.1186/s13071-019-3468-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 04/29/2019] [Indexed: 02/07/2023] Open
Abstract
Hematophagous arthropods are responsible for the transmission of a variety of pathogens that cause disease in humans and animals. Ticks of the Ixodes ricinus complex are vectors for some of the most frequently occurring human tick-borne diseases, particularly Lyme borreliosis and tick-borne encephalitis virus (TBEV). The search for vaccines against these diseases is ongoing. Efforts during the last few decades have primarily focused on understanding the biology of the transmitted viruses, bacteria and protozoans, with the goal of identifying targets for intervention. Successful vaccines have been developed against TBEV and Lyme borreliosis, although the latter is no longer available for humans. More recently, the focus of intervention has shifted back to where it was initially being studied which is the vector. State of the art technologies are being used for the identification of potential vaccine candidates for anti-tick vaccines that could be used either in humans or animals. The study of the interrelationship between ticks and the pathogens they transmit, including mechanisms of acquisition, persistence and transmission have come to the fore, as this knowledge may lead to the identification of critical elements of the pathogens' life-cycle that could be targeted by vaccines. Here, we review the status of our current knowledge on the triangular relationships between ticks, the pathogens they carry and the mammalian hosts, as well as methods that are being used to identify anti-tick vaccine candidates that can prevent the transmission of tick-borne pathogens.
Collapse
Affiliation(s)
- Ryan O. M. Rego
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branišovská 31, 37005 Ceske Budejovice, Czech Republic
| | - Jos J. A. Trentelman
- Amsterdam UMC, Location AMC, Center for Experimental and Molecular Medicine, Amsterdam, The Netherlands
| | - Juan Anguita
- CIC bioGUNE, 48160 Derio, Spain
- Ikerbasque, Basque Foundation for Science, 48012 Bilbao, Spain
| | - Ard M. Nijhof
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Hein Sprong
- Centre for Zoonoses and Environmental Microbiology, Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Boris Klempa
- Institute of Virology, Biomedical Research Center of the Slovak Academy of Sciences, Bratislava, Slovakia
| | - Ondrej Hajdusek
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branišovská 31, 37005 Ceske Budejovice, Czech Republic
| | | | - Tal Azagi
- Centre for Zoonoses and Environmental Microbiology, Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Martin Strnad
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branišovská 31, 37005 Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 31, 37005 Ceske Budejovice, Czech Republic
| | - Sarah Knorr
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Radek Sima
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branišovská 31, 37005 Ceske Budejovice, Czech Republic
| | - Marie Jalovecka
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branišovská 31, 37005 Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 31, 37005 Ceske Budejovice, Czech Republic
| | - Sabína Fumačová Havlíková
- Institute of Virology, Biomedical Research Center of the Slovak Academy of Sciences, Bratislava, Slovakia
| | - Martina Ličková
- Institute of Virology, Biomedical Research Center of the Slovak Academy of Sciences, Bratislava, Slovakia
| | - Monika Sláviková
- Institute of Virology, Biomedical Research Center of the Slovak Academy of Sciences, Bratislava, Slovakia
| | - Petr Kopacek
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branišovská 31, 37005 Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 31, 37005 Ceske Budejovice, Czech Republic
| | - Libor Grubhoffer
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branišovská 31, 37005 Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 31, 37005 Ceske Budejovice, Czech Republic
| | - Joppe W. Hovius
- Amsterdam UMC, Location AMC, Center for Experimental and Molecular Medicine, Amsterdam, The Netherlands
| |
Collapse
|
26
|
Cursino-Santos JR, Singh M, Senaldi E, Manwani D, Yazdanbakhsh K, Lobo CA. Altered parasite life-cycle processes characterize Babesia divergens infection in human sickle cell anemia. Haematologica 2019; 104:2189-2199. [PMID: 30923098 PMCID: PMC6821620 DOI: 10.3324/haematol.2018.214304] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/20/2019] [Indexed: 01/08/2023] Open
Abstract
Babesia divergens is an intra-erythrocytic parasite that causes malaria-like symptoms in infected people. As the erythrocyte provides the parasite with the infra-structure to grow and multiply, any perturbation to the cell should impact parasite viability. Support for this comes from the multitude of studies that have shown that the sickle trait has in fact been selected because of the protection it provides against a related Apicomplexan parasite, Plasmodium, that causes malaria. In this paper, we examine the impact of both the sickle cell anemia and sickle trait red blood cell (RBC) environment on different aspects of the B. divergens life-cycle, and reveal that multiple aspects of parasite biological processes are altered in the mutant sickle anemia RBC. Such processes include parasite population progression, caused potentially by defective merozoite infectivity and/or defective egress from the sickle cell, resulting in severely lowered parasitemia in these cells with sickle cell anemia. In contrast, the sickle trait RBC provide a supportive environment permitting in vitro infection rates comparable to those of wild-type RBC. The elucidation of these naturally occurring RBC resistance mechanisms is needed to shed light on host-parasite interaction, lend evolutionary insights into these related blood-borne parasites, and to provide new insights into the development of therapies against this disease.
Collapse
Affiliation(s)
- Jeny R Cursino-Santos
- Department of Blood-Borne Parasites Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY
| | - Manpreet Singh
- Department of Blood-Borne Parasites Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY
| | - Eric Senaldi
- Medical Services New York Blood Center, New York, NY
| | - Deepa Manwani
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY
| | - Karina Yazdanbakhsh
- Department of Complement Biology Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, USA
| | - Cheryl A Lobo
- Department of Blood-Borne Parasites Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY
| |
Collapse
|
27
|
Development of a SNP barcode to genotype Babesia microti infections. PLoS Negl Trop Dis 2019; 13:e0007194. [PMID: 30908478 PMCID: PMC6448979 DOI: 10.1371/journal.pntd.0007194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 04/04/2019] [Accepted: 01/29/2019] [Indexed: 11/29/2022] Open
Abstract
Babesia microti is tick-borne disease that is an emerging threat to public health due to increasing prevalence and expanding geographic range. Detection and constant surveillance of babesiosis is imperative for predicting pathogen expansion. Leveraging our whole genome sequence (WGS) analyses of B. microti, we developed a single nucleotide polymorphism (SNP)-based high resolution melt (HRM) surveillance tool. We developed our HRM assay using available sequence data and identified 775 SNPs. From these candidate SNPs, we developed a 32-SNP barcode that is robust and differentiates geographically distinct populations; it contains SNPs that are putatively neutral, located in nuclear, mitochondrial, and apicoplastal regions. The assays are reproducible and robust, requiring a small quantity of DNA (limit of detection as low as 10 pg.). We analyzed the performance of our HRM assay using 26 B. microti clinical samples used in our WGS study from babesiosis endemic regions in the United States. We identified a minimal barcode consisting of 25 SNPs that differentiate geographically distinct populations across all clinical samples evaluated (average minor allele frequency > 0.22). Supporting our previous WGS findings, our 25-SNP barcode identified distinct barcode signatures that segregate B. microti into two lineages: Northeast and Midwest, with the Northeast having three subpopulations: Connecticut/Rhode Island, Nantucket, and the R1 reference group. Our 25-SNP HRM barcode provides a robust means genetic marker set that will aid in tracking the increasing incidence and expanding geographic range of B. microti infections. Babesia microti is an emerging tick-borne disease and is becoming a public health problem. Over the past two decades, the I. scapularis tick population, which is primarily responsible for human infection, has exploded, doubling the number of babesiosis and other I. scapularis-borne disease cases to approximately 48 thousand reported in 2016. The increasing number of endemic areas of B. microti signals the need to develop robust and accurate surveillance tools to effectively monitor and record disease incidence. Here, we used our whole genome sequence analysis of B. microti to develop a genetic barcode for B. microti, composed of 25 robust variants. We show the validation and utility of this SNP barcode on 26 babesiosis positive clinical samples from endemic regions in the United States. This genetic barcode provides a means to identify the genetic origin of a parasite and ultimately gain insight into B. microti population structure and transmission dynamics.
Collapse
|
28
|
Magni R, Luchini A, Liotta L, Molestina RE. Analysis of the Babesia microti proteome in infected red blood cells by a combination of nanotechnology and mass spectrometry. Int J Parasitol 2019; 49:139-144. [PMID: 30391228 PMCID: PMC10548858 DOI: 10.1016/j.ijpara.2018.08.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/17/2018] [Accepted: 08/13/2018] [Indexed: 11/18/2022]
Abstract
Proteomics of Babesia microti has lagged behind other apicomplexans despite recent genome and transcriptome studies. Here, we used a combination of nanotechnology and mass spectrometry to provide a proteomic profile of B. microti acute infection. We identified ∼500 parasite proteins in blood with functions such as transport, carbohydrate and energy metabolism, proteolysis, DNA and RNA metabolism, signaling, translation, lipid biosynthesis, and motility and invasion. We also identified surface antigens with roles in the immune response to the parasite. This first evaluation of the B. microti proteome in erythrocytes provides information for the study of intracellular survival and development of diagnostic tools using mass spectrometry.
Collapse
Affiliation(s)
- Ruben Magni
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA 20110, USA
| | - Alessandra Luchini
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA 20110, USA
| | - Lance Liotta
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA 20110, USA
| | - Robert E Molestina
- Protistology Laboratory, American Type Culture Collection, Manassas, VA 20110, USA.
| |
Collapse
|
29
|
Suarez CE, Alzan HF, Silva MG, Rathinasamy V, Poole WA, Cooke BM. Unravelling the cellular and molecular pathogenesis of bovine babesiosis: is the sky the limit? Int J Parasitol 2019; 49:183-197. [PMID: 30690089 PMCID: PMC6988112 DOI: 10.1016/j.ijpara.2018.11.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/21/2018] [Accepted: 11/21/2018] [Indexed: 11/21/2022]
Abstract
The global impact of bovine babesiosis caused by the tick-borne apicomplexan parasites Babesia bovis, Babesia bigemina and Babesia divergens is vastly underappreciated. These parasites invade and multiply asexually in bovine red blood cells (RBCs), undergo sexual reproduction in their tick vectors (Rhipicephalus spp. for B. bovis and B. bigemina, and Ixodes ricinus for B. divergens) and have a trans-ovarial mode of transmission. Babesia parasites can cause acute and persistent infections to adult naïve cattle that can occur without evident clinical signs, but infections caused by B. bovis are associated with more severe disease and increased mortality, and are considered to be the most virulent agent of bovine babesiosis. In addition, babesiosis caused by B. divergens has an important zoonotic potential. The disease caused by B. bovis and B. bigemina can be controlled, at least in part, using therapeutic agents or vaccines comprising live-attenuated parasites, but these methods are limited in terms of their safety, ease of deployability and long-term efficacy, and improved control measures are urgently needed. In addition, expansion of tick habitats due to climate change and other rapidly changing environmental factors complicate efficient control of these parasites. While the ability to cause persistent infections facilitates transmission and persistence of the parasite in endemic regions, it also highlights their capacity to evade the host immune responses. Currently, the mechanisms of immune responses used by infected bovines to survive acute and chronic infections remain poorly understood, warranting further research. Similarly, molecular details on the processes leading to sexual reproduction and the development of tick-stage parasites are lacking, and such tick-specific molecules can be targets for control using alternative transmission blocking vaccines. In this review, we identify and examine key phases in the life-cycle of Babesia parasites, including dependence on a tick vector for transmission, sexual reproduction of the parasite in the midgut of the tick, parasite-dependent invasion and egression of bovine RBCs, the role of the spleen in the clearance of infected RBCs (IRBCs), and age-related disease resistance in cattle, as opportunities for developing improved control measures. The availability of integrated novel research approaches including "omics" (such as genomics, transcriptomics, and proteomics), gene modification, cytoadhesion assays, RBC invasion assays and methods for in vitro induction of sexual-stage parasites will accelerate our understanding of parasite vulnerabilities. Further, producing new knowledge on these vulnerabilities, as well as taking full advantage of existing knowledge, by filling important research gaps should result in the development of next-generation vaccines to control acute disease and parasite transmission. Creative and effective use of current and future technical and computational resources are needed, in the face of the numerous challenges imposed by these highly evolved parasites, for improving the control of this disease. Overall, bovine babesiosis is recognised as a global disease that imposes a serious burden on livestock production and human livelihood, but it largely remains a poorly controlled disease in many areas of the world. Recently, important progress has been made in our understanding of the basic biology and host-parasite interactions of Babesia parasites, yet a good deal of basic and translational research is still needed to achieve effective control of this important disease and to improve animal and human health.
Collapse
Affiliation(s)
- Carlos E Suarez
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States; Animal Disease Research Unit, Agricultural Research Service, USDA, WSU, Pullman, WA, United States.
| | - Heba F Alzan
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States; Parasitology and Animal Diseases Department, National Research Center, Dokki, Giza, Egypt
| | - Marta G Silva
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States; Animal Disease Research Unit, Agricultural Research Service, USDA, WSU, Pullman, WA, United States
| | - Vignesh Rathinasamy
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Victoria 3800, Australia
| | - William A Poole
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Victoria 3800, Australia
| | - Brian M Cooke
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Victoria 3800, Australia.
| |
Collapse
|
30
|
Jalovecka M, Hartmann D, Miyamoto Y, Eckmann L, Hajdusek O, O'Donoghue AJ, Sojka D. Validation of Babesia proteasome as a drug target. Int J Parasitol Drugs Drug Resist 2018; 8:394-402. [PMID: 30103207 PMCID: PMC6092455 DOI: 10.1016/j.ijpddr.2018.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 08/03/2018] [Accepted: 08/06/2018] [Indexed: 11/06/2022]
Abstract
Babesiosis is a tick-transmitted zoonosis caused by apicomplexan parasites of the genus Babesia. Treatment of this emerging malaria-related disease has relied on antimalarial drugs and antibiotics. The proteasome of Plasmodium, the causative agent of malaria, has recently been validated as a target for anti-malarial drug development and therefore, in this study, we investigated the effect of epoxyketone (carfilzomib, ONX-0914 and epoxomicin) and boronic acid (bortezomib and ixazomib) proteasome inhibitors on the growth and survival of Babesia. Testing the compounds against Babesia divergens ex vivo revealed suppressive effects on parasite growth with activity that was higher than the cytotoxic effects on a non-transformed mouse macrophage cell line. Furthermore, we showed that the most-effective compound, carfilzomib, significantly reduces parasite multiplication in a Babesia microti infected mouse model without noticeable adverse effects. In addition, treatment with carfilzomib lead to an ex vivo and in vivo decrease in proteasome activity and accumulation of polyubiquitinated proteins compared to untreated control. Overall, our results demonstrate that the Babesia proteasome is a valid target for drug development and warrants the design of potent and selective B. divergens proteasome inhibitors for the treatment of babesiosis.
Collapse
Affiliation(s)
- Marie Jalovecka
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, CZ-370 05, Ceske Budejovice, Czech Republic; Faculty of Science, University of South Bohemia, CZ-370 05, Ceske Budejovice, Czech Republic
| | - David Hartmann
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, CZ-370 05, Ceske Budejovice, Czech Republic; Faculty of Science, University of South Bohemia, CZ-370 05, Ceske Budejovice, Czech Republic
| | - Yukiko Miyamoto
- Department of Medicine, University of California, San Diego, La Jolla, USA
| | - Lars Eckmann
- Department of Medicine, University of California, San Diego, La Jolla, USA
| | - Ondrej Hajdusek
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, CZ-370 05, Ceske Budejovice, Czech Republic
| | - Anthony J O'Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, USA.
| | - Daniel Sojka
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, CZ-370 05, Ceske Budejovice, Czech Republic.
| |
Collapse
|
31
|
Abstract
Babesiosis is most commonly caused by Babesia microti and is transmitted via the bite of an infected Ixodes spp tick. However, Babesia is also transmitted via blood transfusion. In the United States, the first case of transfusion-transmitted babesiosis was recognized in 1979, and in recent years, the incidence has rapidly increased. Because most of the infected blood donors do not experience any symptoms, they pose a significant risk to the blood supply. Donor deferral for a history of babesiosis is currently performed but is ineffective. In March 2018, the FDA licensed a DNA PCR and antibody assay that were used in tandem in pivotal trials for screening blood donors for B microti; with other assays still being evaluated under investigational new drug protocols. Blood donation screening is essential to reducing the risk of transfusion-transmitted babesiosis, which is why blood centers collecting in geographic regions of highest risk have been testing since approximately 2010. Investigational NAT assays of higher sensitivity are pending FDA review. Further, in July 2018, the FDA issued a draft guidance for reducing the risk of transfusion-transmitted babesiosis. Release of the final guidance may be postponed until sensitivities and specificities of all current and potential strategies have been properly evaluated.
Collapse
Affiliation(s)
- Tatiana Villatoro
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
| | - Julie Katz Karp
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
| |
Collapse
|
32
|
Investigating disease severity in an animal model of concurrent babesiosis and Lyme disease. Int J Parasitol 2018; 49:145-151. [PMID: 30367867 DOI: 10.1016/j.ijpara.2018.06.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/11/2018] [Accepted: 06/19/2018] [Indexed: 02/04/2023]
Abstract
The incidence of babesiosis, Lyme disease and other tick-borne diseases has increased steadily in Europe and North America during the last five decades. Babesia microti is transmitted by species of Ixodes, the same ticks that transmit the Lyme disease-causing spirochete, Borrelia burgdorferi. B. microti can also be transmitted through transfusion of blood products and is the most common transfusion-transmitted infection in the U.S.A. Ixodes ticks are commonly infected with both B. microti and B. burgdorferi, and are competent vectors for transmitting them together into hosts. Few studies have examined the effects of coinfections on humans and they had somewhat contradictory results. One study linked coinfection with B. microti to a greater number of symptoms of overall disease in patients, while another report indicated that B. burgdorferi infection either did not affect babesiosis symptoms or decreased its severity. Mouse models of infection that manifest pathological effects similar to those observed in human babesiosis and Lyme disease offer a unique opportunity to thoroughly investigate the effects of coinfection on the host. Lyme disease has been studied using the susceptible C3H mouse infection model, which can also be used to examine B. microti infection to understand pathological mechanisms of human diseases, both during a single infection and during coinfections. We observed that high B. microti parasitaemia leads to low haemoglobin levels in infected mice, reflecting the anaemia observed in human babesiosis. Similar to humans, B. microti coinfection appears to enhance the severity of Lyme disease-like symptoms in mice. Coinfected mice have lower peak B. microti parasitaemia compared to mice infected with B. microti alone, which may reflect attenuation of babesiosis symptoms reported in some human coinfections. These findings suggest that B. burgdorferi coinfection attenuates parasite growth while B. microti presence exacerbates Lyme disease-like symptoms in mice.
Collapse
|
33
|
An efficient formulation based on cationic porphyrins to photoinactivate Staphylococcus aureus and Escherichia coli. Future Med Chem 2018; 10:1821-1833. [PMID: 30019927 DOI: 10.4155/fmc-2018-0010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
AIM Antibiotic resistance is an increasingly serious worldwide problem that needs to be addressed with alternative tools. Antimicrobial photodynamic therapy seems a promising approach but in some cases the synthesis of highly efficient photosensitizers requires laborious processes burdened by extensive chromatographic purifications. In this study, we evaluate the suitability of a formulation (Form-1) containing porphyrins bearing different charges, obtained during the synthesis of the highly efficient photosensitizer 5,10,15-tris(1-methylpyridinium-4-yl)-20-(pentafluorophenyl)porphyrin tri-iodide. RESULTS Form-1 was equally effective in the photoinactivation of Escherichia coli and Staphylococcus aureus (reductions >5 log) as the best stand-alone photosensitizer. CONCLUSION The effective reduction of bacteria with Form-1 provided promising indications supporting its use, leading to a substantial decrease in costs and production time.
Collapse
|
34
|
Wołyniec W, Sulima M, Renke M, Dębska-Ślizień A. Parasitic Infections Associated with Unfavourable Outcomes in Transplant Recipients. MEDICINA (KAUNAS, LITHUANIA) 2018; 54:E27. [PMID: 30344258 PMCID: PMC6037257 DOI: 10.3390/medicina54020027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 04/21/2018] [Accepted: 04/27/2018] [Indexed: 01/10/2023]
Abstract
Introduction. The immunosuppression used after transplantation (Tx) is associated with an increased risk of opportunistic infections. In Europe, parasitic infections after Tx are much less common than viral, bacterial and fungal ones. However, diseases caused by parasites are very common in tropical countries. In the last years the number of travellers with immunosuppression visiting tropical countries has increased. Methods. We performed a literature review to evaluate a risk of parasitic infections after Tx in Europe. Results. There is a real risk of parasitic infection in patients after Tx travelling to tropical countries. Malaria, leishmaniasis, strongyloidiasis and schistosomiasis are the most dangerous and relatively common. Although the incidence of these tropical infections after Tx has not increased, the course of disease could be fatal. There are also some cosmopolitan parasitic infections dangerous for patients after Tx. The greatest threat in Europe is toxoplasmosis, especially in heart and bone marrow recipients. The most severe manifestations of toxoplasmosis are myocarditis, encephalitis and disseminated disease. Diarrhoea is one of the most common symptoms of parasitic infection. In Europe the most prevalent pathogens causing diarrhoea are Giardia duodenalis and Cryptosporidium. Conclusions. Solid organ and bone marrow transplantations, blood transfusions and immunosuppressive treatment are associated with a small but real risk of parasitic infections in European citizens. In patients with severe parasitic infection, i.e., those with lung or brain involvement or a disseminated disease, the progression is very rapid and the prognosis is bad. Establishing a diagnosis before the patient's death is challenging.
Collapse
Affiliation(s)
- Wojciech Wołyniec
- Department of Occupational, Metabolic and Internal Diseases, Institute of Maritime and Tropical Medicine, Medical University of Gdansk, 80⁻210 Gdansk, Poland.
| | - Małgorzata Sulima
- Department of Tropical and Parasitic Diseases, Institute of Maritime and Tropical Medicine, 81⁻519 Gdynia, Poland.
| | - Marcin Renke
- Department of Occupational, Metabolic and Internal Diseases, Institute of Maritime and Tropical Medicine, Medical University of Gdansk, 80⁻210 Gdansk, Poland.
| | - Alicja Dębska-Ślizień
- Department of Nephrology, Transplantology and Internal Diseases, Medical University of Gdansk, 80⁻210 Gdansk, Poland.
| |
Collapse
|
35
|
Djokic V, Akoolo L, Parveen N. Babesia microti Infection Changes Host Spleen Architecture and Is Cleared by a Th1 Immune Response. Front Microbiol 2018; 9:85. [PMID: 29445365 PMCID: PMC5797759 DOI: 10.3389/fmicb.2018.00085] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 01/12/2018] [Indexed: 12/11/2022] Open
Abstract
Babesia microti is a malaria-like parasite, which infects ∼2000 people annually, such that babesiosis is now a notifiable disease in the United States. Immunocompetent individuals often remain asymptomatic and are tested only after they feel ill. Susceptible C3H/HeJ mice show several human-like disease manifestations and are ideal to study pathogenesis of Babesia species. In this study, we examined parasitemia of B. microti at different time points and assessed its impact on hemoglobin levels in blood, on spleen pathology and overall immune response in C3H/HeJ mice. Peak parasitemia of 42.5% was immediately followed by diminished hemoglobin level. Parasitemia at 21 days of infection was barely detectable by microscopy presented 5.7 × 108 to 5.9 × 109B. microti DNA copies confirming the sensitivity of our qPCR. We hypothesize that qPCR detects DNA released from recently lysed parasites or from extracellular B. microti in blood, which are not easily detected in blood smears and might result in under-diagnosis of babesiosis in patients. Splenectomized patients have been reported to show increased babesiosis severity and result in high morbidity and mortality. These results emphasize the importance of splenic immunity in resolution of B. microti infection. Splenomegaly in infected mice associated with destruction of marginal zone with lysed erythrocytes and released B. microti life forms in our experiments support this premise. At conclusion of the experiment at 21 days post-infection, significant splenic B and T cells depletion and increase in macrophages levels were observed in B. microti infected mice suggesting a role of macrophage in disease resolution. Infected mice also showed significantly higher plasmatic concentration of CD4 Th1 cells secreted cytokines such as IL-2 and IFN-γ while cytokines such as IL-4, IL-5, and IL-13 secreted by Th2 cells increase was not always significant. Thus, Th1 cells-mediated immunity appears to be important in clearance of this intracellular pathogen. Significant increase in IL-6 that promotes differentiation of Th17 cells was observed but it resulted in only moderate change in IL-17A, IL-17F, IL-21, and IL-22, all secreted by Th17 cells. A similar immune response to Trypanosoma infection has been reported to influence the clearance of this protozoan, and co-infecting pathogen(s).
Collapse
Affiliation(s)
- Vitomir Djokic
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Lavoisier Akoolo
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Nikhat Parveen
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, United States
| |
Collapse
|
36
|
Abstract
PURPOSE OF REVIEW This review summarizes the current status of blood screening to prevent transfusion-transmitted babesiosis (TTB). RECENT FINDINGS Babesia microti has recently been determined to be the most common transfusion-transmitted pathogen in the United States. Patients who acquire TTB often experience severe illness with an associated mortality rate of about 20%. Recent studies have demonstrated that laboratory screening using B. microti antibody and/or PCR assays can effectively identify infectious blood donors and that this approach may offer a cost- effective means of intervention. Pathogen inactivation methods may offer an alternative solution. None of these methods has yet been licensed by US Food and Drug Administration, however, and current efforts to prevent TTB rely on excluding blood donors who report having had babesiosis. SUMMARY TTB imposes a significant health burden on the United States population. Further research is needed to better inform decisions on optimal screening strategies and reentry criteria, but given the acute need and the currently available screening tools, initiation of blood donor screening to prevent TTB should be given high priority.
Collapse
|
37
|
Tonnetti L, Laughhunn A, Thorp AM, Vasilyeva I, Dupuis K, Stassinopoulos A, Stramer SL. Inactivation of Babesia microti in red blood cells and platelet concentrates. Transfusion 2017; 57:2404-2412. [PMID: 28872685 DOI: 10.1111/trf.14280] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/12/2017] [Accepted: 07/05/2017] [Indexed: 01/30/2023]
Abstract
BACKGROUND With an increasing number of recognized transfusion-transmitted (TT) babesiosis cases, Babesia microti is the most frequently TT parasite in the United States. We evaluated the inactivation of B. microti in red blood cells (RBCs) prepared in Optisol (AS-5) using amustaline and glutathione (GSH) and in platelet components (PCs) in 100% plasma using amotosalen and low-energy ultraviolet A (UVA) light. STUDY DESIGN AND METHODS Individual RBCs and apheresis PCs were spiked with B. microti-infected hamster RBCs (iRBCs) to a final concentration of 106 iRBCs/mL and treated with the respective inactivation systems according to the manufacturer's instruction. Samples were collected before (control) and after (test) each treatment. Dilutions of the control samples to 10-6 were inoculated into hamsters, while the test samples were inoculated neat or at 10-1 dilution. At 3 and 5 weeks postinoculation, hamsters were evaluated for B. microti infection by microscopic observation of blood smears and 50% infectivity titers (ID50 ) were determined. Log reduction was calculated as control log ID50 minus test log ID50 . RESULTS Parasitemia was detected in hamsters injected with as low as 100,000-fold diluted control samples, while no parasites were detectable in the blood smears of any hamsters receiving neat test samples. Mean log reduction was more than 5 log/mL by amustaline/GSH for RBCs and more than 4.5 log/mL by amotosalen/UVA for PCs. CONCLUSION B. microti was inactivated to the limit of detection in RBCs and PCs after the respective inactivation treatment. Complete inactivation of B. microti was achieved in this animal infectivity model, and pathogen reduction treatment inhibited transmission of infection.
Collapse
Affiliation(s)
- Laura Tonnetti
- Scientific Affairs, American Red Cross Holland Laboratory, Rockville, Maryland
| | | | - Aaron M Thorp
- Scientific Affairs, American Red Cross Holland Laboratory, Rockville, Maryland
| | - Irina Vasilyeva
- Scientific Affairs, American Red Cross Holland Laboratory, Rockville, Maryland
| | | | | | - Susan L Stramer
- Scientific Affairs, American Red Cross Holland Laboratory, Rockville, Maryland
| |
Collapse
|
38
|
Jajosky RP, Jajosky AN. Is babesiosis the most common transfusion transmitted infection in the United States of America? The answer is not simple! Transfus Apher Sci 2017; 56:609-610. [PMID: 28867527 DOI: 10.1016/j.transci.2017.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 08/09/2017] [Indexed: 11/18/2022]
Affiliation(s)
- Ryan P Jajosky
- Pathology Department, Augusta University Medical Center, Augusta, GA, USA.
| | - Audrey N Jajosky
- Pathology Department, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| |
Collapse
|
39
|
El-Sayed SAES, Rizk MA, Terkawi MA, Yokoyama N, Igarashi I. Molecular identification and antigenic characterization of Babesia divergens Erythrocyte Binding Protein (BdEBP) as a potential vaccine candidate. Parasitol Int 2017; 66:721-726. [PMID: 28743470 DOI: 10.1016/j.parint.2017.07.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 06/07/2017] [Accepted: 07/17/2017] [Indexed: 10/19/2022]
Abstract
Host cell invasion is the only step where Babesia parasites are extracellular, and their survival is menaced during this step. Therefore, interfering with this critical stage is a target for an anti-Babesia intervention strategy. In this regard, recombinant protein encoding Babesia divergens Erythrocyte Binding Protein (BdEBP) was produced in Escherichia coli in the current study, and its antiserum was prepared in mice for further molecular characterization. Western blotting and indirect fluorescent antibody test (IFAT) revealed the specific reaction of the anti-rBdEBP serum with a corresponding authentic protein of B. divergens. Next, bovine RBCs were incubated with a B. divergens lysate, and anti-rBdEBP serum was produced in mice to detect the ability of BdEBP to bind with host cells. Bands corresponding to 29.6-kDa proteins in the protein-bound erythrocyte lysate were detected by specific immune rBdEBP using Western blotting. These results suggest that BdEBP is functional in the merozoite stage and may be involved in attachment to bovine RBCs. A significant inhibition of the in vitro growth of B. divergens culture treated with anti-rBdEBP serum was observed. Moreover, the efficacy of pre-incubated free merozoites to invade bovine erythrocytes was inhibited by 60% after incubation with 2mg/ml of anti-rBdEBP serum for 6h. The obtained data suggest the possible use of rBdEBP as a vaccine candidate against bovine babesiosis.
Collapse
Affiliation(s)
- Shimaa Abd El-Salam El-Sayed
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido, Japan; Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Mohamed Abdo Rizk
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido, Japan; Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Mohamad Alaa Terkawi
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido, Japan
| | - Naoaki Yokoyama
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido, Japan
| | - Ikuo Igarashi
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido, Japan.
| |
Collapse
|
40
|
Skariah S, Arnaboldi P, Dattwyler RJ, Sultan AA, Gaylets C, Walwyn O, Mulhall H, Wu X, Dargham SR, Mordue DG. Elimination of Babesia microti Is Dependent on Intraerythrocytic Killing and CD4 + T Cells. THE JOURNAL OF IMMUNOLOGY 2017; 199:633-642. [PMID: 28607116 DOI: 10.4049/jimmunol.1601193] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 05/17/2017] [Indexed: 11/19/2022]
Abstract
Babesiosis is a tick-borne zoonosis caused by protozoans of the genus Babesia, apicomplexan parasites that replicate within erythrocytes. However, unlike related Plasmodium species, the pathogenesis of Babesia infection remains poorly understood. The primary etiological agent of babesiosis in the United States is B. microti. In healthy individuals, tick-transmitted infection with Babesia causes no specific clinical manifestations, with many having no symptoms at all. However, even in asymptomatic people, a Babesia carriage state can be established that can last up to a year or more. Current blood bank screening methods do not identify infected donors, and Babesia parasites survive blood-banking procedures and storage. Thus, Babesia can also be transmitted by infected blood, and it is currently the number one cause of reportable transfusion-transmitted infection in the United States. Despite a significant impact on human health, B. microti remains understudied. In this study, we evaluated the course of Babesia infection in three strains of mice, C57BL/6J, BALB/cJ, and C3H-HeJ, and examined the contribution of multiple immune parameters, including TLRs, B cells, CD4+ cells, IFN-γ, and NO, on the level of parasitemia and parasite clearance during acute babesiosis. We found that B. microti reaches high parasitemia levels during the first week of infection in all three mice strains before resolving spontaneously. Our results indicate that resolution of babesiosis requires CD4 T cells and a novel mechanism of parasite killing within infected erythrocytes.
Collapse
Affiliation(s)
- Sini Skariah
- Department of Microbiology and Immunology, Weill Cornell Medicine-Qatar, Qatar Foundation - Education City, Doha, Qatar
| | - Paul Arnaboldi
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY 10595.,Biopeptides Corp., East Setauket, NY 11733; and
| | - Raymond J Dattwyler
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY 10595.,Biopeptides Corp., East Setauket, NY 11733; and
| | - Ali A Sultan
- Department of Microbiology and Immunology, Weill Cornell Medicine-Qatar, Qatar Foundation - Education City, Doha, Qatar
| | - Corey Gaylets
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY 10595
| | - Odaelys Walwyn
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY 10595
| | - Hannah Mulhall
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY 10595
| | - Xia Wu
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY 10595
| | - Soha R Dargham
- Infectious Disease Epidemiology Group, Weill Cornell Medicine-Qatar, Qatar Foundation - Education City, Doha, Qatar
| | - Dana G Mordue
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY 10595;
| |
Collapse
|
41
|
An effective and potentially safe blood disinfection protocol using tetrapyrrolic photosensitizers. Future Med Chem 2017; 9:365-379. [DOI: 10.4155/fmc-2016-0217] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Aim: Conventional disinfection techniques, considered safe for plasma, are usually associated with collateral damages on concentrated platelets and erythrocytes. Alternative methods are required and antimicrobial photodynamic therapy (aPDT) seems promising. In this study the effectiveness of two photosensitizers (PS), a porphyrin and a phthalocyanine, to disinfect blood products was evaluated. Results: The cationic porphyrin was more effective in the photoinactivation of bacteria. Also, no significant osmotic stress was found for samples treated with PS at 5.0 µM in isotonic conditions after antimicrobial photodynamic therapy. Conclusion: Effective reduction of Gram-positive bacteria at 5.0 µM of PS provided promising indications toward its safe use to disinfect blood samples. For Gram-negative bacteria, lower PS concentrations, between 5.0 and 10 µM, must be tested.
Collapse
|
42
|
Cursino-Santos JR, Singh M, Pham P, Lobo CA. A novel flow cytometric application discriminates among the effects of chemical inhibitors on various phases ofBabesia divergensintraerythrocytic cycle. Cytometry A 2017; 91:216-231. [DOI: 10.1002/cyto.a.23062] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 12/09/2016] [Accepted: 12/28/2016] [Indexed: 12/21/2022]
Affiliation(s)
| | - Manpreet Singh
- Department of Blood Borne Parasites; New York Blood Center; New York New York
| | - Petra Pham
- Flow Cytometry Core Facility; New York Blood Center; New York New York
| | - Cheryl A. Lobo
- Department of Blood Borne Parasites; New York Blood Center; New York New York
| |
Collapse
|
43
|
Curcio SR, Tria LP, Gucwa AL. Seroprevalence of Babesia microti in Individuals with Lyme Disease. Vector Borne Zoonotic Dis 2016; 16:737-743. [PMID: 27911694 DOI: 10.1089/vbz.2016.2020] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
INTRODUCTION Babesiosis is an emerging tick-borne disease (TBD) caused by Babesia microti, an intracellular parasite of red blood cells. Currently, it is the highest ranked pathogen transmitted by blood transfusion. Most healthy individuals infected with B. microti are asymptomatic, but may be at risk for chronic infection. Similar to Lyme disease transmitted by Borrelia burgdorferi, B. microti is spread by Ixodes scapularis ticks. The rate of coinfection with these TBDs in humans is unclear as most studies have focused their prevalence in ticks or rodent reservoirs. MATERIALS AND METHODS In this study, we aimed to determine the seroprevalence of B. microti infection in individuals who tested positive for Lyme disease. Serum samples obtained from 130 subjects in New York were tested by immunofluorescence assay (IFA) for the presence of IgM and IgG antibodies against B. microti. RESULTS Overall, 26.9% of the serum samples tested were positive for IgM and IgG antibodies against B. microti, suggesting exposure to TBD. Individuals who tested positive for Lyme disease as determined by two-tiered serological testing and the presence of both IgM and IgG antibodies directed against B. burgdorferi, were significantly increased for antibodies directed against B. microti (28.6%; p < 0.05), suggesting the possibility of coinfection with both TBDs. In contrast, the Lyme disease-negative control group had only 6.7% of samples seropositive for B. microti. CONCLUSIONS These findings suggest the need for more extensive studies investigating infection rates with multiple TBDs in areas where they are endemic and further support for the need to implement an FDA-approved screening test for blood products to help prevent transfusion-transmitted babesiosis.
Collapse
Affiliation(s)
- Sabino R Curcio
- 1 Department of Biomedical Sciences, Long Island University , Post Campus, Brookville, New York
| | - Laurel P Tria
- 2 Northwell Health Laboratories , Lake Success, New York
| | - Azad L Gucwa
- 1 Department of Biomedical Sciences, Long Island University , Post Campus, Brookville, New York
| |
Collapse
|
44
|
Cursino-Santos JR, Singh M, Pham P, Rodriguez M, Lobo CA. Babesia divergensbuilds a complex population structure composed of specific ratios of infected cells to ensure a prompt response to changing environmental conditions. Cell Microbiol 2016; 18:859-74. [DOI: 10.1111/cmi.12555] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 12/03/2015] [Accepted: 12/07/2015] [Indexed: 12/30/2022]
Affiliation(s)
- Jeny R. Cursino-Santos
- Department of Blood Borne Parasites, Lindsley F. Kimball Research Institute; New York Blood Center; New York NY USA
| | - Manpreet Singh
- Department of Blood Borne Parasites, Lindsley F. Kimball Research Institute; New York Blood Center; New York NY USA
| | - Petra Pham
- Flow Cytometry Core Facility, Lindsley F. Kimball Research Institute; New York Blood Center; New York NY USA
| | - Marilis Rodriguez
- Department of Blood Borne Parasites, Lindsley F. Kimball Research Institute; New York Blood Center; New York NY USA
| | - Cheryl A. Lobo
- Department of Blood Borne Parasites, Lindsley F. Kimball Research Institute; New York Blood Center; New York NY USA
| |
Collapse
|
45
|
Human Coinfection with Borrelia burgdorferi and Babesia microti in the United States. J Parasitol Res 2015; 2015:587131. [PMID: 26697208 PMCID: PMC4677215 DOI: 10.1155/2015/587131] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 11/08/2015] [Indexed: 11/18/2022] Open
Abstract
Borrelia burgdorferi, the causative agent of Lyme disease, and Babesia microti, a causative agent of babesiosis, are increasingly implicated in the growing tick-borne disease burden in the northeastern United States. These pathogens are transmitted via the bite of an infected tick vector, Ixodes scapularis, which is capable of harboring and inoculating a host with multiple pathogens simultaneously. Clinical presentation of the diseases is heterogeneous and ranges from mild flu-like symptoms to near-fatal cardiac arrhythmias. While the reason for the variability is not known, the possibility exists that concomitant infection with both B. burgdorferi and B. microti may synergistically increase disease severity. In an effort to clarify the current state of understanding regarding coinfection with B. burgdorferi and B. microti, in this review, we discuss the geographical distribution and pathogenesis of Lyme disease and babesiosis in the United States, the immunological response of humans to B. burgdorferi or B. microti infection, the existing knowledge regarding coinfection disease pathology, and critical factors that have led to ambiguity in the literature regarding coinfection, in order to eliminate confusion in future experimental design and investigation.
Collapse
|
46
|
The Utility of Blood and Bone Marrow Films and Trephine Biopsy Sections in the Diagnosis of Parasitic Infections. Mediterr J Hematol Infect Dis 2015; 7:e2015039. [PMID: 26075046 PMCID: PMC4450651 DOI: 10.4084/mjhid.2015.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 04/29/2015] [Indexed: 12/18/2022] Open
Abstract
The laboratory haematologist has a role in the diagnosis of parasitic infections. Peripheral blood examination is critical in the diagnosis of malaria, babesiosis, filariasis and trypanosomiasis. Bone marrow examination is important in the diagnosis of leishmaniasis and occasionally leads to the diagnosis of other parasitic infections. The detection of eosinophilia or iron deficiency anaemia can alert the laboratory haematologist or physician to the possibility of parasitic infection. In addition to morphological skills, an adequate clinical history is important for speedy and accurate diagnosis, particularly in non-endemic areas.
Collapse
|
47
|
Stramer SL, Dodd RY, Chiu CY. Advances in testing technology to ensure transfusion safety - NAT and beyond. ACTA ACUST UNITED AC 2015. [DOI: 10.1111/voxs.12152] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- S. L. Stramer
- American Red Cross Biomedical Services; Gaithersburg MD USA
| | - R. Y. Dodd
- Research and Development; American Red Cross Biomedical Services; Rockville MD USA
| | - C. Y. Chiu
- Laboratory Medicine and Medicine/Infectious Diseases; UCSF School of Medicine; San Francisco CA USA
- UCSF-Abbott Viral Diagnostics and Discovery Center; UCSF School of Medicine; San Francisco CA USA
| |
Collapse
|
48
|
Marano G, Vaglio S, Pupella S, Facco G, Calizzani G, Candura F, Liumbruno GM, Grazzini G. Human Parvovirus B19 and blood product safety: a tale of twenty years of improvements. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2015; 13:184-96. [PMID: 25849894 PMCID: PMC4385066 DOI: 10.2450/2014.0174.14] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 10/09/2014] [Indexed: 02/06/2023]
Affiliation(s)
- Giuseppe Marano
- Italian National Blood Centre, National Institute of Health, Rome, Italy
| | - Stefania Vaglio
- Italian National Blood Centre, National Institute of Health, Rome, Italy
- Faculty of Medicine and Psychology, “Sapienza” University of Rome, Rome, Italy
| | - Simonetta Pupella
- Italian National Blood Centre, National Institute of Health, Rome, Italy
| | - Giuseppina Facco
- Italian National Blood Centre, National Institute of Health, Rome, Italy
- Immunohaemathology and Transfusion Medicine Unit, Joint Hospital-University Institution “Città della Salute e della Scienza”, Turin, Italy
| | - Gabriele Calizzani
- Italian National Blood Centre, National Institute of Health, Rome, Italy
| | - Fabio Candura
- Italian National Blood Centre, National Institute of Health, Rome, Italy
| | | | - Giuliano Grazzini
- Italian National Blood Centre, National Institute of Health, Rome, Italy
| |
Collapse
|
49
|
Gonzalez LM, Rojo S, Gonzalez-Camacho F, Luque D, Lobo CA, Montero E. Severe babesiosis in immunocompetent man, Spain, 2011. Emerg Infect Dis 2014; 20:724-6. [PMID: 24656155 PMCID: PMC3966382 DOI: 10.3201/eid2004.131409] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
50
|
Wilson M, Glaser KC, Adams-Fish D, Boley M, Mayda M, Molestina RE. Development of droplet digital PCR for the detection of Babesia microti and Babesia duncani. Exp Parasitol 2014; 149:24-31. [PMID: 25500215 DOI: 10.1016/j.exppara.2014.12.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 09/05/2014] [Accepted: 12/02/2014] [Indexed: 10/24/2022]
Abstract
Babesia spp. are obligate protozoan parasites of red blood cells. Transmission to humans occurs through bites from infected ticks or blood transfusion. Infections with B. microti account for the majority of the reported cases of human babesiosis in the USA. A lower incidence is caused by the more recently described species B. duncani. The current gold standard for detection of Babesia is microscopic examination of blood smears. Recent PCR-based assays, including real-time PCR, have been developed for B. microti. On the other hand, molecular assays that detect and distinguish between B. microti and B. duncani infections are lacking. Closely related species of Babesia can be differentiated due to sequence variation within the internal transcribed spacer (ITS) regions of nuclear ribosomal RNAs. In the present study, we targeted the ITS regions of B. microti and B. duncani to develop sensitive and species-specific droplet digital PCR (ddPCR) assays. The assays were shown to discriminate B. microti from B. duncani and resulted in limits of detection of ~10 gene copies. Moreover, ddPCR for these species were useful in DNA extracted from blood of experimentally infected hamsters, detecting infections of low parasitemia that were negative by microscopic examination. In summary, we have developed sensitive and specific quantitative ddPCR assays for the detection of B. microti and B. duncani in blood. Our methods could be used as sensitive approaches to monitor the progression of parasitemia in rodent models of infection as well as serve as suitable molecular tests in blood screening.
Collapse
Affiliation(s)
- Melisa Wilson
- BEI Resources, American Type Culture Collection, Manassas, VA 20110, USA
| | - Kathleen C Glaser
- BEI Resources, American Type Culture Collection, Manassas, VA 20110, USA
| | - Debra Adams-Fish
- BEI Resources, American Type Culture Collection, Manassas, VA 20110, USA
| | - Matthew Boley
- BEI Resources, American Type Culture Collection, Manassas, VA 20110, USA
| | - Maria Mayda
- BEI Resources, American Type Culture Collection, Manassas, VA 20110, USA
| | - Robert E Molestina
- BEI Resources, American Type Culture Collection, Manassas, VA 20110, USA.
| |
Collapse
|